
3

Molecular dynamics

3.1 Equations of motion for atomic systems

In this chapter, we deal with the techniques used to solve the classical equations of motion
for a system of N molecules interacting via a potentialV as in eqn (1.4). ese equations
may be wri!en down in various ways (Goldstein, 1980). Perhaps the most fundamental
form is the Lagrangian equation of motion

d

dt
(∂L/∂q̇k) − (∂L/∂qk) = 0 (3.1)

where the Lagrangian functionL (q, q̇) is defined in terms of kinetic and potential energies

L = K −V (3.2)

and is considered to be a function of the generalized coordinates qk and their time
derivatives q̇k . If we consider a system of atoms, with Cartesian coordinates ri and the
usual definitions of K andV (eqns (1.3) and (1.4)) then eqn (3.1) becomes

mi r̈i = f i (3.3)

wheremi is the mass of atom i and

f i = ∇riL = −∇riV (3.4)

is the force on that atom. ese equations also apply to the centre of mass motion of a
molecule, with f i representing the total force on molecule i; the equations for rotational
motion may also be expressed in the form of eqn (3.1), and will be dealt with in Sections 3.3
and 3.4.
 e generalized momentum pk conjugate to qk is defined as

pk = ∂L/∂q̇k . (3.5)

 e momenta feature in the Hamiltonian form of the equations of motion

q̇k = ∂H /∂pk (3.6a)

ṗk = −∂H /∂qk . (3.6b)

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
©M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.

96 Molecular dynamics

 e Hamiltonian is strictly defined by the equation

H (p, q) =
∑

k

q̇kpk − L (q, q̇) (3.7)

where it is assumed that we can write q̇k on the right as some function of the momenta p.
For our immediate purposes (involving a potentialV which is independent of velocities
and time) this reduces to eqn (1.2), andH is automatically equal to the energy (Goldstein,
1980, Chapter 8). For Cartesian coordinates, Hamilton’s equations become

ṙi = p
i
/mi (3.8a)

ṗ
i
= −∇riV = f i . (3.8b)

Computing centre of mass trajectories, then, involves solving either a system of 3N second-
order differential equations, eqn (3.3), or an equivalent set of 6N first-order differential
equations, eqns (3.8a), (3.8b). Before considering how to do this, we can make some very
general remarks regarding the equations themselves.
A consequence of eqn (3.6b), or equivalently eqns (3.5) and (3.1), is that in certain

circumstances a particular generalized momentum pk may be conserved, that is, ṗk =
0. e requirement is that L, and hence H in this case, shall be independent of the
corresponding generalized coordinate qk . For any set of particles, it is possible to choose
six generalized coordinates, changes in which correspond to translations of the centre of
mass, and rotations about the centre of mass, for the system as a whole (changes in the
remaining 3N − 6 coordinates involving motion of the particles relative to one another).
If the potential functionV depends only on the magnitudes of particle separations (as is
usual) and there is no external field applied (i.e. the term v1 in eqn (1.4) is absent) thenV ,H
and L are manifestly independent of these six generalized coordinates. e corresponding
conjugate momenta, in Cartesian coordinates, are the total linear momentum

P =
∑

i

p
i

(3.9)

and the total angular momentum

L =
∑

i

ri × p
i
=

∑

i

miri × ṙi (3.10)

where we take the origin at the centre of mass of the system. us, these are conserved
quantities for a completely isolated set of interacting molecules. In practice, we rarely
consider completely isolated systems. A more general criterion for the existence of these
conservation laws is provided by symmetry considerations (Goldstein, 1980, Chapter 8).
If the system (i.e.H) is invariant to translation in a particular direction, then the corre-
sponding momentum component is conserved. If the system is invariant to rotation about
an axis, then the corresponding angular momentum component is conserved. us, we
occasionally encounter systems enclosed in a spherical box, and so a spherically symmet-
rical v1 term appears in eqn (1.4); all three components of total angular momentum about
the centre of symmetry will be conserved, but total translational momentum will not be. If
the surrounding walls formed a cubical box, none of these quantities would be conserved.

Finite-difference methods 97

In the case of the periodic boundary conditions described in Chapter 1, it is easy to see
that translational invariance is preserved, and hence total linear momentum is conserved.
Several different box geometries were considered in Chapter 1, but none of them were
spherically symmetrical; in fact it is impossible (in Euclidean space) to construct a spheri-
cally symmetric periodic system. Hence, despite the fact that there may be no v1-term in
eqn (1.4), total angular momentum is not conserved in most molecular dynamics simula-
tions. In the case of the spherical boundary conditions discussed in Section 1.6.5, a kind
of angular momentum conservation law does apply. When we embed a two-dimensional
system in the surface of a sphere, the three-dimensional spherical symmetry is preserved.
Similarly, for a three-dimensional system, there should be a four-dimensional conserved
‘hyper-angular momentum’.
We have le$ until last the most important conservation law. Assuming thatH does

not depend explicitly on time (so that ∂H /∂t = 0), the total derivative Ḣ may be wri!en

dH

dt
=

∑

k

(

∂H

∂qk
q̇k +

∂H

∂pk
ṗk

)

= 0

by virtue of eqns (3.6). Hence the Hamiltonian is a constant of the motion. is energy
conservation law applies whether or not an external potential exists: the essential condi-
tion is that no explicitly time-dependent (or velocity-dependent) forces shall act on the
system.
 e second point concerning the equations of motion is that they are reversible in

time. By changing the signs of all the velocities or momenta, we will cause the molecules
to retrace their trajectories. If the equations of motion are solved correctly, the computer-
generated trajectories will also have this property.
Our final observation concerning eqns (3.3), (3.4), and (3.6) is that the spatial derivative

of the potential appears. is leads to a qualitative difference in the form of the motion,
and the way in which the equations are solved, depending upon whether or notV is a
continuous function of particle positions. To use the finite-timestep method of solution to
be described in the next section, it is essential that the particle positions vary smoothlywith
time: a Taylor expansion of r(t) about time t may be necessary, for example. Whenever the
potential varies sharply (as in the hard-sphere and square-well cases) impulsive ‘collisions’
between particles occur at which the velocities (typically) change discontinuously. e
particle dynamics at the moment of each collision must be treated explicitly, and separately
from the smooth inter-collisional motion. e identification of successive collisions is the
key feature of a molecular dynamics program for such systems, and we shall discuss this
in Section 3.7.

3.2 Finite-difference methods

A standard method for solution of ordinary differential equations such as eqns (3.3) and
(3.8) is the finite-difference approach. e general idea is as follows. Given the molecular
positions, velocities, and other dynamic information at time t , we a!empt to obtain
the positions, velocities, etc. at a later time t + δt , to a sufficient degree of accuracy.
 e equations are solved on a step-by-step basis; the choice of the time interval δt will
depend somewhat on the method of solution, but δt will be significantly smaller than

98 Molecular dynamics

the typical time taken for a molecule to travel its own length. Many different algorithms
fall into the general finite-difference pa!ern. Historically, standard approaches such as
predictor–corrector algorithms (Gear, 1966; 1971) and general-purpose approaches such
as Runge–Ku!a (Press et al., 2007) have been used in molecular dynamics simulations,
and there have been several comparisons of different methods (Gear, 1971; van Gunsteren

and Berendsen, 1977; Hockney and Eastwood, 1988; Berendsen and van Gunsteren, 1986;

Gray et al., 1994; Leimkuhler and Reich, 2004).Which shall we choose?
A shortlist of desirable qualities for a successful simulation algorithm might be as

follows.

(a) It should be fast, and require li!le memory.

(b) It should permit the use of a long timestep δt .

(c) It should duplicate the classical trajectory as closely as possible.

(d) It should satisfy the known conservation laws for energy and momentum, and be
time-reversible.

(e) It should be simple in form and easy to program.

For molecular dynamics, the first point is generally less critical than the others, when it
comes to choosing between algorithms. e memory required to store positions, velocities,
accelerations, etc. is very small compared with that available on most computers, although
this might become a consideration when taking advantage of special features of the
architecture, such as graphics processing units (gpus). Compared with the time-consuming
force calculation, which is carried out at every timestep, the raw speed of the integration
algorithm is not crucial. It is far more important to be able to employ a long timestep δt :
in this way, a given period of ‘simulation’ time can be covered in a modest number of
integration steps, that is, in an acceptable amount of computer time. Clearly, the larger δt ,
the less accurately will our solution follow the correct classical trajectory. How important
are points (c) and (d) in the list?
It is unreasonable to expect that any approximate method of solution will dutifully

follow the exact classical trajectory indefinitely. Any two classical trajectories which are
initially very close will eventually diverge from one another exponentially with time
(according to the ‘Lyapunov exponents’), irrespective of the algorithm used to approximate
the equations of motion. In the same way, any small perturbation, even the tiny error
associated with finite precision arithmetic, will tend to cause a computer-generated
trajectory to diverge from the true classical trajectory with which it is initially coincident.
We illustrate the effect in Fig. 3.1: using one simulation as a reference, we show that a
small perturbation applied at time t = 0 causes the trajectories in the perturbed simulation
to diverge from the reference trajectories and become statistically uncorrelated, within a
few hundred timesteps (see also Stoddard and Ford, 1973; Erpenbeck and Wood, 1977). In
this example, we show the growing average ‘distance in configuration space’, defined as
∆r where ∆r 2 = |∆r|2 = (1/N)

∑

|ri (t) − r0
i
(t) |2, r0

i
(t) being the position of molecule i at

time t in a reference simulation, and ri (t) being the position of the same molecule at the
same time in the perturbed simulation. In the three cases illustrated here, all the molecules
in the perturbed runs are initially displaced in random directions from their reference
positions at t = 0, by 10−3σ , 10−6σ , and 10−9σ respectively, where σ is the molecular
diameter. In all other respects, the runs are identical; in particular, each corresponds

Finite-difference methods 99

0 200 400 600 800 1000
10−9

10−6

10−3

100

steps

∆
r

Fig. 3.1 e divergence of trajectories in molecular dynamics. Atoms interacting through the

potential vRLJ (r), eqn (1.10a), were used, and a dense fluid state was simulated (ρ∗ = 0.6,

T ∗ = 1.05, δt∗ = 0.005). ∆r is the phase space separation between perturbed and reference

trajectories. ese simulations used the velocity Verlet algorithm, eqn (3.11), but the results are

essentially determined by the equations of motion rather than the integration algorithm.

to essentially the same total energy. As the runs proceed, however, other mechanical
quantities eventually become statistically uncorrelated. Typically, properties such as the
kinetic energy or pressure remain very close for a period whose length depends on the size
of the initial perturbation; a$er this point the differences become noticeable very rapidly.
Presumably, both the reference trajectory and the perturbed trajectory are diverging from
the true solution of Newton’s equations.
Clearly, no integration algorithm will provide an essentially exact solution for a very

long time. Fortunately, we do not need to do this. Remember that molecular dynamics
serves two roles. First, we need essentially exact solutions of the equations of motion for
times comparable with the correlation times of interest so that wemay accurately calculate
time correlation functions. Second, we use the method to generate states sampled from
the microcanonical ensemble. We do not need exact classical trajectories to do this but
must lay great emphasis on energy conservation as being of primary importance for this
reason. Momentum conservation is also important, but this can usually be easily arranged.
 e point is that the particle trajectories must stay on the appropriate constant-energy
hypersurface in phase space, otherwise correct ensemble averages will not be generated.
Energy conservation is degraded as the timestep is increased, and so all simulations
involve a trade-off between economy and accuracy: a good algorithm permits a large
timestep to be used while preserving acceptable energy conservation. Other factors
dictating the energy-conserving properties are the shape of the potential-energy curves
and the typical particle velocities. us, shorter timesteps are used at high temperatures,
for light molecules and for rapidly varying potential functions.
 e final quality an integration algorithm should possess is simplicity. A simple

algorithm will involve the storage of only a few coordinates, velocities, etc., and will be

100 Molecular dynamics

Code 3.1 Velocity Verlet algorithm

 is snippet shows a direct translation from the so-called split-operator form of the
algorithm (see Section 3.2.2). We have inserted a reminder that the arrays r, v, and f,
are dimensioned to contain the entire set of 3N positions, velocities, and accelerations,
and so the assignment statements apply to the entire array in each case. e (optional)
syntax r(:,:) emphasizes this, but here, and henceforth, we omit it for brevity.

REAL , DIMENSION(3,n) :: r, v, a

v = v + 0.5 * dt * a

r = r + dt * v

! ... evaluate forces and hence a=f/m from r

v = v + 0.5 * dt * a

easy to program. Bearing in mind that solution of ordinary differential equations is a
fairly routine task, there is li!le point in wasting valuable man-hours on programming a
very complicated algorithm when the time might be be!er spent checking and optimizing
the calculation of forces (see Chapter 5). Li!le computer time is to be gained by increases
in algorithm speed, and the consequences of making a mistake in coding a complicated
scheme might be significant.
For all these reasons, most molecular dynamics programs use a variant of the algorithm

initially adopted by Verlet (1967) and a!ributed to Störmer (Gear, 1971).We describe this
method in the following section.

3.2.1 !e Verlet algorithm

Perhaps the most revealing way of writing the Verlet algorithm is in the so-called velocity
Verlet form (Swope et al., 1982), which acts over a single timestep from t to t + δt as
follows:

v(t + 12δt) = v(t) + 12δt a(t) (3.11a)

r(t + δt) = r(t) + δt v(t + 12δt) (3.11b)

v(t + δt) = v(t + 12δt) +
1
2δt a(t + δt). (3.11c)

 e first step (3.11a) can be thought of as ‘half-advancing’ the velocities v to an intermedi-
ate time t + 12δt , using the values of the accelerations a at time t ; these mid-step velocities
are then used to propel the coordinates from time t to t + δt in step (3.11b). A$er this, a
force evaluation is carried out to give a(t + δt) for the last step (3.11c) which completes
the evolution of the velocities. e equations translate almost directly into computer
code, as shown in Code 3.1. At the end of the step, we can calculate quantities such as the
kinetic energy by summing the squares of the velocities, or the total momentum vector,
by summing the different Cartesian components of the velocity. e potential energy at
time t + δt will have been computed in the force loop.
 is method is numerically stable, convenient, and simple. It is exactly reversible in

time and, given conservative forces, is guaranteed to conserve linear momentum. e

Finite-difference methods 101

10−4 10−3 10−2
10−5

10−4

10−3

10−2

10−1

100

δt

〈

δ
H
2
〉

1/
2

Fig. 3.2 Energy conservation of the Verlet algorithm. e system studied is as for Fig. 3.1. We

calculate rms energy fluctuations 〈δH 2〉1/2 for various runs starting from the same initial condi-

tions, and proceeding for the same total simulation time trun, but using different timesteps δt and

corresponding numbers of steps τrun = trun/δt . e plot uses log–log scales.

method has been shown to have excellent energy-conserving properties even with long
timesteps. As an example, for simulations of liquid argon near the triple point, rms energy
fluctuations 〈δH 2〉1/2 of the order 0.01 % of the potential well depth are observed using
δt ≈ 10−14 s, and these increase to 0.2 % for δt ≈ 4 × 10−14 s (Verlet, 1967; Fincham and

Heyes, 1982; Heyes and Singer, 1982). In fact, 〈δH 2〉1/2 is closely proportional to δt2 for
Verlet-equivalent algorithms, as shown in Fig. 3.2. As we shall see in the next section, there
is an interesting theoretical derivation of this version of the algorithm, which clarifies the
reason for this dependence.
In the original ‘velocity Verlet’ paper (Swope et al., 1982), the previous equations were

wri!en in the slightly different form

r(t + δt) = r(t) + δtv(t) + 12δt
2a(t) (3.12a)

v(t + δt) = v(t) + 12δt
[

a(t) + a(t + δt)
]

. (3.12b)

 ese are easily obtained from eqns (3.11) by eliminating the mid-step velocity. However,
in practice, the velocity is still incremented in two steps, as the alternative is to (needlessly)
store accelerations at both the start and end of the step. is is shown in Code 3.2.
Two other versions of the Verlet algorithm are worth mentioning at this point. e

original implementation (Verlet, 1967) makes no direct use of the velocities at all but
instead is directly related to the second-order equations (3.3). Consider addition of the
equations obtained by Taylor expansion about r(t)

r(t + δt) = r(t) + δtv(t) + 12δt
2a(t) + · · ·

r(t − δt) = r(t) − δtv(t) + 12δt
2a(t) − · · · (3.13)

102 Molecular dynamics

Code 3.2 Velocity Verlet algorithm (original)

Here dt_sq stores the value of δt2. e algorithm is equivalent to that of Code 3.1,
differing only in that the positions are updated before the mid-step velocities are
calculated.

r = r + dt * v + 0.5 * dt_sq * a

v = v + 0.5 * dt * a

! ... evaluate forces and hence a=f/m from r

v = v + 0.5 * dt * a

to give

r(t + δt) = 2r(t) − r(t − δt) + δt2a(t). (3.14)

 e method is based on positions r(t), accelerations a(t), and the positions r(t − δt)

from the previous step. e Verlet algorithm is ‘centered’ (i.e. r(t − δt) and r(t + δt)

play symmetrical roles in eqn (3.14)), making it time-reversible. It is straightforward to
show that eqn (3.14) is equivalent to eqns (3.11), by considering two successive steps and
eliminating the velocities.
 e velocities are not needed to compute the trajectories, but they are useful for

estimating the kinetic energy (and hence the total energy), as well as other interesting
properties of the system. ey may be obtained from the formula

v(t) =
r(t + δt) − r(t − δt)

2δt
. (3.15)

Whereas eqn (3.14) is correct except for errors of order δt4 (the local error) the velocities
from eqn (3.15) are subject to errors of order δt2. More accurate estimates of v(t) can be
made if more variables are stored, but this adds to the inconvenience already implicit in
eqn (3.15), namely that v(t) can only be computed once r(t + δt) is known.
One implementation of the ‘classic’ Verlet algorithm is indicated in Code 3.3. It should

be clear that the ‘classic’ Verlet algorithm has identical stability properties to the velocity
form, and is very simple. Against it, we must say that the handling of velocities is rather
awkward and that the form of the algorithm may needlessly introduce some numerical
imprecision (Dahlquist and Björk, 1974). is arises because, in eqn (3.14), a small term
(O (δt2)) is added to a difference of large terms (O (δt0)), in order to generate the trajectory.
Another alternative is the so-called half-step ‘leapfrog’ scheme (Hockney, 1970; Po%er,

1972, Chapter 5). e origin of the name becomes apparent when we write the algorithm
down:

v(t + 12δt) = v(t − 12δt) + δta(t) (3.16a)

r(t + δt) = r(t) + δtv(t + 12δt). (3.16b)

 e stored quantities are the current positions r(t) and accelerations a(t) together with
the mid-step velocities v(t − 12δt). e velocity equation eqn (3.16a) is implemented first,

Finite-difference methods 103

Code 3.3 Classic Verlet algorithm

 e ‘classic’ Verlet algorithm evaluates accelerations from the current positions, then
uses these together with the old positions in the advancement step. e variable dt_sq
stores δt2 as usual. During this step, it is possible to calculate the current velocities.
We handle this using a temporary array r_new to store the new positions. en, a
shuffling operation takes place in the last two statements. At the end of the step, the
positions have been advanced, but the ‘current’ (now ‘old’) potential energy can be
combined with the kinetic energy, calculated from the ‘current’ velocities. Following
the particle move, we are ready to evaluate the forces at the start of the next step.

REAL , DIMENSION(3,n) :: r, r_old , r_new , a, v

! ... evaluate forces and hence a=f/m from r

r_new = 2.0 * r - r_old + dt_sq * a

v = (r_new - r_old) / (2.0 * dt)

r_old = r

r = r_new

and the velocities leap over the coordinates to give the next mid-step values v(t + 12δt).
During this step, the current velocities may be calculated

v(t) = 12

(

v(t + 12δt) + v(t −
1
2δt)
)

. (3.17)

 is is necessary so that the energy (H = V +K) at time t can be calculated, as well as
any other quantities that require positions and velocities at the same instant. Following
this, eqn (3.16b) is used to propel the positions once more ahead of the velocities. A$er
this, the new accelerations may be evaluated ready for the next step.
Elimination of the velocities from these equations shows that the method is alge-

braically equivalent to Verlet’s algorithm. In fact, eqn (3.16b) is identical to eqn (3.11b),
while eqn (3.16a) is obtained by combining (3.11a) with (3.11c) for the previous step.
Numerical benefits derive from the fact that at no stage do we take the difference of
two large quantities to obtain a small one; this minimizes loss of precision on a computer.
As is clear from eqn (3.17), the leapfrog method still does not handle the velocities in a
completely satisfactory manner, and velocity Verlet is generally preferable. A complete
molecular dynamics program for Lennard-Jones atoms, using the velocity Verlet method,
is given in Code 3.4.

3.2.2 Formal basis of Verlet algorithm

To an extent, there is no need to understand ‘where algorithms come from’, as long as they
work. Nonetheless, an understanding of the formal background to molecular dynamics
algorithms, and particularly the Verlet algorithm, has been extremely useful in terms
of knowing their limitations and how they may be extended to different situations. We
shall only scratch the surface: for more details the reader is referred to the books of
Leimkuhler and Reich (2004) and Tuckerman (2010). e following equations make use of
the Liouville operator, introduced in eqn (2.4), and its exponential exp(iLt) ≡ U (t), which

104 Molecular dynamics

Code 3.4 Molecular dynamics, NVE-ensemble, Lennard-Jones

 ese files are provided online. e program md_nve_lj.f90 controls the simulation,
reads in the run parameters, implements the velocity Verlet algorithm, and writes out
the results. It uses the routines in md_lj_module.f90 to evaluate the Lennard-Jones
forces, and various utility modules (see Appendix A) for input/output and simulation
averages. Code to set up an initial configuration is provided in initialize.f90.

! md_nve_lj.f90

! Molecular dynamics , NVE ensemble

PROGRAM md_nve_lj

! md_lj_module.f90

! Force routine for MD simulation , Lennard -Jones atoms

MODULE md_module

is o$en called the propagator : it has the effect of moving the system (i.e. the coordinates,
momenta, and all the dynamical variables that depend on them) forward through time.
In the Verlet algorithm we use an approximate form of the propagator, which arises

from spli!ing iL in two (Tuckerman et al., 1992):

iL = ṙ ·
∂

∂r
+ ṗ ·

∂

∂p
= v ·

∂

∂r
+ f ·

∂

∂p
≡ iL1 + iL2, (3.18)

where, as before, we abbreviate r, v for the complete set of positions, velocities, etc. It is
not hard to see that the ‘propagators’ corresponding to each of the separate parts will
only affect the corresponding coordinate

exp(iL1δt) r = r + vδt exp(iL1δt) p = p dri$, (3.19)

exp(iL2δt) r = r exp(iL2δt) p = p + fδt kick. (3.20)

 e first of these is termed the ‘dri$’ because it advances coordinates without changing
momenta, rather like dri$ing in free flight, with the forces switched off. e second is
called the ‘kick’ since it impulsively changes momenta without altering positions. It is
important to realize that each of these separate propagation steps has been derived from
a corresponding part of the Hamiltonian: the ‘dri$’ arises from the kinetic-energy part,
while the ‘kick’ comes from the potential-energy part.
Now, much like operators in quantum mechanics, iL1 and iL2 do not commute with

each other, and this means that the following relation

exp(iLδt) = exp[(iL1 + iL2)δt] ≈ exp(iL1δt) exp(iL2δt)

is only an approximation, not an exact relation. e error associated with the approxima-
tion is, however, ‘small’, that is, it becomes asymptotically exact in the limit δt → 0. A
slightly different approximation would result from combining the two partial propagators

Finite-difference methods 105

in the opposite order, and the following arrangement has the additional merit of being
exactly time-reversible:

exp(iLδt) ≈ exp(iL2δt/2) exp(iL1δt) exp(iL2δt/2). (3.21)

 e operators act in turn, reading from right to le$, upon the phase space variables r
and p, initially at time t , converting them into the new variables at t + δt . An a!ractive
feature of this formalism is that the three successive steps embodied in eqn (3.21), with
the operators defined by eqns (3.19) and (3.20), translate directly (Martyna et al., 1996)

into the velocity Verlet algorithm of eqn (3.11):

(a) ‘half-kick’, r constant, p(t) → p(t + 12δt) = p(t) + 12δt f (t);

(b) ‘dri$’, free flight with p constant, r(t) → r(t + δt) = r(t) + δt p(t + 12δt)/m;

(c) ‘half-kick’, r constant, p(t + 12δt) → p(t + δt) = p(t + 12δt) +
1
2δt f (t + δt).

 is particular spli!ing is quite simple; possible advantages of a higher-order decomposi-
tion have been discussed by Ishida et al. (1998).

A key consequence of the propagators when split in this way (the so-called symplectic
property) is that, although the trajectories are approximate and will not conserve the true
energyH , they do exactly conserve a ‘shadow Hamiltonian’H ‡ (Toxvaerd, 1994), where
H andH ‡ differ from each other by a small amount, vanishing as δt → 0. More precisely,
it may be shown that the difference H − H ‡ can be wri!en as a Taylor expansion in
δt , where the coefficients involve derivatives ofH with respect to the coordinates. e
consequence is that the systemwill remain on a hypersurface in phase spacewhich is ‘close’
to the true constant-energy hypersurface. Such a stability property is extremely useful
in molecular dynamics, since we wish to sample constant-energy states. It essentially
eliminates any long-term ‘dri$’ in the total energy.
We can illustrate this with the example of the simple one-dimensional harmonic

oscillator for which the trajectory generated by the velocity Verlet algorithm and the
corresponding shadow Hamiltonian may be wri!en down explicitly (Venneri and Hoover,

1987; Toxvaerd, 1994). For natural frequency ω, the exact equations of motion and con-
served Hamiltonian are

ṙ = p/m, ṗ = −mω2r , H (r ,p) = p2/2m + 12mω2r 2. (3.22)

 e shadow Hamiltonian depends on timestep through a quantity ζ = 1 − (ωδt/2)2 and
may be wri!en

H ‡ (r ,p) = p2/2m + 12mω2ζ r 2. (3.23)

It would be equally valid to divide the right-hand side by the factor ζ , in which case the
timestep dependence would be associated with the kinetic-energy term, or by

√

ζ , when it
would appear in both terms; for all these choices the difference is O ((ωδt)2). e present
choice allows us to compare trajectories which initially coincide at r = 0 and have the
same momentum and energy, and we do this in the (r ,p) ‘phase portraits’ of Fig. 3.3. e
true dynamics follows an elliptical trajectory defined byH = constant (in the figure this
is a circle). e equationH ‡

= constant also describes an ellipse, differing only slightly
(for small ωδt) from the true one. On this diagram, the ‘kicks’ are vertical line segments,
and the ‘dri$s’ are horizontal ones. At the end of each velocity Verlet step the discrete

106 Molecular dynamics

r

p

Fig. 3.3 Exact trajectory (circle) and velocity Verlet trajectory (straight line segments) for the

harmonic oscillator. e shadow-Hamiltonian conservation law is shown by a dashed ellipse. e

open and closed circles mark out phase points at the end of each timestep for the corresponding

trajectories. e starting point is marked with a double circle. e timestep is chosen such that

ωδt = π/3, so the exact trajectory returns to its starting point a$er six timesteps.

trajectory lands exactly on the constant-H ‡ ellipse, although the intermediate stages
lie off the ellipse. erefore, the long-time trajectory is very stable in this sense: it will
never leave the ellipse H ‡ ≈ H + O ((ωδt)2) = constant. However, it can also be seen
that the positions and coordinates at the end of each timestep are quickly losing their
phase, relative to the corresponding points on exact trajectory. Of course, the example
shown uses a very large timestep, to emphasize all these effects.

3.3 Molecular dynamics of rigid non-spherical bodies

Molecular systems are not rigid bodies in any sense: they consist of atoms interacting
via intra- and inter-molecular forces. In principle, we should not distinguish between
these forces, but as a practical definition we take the forces acting within molecules to be
at least an order of magnitude greater than those acting between molecules. If treated
classically, as in the earliest molecular simulations (Harp and Berne, 1968; 1970; Berne

and Harp, 1970), molecular bond vibrations would occur so rapidly that an extremely
short timestep would be required to solve the equations of motion. We return to this
approach in Section 3.5; however, we must bear in mind that the classical approach is
highly questionable for bond vibrations. A common solution to these problems is to
take the intramolecular bonds to be of fixed length. is is not an inconsequential step,
but seems reasonable if, as is commonly true at normal temperatures, the amplitude

