FTIR- Fourier Transform Infrared Spectroscopy

M.Sc. Chemistry Practical Inorganic Chemistry (Paper- 4106) Semester- IV

Dr. Neeraj Kumar and Dr. Sanjay Kumar Saroj Inorganic Group- II

Introduction

Spectroscopy is the study of the interaction between matter and electromagnetic spectrum.

- Electromagnetic radiation displays the properties of both particles and waves.
- The particle component is called a photon.
- The energy (E) component of a photon is proportional to the frequency. Where h is Planck's constant and v is the frequency in Hertz (cycles per second) E = hv

also **E=hc/λ**

>Infrared spectroscopy (IR spectroscopy) is the spectroscopy that deals with the infrared region of the electromagnetic spectrum.

>IR spectroscopy is an absorption technique.

Absorption of infrared radiation brings about changes in molecular vibrations within molecules. So, it is a kind of vibrational spectroscopy.

➤The frequency at which a particular bond absorbs infrared radiation will be different over a range of bonds and modes of vibration depending on atom size, bond length and bond strength.

When can absorption occur?

- 1. Infrared absorption only occurs when infrared radiation interacts with a molecule undergoing a permanent change in dipole.
- 2. Infrared absorption only occurs when the incoming infrared photon has sufficient energy for the transition to the next allowed vibration energy state.

If these two rules are not met ,**no absorption can occur**.

> N₂ or O₂ has no infrared spectrum (no dipole change).

> CO does have.

Vibration Types

• There are two different types of vibrational modes.

Vibrations can either involve a change in bond length (stretching) or bond angle (bending).

Stretching Vibrations

Bending vibrations

Vibrational Modes

I.Stretching – Vibration or oscillation along the line of the bond. П and the С С asymmetric symmetric Copyright @ 1997 Charles B. Abrams Copyright © 1997 Charles B. Abrams **2.Bending** – Vibration or oscillation not along the line of the bond. Ê H 1. A. A. A. ۰,۰ С С С С Ή twist wag scissor in plane rock out of plane Copyright @ 1997 Charles B. Abrams Copyright @ 1997 Charles B. Abrams Copyright @ 1997 Charles B. Abrams $\overline{\nu}_{Asym} > \overline{\nu}_{Sym} >> \overline{\nu}_{Bending}$

What is **FTIR**

Fourier-transform infrared spectroscopy is a less intuitive way to obtain the information.

- Rather than shining a monochromatic beam of light at the sample, this technique shines a beam containing many frequencies of light at once and measures how much of that beam is absorbed by the sample.
- Fourier transform is to transform the signal from the time domain to its representation in the frequency domain.
- All FTIR spectrometers are based on the Michelson Interferometer.

Instrumentation

Components of FTIR

Nernst Glower	heated rare earth oxide rod (~1500 K)	I-50 μm (mid- to far-IR)
Globar	heated SiC rod (~1500 K)	I-50 μm (mid- to far-IR)
Tungsten filament lamp	1100 K	0.78-2.5 μm (Near-IR)
Hg arc lamp	plasma	50 - 300 μm (far-IR)
CO ₂ laser	stimulated emission lines	9-11 µm

The Sample Analysis Process

Interferogram : intensity vs time after the Fourier transformation: intensity vs frequency:-an IR spectrum

Theory and Instrumentation

The light originates from the He-Ne laser.

- Half of the light is reflected 90 degrees and hits a fixed mirror, while the other half passes through the beam splitter and hits the moving mirror.
- The split beams are recombined, but having traveled different distances, they exhibit an interference pattern with each other.
- As they pass through the sample, the detector collects the interfering signals and returns a plot known as an interferogram.

Interference pattern of light manifested by the optical-path difference

Detectors

The beam finally passes to the detector

Thermal detectors

- Thermocouples
- Bolometer

Photoconducting detectors

most sensitive detectors.

Pyroelectric detectors

- much faster response time
- insulator material
- Triglycine sulphate

Absorption Regions

		Frequency	
Bond	Type of Compound	Range, cm ⁻¹	Intensity
С—Н	Alkanes	2850-2970	Strong
		1340-1470	Strong
с—н	$Alkenes (>c=c<^{H})$	3010-3095	Medium
		675-995	Strong
С—Н	Alkynes (—C==C-H)	3300	Strong
с—н	Aromatic rings	3010-3100	Medium
		690-900	Strong
о—н	Monomeric alcohols, phenols	3590-3650	Variable
	Hydrogen-bonded alcohols, phenols	3200-3600	Variable, sometimes broad
	Monomeric carboxylic acids	3500-3650	Medium
	Hydrogen-bonded carboxylic acids	2500-2700	Broad
N—H	Amines, amides	3300-3500	Medium
c=c	Alkenes	1610-1680	Variable
c=c	Aromatic rings	1500-1600	Variable
c=c	Alkynes	2100-2260	Variable
C—N	Amines, amides	1180-1360	Strong
C≡N	Nitriles	2210-2280	Strong
c0	Alcohols, ethers, carboxylic acids, esters	1050-1300	Strong
c=o	Aldehydes, ketones, carboxylic acids, esters	1690-1760	Strong
NO ₂	Nitro compounds	1500-1570	Strong
		1300-1370	Strong

TABLE 17-2 Abbreviated Table of Group Frequencies for Organic Groups

Advantages of FT-IR

Speed Because all of the frequencies are measured simultaneously.

• **Sensitivity** is dramatically improved with FT-IR ; detectors are much more sensitive, **higher signal to noise ratio**.

• Mechanical Simplicity The moving mirror in the interferometer is the only continuously moving part in the instrument. Thus, there is very little possibility of mechanical breakdown.

• Internally Calibrated These instruments employ a He-Ne laser as an internal wavelength calibration standard .These instruments are self-calibrating and never need to be calibrated by the user.

Disadvantages of FTIR

- Cannot detect atoms or monoatomic ions single atomic entities contain no chemical bonds.
- Cannot detect molecules comprised of two identical atoms -such as N_2 or O_2 .
- Aqueous solutions are very difficult to analyze- water is a strong IR absorber.
- Complex mixtures samples give rise to complex spectra.

Applications of FT-IR

- >Pharmaceutical research
- ➢Forensic investigations
- ➢Polymer analysis
- ➢Foods research
- >Quality assurance and control
- Environmental and water quality analysis methods
- Biochemical and biomedical research
- ➢ coatings and surfactants

References

- Instrumental Methods of Analysis, Willard et al, 4th edition, CBS Publishers and Co.
- Fourier Transform Infrared Spectroscopy, Peter R. Griffiths, 2nd edition, John Wiley & Sons.
- http://www.photonics.com/Category.aspx?CatID=38300

٠

٠

۲

http://mtweb.mtsu.edu/nchong/Spectroscopy-CHEM6230.pdf