Part III. Polymer Dynamics — molecular models

I. Unentangled polymer dynamics

I.1 Diffusion of a small colloidal particle
[.2 Diffusion of an unentangled polymer chain

II. Entangled polymer dynamics

I1.1. Introduction to Tube models

I1.2. « Equilibrium state » in a polymer melt or in a
concentrated solution:

I1.3. Relaxation processes in linear chains

Source: Polymer physics — Rubinstein, Colby



I. Unentangled polymer dynamics

I.1 Diffusion of a small colloidal particle:

random walk Simple diffusive motion: Brownian motion

<[17(t) _ F(O)]Z> _ 6?
Diffusion coefficient

Friction coeftficient:

A constant force applied to the particle leads to a constant velocity: F = %17

kT Friction coefficient
Einstein relationship: D=—

g

Stokes law: C =6mnR  (Sphere of radius R in a Newtonian liquid with a
viscosity 1)

. . . kT . kT
Stokes-Einstein relation: D =——— === Determination of R, =
6TMR oD




[.2 Diffusion of an unentangled polymer chain:
1.2.1. Rouse model:

¢
— s e,

N beads of length b

- Each bead has its own friction C

- kT
- Total friction: §,=N{ P D, = NE

R’ R® ¢
- Rouse time: 7, = NF
! *TD. KkT/NE kT
t < Ty .- ViScoelastic modes t > Ty, diffusive motion

- Stokes law: & =n.b , 3
Ch” N oy 7 ~7, N?

. . T = =
- Kuhn monomer relaxation time: %o KT kT 3




Rouse relaxation modes:

The longest relaxation time: T, ~T,N’

For relaxing a chain section of N/p monomers:
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- At time t = T, number of unrelaxed modes = p.

- Each unrelaxed mode contributes energy of order kT to
the stress relaxation modulus:

kT v (density of sections with N/p
G (T )"" 13 AT monomers: Ve )
(N/ p)?a\\
Volume
fraction

T
- Mode index attime t=Tt: p=~ (—p) N

) G(t)zl;){v( t) , fort, <t<tq

Approximation: G(f)z l;zv( i ) exp(__t) , for t >,




G(f)z_'v — , fort, <t <ty
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Stress relaxation modulus predicted by
thc Rouse model for a melt of
unentangled chains with N = 10°. The
solid curve is the exact Rouse result
[Eq. (8.55)] and the dotted curve is the
approximate Rouse result [Eq. (8.48)].




Viscosity of the Rouse model:

-1/2

o kT  t
77=ﬁ) G(z)dfz?vﬁ) (r_) exp(TR)dt

kT

~—v T,T, x"l/2 exp(—x)dxz b —VvT,N = ;Nv
C
‘ nz;N
Or: —
T, =T,N C
>~ n=TRG(TR)z;N
G(t,) =~ kT —~




Exact solution of the Rouse model:

—t §b2N2
— with ‘L’p = > 3
T 6 kTp

p

kT &
G(1)= 7 vzl exp(
£

Each mode relaxes as a Maxwell element

2 A2
_ CO"N”  The Rouse relaxation time is the half of the
6x°kT  end-to-end correlation time.

Tr

2 2 . . .
Or: S Cb°N”  The Rouse relaxation time is the end-to-end
R 322kT  correlation time.




Rouse time determined from the free energy:

Free energy U of a Gaussian chain (see Part I):

U(R,) 3

= cSfe +
kT 2NFb

2

R,

m) Forces equilibrium after a displacement of AL:

g JALW) _ SKT \p iy 5 AL(r) = AL(O) exp(_3th)

[dt NF .\ NBE

“spring” force from the free energy
After the disorientation

_Eb

_—) T, =
3kT




Example: Frequency sweep test:

G'(w)=G"(w) ~ w'? Forlly<w<lh,

G(w)~w
G"(w)~ w’

For o < 1/t

Oscillatory shear data for solutions of
poly(2-vinyl pyridine) in 0.0023 M HCI
in water. Open symbols are the storage
modulus G’ and filled symbols are the
loss modulus G”. Squares have
¢=0.5g L™, triangles have

g=10g L', and circles have
¢=2.0gL"". The curves are the
predictions of the Rouse model [Eqs

(8.49)and (8.50), DamfromD.F. ) dlsibey oat/O8 tons ail) ol nivgs Ll
Hodgson and E. J. Amis, J. Chem. Phys. CZ o A D) . 0 1 2% AR
04, 4581 (1991). &) JO==1910 Q=24 410 1110 10
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Rouse model: also valid for unentangled chains in polymer melts:

Relaxation times
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1.2.2. Zimm model:

Viscous resistance from the solvent: the particle must drag some
of the surrounding solvent with it.

Hydrodynamic interaction: long-range force acting on solvent
(and other particles) that arises from motion of one particle.

e

i’. When one bead moves: interaction force on the other

WO beads (Rouse: only through the springs)

mmm) The chain moves as a solid object: C, =NnR

‘ Zimm time;:

2 3
T, = R ~ 1 R’ = nsb N3/2 zr0N3/2 (In a theta solvent)
D, kT kT 12




Rouse time versus Zimm time:

P s P

"D, kT/NE kT/Nnb kT

R’ R’ R’ n.b’ e

R R R b e s
D, kT/Z, kT/n.R kT

—~

- t,..... has a weaker M-dependence than t; ...
- Tzimm < Trouse 1N dilute solution

- real case: often a combination of both
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Slope: 5/9 to 2/3

(theta Condition) Oscil}atory shear data on Qilute
3 solutions of polystyrene with
101 A - M =860000 gmol ~ " in two #-solvents

(circles are in decalin at 16°C and
squares are in di-2-ethylhexyl phthalate
at 22°C). Open symbols are the
dimensionless storage modulus and
filled symbols are the dimensionless loss
modulus, both extrapolated to zero
concentration. The curves are the
predictions of the Zimm model

[Eqs (8.67) and (8.68)]. Data from

R. M. Johnson et al., Polym. J. 1,

10! 109 10! e

G'M/(cRT), (G"-wn)M/(cRT)
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tbute PS v O-solven .
D &ﬂez Jd“’ ent Undibuted short PS
imw we ' Rownn waidel

Polystyrene in 2 ©-Solvents, M=860,000 &
6 T T T = R 3
3
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¥ig. 5.1 Intrinsic moduli for narrow distribution polystyrene (M =860000) in two theta Ve e o
Ll

wolvents (114). This comparison with theory is equi i i
: equivalent to that of reduced moduli d
in the text. [Reproduced from Polymer J. 1, 747 (1970).] (R

Fig. 5.2. Reduced dynamic moduli for undiluted narrow distribution polystyrene of low
molecular weight. Data for a sample of M. =28900 were reduced to 160 “C, for which
o= 1.0 gm/ml and g = $4500 poise (124). The solid lines were caleulated from the Rouse

theory
Mw = 28900 Yimel
Me ~ 13 300
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Rheological Regimes:

(Graessley, 1980)

6 N
10 N\ Semidilute
\\ entangled
\\ Concentrated
entangled
' 5 ‘ \\ 4
Semidilute N
not entangled™\
M
4
10 Dilute
Concentrated |
not entangled
3
10 1
0.1 1.0 10 100

c (g/dL)

Dilute solutions: Zimm model — H.I. — no entanglement

Unentangled chains (Non diluted): Rouse model — no H.I. — no entanglement

Entangled chains: Reptation model — no H.I. — entanglement
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II. Entangled polymer dynamics
1. 1. Introduction to Tube models

The test chain 1s entangled
with its neighbouring
polymers

entanglement

each other



The tube model

Doi & Edwards (1967), de Gennes (1971)

The molecular environment of a
chain is represented by a tube in
which the chain is confined

lllll

entanglement y g

M,: molecular weight between two
entanglements 18



Tube model and entanglements:

19



Concentrated solutions or polymer melts:

Glassy region -
G(t) 4 oosre ~>—//b\/ = ?/\%/%:

10 - S h %
- “ @Pseudo equilibrium state ) C}@EL{/F
/

5 - Relaxation processes

@LQP} = NV

L] | | 1 1 L] | | ’
-10 -8 -6 -4 -2 0o +2
Log Time (Sec) t

Pseudo equilibrium state:

The chains are not in their stable shape. The other chains prevent their
relaxation. The tube picture becomes active.

M.: M,, of the longest sub-chain relaxed by a Rouse process

20



I1.2. « Equilibrium state » in a polymer melt or in a

concentrated solution:

Z = segments number =4
Segment between

two entanglements ~ Khun segment Ss\a = tube diam.

- \\\
-, w—
<27 ,’ T

G Leg
Each segment between two entanglements 1s relaxed by the Rouse process

c The primitive path of the chain 1s defined by its segments between the
entanglements. Its length =L . oy

Coarse grained model

21



Primitive path

(b)

- Simpler description of the chain

- Coarse grained model: subchains of mass M, are considered as a segment of
length 1

- relaxation time of subchain M_: Rouse relaxation
22




Equilibrium state 1n a polymer melt: parameters

L., = length of the primitive path

Z = number of segments between two ent.
|1 = length of a segment between two ent.
a = tube diameter

b = length of a Khun segment

N, = number of Khun segments between
two entanglements

N = total number of Khun segments in the
chain

Gaussian chain in solution: the end-to-end distance R, = Nb’

Gaussian chain 1in a melt or concentrated solution:

2 =N_b? Leq=Z-l=£-l
N

¢ 23




Constitutive equation of a polymer melt

For a Rouse chain (unentangled chain):

Entropic material: In a fixed direction:

U =-TS S =k InP ‘P(&:E)ocexp

(free energy)

-3R

ONb

‘2

(Gaussian)

—> U(R,) 3 2 (free
—— = cSte + 5 ‘RO‘
kT 2Nb '— energy)

UR,)

v

24



Constitutive equation of a polymer melt

For a polymer melt:

Additional boundary conditions: (R) = 0 on the tube surface

VL) _ 3N2b2 L3 1,
kT a 2NbD
\ ULy}
\\ At equilibrium (U min.);
L Nb*=alL,
0 L L

chain

25



Equilibrium state in a polymer melt: parameters

Gaussian chain in a melt or cancentrated solution] I> =N_b? || Nb%= a.L

L., = length of the primitive path

7/, = number of segments between two ent.
| = length of a segment between two ent.
a = tube diameter

b = length of a Khun segment

N, = number of Khun segments between
two entanglements

N = total number of Khun segments in the
chain

€q

-

26



Material parameters in the tube model

— Defined at the “equilibrium state” of the polymer

e The molecular weight between two entanglements: M,

* The plateau modulus:

M M

e e

* The relaxation time of a segment between two entanglements:

2
_ Cf N>
3n°kT

Very simplified coarse-grained model

2
7:e zTONe
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Table 13-1
ENTANGLEMENT SPACINGS FROM INTEGRATION OF LOSS COMPLIANCE OR

SIMILAR CALCULATIONS
Temper-  log J%
ature, (cm?/
Polymer e dyne) M, J Mg JPe Ref.
Methacrylate Polyniers
Methyl (conven- 170 -6.94 4,700 2 100 94 15
tional)
Methyl (atactic)® 220 —6.59 10,000 2 100 200 16
Methyl (atactic) 131 -6.90 4,800 2 100 % 15
2-Ethyl Butyl 100 -6.16 21,400 2 170 <2507 17
n-Hexyl 100 -5.94 3390 2 170 400 18
n-Octyl 100 -5.52 87,000 2 198 880 19
Rubbers
Hevea rubber 25 -6.76 6,100 4 68 360 1
Hevea rubber -30 —6.85 3,500 4 68 210 20
1,4-Polybutadiene® 25 -7.06 1900 4 54 140 2
1,4-Polybutadiene 25 -7.12 1,700 4 54 130 21
1,4-Polybutadiene, 25 —6.88 2,900 4 54 220 22
cis®
Polybutadiene/ -10 —6.94 2,500 — — - 14
1,2-Polybutadiene# 25 -6.79 3,550 2 54 130 1
Styrene-butadiene 25 -6.89 3000 4 655 180 23
copolymer”
Butyl rubber® 25 —6.46 8,500 2 56 300 24
Ethylene-propylene 25 -7.10 1,660 2 343 100 25
copolymer’
General
Polyethylene 190 -7.36 1250 2 28 9 25a
-Polyisobutylene 25 —6.40 8900 2 56 320 26
Polyisobutylene 25 —6.46 7,600 2 56 270 30
Poly(dimethyl 25 —6.47 8,100 2 74 220 27
siloxane)/
Poly(dimethyl 25 -6.30 12,000 2 74 330 27a
siloxane)
Poly(dimethyl 23 — 8,800 2 74 230 28
siloxane) %
Poly(dimethyl 25 -6.33 11,300 2 74 300 29
siloxane)
Polystyrene’ 160 -6.30 18100 2 104 350 3
Polystyrene 140 —6.31 17,300 2 104 333 30a
Poly(a-methyl 186 -7.00 13,500 2 118 230 31,32
styrene)
Poly(vinyl 60 -6.55 9,100 2 86 210 30
acetate)

28



II.3. Relaxation processes in linear chains

G(t) 4 y Glassy region
104 Rouse process

Plateau modulus Gév

. tube effect

| Relaxation of the polymer
(as Reptation)

G(t) = GRouse (t) + Gév . (I)(t)

Plateau modulus

Unrelaxed fraction
of the polymer melt

=1 ) O =0
&
Not anymore memory of
the initial deformation

29



I1.3.1. Main relaxation process in linear chain:
Reptation

Reptation steps: (a) formation of a loop
at the tail of the snake and elimination of
the tail segment of the confining tube;
(b) propagation of the loop along the
contour of the tube; (c) release of the
loop at the head of the snake and
formation of a new section of the
confining tube.

30



Reptation

1 O\/I/m 1-D curvilinear

diffusion

2. C.. :
O ( As the primitive chain
diffuses out of the tube,
a new tube 1s continuously

3
O being formed, starting from
the ends.
This new tube portion 1s
4 randomly oriented even if the
starting tube 1s not.

+ Movie
Part of the initial tube

31



Reptation

Curvilinear diffusion coefficient: Reptatzion time:
2
e_g _NC ) rept| D N_l_
tot 0 e
t N .
Total friction of Monomeric 3
the chain friction To, =T ﬂ
e pt e Ne
R2
D~—_

In solution:

_(R)" Nb
Rouse D N_1

e

ocN2

T




Reptation

PBD, 130 kg/mol.

109 LS 1/t 7455 1/t
*E t + + + - + b e S M ov ook A .
gltion 1% nfarts + siigh Sxpon il thi et |

= 10 ]
(ol » o7
e } |
2“ 1064
2 s .
< 1001, G"
Qeii 10% ¢

103 4 G’ 1

1024 £, -+

102101 1 10! 162 163 10* 10° 106 107 10% 169161016"10'2
way (rad/s)
M (Kuhn segment): 105 g/mol — N=1240 Kuhn segments
T, = 0.3 ns. T, = 0.1 us. M_=1900g/mol. N_=18. M/M_= 68 entanglements

33



Reptation: Do1 and Edwards model

- First passage problem N
L

- diffusion of a chain along the tube axis eq

0 p(s,t) _ 1, 9 p(s,1) p(0,¢) = p(L,t) =0
J t 95’ p(x,0)=1, Vx€(0,L)

p(s,t): survival probability of a initial tube segment localized
at a distance s.

Variables Sepa;abililj/ A DT eq Leq2

4 (i —i*m*D
p(s,t)=2-sm(le]-eXp[ B

v

8 1 —i’D t
Propi(t) = j;L p(s,t)ds = —= E l,—zeXp( )

i odd




Doi1 and Edwards model

p(x,t)

Sr
08
0.7
061
0.5
04

0.3

024

0.1 88/

Using the usual
coordinate system

e T——
0 —X
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Doi1 and Edwards model

Pp0) =, P r)ds——E—exp( ZD ’)

p odd

Relaxation modulus:

8 1 -p’t
G(l‘)=?Ggf E —2€Xp( )

p odd P rept(M)
3

N Eb?
(M) =3t = N2
. Trop(M) = (Ne ) YTk

Related viscosity:
n f G(t)dt——GO E f exp( )dt—EGormpt
p odd rept
(Y 1/p*=7"/96)
n~M for M <M. DAL

n~M forM>M, n~M"* in the real case
36



Zero-shear viscosity vs. log (M)

Poly(di-methylsiloxane)
Poly(iso-butylene)
Poly(ethylene)
Poly(butadiene)
Poly(tetra-methyl p-silphenyl silpx;
Poly(methyl methacrylate)
Poly(ethylene glycol)
Poly(vinyl acetate)
Poly(styrene)

Log 1, + constant
rPPrORPODOMO

2 & 2 1
1 2 3 4
Log M + constant

h

Discrepancy between theory and experiments: inclusion of the
contour length fluctuations process
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2694 van Ruymbeke et al. Macromolecules, Vol. 35, No. 7, 2002

G G 'Ini'tialﬂD8vcE model w(With CR)

(Pa) st
16 16- Ll -t
10 10% g

c...

b

10°} a

102 10" 10° 10 106 10°
o (rad/sec)

R . ey . . . ; - 4
10° 10% 10" 10" 10' 10° 10° 102 10" 10° 10' 10° 10° 10
Figure 2. Experimental (-++) and predicted (—) dynamic moduli using the Doi and Edwards kernel (eq 2) and double reptation
(eqs 1 and 5) for (a) PS1, (b) PS9, (c) PS12, and (d) PS13.

My M,

polydispersity (g/mol) (gx'mnol) (b) Bi- or Tridisperse
PS1 1.02 355 500 346 200 composition
PS2 1.02 191 300 187 600 — =0% PS2. GO PS3
PS3 1.0 886 900 813 500 Be10 200 PS4’ 80% PSE
PS4 1.04 176 700 160 900 el 805 Pe1 20 Pae
PS5 1.03 60 400 58 600 U Yo% SO K

PS12 65% PS2. 35% PS8

P36 1.03 58 400 26 900 PS13 30% PS7. 30% PS2, 40% PS1
PS7 1.02 146 400 143 300 - :

PS8 1.04 676 000 650 900



I1.3.2. Contour length fluctuations

Equilibrium length of an arm:

Entropical force: TopOIOgical force:
Ly=21= V K = the most probable length ‘
Equllzbrzum length L, real length

i ; M\ This part of the

initial tube 1s lost 39



I1.3.2. Contour length fluctuations

Symmetric
star: — Fixed point

No Reptation

Only fluctuations
(see the next lesson)

40



polymers demonstrated by an octopus

Arm retraction of entangled star
in a fishing net. The circles are
permanent topological constraints.

I1.3.2. Contour length fluctuations

+ movie

41



Storage modulus (filled symbols) and
loss modulus (open symbols) for linear
1,4-polybutadiene with

M., = 160000 gmol ™' (squares) and a
6-arm star 1,4-polybutadiene with
M,=T77000g mol ! (circles), both at a
reference temperature of 28 °C. The
linear polymer was chosen because it’s
molar mass is approximately the span
molar mass of the star polymer. Data
courtesy of L. Archer.

G' [Pa]; G” [Pa]

[
(e}
~]

—
<)
[=))

[u—y
(=)
(O}

[e—y
(e}
T

ok
=)
W

H

jisf lJlIllI L=l lllllll | ] lllllll T llIlIII | | lIIIllI JUEYS R

1073

107 10!
ar® [rad/s]
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Linear chains: Do1 and Edwards model including the
contour length fluctuations (CLF):

- the environment of the molecule 1s considered as fixed.

Rouse-like motion of the chain ends:

Displacement along the curvilinear tube:

| 1
A 1 1
Fﬁ\’ <Asz>zb2(L)2 zaz(i)z For t <ty

Ar

1

4
mm)  Displacement of a monomer in the 3D space: < Ar2> ~a’ (L)

Rem/ Before ¢ = t;,,,,, the end-chain does not know that it belongs to
the whole molecule
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L

eq,0

L(t)

A
v
T
2,
~—
l
S
—
oﬂ |N
SNS~—
N | —
U
Ql\)
—
2
~—
N | —

‘ Partial relaxation of the stress:
L _ AL f 2 1/4
60~y 40— 7 ()>“G2(1_ a (L)

(Z) (L)

At time t = Ty: Fort. <t<wg

PEA TS
N\,

0
G(t,) =Gy With u close to 1
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In the same way:

N
G(ty.,) =G| 1-u (N)]
(LY [1-uNJN] AR
TRept = D ”’TOV 1-u (]Ve)

Rescale of the reptation time in order to account for the fluctuations
process

T

A

Re pt

Slope: 3.4

v

Log(M)



Simultaneous fit of loss modulus
data for the two monodisperse
polybutadiene samples at 30 °C by
(a) the Doi-Edwards equation and
(b) the Doi tube length fluctuation
model. Lines are the fitting results.
Open circles are data for

M = 355000 g mol . Filled squares
are data for M = 70900 g mol~".
Data from M. Rubinstein and

R. H. Colby, J. Chem. Phys. 89,
5291 (1988).

O | 1 1 1 1
1021071 10° 10! 102 10° 10%
war (rad s7)



D&E model with contour length fluctuations (with CR)

G’G"
(Pa) p
10°}
10"
¢ a | b
102 10" 10" 10 168 10°

 (rad/sec)

p . i DY . - 0 1
10° 10% 10" 10" 10' 10° 10° 10 10" 10" 10' 1¢° 10’
Figure 3. Experimental (-++) and predicted (—) dynamic moduli using the Doi and Edwards kernel with fluctuations (eq 3) and
double reptation (eqs 1 and 5) for (a) PS1, (b) PS9, (c) PS12, and (d) PS13.
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Linear chains: model of des Cloizeaux:

Based on a time-dependent coefficient diffusion:

D(t)=De(1+iexp(_n2t)) \\
n=l D,

T.

1

2
7T poa’dp

= G(1)-G > D iz-exp(-p2 U(1))

(H-t)
e

rept rept

= 1-exp (n y) | 05

g(y)=2 -y+y0'5'[y+(ﬂ'y)05+ﬂ]

=1
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. Des Cloizeaux model (with CR)

G' G"
(Pa) . - .; e
10°
10°
10°} 4 o - 9
10° 10" 1 10 1 10° 10° 102 10" 10° 10' 1
o (rad/sec)
10°} ] 10°;
10'f 10°t
103' 1 103
10°} [V 10% d
10° 10% 10" 10° 10' 10° 10° 10% 10" 10° 10' 16 10°

Figure 4. Experimental (-++) and predicted (—) dynamic moduli using the des Cloizeaux kernel (eq 4) and double reptation (eqs
1 and 5) for (a) PS1, (b) PS9, (c) PS12, and (d) PS13.
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