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Monte Carlo methods

4.1 Introduction

�e Monte Carlo method was first developed by von Neumann, Ulam, and Metropolis at
the end of the Second World War to study the diffusion of neutrons in fissionable material.
�e name ‘Monte Carlo’, coined by Metropolis in 1947 and used in the title of a paper
describing the early work at Los Alamos (Metropolis and Ulam, 1949), derives from the
extensive use of random numbers in the approach.

�e method is based on the idea that a determinate mathematical problem can be
treated by finding a probabilistic analogue which is then solved by a stochastic sampling
experiment (von Neumann and Ulam, 1945). For example, the configurational energy of
a liquid can be calculated by solving the coupled equations of motion of the atoms and
averaging over time. Alternatively, one can set up an ensemble of states of the liquid,
choosing individual states with the appropriate probability, and calculating the configura-
tional energy by averaging uniformly over the ensemble. �ese sampling experiments
involve the generation of random numbers followed by a limited number of arithmetic
and logical operations, which are o en the same at each step. �ese are tasks that are
well suited to a computer and the growth in the importance of the method can be linked
to the rapid development of these machines. �e arrival of the maniac computer at Los
Alamos in 1952 prompted the study of the many-body problem byMetropolis et al. (1953)

and the development of the Metropolis Monte Carlo method (Wood, 1986), which is the
subject of this chapter. Today, the Monte Carlo method is widely applied in all branches
of the natural and social sciences and is, arguably, ‘the most powerful and commonly
used technique for analysing complex problems’ (Rubinstein, 1981).

4.2 Monte Carlo integration

As outlined in Chapter 2, the Metropolis Monte Carlo method aims to generate a trajectory
in phase space which samples from a chosen statistical ensemble. �ere are several
difficulties involved in devising such a prescription and making it work for a system of
molecules in a liquid. So we take care to introduce the Monte Carlo method with a simple
example.

Consider the problem of finding the volume,V , of the solid bounded by the coordinate
axes, and the planes z = 1 + y and 2x + y = 2. �is is the volume below the dark-grey
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Fig. 4.1 �e solid volumeV , below the dark-grey triangle and above the light-grey triangle can be

evaluated from the integral in eqn (4.1).

triangle in Fig. 4.1. �e volume is exactly given by

V =

∫ 1

0

dx

∫ 2−2x

0

dy (1 + y ) =
5

3
. (4.1)

Here we consider two simple Monte Carlo methods to evaluate it numerically.

4.2.1 Hit and miss

In a Monte Carlo evaluation of the integral, the volume of interest,V , would be surrounded
by a sampling region of a simple geometry whose volume is known. In this case we choose
the rectangular box of volume V0 = 6 indicated by the dashed lines in Fig. 4.1. A random
position is chosen within the rectangular box rτ = (xτ ,yτ , zτ ); this is a shot, τ . If this shot
is within the required volume, V , it is a hit. If a total of τshot shots are fired and τhit hits
scored then

V =
V0 τhit

τshot
. (4.2)

�e key to this method is the generation of 3τshot random numbers from a uniform distri-
bution. A sample program to perform this integration is given in Code 4.1. RANDOM_SEED()
and RANDOM_NUMBER() are built-in Fortran functions for generating uniform random num-
bers on (0, 1). Random number generators are discussed briefly in Appendix E.

4.2.2 Sample mean integration

Hit-and-miss integration is conceptually easy to understand but the sample mean method
is more generally applicable and offers a more accurate estimate for most integrals
(Hammersley and Handscomb, 1964; Rubinstein, 1981). In this case the integral of interest

F =

∫ x2

x1

dx f (x ) (4.3)

is rewri#en as

F =

∫ x2

x1

dx

(

f (x )

ρ (x )

)

ρ (x ) (4.4)
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Code 4.1 Hit-and-miss integration

�is program is also available online in the file hit_and_miss.f90.

PROGRAM hit_and_miss

USE , INTRINSIC :: iso_fortran_env , ONLY : output_unit

IMPLICIT NONE

REAL :: v

REAL , DIMENSION (3) :: r, zeta

REAL , DIMENSION (3), PARAMETER :: r_0 = [1.0, 2.0, 3.0]

REAL , PARAMETER :: v_0 = PRODUCT(r_0)

INTEGER :: tau , tau_shot , tau_hit

CALL RANDOM_SEED ()

tau_hit = 0

tau_shot = 1000000

DO tau = 1, tau_shot

CALL RANDOM_NUMBER ( zeta (:) ) ! uniform in range (0,1)

r = zeta * r_0 ! uniform in v_0

IF ( r(2) < ( 2.0 - 2.0*r(1) ) .AND. &

& r(3) < ( 1.0 + r(2) ) ) THEN ! in polyhedron

tau_hit = tau_hit + 1

END IF

END DO

v = v_0 * REAL ( tau_hit ) / REAL ( tau_shot )

WRITE (UNIT=output_unit ,FMT='(a,f10.5)') 'Estimate␣=␣', v

END PROGRAM hit_and_miss

where ρ (x ) is an arbitrary probability density function. Consider performing a number of
trials τ , each consisting of choosing a random number ζτ , from the distribution ρ (x ) in
the range (x1, x2). �en

F =

〈

f (ζτ )

ρ (ζτ )

〉

trials

(4.5)

where the brackets represent an average over all trials. A simple application would be to
choose ρ (x ) to be uniform, that is,

ρ (x ) =
1

(x2 − x1)
x1 ≤ x ≤ x2 (4.6)

and then the integral F can be estimated as

F ≈
(x2 − x1)

τmax

τmax
∑

τ=1

f (ζτ ). (4.7)
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Code 4.2 Sample mean integration

�is program is also available online in the file sample_mean.f90.

PROGRAM sample_mean

IMPLICIT NONE

REAL :: v, f

REAL , DIMENSION (2) :: r, zeta

REAL , DIMENSION (2), PARAMETER :: r_0 = [1.0, 2.0]

REAL , PARAMETER :: a_0 = PRODUCT(r_0)

INTEGER :: tau , tau_max

CALL RANDOM_SEED ()

tau_max = 1000000

f = 0.0

DO tau = 1, tau_max

CALL RANDOM_NUMBER ( zeta ) ! uniform in (0,1)

r = zeta * r_0 ! uniform in xy rectangle

IF ( r(2) < 2.0 -2.0*r(1) ) THEN ! in xy triangle

f = f + ( 1.0 + r(2) ) ! value of z

END IF

END DO

v = a_0 * f / REAL ( tau_max )

WRITE (UNIT=output_unit ,FMT='(a,f10.5)') 'Estimate␣=␣', v

END PROGRAM sample_mean

�e method can be readily generalized to multiple integrals. A Monte Carlo sample mean
evaluation of the volume in Fig. 4.1 can be performed with the program in Code 4.2. In
this case, the integration is carried out by selecting points in a rectangle in the xy plane.
�e function f to be summed is zero if the points lie outside the light-grey triangle, and
equal to z = 1 + y inside. �e sample mean method can be used to calculate many of
the multiple integrals of liquid state theory, for example the long-range correction to the
three-body potential energy in eqn (2.149).

4.2.3 A direct evaluation of the partition function?

For the multidimensional integrals of statistical mechanics, the sample mean method, with
a suitable choice of ρ (x ), is the only sensible solution. To understand this, we consider
the evaluation of the configurational integral ZNVT =

∫
dr exp(−βV ), eqn (2.26), for a

system of, say, N = 100 molecules in a cube of side L. �e sample mean approach to this
integral, using a uniform distribution could involve the following trials:

(a) pick a point at random in the 300-dimensional configuration space, by generating
300 random numbers, on (− 1

2L,
1
2L), which, taken in triplets, specify the coordinates

of each molecule;
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(b) calculate the potential energy,V (τ ), and hence the Boltzmann factor for this config-
uration.

�is procedure is repeated for many trials and the configurational integral is estimated
using

ZNVT ≈
V N

τmax

τmax
∑

τ=1

exp
(

−βV (τ )
)

. (4.8)

In principle, the number of trials τmax may be increased until ZNVT is estimated to the
desired accuracy. Unfortunately, a large number of the trials would give a very small
contribution to the average. In such a random configuration, molecules would overlap,
V (τ )would be large and positive, and the Boltzmann factor vanishingly small. An accurate
estimation ofZNVT for a dense liquid using a uniform sample mean method is not possible,
although methods of this type have been used to examine the structural properties of the
hard-sphere fluid at low densities (Alder et al., 1955).�e difficulties in the calculation of
ZNVT apply equally to the calculation of ensemble averages such as

〈

A
〉

NVT
=

∫
drA exp

(

−βV
)

∫
dr exp

(

−βV
) ≈

∑τmax

τ=1 A (τ ) exp
(

−βV (τ )
)

∑τmax

τ=1 exp
(

−βV (τ )
) , (4.9)

if we a#empt to estimate the numerator and denominator separately by using the uniform
sample mean method. However, at realistic liquid densities the problem might be solved
using a sample mean integration where the random coordinates are chosen from a non-
uniform distribution. �is method of ‘importance sampling’ is discussed in the next
section.

4.3 Importance sampling

Importance sampling techniques choose random numbers from a distribution ρ (x ), which
allows the function evaluation to be concentrated in the regions of space that make
important contributions to the integral. Consider the canonical ensemble. In this case the
desired integral is

〈A〉 =

∫
dΓρNVT (Γ)A (Γ)

that is, the integrand is f = ρNVTA. By sampling configurations at random, from a
chosen distribution ρ (Γ) we can estimate the integral as

〈A〉NVT = 〈A ρNVT /ρ〉trials. (4.10)

For most functions A (Γ), the integrand will be significant where ρNVT (Γ) is significant.
In these cases choosing ρ (Γ) = ρNVT (Γ) should give a good estimate of the integral. In
this case

〈A〉NVT = 〈A〉trials. (4.11)

(�is is not always the best choice, and sometimes we choose alternative distributions
ρ (Γ); see Section 9.2.3.)

Such a method, with ρ (Γ) = ρNVT (Γ) was originally developed by Metropolis et al.

(1953).�e problem is not solved, simply rephrased. �e difficult job is finding a method
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of generating a sequence of random states so that by the end of the simulation each state
has occurred with the appropriate probability. It turns out that it is possible to do this
without ever calculating the normalizing factor for ρNVT , that is, the partition function
(see eqns (2.11)–(2.13)).

�e solution is to set up a Markov chain of states of the liquid, which is constructed
so that it has a limiting distribution of ρNVT (Γ). A Markov chain is a sequence of trials
that satisfies two conditions:

(a) �e outcome of each trial belongs to a finite set of outcomes, {Γ1, Γ2, . . .}, called the
state space.

(b) �e outcome of each trial depends only on the outcome of the trial that immediately
precedes it.

Two such states Γm and Γn are linked by a transition probability πmn which is the
probability of going from statem to state n. �e properties of a Markov chain are best
illustrated with a simple example. Suppose the reliability of your computer follows a
certain pa#ern. If it is up and running on one day it has a 60 % chance of running correctly
on the next. If however, it is down, it has a 70 % chance of also being down the next day.
�e state space has two components, up (↑) and down (↓), and the transition matrix has
the form

π =

(

↑ ↓

↑ 0.6 0.4
↓ 0.3 0.7

)

. (4.12)

If the computer is equally likely to be up or down to begin with, then the initial probability
can be represented as a vector, which has the dimensions of the state space

ρ
(1)
=

(

↑ ↓

0.5 0.5
)

. (4.13)

�e probability that the computer is up on the second day is given by the matrix equation

ρ
(2)
= ρ

(1)
π = (0.45, 0.55) (4.14)

that is, there is a 45 % chance of running a program. �e next day would give

ρ
(3)
= ρ

(2)
π = ρ

(1)
ππ = ρ

(1)
π
2
= (0.435, 0.565), (4.15)

and a 43.5 % chance of success. If you are anxious to calculate your chances of running a
program in the long run, then the limiting distribution is given by

ρ = lim
τ→∞

ρ
(1)
π

τ . (4.16)

A few applications of eqn (4.16) show that the result converges to ρ = (0.4286, 0.5714).
It is clear from eqn (4.16) that the limiting distribution, ρ, must satisfy the eigenvalue
equation

ρπ = ρ, or
∑

m

ρmπmn = ρn ∀n, (4.17)
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with eigenvalue unity. π is termed a stochastic matrix since its rows add to 1

∑

n

πmn = 1 ∀m. (4.18)

It is the transition matrix for an irreducible Markov chain. (An irreducible or ergodic
chain is one where every state can eventually be reached from another state.) More
formally, we note that the Perron–Frobenius theorem (Chung, 1960; Feller, 1957) states
that an irreducible stochastic matrix has one le eigenvalue which equals unity, and the
corresponding eigenvector is the limiting distribution of the chain. �e other eigenvalues
are less than unity and they govern the rate of convergence of the Markov chain. �e
limiting distribution, ρ, implied by the chain is quite independent of the initial condition
ρ
(1) (in the long run, it ma#ers nothing if your computer is down today). In the case

of a liquid, we must construct a much larger transition matrix, which is stochastic and
ergodic (see Chapter 2). In contrast to the previous problem, the elements of the transition
matrix are unknown, but the limiting distribution of the chain is the vector with elements
ρm = ρNVT (Γm ) for each point Γm in phase space. It is possible to determine elements
of π which satisfy eqns (4.17) and (4.18) and thereby generate a phase space trajectory
in the canonical ensemble. We have considerable freedom in finding an appropriate
transition matrix, with the crucial constraint that its elements can be specified without
knowing QNVT . A useful trick in searching for a solution of eqn (4.17) is to replace it by
the unnecessarily strong condition of ‘microscopic reversibility’:

ρmπmn = ρnπnm . (4.19)

Summing over all statesm and making use of eqn (4.18) we regain eqn (4.17)

∑

m

ρmπmn =

∑

m

ρnπnm = ρn

∑

m

πnm = ρn . (4.20)

A suitable scheme for constructing a phase space trajectory in the canonical ensemble
involves choosing a transition matrix which satisfies eqns (4.18) and (4.19) . �e first such
scheme was suggested byMetropolis et al. (1953) and is o en known as the asymmetrical
solution. If the statesm and n are distinct, this solution considers two cases

πmn = αmn ρn ≥ ρm m , n (4.21a)

πmn = αmn (ρn/ρm ) ρn < ρm m , n. (4.21b)

It is also important to allow for the possibility that the liquid remains in the same state,

πmm = 1 −
∑

n,m

πmn . (4.21c)

In this solution α is a symmetrical stochastic matrix, αmn = αnm , o en called the
underlying matrix of the Markov chain. �e symmetric properties of α can be used
to show that for the three cases (ρm = ρn , ρm < ρn , and ρm > ρn) the transition ma-
trix defined in eqn (4.21) satisfies eqns (4.18) and (4.19). It is worth stressing that it is
the symmetric property of α that is essential in satisfying microscopic reversibility in
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this case. Non-symmetrical α matrices which satisfy microscopic reversibility or just
the weaker condition, eqn (4.17), can be constructed but these are not part of the basic
Metropolis recipe (Owicki and Scheraga, 1977b).�ese cases are considered in more detail
in Chapter 9. �is Metropolis solution only involves the ratio ρn/ρm and is therefore
independent of QNVT which is not required to perform the simulations.

�ere are other solutions to eqns (4.18) and (4.19). �e symmetrical solution (Wood

and Jacobson, 1959; Flinn and McManus, 1961; Barker, 1965) is o en referred to as Barker
sampling:

πmn = αmn ρn/(ρn + ρm ) m , n (4.22a)

πmm = 1 −
∑

n,m

πmn . (4.22b)

Equation (4.22) also satisfies the condition of microscopic reversibility.
If states of the fluid are generated using transition matrices such as eqns (4.21) and

(4.22), then a particular property, 〈A〉run, obtained by averaging over the τrun trials in the
Markov chain, is related to the average in the canonical ensemble (Chung, 1960; Wood,

1968b)

〈A〉NVT = 〈A〉run + O
(

τ−1/2run

)

. (4.23)

As mentioned in Chapter 2, we usually restrict simulations to the configurational part of
phase space, calculate average configurational properties of the fluid, and add the ideal
gas parts a er the simulation.

Since there are a number of suitable transition matrices, it is useful to choose a
particular solution which minimizes the variance in the estimate of 〈A〉run. Suitable
prescriptions for defining the variance in the mean, σ 2 (〈A〉run) are discussed in Chapter 8.
In particular, the statistical inefficiency (Section 8.4.1)

s = lim
τrun→∞

τrunσ
2 (〈A〉run)/σ

2 (A) (4.24)

measures how slowly a run converges to its limiting value. Peskun (1973) has shown that
it is reasonable to order two transition matrices,

π1 ≤ π2 (4.25)

if each off-diagonal element of π1 is less than the corresponding element in π2. If this is
the case, then

s (〈A〉 , π1) ≥ s (〈A〉 , π2) (4.26)

for any property A. If the off-diagonal elements of π are large then the probability of
remaining in the same state is small and the sampling of phase space will be improved.
With the restriction that ρm and ρn are positive, eqns (4.21) and (4.22) show that the
Metropolis solution leads to a lower statistical inefficiency of the mean than the Barker
solution.

Valleau andWhi&ington (1977b) stress that a low statistical inefficiency is not the only
criterion for choosing a particularπ . Since the simulations are of finite length, it is essential
that the Markov chain samples a representative portion of phase space in a reasonable
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R

δrmax

i

Fig. 4.2 State n is obtained from statem by moving atom i with a uniform probability to any point

in the shaded region R.

number of moves. All the results derived in this section depend on the ergodicity of the
chain (i.e. that there is some non-zero multi-step transition probability of moving between
any two allowed states of the fluid). If these allowed states are not connected, the mc
run may produce a low s but in addition a poor estimate of the canonical average. When
the path between two allowed regions of phase space is difficult to find, the situation is
described as a bo#leneck. �ese bo#lenecks are always a worry in mc simulations but
are particularly troublesome in the simulation of two-phase coexistence (Lee et al., 1974),
in the simulation of phase transitions (Evans et al., 1984), and in simulations of ordinary
liquids at unusually high density.

Where a comparison has been made between the two common solutions to the
transition matrix, eqns (4.21) and (4.22), the Metropolis solution appears to lead to a
faster convergence of the chain (Valleau andWhi&ington, 1977b).�eMetropolis method
becomes more favourable as the number of available states at a given step increases and
as the energy difference between the states increases. (For two-state problems such as
the Ising model the symmetric algorithm may be favourable (Cunningham and Meijer,

1976).) In the next section we describe the implementation of the asymmetric solution.

4.4  e Metropolis method

To implement the Metropolis solution to the transition matrix, it is necessary to specify
the underlying stochastic matrix α . �is matrix is designed to take the system from state
m into any one of its neighbouring states n. In this chapter, we normally consider the use
of a symmetric underlying matrix, that is, αmn = αnm . A useful but arbitrary definition of
a neighbouring state is illustrated in Fig. 4.2. �is diagram shows six atoms in a statem;
to construct a neighbouring state n, one atom (i) is chosen at random and displaced from
its position r

m
i with equal probability to any point rni inside the square R. �is square is

of side 2δrmax and is centred at r
m
i . In a three-dimensional example, R would be a small

cube. On the computer there is a large but finite number of new positions, NR , for the
atom i and in this case αmn can be simply defined as

αmn =





1/NR r
n
i ∈ R

0 r
n
i < R .

(4.27)
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Fig. 4.3 (a) State n is generated from statem by displacing atom i from r
m
i
to rn

i
(dashed circle).

(b) �e reverse move. To ensure microscopic reversibility, in the simple Metropolis method the

probabilities of a#empting the forward and reverse moves should be equal, αmn = αnm .

With this choice of α , eqn (4.21) is readily implemented. At the beginning of an mc move
an atom is picked at random and given a uniform random displacement along each of the
coordinate directions. �e maximum displacement, δrmax is an adjustable parameter that
governs the size of the region and controls the convergence of the Markov chain. �e
new position is obtained with the following code; dr_max is the maximum displacement
δrmax, and the simulation box has unit length.

REAL , DIMENSION(3,n) :: r

REAL , DIMENSION (3) :: ri, zeta

CALL RANDOM_NUMBER ( zeta ) ! uniform in range (0,1)

zeta = 2.0* zeta - 1.0 ! now in range (-1,+1)

ri(:) = r(:,i) + zeta * dr_max ! trial move to new position

ri(:) = ri(:) - ANINT ( ri(:) ) ! periodic boundaries

�e appropriate element of the transition matrix depends on the relative probabilities
of the initial statem and the final state n. �ere are two cases to consider. If δVnm =

Vn − Vm ≤ 0 then ρn ≥ ρm and eqn (4.21a) applies. If δVnm > 0 then ρn < ρm and
eqn (4.21b) applies. (�e symbolVm is used as a shorthand forV (Γm ).) �e next step in an
mc move is to determine δVnm . �e determination of δVnm does not require a complete
recalculation of the configurational energy of statem, just the changes associated with
the moving atom. For example (see Fig. 4.3), the change in potential energy is calculated
by computing the energy of atom i with all the other atoms before and a er the move

δVnm =

( N
∑

j=1

v(rni j ) −

N
∑

j=1

v(rmij )

)

(4.28)

where the sum over the atoms excludes atom i . In calculating the change of energy,
the explicit interaction of atom i with all its neighbours out to a cutoff distance rc is
considered. �e contribution from atoms beyond the cutoff could be estimated using a
mean field correction (see Section 2.8), but in fact the correction for atom i in the old
and new positions is exactly the same in a homogeneous fluid, and does not need to be
included explicitly in the calculation of δVnm .
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0 δVnm δV

1

exp(−βδV )

ζ1accept

ζ2reject

Fig. 4.4 Accepting uphill moves in the mc simulation

If the move is downhill in energy δVnm ≤ 0, then the probability of state n is greater
than statem and the new configuration is accepted. �e method of choosing trial moves
ensures that the transition probability πmn = αnm , the value required by eqn (4.21a).

If the move is uphill in energy δVnm > 0, then the move is accepted with a probability
ρn/ρm according to eqn (4.21b). Again the factor αmn is automatically included in making
the move. �is ratio can be readily expressed as the Boltzmann factor of the energy
difference:

ρn

ρm
=

Z−1
NVT

exp
(

−βVn

)

Z−1
NVT

exp
(

−βVm

) =

exp
(

−βVn

)

exp
(

−βδVnm

)

exp
(

−βVn

) = exp
(

−βδVnm

)

. (4.29)

To accept a move with a probability of exp(−βδVnm ), a random number ζ is generated
uniformly on (0, 1). �e random number is compared with exp(−βδVnm ). If it is less than
exp(−βδVnm ) the move is accepted. �is procedure is illustrated in Fig. 4.4. During the
run, suppose that a particular uphill move, δVnm is a#empted. If at that point a random
number ζ1 is chosen (see Fig. 4.4), the move is accepted. If ζ2 is chosen the move is rejected.
Over the course of the run the net result is that energy changes such as δVnm are accepted
with a probability exp(−βδVnm ). If the uphill move is rejected, the system remains in
statem in accord with the finite probability πmm of eqn (4.21c). In this case, the atom
is retained at its old position and the old configuration is recounted as a new state in
the chain. �is procedure can be summarized by noting that we accept any move (uphill
or downhill) with probability min[1, exp(−βδVnm )], where the min function returns a
value equal to the minimum of its arguments (as does the Fortran function with the same
name).

A complete mc program for a fluid of Lennard-Jones atoms is given in Code 4.3. Here,
we show the typical code for the heart of the program, the acceptance and rejection of
moves. In this code, pot_old and pot_new are the potential energies of atom i summed
over all its neighbours j, as in eqn (4.28). We also expect that, in calculating pot_new,
a logical flag overlap is set if a significant molecular overlap is detected, that is, an
interaction with a very high potential energy, which may be regarded as infinite for
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Code 4.3 Monte Carlo NVT -ensemble for Lennard-Jones atoms

�ese files are provided online. �e program mc_nvt_lj.f90 controls the simula-
tion, reads in the run parameters, selects moves, and writes out the results. It uses
the routines in mc_lj_module.f90 to evaluate the Lennard-Jones potential, and actu-
ally implement the moves, and utility modules (see Appendix A) for the Metropolis
function, input/output and simulation averages.

! mc_nvt_lj.f90

! Monte Carlo , NVT ensemble

PROGRAM mc_nvt_lj

! mc_lj_module.f90

! Energy and move routines for MC simulation , LJ potential

MODULE mc_module

practical purposes. We use this to guard against a trial move with a very large value of
δVnm which might cause underflow problems in the computation of exp(−βδVnm ). �e
threshold should be high enough to guarantee that exp(−βδVnm ) is negligibly small at
the chosen temperature; an advantage of including this in the energy calculation is that
the program can immediately save time by se#ing the flag and leaping out of the energy
loop.

IF ( .NOT. overlap ) THEN ! consider non -overlap only

delta = ( pot_new - pot_old ) / temperature

IF ( metropolis ( delta ) ) THEN ! accept metropolis

pot = pot + pot_new - pot_old ! update potential

r(:,i) = ri(:) ! update position

moves = moves + 1 ! update move counter

END IF ! reject metropolis test

END IF ! reject overlap without calculation

Here pot holds the total potential energy of the system,V , which changes by δVnm if
the move is accepted. �e metropolis function simply returns a .TRUE. or .FALSE. result,
using code like

REAL :: zeta

IF ( delta < 0.0 ) THEN ! downhill , accept

metropolis = .TRUE.

ELSE

CALL RANDOM_NUMBER ( zeta ) ! uniform in range (0,1)

metropolis = EXP(-delta) > zeta ! metropolis test

END IF

In the function referred to by the program of Code 4.3 and other online programs, we
include a further guard against underflow.
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So far we have said li#le about the maximum allowed displacement of the atom,
δrmax, which governs the size of the trial move. If this parameter is too small then a large
fraction of moves are accepted but the phase space of the liquid is explored slowly, that
is, consecutive states are highly correlated. If δrmax is too large then nearly all the trial
moves are rejected and again there is li#le movement through phase space. In fact δrmax
is o en adjusted during the simulation so that about half the trial moves are rejected.
�is adjustment can be handled automatically using code similar to the following, at
predefined intervals, for example, at the end of every sweep, assuming that move_ratio
is the ratio of accepted to a#empted moves during the sweep.

IF ( move_ratio > 0.55 ) THEN

dr_max = dr_max * 1.05

ELSE IF ( move_ratio < 0.45 ) THEN

dr_max = dr_max * 0.95

END IF

It is not clear that an acceptance ratio of 0.5 is optimum. A reported study of the parameter
δrmax (Wood and Jacobson, 1959) suggests that an acceptance ratio of only 0.1 maximizes
the root-mean-square displacement of atoms as a function of computer time. �e root-
mean-square displacement is one possible measure of the movement through phase space
and the work suggests that a small number of large moves is most cost-effective. Few
simulators would have the courage to reject nine out of ten moves on this limited evidence
and an acceptance ratio of 0.5 is still common.�is issue highlights a difficulty in assessing
particular simulation methods. �e work of Wood and Jacobson was performed on 32
hard spheres, at a particular packing fraction, on a first-generation computer. �ere is
no reason to believe that their results would be the same for a different potential, at a
different state point, on a different machine. �e mc technique is time-consuming and
since most researchers are more interested in new results rather than methodology there
has been li#le work on the optimization of parameters such as δrmax and the choice of
transition matrix.

In the original Metropolis method one randomly chosen atom is moved to generate a
new state. �e underlying stochastic matrix can be changed so that several or all of the
atoms are moved simultaneously (Ree, 1970; Ceperley et al., 1977). δVnm is calculated
using a straightforward extension of eqn (4.28) and the move is accepted or rejected
using the normal criteria. Chapman and 'irke (1985) have performed a simulation of
32 Lennard-Jones atoms at a typical liquid density and temperature. In this study, all 32
atoms were moved simultaneously, and an acceptance ratio of ≈ 30 % was obtained using
δrmax ≈ 0.3σ . Chapman and'irke found that equilibration (see Chapter 5) was achieved
more rapidly by employing multi-particle moves rather than single-particle moves. �e
relative efficiency of multi-particle and single-particle moves, as measured by their ability
to sample phase space in a given amount of computer time, has not been subjected to
systematic study.

A common practice in mc simulation is to select the atoms to move sequentially
(i.e. in order of atom index) rather than randomly. �is cuts down on the amount of
random number generation and is an equally valid method of generating the correctly
weighted states (Hastings, 1970).�e length of an mc simulation is conveniently measured
in ‘cycles’; that is, N trial moves whether selected sequentially or randomly. �e computer
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Code 4.4 Monte Carlo of hard spheres

�ese files are provided online. �e program mc_nvt_hs.f90 controls the simulation,
reads in the run parameters, selects moves, and writes out the results. It uses the
overlap routines in mc_hs_module.f90, and utility module routines (see Appendix A)
for input/output and simulation averages.

! mc_nvt_hs.f90

! Monte Carlo , NVT ensemble , hard spheres

PROGRAM mc_nvt_hs

! mc_hs_module.f90

! Overlap routines for MC simulation , hard spheres

MODULE mc_module

time involved in an mc cycle is comparable (although obviously not equivalent) to that in
an md timestep.

�e simulation of hard spheres is particularly easy using the mc method. �e same
Metropolis procedure is used, except that, in this case, the overlap of two spheres results
in an infinite positive energy change and exp(−βδVnm ) = 0. All trial moves involving an
overlap are immediately rejected since exp(−βδVnm ) would be smaller than any random
number generated on (0, 1). Equally, all moves that do not involve overlap are immediately
accepted. As before in the case of a rejection, the old configuration is recounted in the
average. As discussed in Section 2.4, one minor complication is that the pressure must be
calculated by a box-scaling (or related) method. An example program is given in Code 4.4.

�e importance sampling technique, as described, only generates states that make a
substantial contribution to ensemble averages such as the energy. In practice we cannot
sum over all the possible states of the fluid and so cannot calculate ZNVT . Consequently,
this is not a direct route to the ‘statistical’ properties of the fluid such as A, S , and µ.
In the canonical ensemble there are a number of ways around this problem, such as
thermodynamic integration and the particle insertion methods (see Section 2.4). It is
also possible to estimate the free energy difference between the simulated state and
a neighbouring state point, and a modification of the sampled distribution, so-called
umbrella sampling or non-Boltzmann sampling can make this more efficient. A process
of iterative refinement may allow the simulation to sample a greatly extended range of
energies, and hence estimate the entropy. We return to these approaches in Chapter 9.
Alternatively the problem can be tackled at root by conducting simulations in the grand
canonical ensemble (Section 4.6), but as we shall see, this approach may have limited
application to dense liquids.

4.5 Isothermal–isobaric Monte Carlo

An advantage of the mc method is that it can be readily adapted to the calculation of
averages in any ensemble.Wood (1968a,b; 1970) first showed that the method could be
extended to the isothermal–isobaric ensemble.�is ensemblewas introduced in Section 2.2,


