Role of Metal Ions in Biological Systems

Prof. Ramesh Chandra

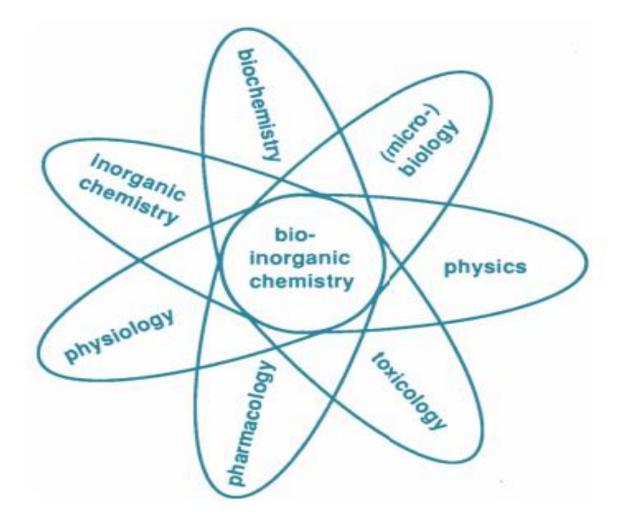
Panch Bhoota

A group of five basic elements, which, according to Hinduism, is the **basis of all cosmic creation**

- These five elements are :
- > **Prithvi** (Earth)
- > Apas/Jal (Water)
- ≻Agni(Fire)
- > Vayu (Air)
- > Aakash(Aether)

According to Ayurveda and Yoga, *Pancha Bhoota* are associated with overall health of human being. Any disorder in human body indicates imbalance of one or more of these elements

The Beginning


- Classical biochemistry was concerned mainly with organic compounds
- Improved trace analytical methods had demonstrated the importance of quite a number of "inorganic" elements in biochemical processes
- Some "inorganic" elements were established quite early as essential components of living systems. E.g.
- The discoveries of elemental phosphorus (as P4) by dry distillation of urine residues in 1669
- The extraction of (K2CO3, potash) from plants
- The extraction of iron-containing complex salts from animal blood in the 18th century
- It was only after 1960 that bioinorganic chemistry became an independent and highly interdisciplinary research area

Development

The following factors have been crucial for the development of bioinorganic chemistry

- Biochemical isolation and purification procedures like chromatography and trace element analysis techniques like AAS have characterized otherwise conspicuous metals in living systems
- Elucidation of the mechanisms of organic, inorganic and biochemical reactions led to an understanding of biological functions of inorganic elements
- The contributions from physics, chemistry, medicine, toxicology etc have led to rapid progress of bioinorganic chemistry

Bioinorganic Chemistry as a highly interdisciplinary research field

Application Potential of Bioinorganic Chemistry

• Biomedical sector :

- <u>Radiodiagnostics</u> (single-photon emission computed tomography (SPECT), positron emission tomography (PET))
- Other Imaging Techniques (MRI), x-ray: Gd, Ba, I
- Radiotherapy: Tc, I, Ga, In, Re
- Chemotherapy: Pt, Au, Li

(the successful use of the simple inorganic complex *cis*- $Pt(NH_3)_2Cl_2$ ("cisplatin"), in the therapy of certain tumors

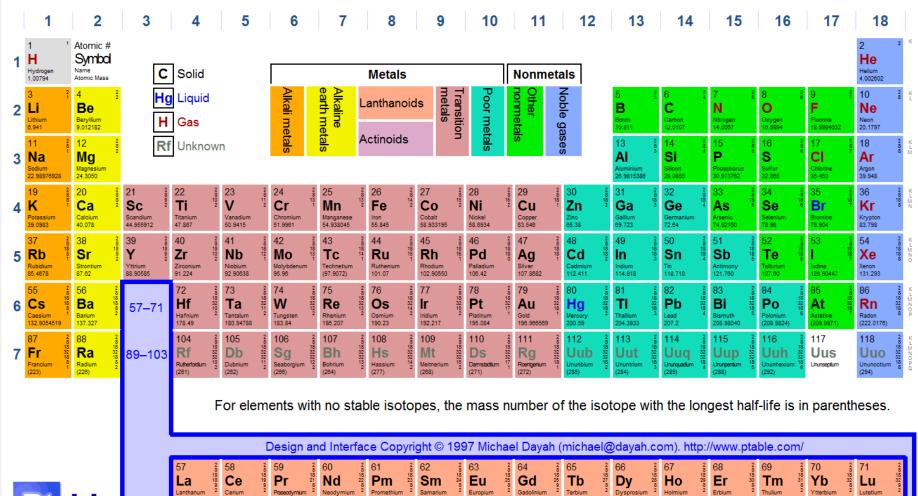
Biotechnological options: specific mutation, metalloprotein design

Medical and prospective medical uses of inorganic compounds

Element	Compound	Uses	Trade names/comments
Approved a	agents (mostly US or w	vorldwide):	
Li	Li ₂ CO ₃	Manic depression	Camcolit; Cibalith-S; Lithane (of many)
Fe	$[Fe(NO)(CN)_5]^{2-}$	Vasodilation	Nipride. For acute shock. NO release
Ga	Ga(NO ₃) ₃	Hypercalcemia of malignancy	Ganite. Possible anticancer agent. In clinical trials for use in lymphomas
As	As_2O_3	Anticancer agent	Trisenox. Use in acute promyelocytic leukemia
Ag	AgNO ₃	Disinfectant	Neonatal conjunctivitis
	Ag(sulfadiazene)	Antibacterial	Flamazine; Silvadene; treatment of burns. 1% cream
Sb	Sb ^{III} (tartarate)	Antiparasitic, leishmaniasis	Tartar Emetic Stibophen; Astiban
Pt	cis-[Pt(amine) ₂ X ₂]	Anticancer agents	Platinol; Paraplatin; Eloxatine Testicular, ovarian, colon cancers
Au	Au(PEt ₃)(acetyl- thioglucose)	Rheumatoid arthritis	Ridaura. Orally active
Bi	Bi(sugar) polymers	Antiulcer; antacid	Pepto-Bismol; Ranitidine Bismutrex; De-Nol
Hg	Hg-organic compounds	Antibacterial	Thiomersal; mercurochrome (amongst many)
	1	Antifungal	Slow release of Hg ²⁺
Agents in	clinical trials:		
Pt	Polynuclear Pt ^{IV} species	Anticancer agents	BBR3464, Satraplatin, AMD-473
			Expands spectrum of activity of cisplatin; overcomes resistance; oral activity?
Mn	Mn chelates	Anticancer agents	SOD mimics
Ru	trans-[RuCl ₄ (Me ₂ SO)(Im)] ⁻	Anticancer agent	NAMI-A; antiangiogenic?
V	VO(maltate) ₂	Type II diabetes	BMOV; insulin mimetic
Ln	$Ln(CO_3)_3$	Hyperphosphatemia	Fosrenol; phosphate binder

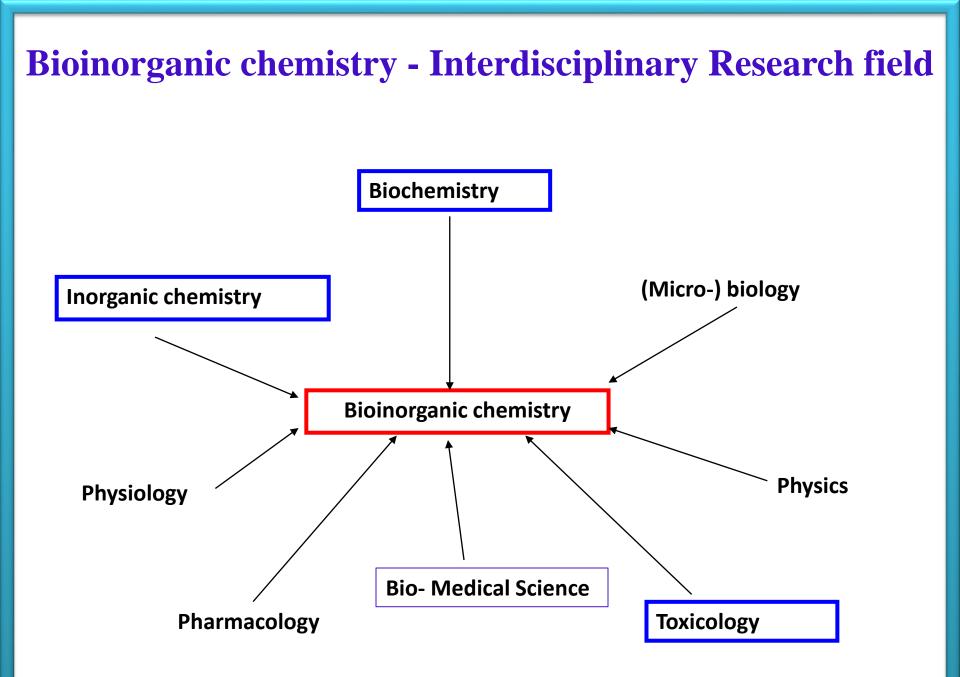
Application Potential of Bioinorganic Chemistry

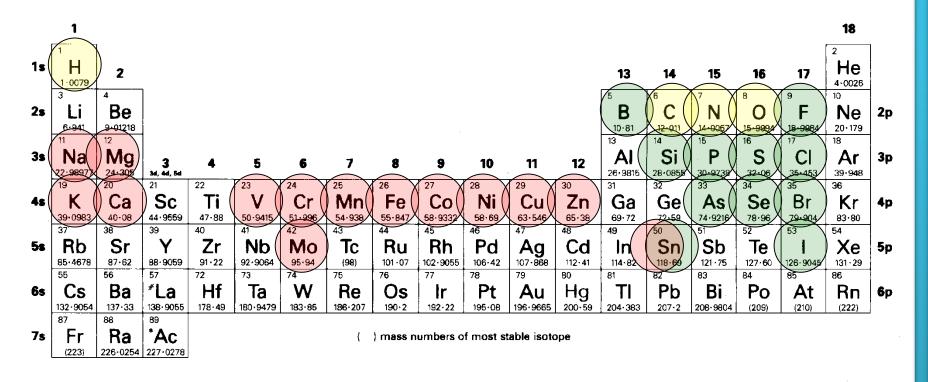
- Industrial sector:
- <u>Anaerobic bacterial degradation</u> in sewage plants or in sediments:
 Fe, Ni, Co
- Biomining (bacterial leaching; ≈ 15% of the global copper production): Cu, Au,Fe, U
- Environmental sector:
- Agricultural trace element problems: nitrogen fixation (Fe,Mo,V); Mo/Cu antagonism; Se content of soil
- Pollution through metal species: Pb, Cd, Hg, As, Al, Cr
- Detoxification, for example via peroxidases: Fe, Mn, V


Average elemental composition of a human body

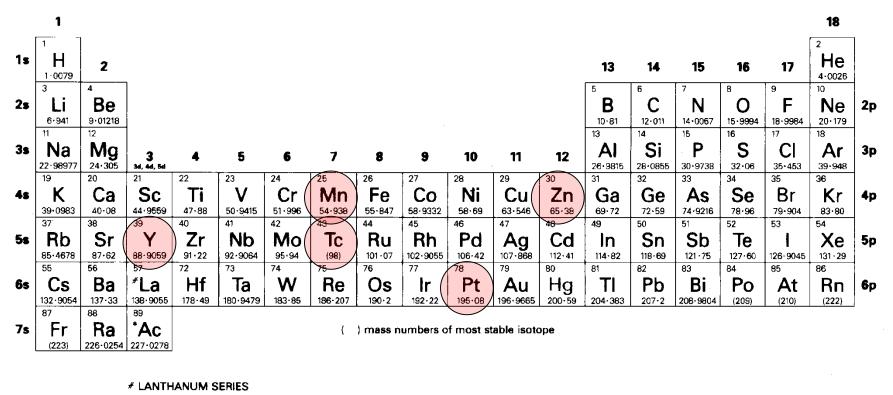
Element	Symbol	Percentage in Body
Oxygen	0	65.0
Carbon	С	18.5
Hydrogen	н	9.5
Nitrogen	N	3.2
Calcium	Ca	1.5
Phosphorus	Р	1.0
Potassium	К	0.4
Sulfur	S	0.3
Sodium	Na	0.2
Chlorine	CI	0.2
Magnesium	Mg	0.1
Trace elements include boron (B), chromium (Cr), cobalt (Co), copper (Cu), fluorine (F), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silicon (Si), tin (Sn), vanadium (V), and zinc (Zn).		less than 1.0

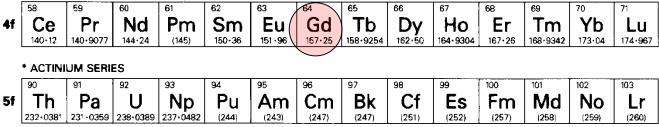
Occurrence and Availability of Inorganic Elements in Organisms


- The occurrence of the elements in organisms depends on external and endogenous conditions
- The high percentage of O and H reflect high content of water
- Calcium- The most abundant metal in body. Its main quantitative use being the stabilization of the endoskeleton
- The elements Si, Al and Ti, are abundant in the earth's crust, play only a marginal role in the biosphere. Reason :
- ➤ Under normal physiological conditions (pH ≈ 7), these elements in their usual high oxidation states exist as nearly insoluble oxides or hydroxides and are therefore not (bio)available.
- Mo, a rare element in the earth's crust but soluble at pH 7 as MoO4²⁻ has been found as an essential element in many organisms.


Periodic Table of Elements

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/															
57 2 La 18 Lanthanum 2 138.90547	58 Ce ^{Cerium} 140.116	18 19 9 2 Pt	9 ² Pr ¹⁸ ¹⁸ ²¹ ² 40.90765	60 2 Nd 18 Neodymium 2 144.242	61 28 Pm 28 18 23 8 23 2 18 23 8 2 18 18 18 18 18 18 18 18 18 18	62 2 Sm 24 Samarium 150.38 2	63 28 Eu Europium 2 151.984	64 28 Gd 25 9 Gadolinium 2 157.25	65 2 Tb 27 Terbium 2 158.92535	66 28 Dy Dysprosium 162.500	67 28 Ho 18 Holmium 184.93032		69 28 Tm 18 31 Thulium 2 168.93421	70 28 Yb 32 Ytterbium 2 173.054	71 Lu Lutetium 174.9888
89 2 Ac 18 Actinium 9 (227) 2	90 Th Thorium 232.03806	10 Pr	Pa 📲	92 28 U 18 Uranium 9 238.02891	93 28 Np 18 Neptunium 9 (237) 2	94 2 Pu 32 Plutonium 2 (244)	95 28 Am 322 Americium 28 (243)	96 28 Cm 322 Curium 9 (247)	97 28 Bk 322 Berkelium 2 (247)	98 2 Cf 32 Californium 2 (251)	99 2 ES 32 29 Einsteinium 8 (252)	100 28 Fm 322 300 Fermium 8 (257)	101 28 Md 322 Mendelevium 8 (258)	102 ² No ¹⁸ Nobelium ² (259) ²	103 Lr Lawrencium (262)




LANTHANUM SERIES

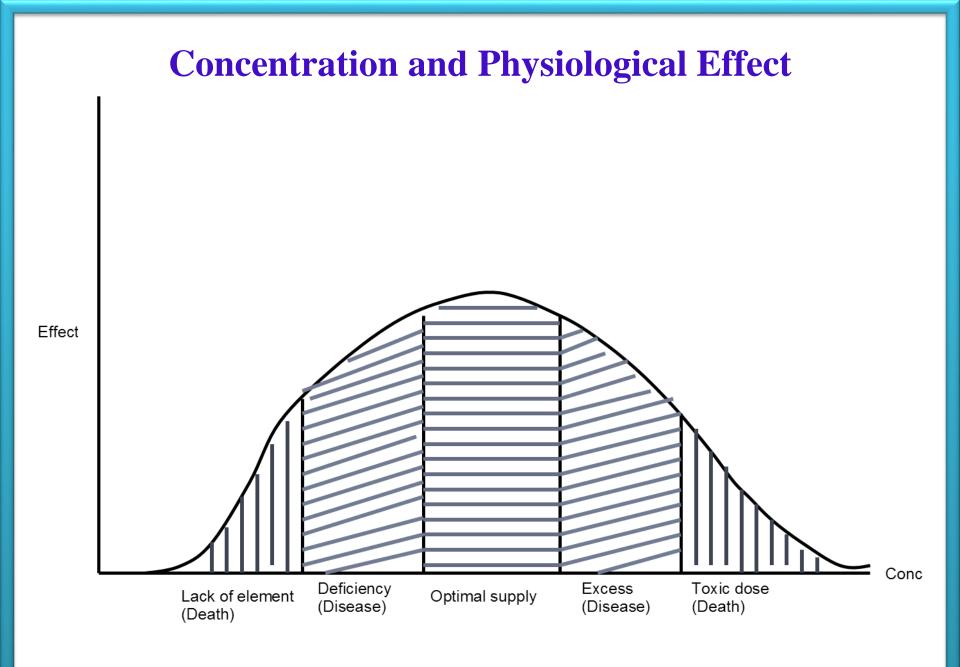
	58	59	60	61	62	63	64	65	66	67	68	69	70	71
4f	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
	140-12	140-9077	144.24	(145)	150-36	151 • 96	167.25	158-9254	162.50	164 9304	167•26	168·93 42	173-04	174.967

* ACTINIUM SERIES

	90	91	92	93	94	95	96	97	98	99	100	101	102	103
5f	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232·0381	231.0359	238 ·03 89		(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Evolution of life : Essential Elements

Earth solidified ~ 4 billion years ago


81 stable elements

Elements of the living organism:

- 1. Elements in large scale: 11 elements H, C, N, O, Na, Mg, P, S, Cl, K, Ca
- 2. Elements in small scale: 7 elements Mn, Fe, Co, Cu, Zn, I, Mo
- Elements of a few species: 7 elements
 B, F, Si, V, Cr, Se, Sn

Periodic Table

l H	2	_	0	bulk	eleme	ents		for s	some s	pecies		13	14	15	16	17	18 2 He 4.0026
3 Li 6.941	4 Be 9.0122			trace	e elem	ents						5 B 10.811	C	N 4007	0	F 18.998	10 Ne 20.180
Na 2.99	Mg 4.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	P 30.974	S 32.055	C1 35.43	18 A1 39.948
K 39.09	Ca 90.07	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	20 Ni 58.693	29 Cu 63.546	20 Zn 65.409	31 Ga 69.723	32 Ge 72.64	23 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 S1 87.62	39 Y 88.906	40 Z1 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)	112 Uub (285)	113 Uut (284)	114 Uuq (289)	115 Uup (288)			
* Lanthanide series		2.7 k () () () () () () ()	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97
# Actinide series		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 L1 (262)	

Some fundamental metal sites in metalloproteins

Metal site

Function

- 1. Metal complexes of porphyrins and corrins
 - Iron porphyrins
 - = Hemoglobin & Myoglobin
 - = Cytochromes
 - Vitamin B_{12} = Cobalt corrinoid
- 2. Bridged bimetallic complexes
 - Fe₂ clusters
 - = Hemerythrin
 - = Methane Monooxygenase
 - = Ribonucleotide Reductase RR2
 - Cu₂ clusters
 - = Hemocyanin

O₂ transport Redox catalysts

Radical catalyst Methyltransferase

O₂ transport Hydroxylase Radical generation

O₂ transport

Some fundamental metal sites in metalloproteins Cont..

- Mn₂ clusters = O₂-evolving complex = Mn-Catalase
- Zn₂ clusters = Zinc aminopeptidases
- Ni₂ clusters = Urease

3. Fe-S clusters

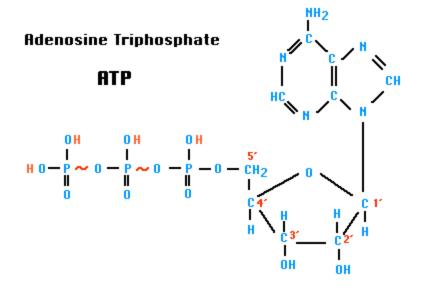
4. Mo-pterin

3. Zinc fingers

Photosystem II H₂O₂ disproportionation

Peptide cleavage

Hydrolysis of urea


Electron transfer

Xanthine oxidase

DNA binding

ATP = adenosine triphosphate

- A nucleotide (ribose sugar, adenine base and three phosphate groups)
- **Energy currency** of the cell, providing the energy for most of the energyconsuming activities
- It regulates many biochemical pathways

Na⁺/K⁺ Pump

- Found in membranes of cells.
- Produces electrical and chemical gradient across a cell membrane.
- It plays a very important role in nerve cell membranes.
- Transmission of nerve impulses.
- Channel = tunnel-like trans membrane protein: Na⁺-K⁺ ATPase
- K⁺ inside a cell
- Na⁺ outside a cell
- Cell surface membranes pump Na⁺ ions out of cell and K⁺ in.

K+

- Enzyme activator
- Conformation of { proteins RNA (replication)
- Secretion of gastric acid
- Transmembrane potentials!

Complexes of alkali metals (Na⁺, K⁺)

Cyclic antibiotics

Valinomycin Monactin Nonactin

polyethers cryptands synthetic

Alkaline Earth Metals

Mg^{2+}

- Plants → chlorosis CHLOROPHYLL
- nervous system (tetany)
- active transport (intracellular)
- enzyme activator (e.g. ATP-ase)
- Ca²⁺ antagonist

Ca²⁺

- Inhibits Mg²⁺⁻activated enzymes
- Extracellular: clotting (10⁻³M)

prothrombin

thrombin-fibrinogen-fibrin

Fe, Cu, Mo:

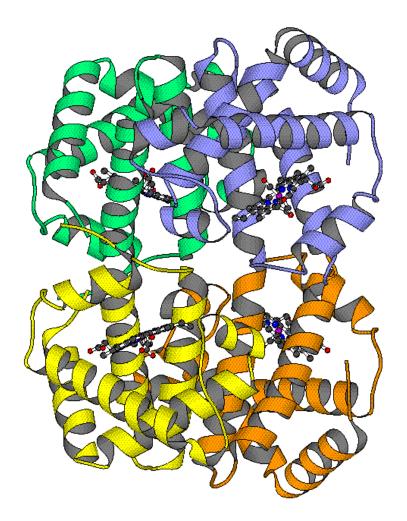
Electron-transfer Redox proteins and enzymes Oxygen carrying proteins Nitrogen fixation

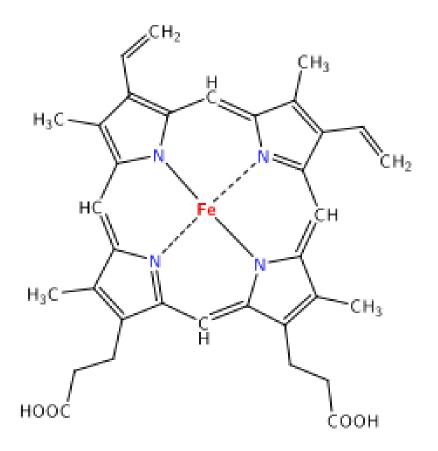
Zn:

Metalloenzymes Structure promoters Lewis acid Not a redox catalyst!

Other metal ions: less well defined and more obscure roles

In human body


75% Hem-iron


- Hemoglobin
- Myoglobin
- Cytochromes
- Oxidases, P-450

25% Non-hem-iron

- Rubredoxins
- Ferredoxins

Hemoglobin

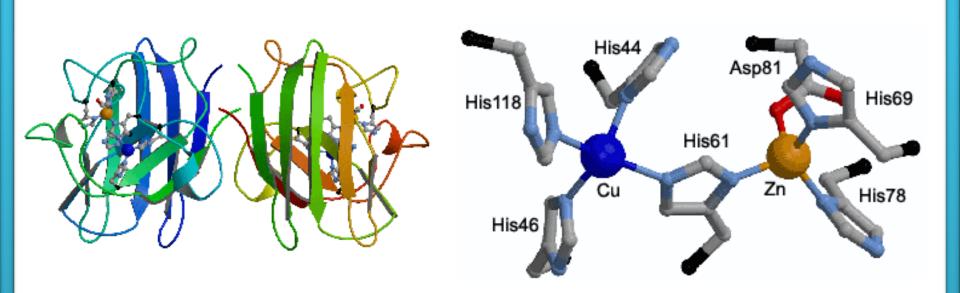
Binding of O₂ alters the structure

Cu(I), **Cu(II**)

Plants Animals

Electron transfer O₂-carrying Protection of DNA from O_2^{-1}

Cu-proteins and enzymes


- Cytochrome oxidase
- Tyrosinase, phenol oxidase
- Ceruloplasmin
- Blue proteins
- Superoxide dismutase
- Hemocyanin

 $O_2 \longrightarrow H_2O$

ox. of phenols $Fe(II) \longrightarrow Fe(III)$ Electron transfer Elimination of $O_2^ O_2$ transport

SOD-Cu¹⁺ + O_2^{-} + 2H⁺ \Rightarrow SOD-Cu²⁺ + H₂ O_2

$\mathbf{SOD} \cdot \mathbf{Cu}^{2+} + \mathbf{O}_2^{\cdot-} \Longrightarrow \mathbf{SOD} \cdot \mathbf{Cu}^{1+} + \mathbf{O}_2$

Superoxide Dismutase

Sodium

- Na+ is the major cation of extracellular fluid
- Maintenance of electrolyte balance and fluid balance
- The regulation of the osmotic pressure inside the cell
- The transmission of nervous pulses
- Maintenance of electrolyte balance and fluid balance

Deficiency of Sodium

- A low sodium level in the blood (**Hyponatraemia**) may result from excess water or fluid in the body, diluting the normal amount of sodium so that the concentration appears low
- This can be due to chronic conditions such as kidney failure and congestive heart failure
- Hyponatraemia can also result when sodium is lost from the body or when both sodium and fluid are lost from the body - for example, during prolonged sweating and severe vomiting or diarrhoea

Deficiency of Sodium

- Medical conditions associated can be adrenal insufficiency, hypothyroidism, and cirrhosis of the liver.
- Treatment of hyponatraemia involves intravenous fluid and electrolyte replacement, medication to manage the symptoms of hyponatraemia, as well treatments for any underlying cause.

Potassium

- Potassium plays an important role in regulation of cellular electrolyte metabolism
- Electric signaling in cells
- Transport of essential nutrients, and enzymatic analysis
- In alliance with other (i.e., sodium and chloride ions), it contributes to overall electrolyte balance of virtually all living organisms
- It also assists in the conduction of nerve impulses

Deficiency of Potassium

- Low potassium level is a condition in which the amount of potassium in the blood is lower than normal.
- The medical name of this condition is **hypokalemia**.
- Common causes of low potassium level include: Antibiotics, diarrhea or vomiting, chronic kidney disease, eating disorders (such as bulimia), low magnesium level, sweating.
- Mild Potassium deficiency can lead to constipation, feeling of skipped heart beats or palpitations, fatigue, muscle damage, tingling or numbness
- A large drop in potassium level may lead to abnormal heart rhythms, especially in people with heart disease
- A very low potassium level can even cause heart to stop.

Magnesium

- Mg is an integral part of the molecule of chlorophyll
- Prosthetic ion in enzymes that hydrolyze and transfer phosphate groups
- Essential for energy- requiring biological functions such as
- Membrane transport
- Generation and transmission of nerve impulses
- Contraction of muscles
- > Oxidative phosphorylation
- Essential for the maintenance of ribosomal structure and protein synthesis

Deficiency of Magnesium

- Low magnesium is known in research circles as the silent epidemic of our times
- Many of the symptoms of low magnesium are not unique to magnesium deficiency, making it difficult to diagnose
- Classic "Clinical" Symptoms : Tics, muscle spasms and cramps, seizures, anxiety, and irregular heart rhythms are among the classic signs and symptoms of low magnesium
- "Sub-clinical" or "Latent" Symptoms : These symptoms are present but concealed by an inability to distinguish their signs from other disease states.

They can include migraine headaches, insomnia, depression, and chronic fatigue, among others.

• Beginning magnesium therapy and magnesium supplements as soon as possible

Calcium

- It acts at intercellular, extracellular and intracellular sites
- It can modulate the excitability of cellular surface membranes and the transport of material along nerve fibres
- It can strengthen the mechanical properties of a tissue and stabilize enzymes
- It acts as a liaison between excitation and muscular contraction and also between excitation and secretion
- It plays a role in fertilization and in mitosis

Deficiency of Calcium

- **Hypocalcaemia** is the presence of low serum calcium levels in the blood
- It can be caused due to
- > A low level of parathyroid hormone (hypoparathyroidism)
- A low level of magnesium (hypomagnesemia), which reduces the activity of parathyroid hormone
- Vitamin D deficiency
- Kidney dysfunction (a common cause)
- Inadequate consumption of calcium
- Symptoms include dry scaly skin, brittle nails, and coarse hair. Muscle cramps involving the back and legs are common.
- Over time, hypocalcemia can affect the brain and cause neurologic or psychological symptoms, such as confusion, memory loss, delirium, depression, and hallucinations.
- Calcium and vitamin D supplements may be used

Zinc

- Zinc takes part in the catalytic function of many metalloenzymes.
- It plays a role in conformational stability.
- In zinc deficient animals protein synthesis is disturbed.
- Zinc takes part in
- drug metabolism
- ➢ in mobilizing vitamin A from the liver, and
- \succ in a system defending the organism against free radical damage.
- Zinc can protect the organism against cadmium toxicity
- In wound healing and tissue repair substitution of zinc is beneficial only if a zinc deficiency exists.
- For purposes of long term parenteral nutrition zinc should be added to the different infusion solutions.

Deficiency of Zinc

- Zinc deficiency in man is rare
- Zinc deficiency during growth periods results in growth failure.
- Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency.
- In Iran and Egypt a syndrome of iron and zinc deficiency associated with anaemia, hepatosplenomegaly, dwarfism, and hypogonadism is known
- Clinical diagnosis of marginal Zn deficiency in humans remains problematic.
- Zinc deficiency is readily reversed by dietary supplements such as ZnS04, but high doses (>200 mg) cannot be given without inducing secondary effects of copper, iron, and calcium deficiency

The biological uses of Iron

FUNCTION	PROTEIN
Oxygen transport and storage	Haemoglobin in red blood cells transports oxygen in the blood, and myoglobin stores oxygen in muscles
Oxygen homeostasis	An iron-dependent prolyl-hydroxylase plays a critical role in the physiological response to hypoxia
Electron transport and energy production	Cytochromes and dehydrogenases are essential components of mitochondrial electron transport for ATP synthesis
Metabolism and detoxification	Cytochromes are also involved in the metabolism of biological molecules, drugs and pollutants
Antioxidant activity	Catalase and peroxidases metabolise hydrogen peroxide to reduce the risk of oxidative cellular damage
Beneficial pro-oxidant activity	Myeloperoxidase synthesises reactive oxygen species within neutrophils to aid bacterial cell killing
DNA synthesis	Ribonucleotide reductase is required for DNA synthesis

Deficiency of Iron

- **Iron deficiency** is the most common nutritional deficiency in the world
- Iron deficiency is due either to increased need for iron by the body (infants and pregnant women) or a decreased absorption or amount of iron taken in.
- Untreated iron deficiency can lead to iron deficiency anemia— a common type of anemia
- Signs of iron deficiency include fatigue, slow cognitive and social development during childhood, difficulty maintaining body temperature, decreased immune function, and glossitis (an inflamed tongue)
- Blood tests establish the diagnosis of iron deficiency
- Mild iron deficiency can be prevented or corrected by eating ironrich foods and iron supplements like ferrous sulphate

Copper

- Copper plays an important role in our metabolism, largely because it allows many critical enzymes to function properly
- Copper is essential for maintaining the strength of the skin, blood vessels, epithelial and connective tissue throughout the body.
- Cu plays a role in the production of hemoglobin, myelin, melanin
- It also keeps thyroid gland functioning normally
- Copper can act as both an antioxidant and a pro-oxidant.
 (Free radicals occur naturally in the body and can cause a number of health problems and diseases.)
- As an antioxidant, Cu scavenges or neutralize free radicals and may reduce or help prevent some of the damage
- When copper acts as a pro-oxidant at times, it promotes free radical damage and may contribute to the development of Alzheimer's disease

Deficiency of Copper

- Copper deficiency is a very rare hematological and neurological disorder because the daily requirement is low
- The most common cause of copper deficiency is a remote gastrointestinal surgery, such as gastric bypass surgery, due to malabsorption of copper, or zinc toxicity.
- Menkes disease is a genetic disorder of copper deficiency involving a wide variety of symptoms that is often fatal
- The deficiency in copper can cause many hematological manifestations, such as
- myelodysplasia,
- ➢ anemia,
- Ieukopenia (low white blood cell count) and
- neutropenia (low count of neutrophils, a type of white blood cell that is often called "the first line of defense" for the immune system)
- Copper deficiency has long been known for as a cause of myelodysplasia (when a blood profile has indicators of possible future leukemia development)

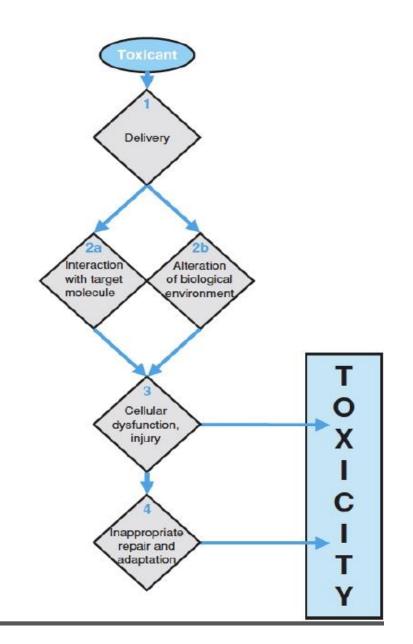
Toxicity of Metals

Two Classes of Toxic Metal Compounds

• Toxicity due to Essential elements

The presence of excess quantities of an essential metal can be as deleterious as insufficient amounts.

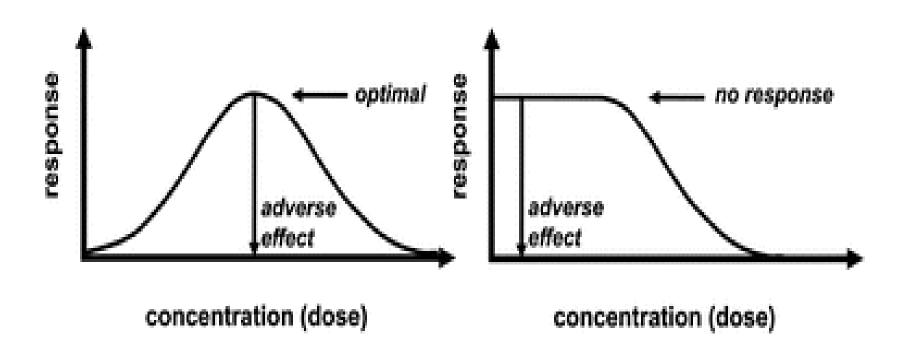
This can arise from accidental ingestion of the element or from metabolic disorders leading to the incapacitation of normal biochemical mechanisms that control uptake and distribution phenomena.


• Toxicity due to Non-essential elements

The entry of nonessential metals into thee cell through food, skin absorption, or respiration.

*The toxicities associated with this latter class have received much recent attention because of the public health risks of chemical and radioisotopic environmental pollutants

Mechanism of Toxicity


- 1.Delivery: Site of Exposure to the Target
- 2.Reaction of the Ultimate Toxicant with the Target Molecule
- 3.Cellular Dysfunction and Resultant Toxicity
- 4.Repair or Disrepair

Dose – Response Curve for Toxicity

essential substance, e.g. zinc

non-essential substance, e.g. cadmium

Sodium

- **Hypernatremia**-It is a condition in which blood sodium level is high(more than 145 mEq/L).
- **Symptoms**-Thirst, brain cell shrinkage, confusion, muscle twitching, and in severe cases seizures and coma.
- **Treatment** Administration of free water keeping electrolyte imbalance in mind.

Potassium

- **Hyperkalemia-**It is a condition of elevated blood potassium level.
- **Symptoms**-Malaise, palpitations, muscle weakness, levels higher than 5.5 mM have been associated with cardiovascular events.
- Treatment- Give insulin, salbutamol(shifts K⁺ ions from blood stream to cellular compartment), Hemodialysis is required in severe cases(rapid method to remove it from the body)

Magnesium

- **Hypermagnesemia-**It is a condition in which Magnesium blood level is higher than 1.5 mM.
- Symptoms- Weakness, nausea, vomiting, impaired breathing, low blood pressure, low blood calcium, low heart rate, dizziness, decreased tendon reflexes.
- **Treatment-** Give calcium gluconate, give diuretics intravenously and when kidney function is impaired dialysis is done.

Zinc

- Zinc toxicity occurs after ingestion of more than 225mg of zinc. Excessive absorption of zinc can suppress copper and iron absorption.
- **Symptoms** nausea, vomiting, pain, cramps, diarhhea, induced copper deficiency, alterations in blood lipoproteins level.

Calcium

- **Hypercalcaemia**-It is a condition of elevated Calcium blood level.
- Symptoms- stones(renal and biliary), bone pain, abdominal pain, nausea, vomiting, fatigue, anorexia, psychiatric overtones.
- **Treatment**-hydration, increased salt uptake, forced diuresis, in extreme cases drug could be given(plicamycin, gallium nitrate)

Copper

- Copperiedus-It is the consequence of excess copper in the body.
- Symptoms- Vomiting, hematemesis, hypotension, melena, coma, jaundice, gastrointestinal distress, damage to kidney and liver.
- Treatment- Drugs like penicillamine, dimercaprol, alpha-lipoic acid(ALA) could be used(chelation therapy)

Iron

- Iron levels above 350–500 μ g/dL are considered toxic, and levels over 1000 μ g/dL indicate severe iron poisoning.
- **Symptoms**-stomach pain, nausea, vomiting, metabolic acidosis, hypovolemic shock, damage to brain and liver.
- **Treatment**-using chelating agent like deferoxamine, if that doesn't work dialysis.

The Bio-Inorganic Chemistry Of Quintessentially Toxic Metals

Arsenic

- Arsenic and its compounds are potent poisons.
- **Symptoms**-headache, confusion, diarrhea, hair loss, stomach pain, convulsions, vomiting blood, blood in urine

Arsenic poisoning is related with heart disease, cancer, stroke, diabetes, chronic lower respiratory diseases. It can eventually lead to multiple organ failure, coma and death.

Treatment- Chelation therapy using dimercaprol, dimercaptosuccinic acid, giving supplemental potassium, absorbents like activated carbon, aluminium oxide could be used, bacteria, yeast, fungi, and algae can also be used for remediation processes.

Mercury

- Mercury compounds produce toxicity and eventually death with less than a gram.
- **Symptoms**-Peripheral neuropathy, presenting as itching, burning, pain, formication, skin discoloration, swelling, desquamation, kidney dysfunction, emotional lability, memory impairment, or insomnia.

Children may have red cheeks, nose, and lips, loss of hair, nails and teeth, transient rashes, hypotonia, increased sensitivity to light

• **Treatment**-decontamination(remove clothes, wash skin with soap and water, flush the eyes with saline solution)

Chelation therapy using drugs like DMSA, 2,3-dimercapto-1propanesulfonic acid (DMPS), D-penicillamine (DPCN), or dimercaprol (BAL).

Cadmium

- Cadmium overexposures may occur even in situations with trace quantities.
- **Symptoms**-cough, dryness and irritation of the nose and throat, headache, dizziness, weakness, fever, chills, and chest pain, respiratory and kidney failure. It causes Itai-Itai or Ouch-Ouch disease.

• Treatment-

- Inhalation: fluid replacement, supplemental oxygen, mechanical ventilation.
- Ingestion: gastric lavage

Lead

- The standard elevated blood lead level for adults is 10 μ g/dl and for children it is 5 μ g/dl.
- **Symptoms** insomnia, delirium, cognitive deficits, tremor, hallucinations, convulsions, headache, abdominal pain, memory loss, kidney failure, male reproductive problems, and weakness, pain, or tingling in the extremities

Treatment-chelation therapy using edetate disodium calcium (CaNa₂EDTA), dimercaprol(BAL), which are injected and succimer and d-penicillamine, which are administered orally. Treatment of iron, calcium, and zinc deficiencies, which are associated with increased lead absorption, is another part of treatment for lead poisoning.