<u>Course Instructor:</u> Prof. Rajeev Gupta <u>Course Name:</u> Nuclear and Radiation Chemistry <u>Paper Number – 4104</u> <u>Section – B</u> <u>Topic:</u> Radiolysis of Water <u>Number of Classes:</u> Two (02)

Radiolysis of Water

The major products of water radiolysis are free radicals (H[•], OH[•], OH_2), positive ions (H₂O⁺) and molecular products (H₂ and H₂O₂). Some of these are initially formed precursors which led to the other products by secondary reactions. The presence of dissolved O₂ or air in the water also affects the final yields of the products. Similarly, dissolved solutes also alter the products and yields.

(A) Ionic Products:

$$Y + H_2 0 \longrightarrow H_2 0^* \longrightarrow H_2 0^+ + e^-$$

$$e^- + H_2 0 \longrightarrow H_2 0^* + e^- \longrightarrow H_2 0^+ + 2e^-$$

$$e^- + H_2 0 \longrightarrow H^+ + 0H + 2e^- \longrightarrow H_2 0^+ + 2e^-$$

$$e^- + H_2 0 \longrightarrow 0H^+ + H + 2e^- \longrightarrow 10^-$$

$$e^- + H_2 0 \longrightarrow 0^+ + H_2 + 2e^-$$

$$H_2 0^+ + H_2 0 \longrightarrow H_3 0^+ + 0H$$

The ionic products listed above are detected by mass spectrometer. H_2O^+ is the predominant product in such radiolysis reactions. The formation of -ve ion by e⁻ attachment is negligible; e⁻ prefer to recombine with +ve ions, or to get solvated.

$$e^{-} + H_2O \longrightarrow e^{-}$$
 (aqueous) $\longrightarrow G(e^{-}_{aq} : 2.8)$
Decay products: $H^{\bullet} + OH^{-}_{aq}$

(B) Free Radical Products: The ionic products have all short lives, especially in an excited state they recombine to yield free radicals.

$$H_{2}O^{+} + e^{-} \longrightarrow H + OH$$

$$H^{+} + H_{2}O + e^{-} \longrightarrow H_{3}O^{+} + e^{-} \longrightarrow 2H^{*} + OH$$

$$OH^{+} + H_{2}O + e^{-} \longrightarrow H + 2OH$$

In the presence of dissolved O₂, Perhydroxyl radical is formed:

$$H + O_2 \longrightarrow HO_2$$

(C) Hydrated Electron (e⁻):

Naked $e^{-} + xH_2O$ — e^{-} (aqueous)_x

Structure:

Hydrated electrons is a distinct species associated with 3 or 4 or 6 water molecules, with a charge of 1- and a mean radius of 0.25 to 0.3 nm and with a characteristic spectrum.

Mean life: ~ 230 μ s (pH \simeq 7), ~ 780 μ s (pH > 7)

Duay products:
$$e \overline{ag} \rightarrow H' + 0 \overline{Hag}$$
; $pK = 9.7$
 $G(e \overline{ageous}): 2.8 \rightarrow H_2'$
Potential, $E^{\circ}(e \overline{ag}. + H^+ \rightarrow H^{\circ}) = -2.77 V (25^{\circ}C)$
 A powerful feducing
 $agent$.

The hydrated e^{-} is known to form a dimer which is less reactive, but decays slowly to H₂ accompanied by a marked increase in pH.

(D) Molecular Products due to Radical-Radical Interaction:

All the radicals being highly reactive, initiate series of reactions with dissolved solute, or they combine amongst themselves, resulting in stable products.

$$\begin{array}{rrrr} H &+ &\cdot 0H \longrightarrow H_2 0 \\ \hline H &+ &\cdot H \longrightarrow H_2 \\ \hline 0H &+ &\cdot 0H \longrightarrow H_2 0_2 \\ \hline 0H &+ &\cdot H 0_2 \longrightarrow H_2 0 &+ 0_2 \\ \hline H 0_2 &+ &\cdot H 0_2 \longrightarrow H_2 0_2 &+ 0_2 \end{array}$$

The actual yields of these molecular products vary with the nature of the ionizing radiation, the LET and the presence of dissolved solutes.

Chain Reactions: Molecular-Radical Interactions

Chain reactions are postulated specially in explaining abnormally high yields of certain radiolytic products, e.g. Radiolysis of aqueous benzene- O_2 ; aq CHCl₃- O_2 and organic halogen compounds etc.

The yields of Radicals and Molecular Products:

Since in the radiolysis of H_2O , not only water molecules are dissociated, but some of these molecules (H_2O) are reformed.

 $G-H_2O(initial) = G-H_2O + G-H_2 + G-H_2O_2$

Where, G-H₂O(initial) : No. of H₂O molecules initially dissociated

G-H₂O : Water molecules Converted into radicals and molecular products

The value of G-H₂O is independent of the nature of the radiation employed. The radical yields are highest for LOW LET radiation (e.g. γ or electrons). While the molecular yields are greatest for HIGH LET radiations (e.g. α , heavy ions, fission fragments).

DOSIMETRY

Units of radiation:

GRAY: The gray is the SI unit of dose.

1 grey (Gy) = 1 J/kg = 100 rads

It is necessary to include a unit for the "RATE" of the energy absorption. This is the "dose rate" i.e., dose absorbed/sec, in units of rad/sec or Gy/sec.

Dosimetry = Measuring dose (radiation energy absorbed)

Chemical Dosimetry: The Chemical reactions induced by radiation, ex. $Fe^{2+} \longrightarrow Fe^{3+}$ or $Ce^{4+} \longrightarrow Ce^{3+}$

Fricke Dosimeter: The most common chemical dosimeter is the F.D., which consists of an aqueous solution of approximately following composition:

0.001 M Fe(NH₄)(SO₄) (Mohr's Salt solution) 0.001 M NaCl 0.001 H₂SO₄

The amount of Fe^{3+} formed through radiation is determined spectrophotometrically, and the dose absorbed in Gy calculated by the equation:

 $D(Gy) = A / \{\epsilon \rho G(Fe^{3+})\} J / Kg$

A = Change in absorbance

 $(Fe^{3+}) = Yield of Fe^{3+} in mol/j$

 ϵ = Molar extinction coefficient (= 217.4 m²/mol at 304 nm or 2174 m⁻¹ cm⁻¹)

x = Length of the cell in meter

 ρ = Density of the solution (= 1024 kg/m³ at 15-25 °C)

The G values depends somewhat on the LET value of the radiation. The F.D. is independent of dose rate up to dose value of about 2×10^6 Gy/sec and can be used in the range of 1-500 Gy.

* In a common modification, the solution also contains NaSCN, leading to the formation of the intensity red complex ion $[Fe(SCN)_6]^{3-}$ upon irradiation.

The quantitative oxidation of Fe^{2+} to Fe^{3+} on irradiation can be explained by simple mechanism:

$$Fe^{2+} + OH \longrightarrow Fe^{3+} + OH^{-}$$

$$Fe^{2+} + H_2O_2 \longrightarrow Fe^{3+} + OH + OH^{-}$$

$$Fe^{2+} + HO_2 \longrightarrow Fe^{3+} + HO_2$$

$$Fe^{3+} + HO_2 \longrightarrow Fe^{3+} + HO_2$$

$$HO_2^{-} + H^{+} \longrightarrow H^{2}O_2$$

$$HO_2^{-} + H^{+} \longrightarrow H^{2}O_2$$

The yield of the final product Fe^{3+} is related to the radical and molecular yield by the expression:

$$G(Fe^{3+})_{air} = 2G_{H2O2} + 3G_H + G_{OH}$$
$$= (2 \times 0.8) + (3 \times 3.7) + 2.9$$
$$= 15.6$$

The average value of G(Fe³⁺) in Fricke dosimeter for 1.25 MeV (mean) γ from ⁶⁰Co, 2 MeV electrons and for 0.7 MeV β from ³²P is 15.5.

Factors which alter the Fe³⁺ yield:

The yield of Fe³⁺ depends on the molecular and radical yields in the radiolysis of Fricke solution. The factors which alters the yields of H', OH', H₂O₂ will therefore alter the ferric ion yield. The LET of the incident radiation is considered to be one of such factors.

- •
- $G(Fe^{3+})_{air}$ decreases with increase in the LET values of the incident radiation.4 **Organic Impurities:** The presence of organic impurities also increases the yield of Fe³⁺ ion in the irradiation of the aerated solutions.

$$\begin{array}{rcl} \cdot OH + RH \longrightarrow R \cdot & + H_2O \\ R \cdot & + & O_2 \longrightarrow ROO \cdot \\ ROO \cdot & + & H^+ + & Fe^{2+} \longrightarrow Fe^{3+} + & ROOH \\ ROOH + & Fe^{2+} \longrightarrow Fe^{3+} + & RO \cdot + & OH^- \\ RO \cdot & + & H^+ + & Fe^{2+} \longrightarrow Fe^{3+} + & ROH \end{array}$$

'OH radical starts a chain reaction after reacting with organic compound and so the yield of the Fe³⁺ also increases. For Ex. The $G(Fe^{3+})_{air}$ is about 75 in presence of EtOH and about 250 in case of adding formic acid.

Role of Cl⁻ Ion: The addition of Cl⁻ ion to the acidified air-saturated Fricke solution also favours the yield of Fe³⁺ ion. In this case Cl atom replaces the 'OH radical and oxidize Fe²⁺ ion or react with organic impurity.

To protect the oxidation of the Fe^{2+} against the sensitization by organic impurities, Cl⁻ ion is added to the dosimeter solution.

Thus, of these reactions the 1 + 2 predominate over 3 pointing to the fact that the overall result of adding

Cl ion is that each hydroxyl radical oxidizes only ONE ferrous ion. Although, in such a case, the yield is not spuriously high, the normal yield of the Fe^{3+} ion is not affected by organic impurities. Basically, Cl⁻ ion inhibits the oxidation of Fe^{3+} by trace organic impurities.

In Absence of dissolved O₂: ٠

In this situation the reaction $H + O_2 \longrightarrow HO_2$ does not take place, but following reaction occurs leading to the oxidation of the acidified ferrous sulphate solution. $H + H^+ + Fe^{2+} \longrightarrow Fe^{3+} + H_2$ The reaction, $H^+ + HO_2 + Fe^{2+} \longrightarrow Fe^{3+} + H_2O_2$ also does not takes place. In such a case of "evacuated or anaerobic sample", the yield of Fe^{3+} ion is given by

 $G(Fe^{3+})_{vacuum} = 2G_{H2O2} + 3G_{H} + G_{OH}$ = 2(0.8) + 3.7 + 2.9= 8.2

which is much lower than that in the presence of the dissolved O_2 (G(Fe³⁺)_{air}= 15.6)

» So, basically the presence of oxygen favours the ferric ion yield in the radiolysis of Fricke Solution.