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Part III. Polymer Dynamics – molecular models 

I. Unentangled polymer dynamics 
I.1 Diffusion of a small colloidal particle 

Source: Polymer physics – Rubinstein,Colby 

I.2 Diffusion of an unentangled polymer chain 

II. Entangled polymer dynamics 
II.1. Introduction to Tube models 
II.2. « Equilibrium state » in a polymer melt or in a 
concentrated solution: 

II.3. Relaxation processes in linear chains 
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I. Unentangled polymer dynamics 
I.1 Diffusion of a small colloidal particle: 

Diffusion coefficient 

Simple diffusive motion: Brownian motion 

Friction coefficient: 

A constant force applied to the particle leads to a constant velocity: 

Einstein relationship: 
 Friction coefficient 

Stokes law: (Sphere of radius R in a Newtonian liquid with a 
viscosity η) 

Stokes-Einstein relation: Determination of 

random walk 
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I.2.1. Rouse model: 

N beads of length b 
- Each bead has its own friction ζ 
- Total friction: 

- Rouse time: 

t < τRouse: viscoelastic modes t > τRouse: diffusive motion 

- Kuhn monomer relaxation time: 

- Stokes law: 

I.2 Diffusion of an unentangled polymer chain: 

R 
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Rouse relaxation modes: 

The longest relaxation time:  

For relaxing a chain section of N/p monomers: 

(p = 1,2,3,…,N) 

N relaxation modes 
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-  At time t = τp, number of unrelaxed modes = p. 

-  Each unrelaxed mode contributes energy of order kT to 
the stress relaxation modulus: 

(density of sections with N/p 
monomers: 

- Mode index at time t = τp: 

, for τ0 < t < τR 

Volume 
fraction 

Approximation: , for t > τ0  
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, for τ0 < t < τR 
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Viscosity of the Rouse model: 

Or: 
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Exact solution of the Rouse model: 

with 

Each mode relaxes as a Maxwell element 

The Rouse relaxation time is the half of the 
end-to-end correlation time.  

Or:  The Rouse relaxation time is the end-to-end 
correlation time.  
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Free energy U of a Gaussian chain (see Part I): 

Forces equilibrium after a displacement of ΔL: 

After the disorientation 
“spring” force from the free energy 

Rouse time determined from the free energy: 
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Example: Frequency sweep test: 

For 1/τR < ω < 1/τ0 

For ω < 1/τR 
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Rouse model: also valid for unentangled chains in polymer melts: 

For M < Mc : τrel ∝ M2  

For M > Mc: τrel ∝ M3.2     3.4 

Relaxation times  

M 

τrel 

Mc 
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Viscous resistance from the solvent: the particle must drag some 
of the surrounding solvent with it. 

Hydrodynamic interaction: long-range force acting on solvent 
(and other particles) that arises from motion of one particle. 

When one bead moves: interaction force on the other 
beads (Rouse: only through the springs)  

The chain moves as a solid object: 

Zimm time: 
(In a theta solvent) 

I.2.2. Zimm model: 
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- τZimm has a weaker M-dependence than τRouse.  

-  τZimm < τRouse in dilute solution 

-  real case: often a combination of both  

Rouse time versus Zimm time: 
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Slope: 5/9 to 2/3 
(theta condition) 
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Rheological Regimes: 
(Graessley, 1980) 

Dilute solutions: Zimm model – H.I. – no entanglement 

Unentangled chains (Non diluted): Rouse model – no H.I. –  no entanglement 

Entangled chains: Reptation model – no H.I. –  entanglement 
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entanglement 

The test chain is entangled 
with its neighbouring 

polymers 

Molecules cannot cross 
each other 

II. Entangled polymer dynamics 

II.1. Introduction to Tube models 
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Doi & Edwards (1967), de Gennes (1971)


The tube model 

entanglement 

Me: molecular weight between two 
entanglements 

The molecular environment of a 
chain is represented by a tube in 
which the chain is confined 
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Tube model and entanglements: 
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G(t) Glassy region 

Pseudo equilibrium state 

t 

Relaxation processes 

Concentrated solutions or polymer melts: 

Pseudo equilibrium state: 

The chains are not in their stable shape. The other chains prevent their 
relaxation. The tube picture becomes active. 

Me: Mw of the longest sub-chain relaxed by a Rouse process 
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II.2. « Equilibrium state » in a polymer melt or in a 
concentrated solution: 

l 

Khun segment 

Leq. 

1 

Ne 

2Ne 

3Ne 

4ne 

a = tube diam. 

tube 

Z = segments number =4 
Segment between  
two entanglements


Each segment between two entanglements is relaxed by the Rouse process 

The primitive path of the chain is defined by its segments between the 
entanglements. Its length = Leq. Coarse grained model 
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Primitive path 

-  Simpler description of the chain 

-  Coarse grained model: subchains of mass Me are considered as a segment of 
length l 

-  relaxation time of subchain Me: Rouse relaxation 
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l 

Leq. 

1

ne 

a 

tube 

Leq = length of the primitive path 

Z = number of segments between two ent. 

l = length of a segment between two ent. 

a = tube diameter 

b = length of a Khun segment 

Ne = number of Khun segments between 
two entanglements 

N = total number of Khun segments in the 
chain 

Equilibrium state in a polymer melt: parameters 

Gaussian chain in solution: the end-to-end distance R0
2 = Nb2 

Gaussian chain in a melt or concentrated solution: 

l2 ≈Neb2 
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Constitutive equation of a polymer melt 
For a Rouse chain (unentangled chain): 

(Gaussian) 

(free 
energy) 

Entropic material: 

S = k lnP 
(free energy) 

In a fixed direction: 

U = -TS 

R0 

U(R0) 

0 
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Constitutive equation of a polymer melt 

At equilibrium (U min.):  
Nb2 ≈ a.Leq 

U(Lchain) 

0 Lchain Leq 

For a polymer melt: 

Additional boundary conditions: ψ(R) = 0 on the tube surface 
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l 

Leq. 

1

Ne 

a 

tube 

Leq = length of the primitive path 

Z = number of segments between two ent. 

l = length of a segment between two ent. 

a = tube diameter 

b = length of a Khun segment 

Ne = number of Khun segments between 
two entanglements 

N = total number of Khun segments in the 
chain 

Equilibrium state in a polymer melt: parameters 

Gaussian chain in solution: R0
2 = Nb2 

Gaussian chain in a melt or concentrated solution: l2 ≈Neb2    Nb2 ≈ a.Leq
 

l ≈ a 
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Material parameters in the tube model 

(x 4/5) 

The plateau modulus: 

Defined at the “equilibrium state” of the polymer 

The molecular weight between two entanglements: Me 

The relaxation time of a segment between two entanglements: 

Very simplified coarse-grained model 
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Not anymore memory of 
the initial deformation 

Unrelaxed fraction 
of the polymer melt 

Plateau modulus 

Relaxation of the polymer 
(as Reptation) 

Φ = 0 Φ = 1 

G(t) Glassy region 
Rouse process 

t 

Plateau modulus          : tube effect 

II.3. Relaxation processes in linear chains 
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II.3.1. Main relaxation process in linear chain: 
Reptation 
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As the primitive chain 
diffuses out of the tube,  
a new tube is continuously 
being formed, starting from 
the ends.  

This new tube portion is 
randomly oriented even if the 
starting tube is not. 

Part of the initial tube 

1. 

2. 

3. 

4. 

1-D curvilinear 
diffusion 

+ Movie 

Reptation 
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Reptation time: 

Monomeric 
friction  

Total friction of 
the chain 

Curvilinear diffusion coefficient: 

De: along Leq 

<R0
2> 

D 

In solution: 

Reptation 
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Reptation 
PBD, 130 kg/mol. 

M (Kuhn segment): 105 g/mol        N=1240 Kuhn segments 

τ0 = 0.3 ns. τe = 0.1 µs. Me=1900g/mol. Ne=18. M/Me= 68 entanglements 
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Reptation: Doi and Edwards model 

-  First passage problem 

-  diffusion of a chain along the tube axis 

p(s,t): survival probability of a initial tube segment localized 
at a distance s.  

0 
Leq 

s 

Variables separability 



35 

x 

p(x,t) 

time 

x 
x 

0 1 
0 

Doi and Edwards model 

Using the usual 
coordinate system 
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Doi and Edwards model 

Relaxation modulus: 

Related viscosity: 

for M < Mc 
for M > Mc in the real case 
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Discrepancy between theory and experiments: inclusion of the 
contour length fluctuations process 

Zero-shear viscosity vs. log (M) 

Slope of 3.4 
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Initial D&E model (with CR) 
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Equilibrium length Leq 

Entropical force:  Topological force: 

Equilibrium length of an arm: 

Leq = the most probable length 

real length  

This part of the 
initial tube is lost 

II.3.2. Contour length fluctuations 
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x=1 

No Reptation 
Only fluctuations 
(see the next lesson)  

x=0 

Fixed point 
Symmetric 
star: 

II.3.2. Contour length fluctuations 
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+ movie 

II.3.2. Contour length fluctuations 



42 



43 

Linear chains: Doi and Edwards model including the 
contour length fluctuations (CLF): 

- the environment of the molecule is considered as fixed. 

Rouse-like motion of the chain ends: 

For t < τR 

Displacement along the curvilinear tube: 

Displacement of a monomer in the 3D space: 

Rem/ Before t = τRouse, the end-chain does not know that it belongs to 
the whole molecule 
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Leq,0 

L(t) 

Partial relaxation of the stress: 

For τe < t < τR At time t = τR: 

With µ close to 1 
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In the same way: 

Rescale of the reptation time in order to account for the fluctuations 
process 

Log(M) 

Slope: 3.4 
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D&E model with contour length fluctuations (with CR) 
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Linear chains: model of des Cloizeaux: 

De 

Based on a time-dependent coefficient diffusion: 
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Des Cloizeaux model (with CR) 


