Part III. Polymer Dynamics – molecular models

- I. Unentangled polymer dynamics
 - I.1 Diffusion of a small colloidal particleI.2 Diffusion of an unentangled polymer chain
- II. Entangled polymer dynamics
 - II.1. Introduction to Tube models
 - II.2. « Equilibrium state » in a polymer melt or in a concentrated solution:
 - II.3. Relaxation processes in linear chains

I. Unentangled polymer dynamics

I.1 Diffusion of a small colloidal particle:

random walk

Simple diffusive motion: Brownian motion

Diffusion coefficient

Friction coefficient:

A constant force applied to the particle leads to a constant velocity: $\vec{F} = \zeta \vec{v}$ Friction coefficient

Einstein relationship:
$$D = \frac{\kappa T}{\zeta}$$

Stokes law: $\zeta = 6\pi\eta R$ (Sphere of radius R in a Newtonian liquid with a viscosity η)

Stokes-Einstein relation:
$$D = \frac{kT}{6\pi\eta R}$$
 \longrightarrow Determination of $R_H = \frac{kT}{6\pi\eta D}$

I.2 Diffusion of an unentangled polymer chain: *I.2.1. Rouse model:*

N beads of length b

- Each bead has its own friction $\boldsymbol{\zeta}$
- Total friction: $\zeta_R = N\zeta$ \square $D_R = \frac{kT}{N\zeta}$

- Rouse time:
$$\tau_R \approx \frac{R^2}{D_R} \approx \frac{R^2}{kT/N\zeta} = \frac{\zeta}{kT}NR^2$$

 $t < \tau_{Rouse}$: viscoelastic modes $t > \tau_{Rouse}$: diffusive motion

- Stokes law: $\zeta \approx \eta_s b$
- Kuhn monomer relaxation time: $\tau_0 \approx \frac{\zeta b^2}{kT} = \frac{\eta_s b^3}{kT} \longrightarrow \tau_R \approx \tau_0 N^2$

Rouse relaxation modes:

The longest relaxation time: $\tau_R \approx \tau_0 N^2$

For relaxing a chain section of N/p monomers:

- At time $t = \tau_p$, number of unrelaxed modes = p.

- Each unrelaxed mode contributes energy of order kT to the stress relaxation modulus:

Stress relaxation modulus predicted by the Rouse model for a <u>melt of</u> <u>unentangled chains with $N = 10^3$. The</u> solid curve is the exact Rouse result [Eq. (8.55)] and the dotted curve is the approximate Rouse result [Eq. (8.48)]. Viscosity of the Rouse model:

$$\eta = \int_0^\infty G(t) dt \approx \frac{kT}{b^3} v \int_0^\infty \left(\frac{t}{\tau_0}\right)^{-1/2} \exp\left(\frac{-t}{\tau_R}\right) dt$$
$$\approx \frac{kT}{b^3} v \sqrt{\tau_0 \tau_R} \int_0^\infty x^{-1/2} \exp\left(-x\right) dx \approx \frac{kT}{b^3} v \sqrt{\tau_0 \tau_R} \approx \frac{kT}{b^3} v \tau_0 N \approx \frac{\xi}{b} Nv$$

Exact solution of the Rouse model:

$$G(t) = \frac{kT}{Nb^3} v \sum_{p=1}^{N} \exp\left(\frac{-t}{\tau_p}\right) \quad \text{with} \quad \tau_p = \frac{\zeta b^2 N^2}{6\pi^2 kTp^2}$$

Each mode relaxes as a Maxwell element

$$\tau_R = \frac{\zeta b^2 N^2}{6\pi^2 kT}$$
 The Rouse relaxation time is the half of the end-to-end correlation time.

Or: $\tau_R = \frac{\zeta b^2 N^2}{3\pi^2 kT}$ The Rouse relaxation time is the end-to-end correlation time.

Rouse time determined from the free energy:

Free energy U of a Gaussian chain (see Part I):

$$\frac{U(\underline{R}_0)}{kT} = cste + \frac{3}{2Nb^2} \left|\underline{R}_0\right|^2$$

 \rightarrow Forces equilibrium after a displacement of ΔL :

$$\zeta \frac{d(\Delta L(t))}{dt} = -\frac{3kT}{Nb^2} \Delta L(t) \implies \Delta L(t) = \Delta L(0) \exp\left(\frac{-3kT}{Nb\zeta}t\right)$$

"spring" force from the free energy

After the disorientation

$$\tau_R \approx \frac{\zeta b^2}{3kT} N^2$$

Example: Frequency sweep test:

$$G'(\omega) \simeq G''(\omega) \sim \omega^{1/2} \quad \text{For } 1/\tau_{\text{R}} < \omega < 1/\tau_{\text{O}}$$

$$\begin{cases} G'(\omega) \sim \omega \\ G''(\omega) \sim \omega^2 \end{cases} \quad \text{For } \omega < 1/\tau_{\text{R}}$$

Oscillatory shear data for solutions of poly(2-vinyl pyridine) in 0.0023 M HCl in water. Open symbols are the storage modulus G' and filled symbols are the loss modulus G". Squares have $c = 0.5 \text{ g L}^{-1}$, triangles have $c = 1.0 \text{ g L}^{-1}$, and circles have $c = 2.0 \text{ g L}^{-1}$. The curves are the predictions of the Rouse model [Eqs (8.49) and (8.50)]. Data from D. F. Hodgson and E. J. Amis, J. Chem. Phys. 94, 4581 (1991).

Rouse model: also valid for unentangled chains in polymer melts:

I.2.2. Zimm model:

Viscous resistance from the solvent: the particle must drag some of the surrounding solvent with it.

Hydrodynamic interaction: long-range force acting on solvent (and other particles) that arises from motion of one particle.

When one bead moves: interaction force on the other beads (Rouse: only through the springs)

The chain moves as a solid object:
$$\zeta_Z \approx \eta_s R$$

 $D_Z = \frac{kT}{\zeta_Z} \approx \frac{kT}{\eta_s R}$
Zimm time:
 $\tau_Z \approx \frac{R^2}{D_Z} \approx \frac{\eta_s}{kT} R^3 \approx \frac{\eta_s b^3}{kT} N^{3/2} \approx \tau_0 N^{3/2}$ (In a theta solvent)
12

Rouse time versus Zimm time:

$$\tau_R \approx \frac{R^2}{D_R} \approx \frac{R^2}{kT/N\zeta} \approx \frac{R^2}{kT/N\eta_s b} \approx \frac{\eta_s b^3}{kT} N^2$$
$$\tau_Z \approx \frac{R^2}{D_Z} \approx \frac{R^2}{kT/\zeta_Z} \approx \frac{R^2}{kT/\eta_s R} \approx \frac{\eta_s b^3}{kT} N^{3/2} \approx \tau_0 N^{3/2}$$

 $\begin{aligned} &-\tau_{Zimm} \text{ has a weaker M-dependence than } \tau_{Rouse}. \\ &-\tau_{Zimm} < \tau_{Rouse} \text{ in dilute solution} \\ &- \text{ real case: often a combination of both} \end{aligned}$

Oscillatory shear data on dilute solutions of polystyrene with $M = 860\,000$ g mol⁻¹ in two θ -solvents (circles are in decalin at 16 °C and squares are in di-2-ethylhexyl phthalate at 22 °C). Open symbols are the dimensionless storage modulus and filled symbols are the dimensionless loss modulus, both extrapolated to zero concentration. The curves are the predictions of the Zimm model [Eqs (8.67) and (8.68)]. Data from R. M. Johnson *et al.*, *Polym. J.* 1, 742 (1970).

Fig. 5.1. Intrinsic moduli for narrow distribution polystyrene (M = 860000) in two theta solvents (114). This comparison with theory is equivalent to that of reduced moduli described in the text. [Reproduced from Polymer J. 1, 747 (1970).]

13

Rheological Regimes:

(Graessley, 1980)

Dilute solutions: Zimm model – H.I. – no entanglement

Unentangled chains (Non diluted): Rouse model – no H.I. – no entanglement Entangled chains: Reptation model – no H.I. – entanglement II. Entangled polymer dynamics

II.1. Introduction to Tube models

Tube model and entanglements:

Concentrated solutions or polymer melts:

Pseudo equilibrium state:

The chains are not in their stable shape. The other chains prevent their relaxation. The tube picture becomes active.

M_e: M_w of the longest sub-chain relaxed by a Rouse process

II.2. « Equilibrium state » in a polymer melt or in a concentrated solution:

Each segment between two entanglements is relaxed by the Rouse process

The primitive path of the chain is defined by its segments between the entanglements. Its length = L_{eq} . Coarse grained model

Primitive path

- Simpler description of the chain
- Coarse grained model: subchains of mass M_{e} are considered as a segment of length l
- relaxation time of subchain M_e: Rouse relaxation

Equilibrium state in a polymer melt: parameters

 $L_{eq} = \text{length of the primitive path}$ Z = number of segments between two ent. l = length of a segment between two ent. a = tube diameter b = length of a Khun segment $N_e = \text{number of Khun segments between two entanglements}$ N = total number of Khun segments in the segments

N = total number of Khun segments in the chain

Gaussian chain in solution: *the end-to-end distance* $R_0^2 = Nb^2$

Gaussian chain in a melt or concentrated solution:

$$l^2 \approx N_e b^2$$
 $L_{eq} = Z \cdot l = \frac{N}{N_e} \cdot l$

Constitutive equation of a polymer melt

For a Rouse chain (unentangled chain):

Constitutive equation of a polymer melt For a polymer melt:

Additional boundary conditions: $\psi(R) = 0$ on the tube surface

Equilibrium state in a polymer melt: parameters

 L_{eq} = length of the primitive path Z = number of segments between two ent. l = length of a segment between two ent. $\mathbf{a} =$ tube diameter

b = length of a Khun segment

 N_{e} = number of Khun segments between two entanglements

N = total number of Khun segments in the chain

Gaussian chain in a melt or concentrated solution: $l^2 \approx N_e b^2$ $Nb^2 \approx a.L_{eq}$

l ≈ a

26

Material parameters in the tube model

- → Defined at the "equilibrium state" of the polymer
- The molecular weight between two entanglements: M_e
- The plateau modulus:

$$G_N^0 = \frac{\rho N_A kT}{M_e} = \frac{\rho R T}{M_e}$$
 (x 4/5)

• The relaxation time of a segment between two entanglements:

$$\tau_e \approx \tau_0 N_e^2 \qquad \tau_e = \frac{\zeta b^2}{3\pi^2 kT} N_e^2$$

Very simplified coarse-grained model

The second s		AVEN SHE SHOE	2	24 July 20	and the second second		
	Temper- ature,	$\log J_N^0$ (cm ² /					
Polymer	°C	dyne)	Me	j	Mo	jP _e	Ref.
Methacrylate Polyme	ers						12.3.49
Methyl (conven- tional)	170	-6.94	4,700	2	100	94	15
Methyl (atactic) ^a	220	-6.59	10,000	2	100	200	16
Methyl (atactic)	131	-6.90	4,800	2	100	96	15
2-Ethyl Butyl	100	-6.16	21,400	2	170	250	17
n-Hexyl	100	-5.94	33,900	2	170	400	18
n-Octyl	100	-5.52	87,000	2	198	880	19
Rubbers							
Hevea rubber	25	-6.76	6,100	4	68	360	1
Hevea rubber	-30	-6.85	3,500	4	68	210	20
1,4-Polybutadienec	25	-7.06	1,900	4	54	140	2
1.4-Polybutadiened	25	-7.12	1,700	4	54	130	21
1,4-Polybutadiene, cise	25	-6.88	2,900	4	54	220	22
Polybutadiene	-10	-6.94	2,500	-	-	-	14
1,2-Polybutadienes	25	-6.79	3,550	2	54	130	1
Styrene-butadiene copolymer ^h	25	-6.89	3,000	4	65.5	180	23
Butyl rubber ^b	25	-6.46	8,500	2	56	300	24
Ethylene-propylene copolymer ⁱ	25	-7.10	1,660	2	34.3	100	25
General							
Polyethylene	190	-7.36	1,250	2	28	90	25a
Polyisobutylene	25	-6.40	8,900	2	56	320	26
Polvisobutvlene	25	-6.46	7,600	2	56	270	30
Poly(dimethyl siloxane) ^j	25	-6.47	8,100	2	74	220	27
Poly(dimethyl siloxane)	25	-6.30	12,000	2	74	330	27a
Poly(dimethyl siloxane) ^k	23	-	8,800	2	74	230	28
Poly(dimethyl siloxane)	25	-6.33	11,300	2	74	300	29
Polystyrene ¹	160	-6.30	18,100	2	104	350	3
Polystyrene	140	-6.31	17,300	2	104	333	30a
Poly(α-methyl styrene)	186	-7.00	13,500	2	118	230	31,3
Poly(vinyl	60	-6.55	9,100	2	86	210	30

II.3. Relaxation processes in linear chains

II.3.1. Main relaxation process in linear chain: Reptation

Reptation steps: (a) formation of a loop at the tail of the snake and elimination of the tail segment of the confining tube; (b) propagation of the loop along the contour of the tube; (c) release of the loop at the head of the snake and formation of a new section of the confining tube.

Reptation

1-D curvilinear diffusion

As the primitive chain diffuses out of the tube, a new tube is continuously being formed, starting from the ends.

This new tube portion is randomly oriented even if the starting tube is not.

+ Movie

Reptation

Reptation

M (Kuhn segment): 105 g/mol \rightarrow N=1240 Kuhn segments

 $\tau_0 = 0.3$ ns. $\tau_e = 0.1$ µs. $M_e = 1900$ g/mol. $N_e = 18$. M/ $M_e = 68$ entanglements

Reptation: Doi and Edwards model

- First passage problem 0 s - diffusion of a chain along the tube axis L_{eq}

$$\frac{\partial p(s,t)}{\partial t} = D_e \cdot \frac{\partial^2 p(s,t)}{\partial s^2} \qquad \begin{array}{l} p(0,t) = p(L,t) = 0\\ p(x,0) = 1, \ \forall x \in (0,L) \end{array}$$

p(*s*,*t*): *survival probability of a initial tube segment localized at a distance s.*

Variables separability

$$p(s,t) = \sum_{i \text{ odd}} \frac{4}{p\pi} \cdot \sin\left(\frac{i\pi s}{L_{eq}}\right) \cdot \exp\left(\frac{-i^2\pi^2 D t}{L_{eq}^2}\right)$$

$$p_{rept}(t) = \int_0^L p(s,t)ds = \frac{8}{\pi^2} \sum_{i \text{ odd}} \frac{1}{i^2} \exp\left(\frac{-i^2 D t}{L_{eq}^2}\right)_{34}$$

Doi and Edwards model

Doi and Edwards model

$$p_{rept}(t) = \int_0^L p(s,t) ds = \frac{8}{\pi^2} \sum_{p \text{ odd}} \frac{1}{p^2} \exp\left(\frac{-p^2 D t}{L_{eq}^2}\right)$$

Relaxation modulus:

$$G(t) = \frac{8}{\pi^2} G_N^0 \sum_{p \text{ odd}} \frac{1}{p^2} \exp\left(\frac{-p^2 t}{\tau_{rept}(M)}\right)$$
$$\tau_{rept}(M) = 3\tau_e \left(\frac{N}{N_e}\right)^3 \qquad \tau_e = \frac{\zeta b^2}{3\pi^2 kT} N_e^2$$

Related viscosity:

$$\eta = \int_0^\infty G(t)dt = \frac{8}{\pi^2} G_N^0 \sum_{p \text{ odd}} \frac{1}{p^2} \int_0^\infty \exp\left(\frac{-p^2 t}{\tau_{rept}}\right) dt = \frac{\pi^2}{12} G_N^0 \tau_{rept}$$

$$(\sum_{p \text{ odd}} \frac{1}{p^4} = \pi^4/96)$$

$$(\gamma \sim M^3 \text{ for } M > M_c \qquad \gamma \sim M^{3.4} \text{ in the real case}$$

Discrepancy between theory and experiments: inclusion of the contour length fluctuations process

Figure 2. Experimental (•••) and predicted (--) dynamic moduli using the Doi and Edwards kernel (eq 2) and double reptation (eqs 1 and 5) for (a) PS1, (b) PS9, (c) PS12, and (d) PS13.

	polydispersity	M _w (g/mol)	M _n (g/mol)	(b) Bi- or Tridisperse		
PS1	1.02	355 500	346 200	composition		
PS2	1.02	191 300	187 600	PS9 50% PS2, 50% PS3		
PS3	1.09	886 900	813 500	PS10 20% PS4 80% PS5		
PS4	1.04	176 700	169 900	DS11 80% DS4 20% DS5		
PS5	1.03	60 400	58 600	DS12 0070 F34, 2070 F33		
PS6	1.03	58 400	56 900	PS12 0070 PS2, 3070 PS0		
PS7	1.02	146 400	143 300	PS13 30% PS7, 30% PS2, 40% PS1		
PS8	1.04	676 000	650 900			

II.3.2. Contour length fluctuations

Equilibrium length of an arm:

II.3.2. Contour length fluctuations

II.3.2. Contour length fluctuations

Arm retraction of entangled star polymers demonstrated by an octopus in a fishing net. The circles are permanent topological constraints.

+ movie

Storage modulus (filled symbols) and loss modulus (open symbols) for linear 1,4-polybutadiene with $M_w = 160\,000 \text{ g mol}^{-1}$ (squares) and a 6-arm star 1,4-polybutadiene with $M_a = 77\,000 \text{ g mol}^{-1}$ (circles), both at a reference temperature of 28 °C. The linear polymer was chosen because it's molar mass is approximately the span molar mass of the star polymer. Data courtesy of L. Archer.

Linear chains: Doi and Edwards model including the contour length fluctuations (CLF):

- the environment of the molecule is considered as fixed.

Rouse-like motion of the chain ends:

$$\left\langle \Delta s^2 \right\rangle \approx b^2 \left(\frac{t}{\tau_0} \right)^{\frac{1}{2}} \approx a^2 \left(\frac{t}{\tau_e} \right)^{\frac{1}{2}}$$
 For $t < \tau_R$

Displacement of a monomer in the 3D space:
$$\langle \Delta r^2 \rangle \approx a^2 \left(\frac{t}{\tau_e} \right)$$

Rem/ Before $t = \tau_{Rouse}$, the end-chain does not know that it belongs to the whole molecule

Partial relaxation of the stress:

$$G(t) \approx G_N^0 \frac{L(t)}{\langle L \rangle} \approx G_N^0 \frac{\langle L \rangle - \sqrt{\langle \Delta L(t)^2 \rangle}}{\langle L \rangle} \approx G_N^0 \left(1 - \frac{a}{\langle L \rangle} \left(\frac{t}{\tau_e}\right)^{1/4}\right) \approx G_N^0 \left(1 - \frac{N_e}{N} \left(\frac{t}{\tau_e}\right)^{1/4}\right)$$

At time $t = \tau_R$:

For $\tau_e < t < \tau_R$

$$G(\tau_R) \approx G_N^0 \left(1 - \frac{N_e}{N} \left(\frac{\tau_R}{\tau_e} \right)^{1/4} \right) \approx G_N^0 \left(1 - \mu \sqrt{\left(\frac{N_e}{N} \right)} \right) \quad \text{With } \mu \text{ close to } 1$$

In the same way:

$$\begin{aligned} G(\tau_{\operatorname{Re}pt}) &\approx G_{N}^{0} \left(1 - \mu \sqrt{\left(\frac{N_{e}}{N}\right)} \right) \\ \tau_{\operatorname{Re}pt} &\approx \frac{\left\langle L \right\rangle^{2} \left[1 - \mu \sqrt{N_{e}/N} \right]^{2}}{D_{c}} \approx \tau_{0} \frac{N^{3}}{N_{e}} \left(1 - \mu \sqrt{\left(\frac{N_{e}}{N}\right)} \right)^{2} \end{aligned}$$

Rescale of the reptation time in order to account for the fluctuations process

45

Simultaneous fit of loss modulus data for the two monodisperse polybutadiene samples at 30 °C by (a) the Doi–Edwards equation and (b) the Doi tube length fluctuation model. Lines are the fitting results. Open circles are data for $M = 355\,000$ g mol⁻¹. Filled squares are data for $M = 70\,900$ g mol⁻¹. Data from M. Rubinstein and R. H. Colby, J. Chem. Phys. 89, 5291 (1988).

D&E model with contour length fluctuations (with CR)

Figure 3. Experimental (····) and predicted (--) dynamic moduli using the Doi and Edwards kernel with fluctuations (eq 3) and double reptation (eqs 1 and 5) for (a) PS1, (b) PS9, (c) PS12, and (d) PS13.

Linear chains: model of des Cloizeaux:

Based on a time-dependent coefficient diffusion:

$$D(t) = D_e \left(1 + \sum_{n=1}^{\infty} \exp\left(\frac{-n^2 t}{\tau_i}\right) \right) \qquad D_e$$

$$G(t) = G_N^0 \frac{8}{\pi^2} \cdot \sum_{p \text{ odd}} \frac{1}{p^2} \cdot \exp\left(-p^2 \cdot U(t)\right)$$
$$U(t) = \frac{t}{\tau_{rept}} + \frac{1}{H} \cdot g\left(\frac{H \cdot t}{\tau_{rept}}\right)$$
$$g(y) = \sum_{n=1}^{\infty} \frac{1 - \exp\left(-n^2 \cdot y\right)}{n^2} \approx -y + y^{0.5} \cdot \left[y + (\pi \cdot y)^{0.5} + \pi\right]^{0.5}$$

.

Figure 4. Experimental (···) and predicted (-) dynamic moduli using the des Cloizeaux kernel (eq 4) and double reptation (eqs 1 and 5) for (a) PS1, (b) PS9, (c) PS12, and (d) PS13.