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➢ Paramagnetic nuclear magnetic resonance spectroscopy refers to nuclear magnetic resonance (NMR)

spectroscopy of paramagnetic compounds.

➢ Although most NMR measurements are conducted on diamagnetic compounds, paramagnetic samples are

also amenable to analysis and give rise to special effects indicated by a wide chemical shift range and

broadened signals.

➢ Paramagnetism diminishes the resolution of an NMR spectrum to the extent that coupling is rarely resolved.

➢ Nonetheless spectra of paramagnetic compounds provide insight into the bonding and structure of the

sample.

➢ For example, the broadening of signals is compensated in part by the wide chemical shift range (often 200

ppm). Since paramagnetism leads to shorter relaxation times (T1), the rate of spectral acquisition can be

high.

Paramagnetic NMR



➢ Was initially ignored because people thought the signals would be so broad as to be useless.

“They” were wrong

➢ Sometimes we do see Broader lines. But the range of δ increases hugely.

➢ Broadening from fast Spin-Lattice Relaxation (T1N).

➢ If lines are too broad, will often give useful EPR.

➢ If e- relaxation times are fast enough, T1N is unaffected.

➢ Many paramagnetic compounds have paramagnetic 1H NMR & EPR.

Paramagnetic 1H NMR



Paramagnetic 1H NMR

The presence of a paramagnetic metal ion causes line broadening

of all NMR signals from nuclei close to the metal ion: too close, too

broad to be seen!

The radius of the "blind" sphere depends on the metal ion.

The size of the blind sphere changes with the nuclear type, being

smaller for 13C than for 1H.

The effect decreases rapidly with increasing distances from metal

ion, so that it is negligible outside of an outer "paramagnetic

effects" sphere.



Applications:

➢Electronic Structure & Spin Distribution

➢Stereochem and Structure

➢Equilibrium Dynamics & Solvation

➢Lanthanide Shift Reagents

➢Bioinorganic Applications

➢Contrast agents for MRI

Where is Paramagnetic NMR Useful?

❖ Inorganic – any metal that has unpaired e- will cause chemical shift range to be extremely large

❖ Proteins – many proteins contain paramagnetic ions (often Fe+3) in their active site. But one can

also substitute paramagnetics (e.g., Co+2 for Zn+2) into the protein to spread out the chemical shifts

near the active site



Isotropic Shift

The difference between the chemical shift of a given nucleus in a diamagnetic vs paramagnetic

environments is called the isotropic shift.

The isotropic shift contains contributions from the pseudocontact (called dipolar) and contact (also

called scalar) terms.

Components of Paramagnetic Shifts

➢ Scalar/Contact

➢ Dipolar/Pseudocontact

This division is really an artifact of viewing molecules through LCAO-MOT:

Both Shifts are due to the same coupling phenomenon of electron mag moment coupling to nuclear

mag moment.



Contact vs pseudocontact shifts

Isotropic shifts result from two mechanisms, contact shifts and pseudocontact shifts. Both effects operate

simultaneously but one or the other term can be dominant. Contact shifts result from spin polarization conveyed

through the molecular orbitals of the molecule. Pseudocontact shifts result from the magnetic field emanating from

the paramagnetic center. Pseudocontact shifts follow an 1/r3 dependence and tend to be smaller, often within the

normal 1-10 ppm range for 1H NMR. NMR shift reagents such as EuFOD exploit this effect.

The effect of the contact term arises from transfer of spin polarization to the observed nucleus. Spin polarization is

a consequence of the very strong electron-nuclear (NMR detected) interaction. This coupling, also known by EPR

spectroscopists as hyperfine coupling, is on the order of MHz, vs the usual internuclear (J) coupling observed in

conventional NMR spectra, which are on the order of a few Hz. This difference reflects the large magnetic

moment of an electron (−1.00 μB), which is much greater than any nuclear magnetic moment (e.g. for 1H:

1.52×10−3 μB). Owing to rapid spin relaxation, the electron-nuclear coupling is not observed in the NMR spectrum,

so the affected nuclear resonance appears at the average of the two coupled energy states, weighted according to

their spin populations. Given the magnitude of the coupling, the Boltzmann population of these spin state are not

close to 1:1, leading to net spin polarization on the affected NMR nucleus, hence a relatively large contact shifts.

The effect of the pseudocontact term arises magnetic anisotropy of the paramagnetic center (reflected in g-

anisotropy in the EPR spectrum). This anisotropy creates a magnetic field which supplements that of the

instrument's magnet. The magnetic field exerts its effect with both angular and a 1/r3 geometric dependences.



Contact Shift – Consider the Electron and Nucleus as simply a coupled doublet,

But with a J ~ 1 x106 Hz !

Not an equal coupling, so intensities are not equal, and the weighted mean position is not at

midpoint. Under fast relaxation, doublet collapses into a singlet far away from the original

nuclear chemical shift.

Dipolar Shift – through space interaction between electron & nucleus, also called pseudo-

contact shift, often small in magnitude.

Components of Paramagnetic Shift



NMR of Paramagnetic Complexes – Contact Shifts

As mentioned earlier, the NMR spectrum of many paramagnetic compounds cannot be obtained because the

unpaired electron broadens the spectrum by both dipolar and electron spin-nuclear spin coupling mechanisms.

Since the magnetic moment of an electron is ~ 103 times larger than the nuclear magnetic moment, tumbling of

paramagnetic ions produces large magnetic fields which are very effective in causing dipolar spin-lattice

relaxation i.e., T1 is decreased.

If the wave function for the unpaired electron has a finite value at the nucleus, electron spin-nuclear spin coupling

occurs. This can also give rise to a fluctuating magnetic field at the nucleus, which shortens T1.

If the electron relaxation is very slow, the lifetime of an ion is a given spin state will be long, and two resonances,

corresponding to S = ± ½, will be observed. This case if not very common.

When the paramagnetic state has a very short lifetime, the magnetic nucleus sense only the time-averaged

magnetic field of the two spin states of the electron and a single peak is observed.

Often electron spin relaxation is of such a rate as to be intermediate between these two extremes, in effect

shortening T2 and causing severe broadening.

When electron relaxation is very rapid, broadening is minimized, and the major effect on the spectrum from the

presence of unpaired electrons is to change the magnetic field experienced by the magnetic nucleus. This causes

a very large chemical shift (sometimes 3000 to 5000 cps) of the resonance in the NMR spectrum. This shift is

referred to as a contact NMR shift.



The following relationship can be derived between the contact shift and the electron spin-nuclear spin coupling

constant, AN

This equation (2) is for specific case of proton magnetic resonance

Where, γe = magnetogyric ratio for the electron

γN = magnetogyric ratio for the magnetic nucleus

I = nuclear spin

S = electron spin multiplicity

ΔH = Hcomplex – Hligand

Δν = νcomplex – vligand

Β = Bohr magneton

g = ratio of magnetic moment to the total angular momentum of the electron

…(1)

…(2)

Since the contact shift is to lower fields when AN is positive and to higher fields when AN is negative, the sign of the

electron spin-nuclear spin coupling constant can be obtained from NMR. Often all terms in equation (2) can be

evaluated for a complex ion, so AN can be calculated from the measured contact shift.



The conditions requisite to observing a contact shift in NMR are that either of the following inequalities can be

satisfied:

Where, ᴛS is the electronic relaxation time

ᴛe is the chemical exchange time

AS is the contact interaction constant (electron spin-nuclear spin coupling constant)

Fortunately, most of the paramagnetic metal ions of the first transition series have sufficiently short electron spin

lifetimes or sufficiently fast ligand exchange rates to allow NMR studies to be made on their complexes.

Much information can be obtained from the electron spin-nuclear spin coupling constants (AN), often called the

contact interaction constant. The magnitude of this quality Is related to the unpaired spin densities in π orbitals of

sp2 carbons by equation

Where ρN is the spin density at carbon, Q is the proportionality constant (-22.5 gauss for an aromatic C-H fragment

and +27 gauss for C-CH3 fragment).



➢ Spin Density (ρN) is defined as that fraction of an unpaired electron which appears to be localized

at site N.

➢ Spin densities may be either positive or negative.

➢ A negative sign density results when the electron spin at the site N is antiparallel to the net spin of

the paramagnetic species as whole and the opposite is true for positive spin density.

➢ Negative spin density is a concept foreign to Huckel molecular orbital theory.

➢ Molecular orbit theory must be modified by addition of π-π exchange interaction in order to account

for negative spin densities.

➢ Exchange interaction is the unpairing of electron spins so as to reduce the energy of the system

through exchange interaction of electrons having the same spin.

Spin Density



Demonstration of the affects of exchange interaction on the spin densities of conjugated radicals

Allyl Free Radical

The combination of Carbon Atomic Orbitals ψ1, ψ2, ψ3. Constituting the 

Molecular Orbitals of Allene. The subscripts on carbon in the structural 

formula correspond to atomic orbitals ψ1, ψ2 and  ψ3.

The odd electron in ψ* gives rise to positive sign (α) densities at carbon 1 and 3. Exchange interactions between

the odd electron in ψ* of spin α and the paired electron ψ of spin α enhances the positive spin density at C1 and C3

and leaves a net spin β (negative spin density) at C2. Valence bind theory accommodates negative spin densities

quite naturally. The valence bond wave function for the allyl radical (CH2=CH-CH2

.
↔

.
CH2-CH=CH2) predicts the

same electron spin at atoms 1 and 3 and antiparallel spin at position 2 because of exchange interactions. A simple

rule for predicting the signs of spin densities comes from valence bond theory. All positions at which a major

contributing resonance form places the unpaired electron have positive spin density. Any position where no

important resonance form places the odd electron has negative spin density. For example, the allyl radical has

positive spin density at positions 1 and 3 and negative spin density at position 2.



In paramagnetic complexes the effects of unpaired electrons in the metal ion

are transferred to the ligand through the formation of covalent bonds. Charge

transfer mechanisms offer a convenient way to look at the transfer of the

effects of unpaired electrons from the metal to the ligand. For the purpose of

predicting how the unpaired electron density on the ligand will distribute itself,

the ligand can be treated as a free radical.



Nickel (II) aminotroponeimineate

Figure: The structure of Nickel (II)

aminotroponeimineate (a) including Resonance

Forms (b) and (c) which place odd electron

density on the ligand

In valence bond structures (b) and (c) in figure, an electron is added to the d orbital of nickel and the odd

electron on the ligand is delocalized on the ring in the α and γ positions. There is another structure similar to

(b) which places the odd electron on the other α position but this is not indicated. This complex is tetrahedral

and the valence bond structures (b) and (c) out two electrons in the particular nickel orbital which contributes

to the π system of the overall molecule (dxz, dxy or dyz), In effect, the nickel is reduced in these resonance

forms. The spin magnetic moment of the electron on nickel in the ground state is aligned with the field.

Because the d orbitals of Ni2+ are more than half filled, the electron transferred from the ligand into the d

orbitals must pair up with the d electrons (which are aligned with the field) and so must have opposite spin. As

a result, the odd electron remaining on the ligand will have its spin moment aligned with the field. Valence

bond structures place the unpaired electron at the α and γ positions of the seven membered ring.



No structure placing the odd electrons at the β position can be written without recourse to long bonds. The ligand

as a whole has spin parallel to the nickel ion. Positive sign densities are thus predicted for the α and γ electrons

and a negative spin density is expected for the β carbon. Since the spin density at the proton is antiparallel to

that on the carbon, the α and γ protons are expected to be shielded while the β protons should be deshielded.

These considerations lead to the NMR assignment in figure. Confirmation of these assignments has been made

by other independent means.

Proton Magnetic Resonance Spectra of Ni2+ N,N’ diethyl 

aminotroponeimineate 



Substitution of phenyl for ethyl on the nitrogens of the previous compound

extends the π system over which the unpaired spin is distributed. As expected

from simple valence bond considerations (figure), positive spin densities occur at

the ortho and para positions of the phenyl ring and a negative spin density is

found at the meta position.

Valence Bond Structure for the Phenyl group in the Phenyl 

substituted Aminoytoponeimineate Complex



Valence bind calculations of spin densities have been useful for predicting spin

densities at atoms not readily observable in the NMR. The calculations are made

assuming the ligand to be a free radical. The values obtained are then scaled

down to correspond to the transfer of that fraction of an electron which best

agrees with the observes spin densities,

Results presented for the N, N’-dimethylaminoytoponeimineate system, assuming

transfer of 0.10 electrons in the complex, are in extremely good agreement with

spin densities experimentally determined from the contact shift.

Calculated and experimental spin densities

(a) Spin densities calculated for transfer of

0.10 electrons. (b) Experimental spin

densities



➢ Contact interactions have been observed in a large number of systems. By virtue of the fact that

the sign of the spin density can be determined, one can obtain information regarding the

mechanism of electron delocalization onto the ligand.

➢ For example, in some octahedral Ni2+ complexes of benzonitrile, it was shown that the principal

mechanism involved back bonding from the metal with the ligand π system. In the case of the

octahedral complex of nickel (II) with CH3CON(CH3)2, the principal mechanism involved charge

transfer in the nickel-oxygen σ bond, Also, by comparing the magnitude of the contact shift for a

series of different transition metal ions with the same ligand, the amount of charge transfer (i.e.,

covalence) in the metal-ligand bond can be estimated.

➢ The O17 NMR spectra or aqueous solution of rare earth perchlorates have been reported. The

observed magnitude and variation of the O17 contact shifts with the number of 4f electrons was

interpreted as evidence for very weak covalent boding of O17 2s and 2p orbitals with the rare

earth 6s orbitals, The 4f, 5d and 6p orbitals play at most a minor role in the bonding.

➢ It is apparent that NMR spin density determinations provide a promising new approach to the

study of conjugation in molecules containing extended π electron systems. The ability of NH, O.

S and SO2 groups in transfer electronic effects has been studied directly using this technique.

The importance of double bonding between fluorine and π systems has also been assessed.



Structural Uses of Paramagnetic NMR

Paramagnetic NMR Constraints 

Nuclear relaxation provides metal-nucleus distances.

Pseudocontact shifts provide the angular coordinates of the metal ion and new structural constraints.

Contact shifts may provide dihedral angle constraints.

Diamagnetic Reference

Paramagnetic effects are measured as differences in NMR spectra recorded from the target molecule in

the paramagnetic and diamagnetic states.

Data measured with a paramagnetic ion must be compared with corresponding data obtained with a

chemically similar but diamagnetic metal ion.



Lanthanide Shift Reagents (S.R.)

➢ S.R.s are paramagnetic Lewis Acids that bind to functional groups of organics w/ complex

NMR.

➢ Subsequent paramagnetic shift reduces complexity and increases ease of assignments.

➢ Amount of shift can be used (under certain conditions) to calculate structures of the organic

as bound to the S.R.

➢ Less useful these days with large field NMRs and multi-dimensional NMR.

➢ But S.R. became reborn as MRI contrast agents due to increased relaxation rates of

interacting waters!



MRI Contrast Reagents

➢ Chemical agents influencing the contrast behavior of magnetic resonance images and

spectra. Commonly used agents include paramagnetic and superparamagnetic media.

➢ Contrary to x-ray contrast agents which are directly visible, magnetic resonance imaging

contrast agents influence the behavior of the surrounding tissue; thus they are indirect

contrast agents

➢ Traditional shift and contrast agents are largely based on high relaxivity Gd(III) complexes.

(1) Fe(III) is substantially less toxic than Gd(III) and therefore holds promise for eventual in

vivo applications.

(2) The high relaxivity of Gd(III) complexes arises fundamentally from fast ligand exchange

rates but comparatively weak f orbital based binding.



Reference PDFs for Detailed Study



NMR Spectroscopy of Paramagnetic Complexes 

By Karl E. Schwarzhans~*1 

Serviceable N M R  spectra can, with a few exceptions [1,61, be recorded for paramagnetic 
complexes in solution. These spectra provide information about the structure of the 
complexes and the disrribution of the unpaired electrons, and hence also about reactive 
centers in the molecule. The elucidation of intermolecular and intramolecular exchange 
phenomena, e.g. the determination of Iigand exchange rate constants, the determination 
of rotation barriers, and the detection of contact complexes in solution, or even of 
occupation equilibria of the electrons, is possible in this way. It can be seen, therefore, 
that N M R  studies on paramagnetic complexes can be a rich source of’ information. 

1. Introduction 

The investigation of paramagnetic compounds with 
the aid of nuclear magnetic resonance was ignored 
during the first decade of the application of this 
spectroscopic method to chemical problems. It is 
now known that N M R  spectra can be recorded for 
nearly all paramagnetic complexes 111; exceptions are 
rare. In general, however, the spectra of paramagnetic 
metal complexes are not so well resolved as those of 
corresponding diamagnetic compounds; nucleus- 
nucleus coupling is rarely observed is such spectrarz. 31. 
The half-widths of the NMR signals are between 
1 Hz and several thousand Hz for dissolved para- 
magnetic species. Like the half-widths, the shifts of 
the signals also extend in part over a range that is 
several orders of magnitude greater than for the anal- 
ogous diamagnetic compounds “+]. Roughly speak- 
ing, the shifts behave in the same manner as the 
susceptibilities of these compounds. 
The first report of an investigation on the 1H-NMR 
spectra of (dissolved) paramagnetic complexes was 
published in 1958 [51. Since then, the number of publi- 
cations on this subject has increased to about 400. 
The theoretical principles of the application of NMR 
spectroscopy to the study of paramagnetic substances 
have been described by various authors (cf. e.g. r6-101). 

[ * ]  Doz. Dr. K. E. Schwarzhans 
Anorganisch-chemisches Laboratorium 
der Technischen Universitat 
8 Miinchen 2, Arcisstrasse 21 (Germany) 

[l] H .  J .  Keller: NMR-Basic Principles and Progress. Springer, 
Berlin 1970. 
[2] D. R .  Eaton and W. D .  Phillips, Advan. Magn. Resonance 
I ,  103 (1965). 
[ 3 ]  E.  W .  Randalf and D.  Shaw, J. Chem. SOC. A 1969, 2867. 
[4] D. R .  Eaton: Physical Methods in Advanced Inorganic 
Chemistry. Interscience New York 1968. 
[5]  H .  M .  McConnell and C .  H .  Holm, J. Chem. Phys. 28, 749 
(1958). 
[6] H .  J .  Keller and K .  E.  Schwarzhans, Angew. Chem. 82, 227 
(1970); Angew. Chem. internat. Edit. 9, 196 (1970). 
[7] H .  M .  McConnell et a[., J. Chem. Phys. 27, 314 (1957); 28, 
107 (1958); 29, 1361 (1958); 34, 696 (1961). 
[ 8 ]  E.  DeBoer and H. van Wiiiigen, Progr. Nucl. Magn. Reso- 
nance Spectrosc. 2, 111 (1967). 
[91 M. Bose, Progr. Nucl. Magn. Resonance Spectrosc. 4,  335 
(1969). 

Several mechanisms have been detected by which the 
nuclei examined by NMR spectroscopy in metal 
complexes can be influenced by unpaired electrons. 
The effects can be roughly divided into two groups, 
i.e. signal shifts due to Fermi contact interactions and 
those due to pseudo-contact interactions. Since it is 
only possible occasionally to distinguish between the 
contributions of the various mechanisms to the total 
shift of a given N M R  signal, it has recently been sug- 
gestedC31 that signal shifts in the NMR spectra of 
paramagnetic compounds should be referred to 
generally as “Knight shifts” [Ill.  This name has the 
advantage that it does not specify any mechanism 
that contributes to or  is alone responsible for the 
shift, as is the case in the terms “contact shift” and 
“pseudo-contact shift”. The Knight shift is thus 
defined as the difference in shift between the signals 
of the paramagnetic complex and the corresponding 
diamagnetic model compound. This definition natur- 
ally excludes any effect of ligand exchange on the 
shift of the signal. 
The mechanisms of electron-nucleus interaction that 
may be regarded as established for Paramagnetic 
metal complexes will be outlined below. 

1.1. Fermi Contact Interaction 

The Fermi contact interaction is defined as the inter- 
action of the nucleus in question with the density of 
unpaired electrons on the nucleus. 
If this Fermi contact interaction essentially causes 
shielding of the nucleus in question, and hence a shift 
of its signal, “unpaired electron density” (also known 
as spin density) could conceivably reach the position 
of the resonating nucleus, o r  could in general reach 
the ligands of a paramagnetic metal complex, in the 
following ways: 
(a) Unpaired d electrons of the metal fill unoccupied 
antibonding orbitals of the ligands that have ;:or x 
character. This mechanism is involved in particular 

[lo] J .  W. Emsley, J .  Feeney, and L. H .  Sutciiffe, High Reso- 
lution Nucl. Magn. Resonance Spectrosc. I ,  115 (1965); 2, 826 
(1966). 
I l l ]  W. D .  Knight, Phys. Rev. 76, 1259 (1949). 

946 Angew. Chem. internat. Edit. 1 Vol. 9 (1970) 1 NO. 12 



in the signal shifts in the NMR spectra of titanium(~rr) 
and vanadium(1rr) complexes 1121. Typical features 
pointing to an important contribution from this 
electron delocalization mechanism can also be found 
i n  the spectra of pyriaine, pyridine N-oxide, and 
picoline adduct complexes of many 3d metals r13-15J. 

A particularly good example of the delocalization of 
spin density into then  system of the ligand is provided 
by the bis(2-amino-2,4,6-cycloheptatrieniminato~- 
nickel(rr) complexes 1161 (cf. Fig. 1). 

c? 
L c  N 

+ 

I 
r- 
c-) m 

Fig. 1. 1H-NMR spectrum of a bis(2-amino-2,4,6-cycloheptatrien- 
iminato)nickei(rr) complex in CDCll (40 MHz). 

These complexes are characterized by a very fast 
configuration change in solution between a square- 
planar diamagnetic form and a tetrahedral para- 
magnetic form. All the following mechanisms that 
can contribute to the Knight shift are averaged out 
by this process. The electrons of the C-H bonds are 
polarized by the free spin density [*I in the TF system 
of the ligand in such a way that the spin density on the 
proton of the aromatic ligand is negative (shift t o  
higherfie1ds)for even numbers and alternately negative 
and positive (shift to lower fields) for odd numbers. 

(b) Electrons in the highest occupied orbitals of the 
ligand or  ligands are partly transferred into un- 
occupied or  unfilled d orbitals of the metal. This 
transfer mechanism is possible in particular for the 
more highly charged ions of the 3d metals. A positive 
spin density also remains in the ligand orbitals, so 
that it is often practically impossible to distinguish 
between mechanisms (a) and (b). 

(c) Partly occupied d orbitals of the metal overlap 
with occupied orbitals of ligand atoms having a 

[12] D .  R .  Eaton, W. R .  McCldlan, and J .  F. Weiher, Inorg. 
Chem. 7,  2040 (1968). 
[13] J .  A .  Happe and R .  L .  Ward, J. Chem. Phys. 39, 1211 
(1963). 
[14] R.  H .  Holm, G. W. Everettjr.,  and W. De W. Horrocksjr., 
J. Amer. Chem. SOC. 88, 1071 (1966). 
[15] G. N .  LaMar and G. R .  van Hecke, J. Amer. Chem. SOC. 
91, 3442 (1969). 
[16] D .  R .  Eaton, A .  D .  Josey, W.  D.  PhiNips, and R. E .  Benson, 
J. Chem. Phys. 37, 347 (1962). 
[*] The absolute probability of finding an unpaired electron at 
a given point is known in general as  the “free spin density”. 

sterically favorable arrangement, but which are not 
bonded directly (in the conventional sense of a 
chemical bond) to the metal atom or  ion. This “direct 
interaction” is probably responsible e.g. for the 
strong negative shifts of the signals in the 1H-NMR 
spectra of substituted and unsubstituted bis(cyc1o- 
pentadienyl) complexes of vanadium(I1) and chrom- 
ium(I1) [171. In these compounds, positive spin density 
is transferred directly from the transition metal ion 
to the protons of the cyclopentadienyl rings, with the 
result that the signals of these protons are displaced 
by up to 360 ppm toward lower fields. Another very 
instructive example of the occurrence of a “direct 
interaction” is found in the 1H-NMR spectra 
of i minodi(trimethyleniminomethy1- o - pheno1ato)- 
cobalt(1r) (Fig. 2) and of the corresponding nickel(r1) 
complex. GeminaI protons in the alkyl chains of 
these compounds exhibit differences of up to 86 ppm 
in their shifts [18,191. 

A 

1679121 H 
Fig. 2. Structural formula of irninodi(trimethyleniminomethy1-o- 
phenolato)cobal t(I1). 

Several reports dealing with the separation of the 
contributions of the types (a) t o  (c) to the Fermi 
contact shift for certain classes of complexes have 
been published during the past few years [12,20-261. 

The clarification of this problem would enable infor- 
mation about the metal-ligand bond to be gained 
from the signal shifts of certain ligand nuclei. 

1.2. Pseudo-Contact Interaction 

The investigation of the N M R  spectra of paramag- 
netic compounds is frequently made difficult by the 
fact that intramolecular (and also intermolecular in 
studies o n  solids) dipole-dipole interactions influence 

1171 H. P.  Fritz, H .  J .  Keller, and K .  E.  Schwarzhans, J. Organo- 
metal. Chem. 7, 105 (1967). 
[18] G. N .  LaMar and L.  Sacconi, J. Amer. Chem. SOC. 89,2282 
(1 9 67). 
[19] W .  Gretner, Dissertation, Technische Hochschule Miin- 
chen 1969. 
1201 M .  R .  Rettig and R .  S .  Drago, J. Amer. Chem. SOC. 91, 
1361, 3432 (1969). 
[21] K .  E .  Schwarzhans, Habilitationsschrift, Technische Hoch- 
schule Munchen 1968. 
[221 H. P. Fritz, H .  J .  Keller, and K. E. Schwarzhans, Z .  Natur- 
forsch. 236, 298 (1968). 
1231 G. N .  LaMar and L.  Sacconi, J. Amer. Chem. SOC. 90, 
7216 (1968). 
1241 J .  R .  Hutchison, G. N .  LaMar, and W. De W. Horrocksjr.,  
Inorg. Chem. 8, 126 (1969). 
[25] F. Rohrscheid, R .  E.  Ernst, and R.  H .  Holm, J. Amer. 
Chem. SOC. 89, 6472 (1967). 
[26] H .  P .  Fritz, W. C.  Gretner, H.  J .  Keller, and K.  E. Schwarz- 
ham, Z .  Naturforsch. 236, 906 (1968). 
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the magnitude and sign of the shifts of the resonance 
signals in an extremely complicated manner that can 
only be determined in particularly simple cases. In 
complexes with extensive delocalization of electrons, 
the pseudo-contact contribution to the total shift of 
the resonance signals should be small, since the 
pseudo-contact model 1271 is based on the assumption 
of a point charge localized on the central metal ion. 
I t  is not yet known, however, how much zero-field 
splitting, which is a property of all complexes with 
more than one unpaired electron, contributes to the 
pseudo-contact component of the shift. Information 
on this point should be obtainable from ESR experi- 
ments at  very low temperatures 1281. 

2. Application and Results 

exchange process on addition of small quantities of 
pyridine or picoline in excess. If the exchange fre- 
quency is very much greater than the difference in 
shift in Hz between the signals of the protons of the 
pyridine ligand in the paramagnetic complex and of 
free pyridine, an averaged signal appears in the NMR 
spectrum [311 at  a position that depends on the ratio 
of the concentrations of the free ligand and of the 
complex. The ring protons of the salicylaldehyde 
ligands were assigned by comparison with the spectra 
of the derivatives with methyl substituents in position 
3, 4, 5 ,  or  6 of the ringc191. The assumption that the 
symmetry of the complex changes only slightly on 
substitution appears to be confirmed by the invari- 
ance of the signal shifts of the pyridine and phenylene 
protons in the substituted and unsubstituted com- 
plexes. 

Hetero-NMR measurements on paramagnetic com- 
plexes in solution have so far been confined to a few 
investigations on simple systems. For example, 1 7 0 -  

and 14N-NMR spectra of hexaaquo and hexaammine 
complexes respectively have been recorded for the 
determination of ligand exchange rates in these com- 
pounds 129,301. N M R  experiments in which different 
types of atoms in a paramagnetic molecule are detect- 
ed are therefore particularly interesting. 

2.1. Investigations on Pyridine and Picoline Adducts of 
Bis(salicylaldehydato)iron(II), -cobalt(II), and 
-nickel(lI) 

Pyridine and simple methyl derivatives of pyridine 
form 2 : 1 adducts with paramagnetic bis(salicyla1de- 
hydato)metal(II) complexes, and these adducts are 
particularly suitable for NMR studies. They have a 
simple ligand system in a pseudo-octahedral arrange- 
ment, and are very readily soluble in organic sol- 
vents. The pyridine and - picoline ligands readily 
undergo exchange with excess ligands, and this 
greatly facilitates the assignment of the resonance 
signals. Kinetic data for this exchange can also be 
determined from NMR studies. 

2.1.1. I H - N M R  S p e c t r a  

The data from the 1H-NMR spectra of such adducts 
(Fig. 3) are presented in,Tables 1 to 3. The assign- 
ment for the pyridine protons was possible on the 
basis of the signal intensities, by comparison of the 
spectra of the pyridine adducts with those of the 
P-picoline and y-picoline adducts, and finally on the 
basis of the changes produced in the spectra by an 

1271 N .  Bloembergen and W. C. Dickinson, Phys. Rev. 79, 179 
(1950). 
[28] J .  P .  Jesson, J. Chem. Phys. 47, 579, 582 (1967). 
[29] H. H .  Glaeser, H. W. Dodgen, and J .  P.  Hunt, Inorg. 
Chem. 4, 1061 (1965). 
[30] H. H. Glaeser, G.  A. Lo, H .  W. Dodgen, and J .  P.  Hunt, 
Inorg. Chem. 4, 206 (1965). 

? Y  5 

5 
3 

I 

-500 -400 - 300 - 200 -100 0 TMS 
1679131 6lppmI-  

Fig. 3. 
complexes in CDCI, (100 MHz). 

1 H-NMR spectra of bis(salicylaldehydato)bis(pyridine)metal(II) 

The large shifts of the aldehydic protons, which 
change only slightly on substitution in the aromatic 
ring of the salicylaldehyde ligand are a characteristic 
feature of all the spectra. 

Except in the case of complexes substituted in posi- 
tion 6 of the salicylaldehyde ligand (Fig. 4), the equi- 
valent protons of the ligands generally give only one 
N M R  signal. Methylation in position 6 evidently 
leads to moderate distortion of the complex. Separate 
resonance signals are found both for the two CH3 
groups and for the two aldehydic protons. A much 
greater distortion of the complex should be observed 
on replacement of the pyridine ligand by a-picoline. 

[31] J.  A .  Pople, W. G. Schneider, and H .  J .  Bernstein: High- 
resolution Nuclear Magnetic Resonance. McGraw-Hill, New 
York 1959, p. 218. 
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lable  I .  
T M S  at 100 MHz. Saturated solutions in CDC13 at 32-C. 

1 H - N M R  data for paramagnetic pyridine and picoline adducts of bjs(salicyIaldehydato)iron(II) complexes. Shifts in  Hz against internal 

- I  340 I -1602 

+ 1 300 

-4810 

1-956 

-3270 

- 1 740 
-4460 

+986 

-2860 

-9 I30 
-3 180 

-1 360 

-10450 
-3440 

-1470 

Fe(3-sal)~ . 2 py Fe(5-sal)z . 2 py Fe(6-sal)z ' 2 py j Fe(sal)z . 2 y-pic Fe(4-sal)z . 2 py 

- 8 600 
-3080 

-1458 

-7 800 
-3200 
-1 130 
-1750 

-7 130 
-3050 

+ 50 

-9 I60 
-3230 

- I  460 

-9 330 
-3121 

-1920 

-8900 
-3140 

-9070 
-3 300 

C3-H 
C-'--CH> 
C4- H 
C4-CH3 
Cs-H 
C5-CH3 
C6-H 
C6-CH3 

- '  1300 

t 1560 
+ 862 

-3241 

+ 1 290 

-4950 

+1100 

-5646 

+ 750 

+ 720 

- 5 440 

-t 310 

-4010 

-t 720 

-5 390 

+ 350 

-3950 
-2745 
-3360 

+ 340 
+ 1430 

Ald-H -46700 -43400 -45 150 

3-sal = 3-methylsalicylaldehydate, py - pyridine, pic = picoline. 

-47 300 -48 100 
-45 300 

-46600 -48 200 

Table 2. 
TMS at 100 MHz. Saturated solutions in CDCI, at 32 "C. 

1H-NMR data for paramagnetic pyridine and picoline adducts of bis(salicylaldehydato)cobalt(Ii) complexes. Shifts in Hz against internal 

Co(sal)t . 2  py I ~o(3-sa1)2 . 2  py 1 ~ o ( 4 - s a 1 ) ~  . 2  py 

-8 300 -11200 -8 300 
-1 540 -1770 -1940 

I- 384 

Co(sa1)z . 2 @pic Co(sal)z . 2 y-pic 

-8150 
-1460 

-7700 
-1 620 

+170 
1464  

-8750 -9 330 
- 1  150 -1 720 

+ 1 060 +510 
+ 1634 

C3-H 
C3-CH3 
C4-H 
C4-CH3 
C5-H 
CS-CH, 
C6-H 
C6-CH3 

-8200 

-5580 

-1 150 

-790 

-8250 

-2050 
-1610 

-895 

-8940 

-5530 

-1 520 
-700 

-8460 

-6450 

-1 250 

-1 720 
-310 

-7700 

-5720 

-1 040 

-704 

-8150 

-5480 

- 1060 

-760 

-8360 
-6670 

-1 350 

-130 

Ald-H -35700 -36200 -36900 -43 100 
-40 600 

-33800 -36520 -34 120 

Table 3. 1H-NMR data for paramagnetic pyridine and picoline adducts of bis(salicylaldehydato)nickel(II) complexes. Shifts in Hz against internal 
TMS a t  100 MHz. Saturated solutions in CDCl3 at 32 "C. The absorptions marked ? could not be assigned because of excess line width or overlap. 

Ni(3-sal)l . 2 Ni(4-sal)z . 2 py I Ni(5-sal)z ' 2 p Ni(6-sal)z . 2 py Ni(sa1)Z . 2 y-pic Ni(sal)* . 2 p-pic 

-9 350 
-3350 

-682 
- I250 

-8650 
-3 370 

-I 440 

-9730 
-3230 

--I 330 

-10700 
-3640 

+703 

a 

P 
P-CH3 

Y - C H ~  

C3-H 
C'--CHa 
C4-H 
C4-CH3 
Cs-H 
C5-CH3 
0 - H  
C6-CH3 

Y 

Ald-H 

-647 

-2 630 

-805 

-97 

-840 
-3080 

? 

? 

-590 I -650 
-560 

-2760 

-690 

-360 
0 

-632 

-2460 

-746 

-84 

-674 

-2700 

-810 

-81 

-50 
-690 

-2610 

-100 

! -IS0 

-120 

-4 I 200 ? -36 100 I -46720 -39400 ? 

However, no  2 : l  adduct ofa-picoline with any of the 
bis(salicylaldehydato)metal(II) complexes has yet 
been obtained. Axial entry of the a-picoline is pre- 
sumably impossible in these compounds on steric 
grounds. If, however, measurements are carried out 
on an exchange system with a-picoline in solution 
together with bis(salicylaldehydato)bis(pyridine)- 
cobalt(rr), all the proton resonance signals of the 
salicylaldehyde ligands split into doublets. The two 

aldehyde ligands in the complex are thus no  longer 
magnetically equivalent, i.e. the symmetry of the dis- 
solved complex is reduced. NMR studies on para- 
magnetic compounds can thus also serve as a sensi- 
tive test for changes in the geometry of the arrange- 
ment of the ligands, since the Knight shifts of the 
resonance signals, as was mentioned earlier, are 
strongly dependent on the arrangement of the ligands 
with respect to the central metal ion. 
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HY 

H I /- 

Hz) “91. The fall in rate constant from iron to nickel 
for exchange reactions on pseudo-octahedral com- 
plexes is a well-known phenomenon, and is associated 
with the ligand field stabilization energy in the trigo- 
nal-bipyraniidal transition state 119,341. 

-H5 

2.2. ‘H-NMR Studies on a Dimethylacetamide Adduct 
of Uranium Tetrabromide 

Fig. 4. 
metal(n) complexes. 

Scheme of the structure of bis(salicylaldehydato)bis(pyridine) 

In a purely qualitative consideration of the 1H-NMR 
shifts of this type of complex, the highest spin density 
is to be expected on the aldehyde grouping of the 
salicylaldehyde ligand. This position in the molecule 
should be particularly suitable for a free-radical re- 
action. The complexed salicylaldehyde is in fact 
oxidized by air to salicylic acid 1321. 

2.1.2. 1 4 N - N M R  S p e c t r a  

The 14N-NMR spectra of the bis(salicyla1dehydato)- 
bis(pyridine)metal(xr) complexes of iron, cobalt, and 
nickel could not be recorded with the purecompounds 
in solution. An important reason for this is the fact 
that the spectral sensitivity of the 14N nucleus is 
lower by a factor of lo3 than that of the proton. The 
complexes contain only a little nitrogen (about 6.1 %), 
so that even concentrated samples contain only a few 
14N nuclei. Moreover, because of the undoubtedly 
high spin density on the nitrogen atoms to be consi- 
dered, the 14N resonance signal is expected to  be very 
broadr191. It was possible to avoid both of these dif- 
ficulties by measurements on the complex under the 
conditions of the exchange with excess pyridine. If 
the 14N-NMR spectrum of pyridine is recorded with 
the addition of various quantities of the bis(salicy1- 
aldehydato)bis(pyridine)metal(II) complex, the shift 
of the *4N signal varies linearly with the concentra- 
tion of the complex in the case of the iron and cobalt 
compounds; for the analogous nickel compound, on 
the other hand, the ligand exchange rate constant 
must be much smaller. A Knight shift of -7800 ppm 
can be extrapolated for the Fe” complex, and -5400 
ppm for the CoII complex, from the concentration 
dependence of the 14N signals. 

The ligand exchange rate constants found from these 
spectra, which merely indicate a lower limit for the 
exchange rate1331, differ only slightly for the two 
complexes ( k p , ~ ~  = 2.0 x 105, ~ C ~ I I  = 1.8 x l o 5  

[32] H. G. Biedermann and K .  E .  Schwarrhans, Angew. Chem. 
82, 640 (1970); Angew. Chem. internat. Edit. 9, 640 (1970). 
[33] 7‘. J .  Swift and R .  E .  Connik, J. Chem. Phys. 37, 307 
(1962). 

Dimsthylacetarnide forms a 4 : l  adduct with uranium 
tetrabrornide. I t  was uncertain at  first whether the 
bonding to the central metal ion occurs via the nitro- 
gen or the oxygen atom of the ligand. Rotation about 
the C-N bond in free dirnethylacetamide is hindered 
at room temperature; the two methyl groups on the 
nitrogen give different 1H-NMR signals, showing 
that their chemical environments are different. If the 
spectrum is recorded at various temperatures the 
two signals of the N-CH3 groups fuse at 49.8”C, 
from which the height of the rotation barrier is found 
to be 12 i 2 kcal1351. 

Exactly the same behavior is found in the spectrum 
of the adduct. The two 1H-NMR signals of the 
N-CH3 groups, which are separated at  lower tem- 
peratures, unite at 50°C (Fig. 5).  The height of the 

10 20 30 LO 50 
T i ” C I -  

Fig. 5 .  Temperature dependence of the ‘H-NMR signal shifts of the 
N-CH3 groups of dimethylacetamide in  (C4H90N)4UBr4 (dissolved in 
CHZBrz; 100 MHz).  

rotation barrier is therefore unchanged by the com- 
plex formation, and it follows that the dimethylacet- 
amide cannot be bonded to the uranium ion via the 
nitrogen atom [361. 

[34] F. Basolo and R .  G .  Pearsorz: Mechanisms of Inorganic 
Reactions. Wiley, New York 1967. 
[35] H .  S. Gutowsky and C .  H .  Holm, J.  Chem. Phys. 25, 1228 
(1956). 
[ 3 6 ]  F. Lux, G .  Wirtli, K .  W .  Bagnall, and D .  Brown, 2. Natur- 
forsch. 246, 214 (1969). 
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2.3. Investigations on Paramagnetic Ion Associates 

1.4 
1.4 
1.4 
1.6 
2.0 
2.5 
3.0 
3.7 
4.3 
4.5 
4.5 
4.3 

Because of the greater signal shifts in the IH-NMR 
spectra of the diamagnetic tetrabutylammonium and 
tetraphenylarsonium cations in solutions containing 
paramagnetic complex anions, such as hexacyano- 
ferrate(1rr) or tetrachloroniccolate(II), a number of 
authors 137-421 postulated the presence of "ion pairs". 
The unusual signal shifts were attributed to pseudo- 
contact interaction, which depends on the g-factor 
anisotropy of the unpaired electrons and on the 
distance an3 the fixed steric relation between the 
ions 161. 

However, there are three serious objections to such 
an interpretation of the 1H-NMR spectra on the 
basis of ion associates of this nature: 

(a) All the paramagnetic anions and diamagnetic 
cations investigated have approximately spherical 
symmetry. There is therefore no reason to insist on a 
preferred steric arrangement for the ions in solution 
over a long measuring period, which would be funda- 
mentally necessary in order to be able to observe 
pseudo-contact shifts. Without a sufficiently long- 
lasting, definite relation between the paramagnetic 
ion and the nucleus that is interacting magnetically 
with it,  the dipole-dipole contribution to the signal 
shift is averaged out. It is clear from the I H - N M R  

spectra of the ion associates, however, that a very 
much faster ion exchange takes place in the solution 
when the diamagnetic cation is present in excess. 

(b) The octahedral and tetrahedral symmetries of 
the hexacyanoferrate(m), hexacyanochromate(rrI), 
and tetrachloroniccolate(r1) anions C431 d o  not allow 
any anisotropy of the g factor, which is also an as- 
sumption for pseudo-contact interaction. 
(c) In complexes with strong delocalization of elec- 
trons, as was mentioned in Section 1.2, the pseudo- 
contact contribution to the signal shift should be 
small or zero 1271. At least for the complex anions tri- 
iodotriphenylphosphanecobaltate(i1) and triiodotri- 
phenylphosphaneniccolate(II), however, the large 
shifts of the I H - N M R  signals of the aromatic protons 
of the triphenylphosphane ligands point to strong 
delocalization of electrons in these compounds. 

1.4 
1.4 
1.4 
1.5 
1.7 
1.8 
2.0  
2.3 
2.7 
2.8 
2.8 
2.6 

2.3.7. 1H-, 14N- ,  a n d  3 1 P - N M R  S p e c t r a  

0.4 
0.4 
0.5 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.9 
0.9 
0.9 

The 1 H - N M R  spectra recorded for the diamagnetic 
cations of the ion associates (given in Table 4 for the 
tetrabutylammonium salt of triiodotriphenylphos- 

-14.4 
-13.5 
-12.8 
-13.0 
-10.2 
- 7.8 
- 5.7 
- 
- 
- 
- 
- 

1371 G .  N .  LaMar,  J .  Chem. Phys. 41, 2992 (1964). 
[381 R .  J .  Fitzgerald and R. S .  Drago, J. Amer. Chem. S O C .  90, 
2523 (1968). 
1391 D .  W .  Larsen and A .  C. Wahl, Inorg. Chem. 4,1281 (1965), 
I401 W.  De W .  Horrocks j r . ,  R .  H .  Fischer, J. R .  Hutchison. 
and G .  N .  LaMar,  J .  Amer. Chem. S O C .  88, 2436 (1966). 
[411 G .  N .  LaMar,  3. Chem. Phys. 43, 235 (1965). 
[42] R. If. Fischer and W .  De W .  Horrocks j r . ,  Inorg. Chem. 7, 
2659 (1968). 
I431 I .  M .  Walker and R .  S .  Drago, J .  Amer. Chem. S O C .  90, 
6951 (1968). 

phanecobaltate(r1) at various concentrations) can be 
satisfactorily explained only if one postulates a 
direct transfer of spin density from the central metal 
ion of the anionic complex e.g.  t o  the ammonium 
nitrogen atom. 

Table 4. 
[ ( C I H ~ ) ~ N ] [ C O I ~ ( C ~ H ~ ) ~ P ]  (dissolved in CDCI3; 100 and 7.22 MHz). 

'H and 14N Knight shifts (in ppm) of (C4H9)4Nt in 

c (mole/l) 

1.07 
0.88 
0.71 
0.53 
0.26 
0.15 
0.075 
0.034 
0.010 
0.005 
0.002 
0.001 

4 
4 
4.2 
4.4 
5.0 
5.5 
6.0 
7.3 
8.1 
8.5 
8.4 
8.0 

The monotonic decrease in the spin density trans- 
mitted along the o bond skeleton of the carbon chain 
from the x- to the a-C atom is typical of alkyl chains 
in paramagnetic transition metal complexes 1441. In 
(C4H9)4N+,  the highest density of unpaired electrons 
should be localized on the nitrogen. On correct appli- 
cation of the pseudo-contact model 15,271, a signal shift 
toward higher fields is to be expected for the nitrogen 
of the diamagnetic tetrabutylammonium ion 1371. In 
the case of a direct transfer of unpaired electrons 
from the central metal ion to the nitrogen atom, how- 
ever, the 1 4 N  resonance signal must be displaced to 
lower fields (negative sign) 1421. The positive spin 
density on the nitrogen atom would then pass over 
to the adjacent x-CH2 group by configuration inter- 
action r61. 

Only shifts with negative signs were found for the 
I 4 N  and 31P signals in the spectra of the ion associates 
with ammonium and phosphonium cations (Table 5) .  

Table 5. 
associate (dissolved in CDCI,; 7.22 and 40.5 MHz). 

14N and 3IP Knight shifts of the diamagnetic cation in the ion 

Compound 

2.3.2. D i s c u s s i o n  

The negative signal shifts that are always found in the 
1 4 N -  and 3 1 P - N M R  spectra of the cations (Table 5) 
clearly show the transfer of positive spin density from 
the central metal ion of the anionic complex to the 
nitrogen or phosphorus atom. It can also be seen 
from Table 4 that the position of the *H-NMR signals 
of the cation is strongly dependent on the concentra- 
tion, whereas the Knight shifts of the anion remain 

[443 H .  P .  Fritz, H .  J .  Keller, and K .  E .  Schwarzhans, J.  Or- 
ganometal. Chem. 6, 652 (1966). 
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constant over the entire concentration range investi- 
gated. This is true of all the ion associates studied. In 
Figure 6, there are three easily recognizable regions 
a t  concentrations below 0.2 mole/l, in which the 
ratio of the change in shift to the change in  concen- 
tration assumes different values. 

0 0 05 0.10 015 0.20 0 25 
1119101 c Imoleill- 

Fig. 6. Concentration dependence of the Knight shifts of the % and’i3 
protons of the tetrabutylammonium ion in [C~H~)~N][COI,(C~H~)JP] 
(dissolved in CDC13). 

This observation points to the presence of higher ag- 
gregates (associates), and is not compatible with the 
existence of “ion pairs” in solution. Such associates 
may be expected in solvents having low dielectric 
constants at  relatively high salt concentrations c451. 

There appear to be several definite aggregates, which 
evidently differ in their stability, and each of which is 
stable in a given concentration range. 

2.4. IH-NMR Studies on the Occupation Equilibrium 
of the Electrons in Bis[4-(2-pyridyl)-2-(2-pyridylamino)- 
thiazolatoliron(11) 

Complexes in which a temperature-dependent oc- 
cupation equilibrium exists between the electronic 
ground state and nearby excited states are of interest 
in biochemistry. Examples of compounds belonging 
to this class are in the iron-porphyrin complexes, 
whose term diagrams show a change in the ground 
state with the nature of the other ligands as a result 
of crossover of two terms. The NMR-spectroscopic 
investigation of the anomalous magnetic behavior of 
such complexes is frequently found to be very difficult 
because of their extremely low solubility. 

This anomalous magnetic behavior has been observed 
and studied by N M R  spectroscopy for the electron 
configuration d5 in dithiocarbamatoiron(II1) com- 
plexes[461 and for the configuration d7 in some 
chelate complexes of cobalt(I1) iodide [471. N o  ex- 

[45] C. W. Davies: Ion Association. Butterworth, London 
1962. 
[46] R .  M .  Golding, W.  C. Tennant, C. R .  Kanekar, R. L.  
Martin, and A .  H .  White, J .  Chem. Phys. 45, 2688 (1966). 
[471 R. C. Stoufer, D.  H .  Busch, and W. B. Hadky,  J.  Amer. 
Chem. SOC. 83, 3732 (1961). 

.- .__ 

ample of such an anomaly is known as yet for the  
electron configuration d4, while an iron(r1) complex 
will be described here as a typical and confirmed ex- 
ample with the configuration d6. 
Though the anomalous magnetic properties of several 
bis(o-phenanthroline)iron(II) complexes r481 have 
been interpreted as a tempzrature-depeildent quintet- 
singlet occupation equilibrium, the sudden change in 
the effective magnetic moment of these compounds 
at a certain temperature is definitely due to a phase 
change, i . ~ .  to an intermolecular effect. 
The complex bis[4-(2-pyridyl)-2-(2-pyridylamino)- 
thiazolato]iron(~~) exhibits a characteristic decrease 
in its effective magnetic moment with falling tem- 
perature 1491. peff is 4.96 p~ at room temperature and 
1.55 PB at -170 ‘C, and decreasessteadily in the inter- 
vening range. If this behavior is due to  an intramolec- 
ular effect, it can only be explained by the existence of 
a singlet-quintet occupation equilibrium, naturally 
with participation of interjacent triplet states in ac- 
cordance with their energy levels. On the basis of the 
1 R spectra recorded at various temperatures, it was 
possible to show that the magnetic anomalies of bis- 
[4-(2-pyridyl)- 2-(2-pyridylamino)thiazolato]iron(11) 
are not due to any intermolecular effect [SO]. Where a 
temperature-dependent occupation equilibrium exists 
betwzen the singlet ground state and the lowest 
quintet state, the N M R  spectra of thecompound must 
show characteristic changes with temperature. The 
Knight shifts of the resonance signals of a paramag- 
netic compound are directly proportional to the 
density of the unpaired electrons on the nucleus in 
question, and inversely proportional to the absolute 
temperature c6-101. Thus the signal shifts in the N M R  
spectra of paramagnetic substances normally in- 
crease with falling temperature. I n  our example, the 
effective magnetic moment decreases slowly with 
falling temperature, i.e. the singlet state becomes 
more highly populated and the free spin density in 
the molecule as a whole decreases. Two opposing 
effects are therefore operative in the spectrum of such 
a complex. In bis[4-(2-pyridyl)-2-(2-pyridylamino)- 
thiazolato]iron(~~) a t  room temperature, the quintet 
state is predominantly populated ( p e ~  = 4.96 p ~ ) .  
The Knight shifts of the resonance signals will there- 
fore initially become larger with falling temperature, 
as is to be expected for any magnetically normal para- 
magnetic complex. Ultimately, however, the occupa- 
tion of the singlet ground state becomes so high that 
the direction of the signal shift in the NMR spectrum 
is reversed; the Knight shifts thus pass through a 
maximum on cooling. The shifts then decrease 
rapidly with further population of the singlet ground 
state. This effect is shown in Table 6 for seven 
IH-NMR signals of the complex in question in the 
temperature range between +30 and -60 “C. 

[48] E .  K6nig and K .  Madeja, J. Amer. Chem. SOC. 88, 4528 
(1966); Inorg. Chem. 6, 48 (1967). 
[49] R.  N .  Sylva and H .  A.  Goodwin, Australian J.  Chem. 21, 
1081 (1968). 
[ S O ]  H .  J .  KeNer, K .  E .  Schwarrhans, H .  A.  Goodwin, and R. N. 
Svlva, Z. Naturforsch. 246, 1058 (1969) 
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Table 6. Shifts of the 'H-NMR signals 1 t o  7 of bis[4-(2-pyridyl)-2-(2- 
pyridylamino)thiazolato]~ron(~~) in relation to  T M S  (internal) toward 
lower fields with falling temperature (100 MHz). 

2810 
2930 
3020 
3040 
3050 
3050 
3000 
2920 
2645 
2350 

(measured in the solid state 1491). These experimentally 
observed anomalies of bis[4-(2-pyridyl)-2-(2-pyridyl- 
amino)thiazolato]iron(lr) are thus not due to an 
intermolecular effect, but they can be plausibly ex- 
plained by a temperature-dependent occupation 
equilibrium of the electrons between the 'A1 ground 
state and the energetically nearby excited 5Tz state, 
i.r. by an intramolecular effect. 
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2580 
2695 
2740 
2780 
2820 
2840 
2790 
2780 
2565 
2350 

__ 

'r 
( 'C) 
~ 

30 
20 
10 
0 

- I0  
- 20 
~ 30 
-40 
- 50 
-60 

4630 
4980 
5120 
5150 
5220 
5245 
5120 
4970 
4600 
4200 

4410 
4700 
4800 
4850 
4880 
4900 
4815 
4700 
4300 
4200 

- I 

--12.83 

-13.92 
-14.09 
-15.36 

-15.68 
--16.81 

5 I6 

mixed; 
Walsh type 
C H I  (n) 
C C  (0) 
CH2 (x) 

CH*(u) tCC(o) 
C H L  (xi) 

7 
__ 

865 
860 
915 
915 

(960?) 
915 
905 
875 
750 
660 

2210 
2280 
2380 
2405 
2450 
2450 
2410 
2405 
2210 
2020 

The signal shifts of the protons, which are not assign- 
ed, are measured in Hz. All the resonance signals 
pass through a maximum at -20°C. The variation 
of the shifts (measured i n  solution) with falling tem- 
perature is directly parallel to the molar susceptibility 

C 0 M M U N I CAT I 0  N S 

PhotoeIectron Spectrum of Cyciobucanetl J 

Hy Peter BischoA Edwin Haselbricii, and 
Edrar Heilbronner [*I 

The vertical ionization potentials Iv of cyclobutane C 4 H 8 ,  
as determined from the photoelectron spectrum 121, are 
listed in Table 1. An assignment to orbitals of particular 
symmetry can be performed, assuming the validity of 
Koopmans' theorem 131, on the basis of the orbital energies 
E =~ -Iv obtained for cyclobutane by a SCF ab initio tech- 
niqueL41, by the MINDOj2 methodrsl, or by the extended 
Huckel theory (EHT) [61 (see Table 1). 
The ab initio and EHT results, which were made available 
to us by L. Salein and J .  S. Wright (cf. ref. [71), are based on 
the following structural parameters: Symmetry D4h;  c- c 
=: 1.556 A; C-H = 1.095 A, 0: HCH = 116"[8l. In the 
MINDOj2 method the total energy of the cyclobutane 
molecule was minimized without any restriction of the 
topography except for C- -H = 1.093 8, and HCH = 120'. 
In this case, the calculation yields a D4h structure with 
C-C -= 1.534 8, within the convergence criteria of the mini- 
mization process. I t  should be noted that a DZd structure is 
found experimentally for cyclobutane 191. For this reason 
the classification of the orbitals according to Dzd symmetry 
is also included in Table 1. 

Fig. I .  
vertical ionization potential Iv = -E of cyclobutane. 

Coinparison of the calculated S C F  orbital energies E with the 

As shown by the correlation diagram (Fig. l), the experi- 
mental valucs are in excellent agreement with the calculated 
ob initio and MIND0/2  data. The reasonable results ob- 
tained from the EHT model are probably due to the high 
degree of symmetry of the molecule. As predicted, the first 
band in the PE spectrum (at 11 eV) is split into two partial 
bands separated by about 0.6 eV. Since the photoelectron 
vacates a degenerate orbital (3e, or 4e), the radical cation 
C4Hi must be subject to a Jahn-Teller distortion in its 
electronic ground state, which leads to the observed split- 
ting. (Compare the analogous behavior of cyclopropane [lo].) 
Similarly, the form of the band at  13.5 eV seems to indicate 
a small splitting of 0.2eV, which would agree with the 
theoretical prediction that in this case the photoelectron is 
ejected from the leg (or 3e) orbital. I t  should be noted that 
the PE spectroscopic findings confirm the prediction [7J 
that, by analogy to the situation prevailing in cyclopro- 
pane[lo. 111, the highest occupied orbital in cyclobutane is 
also degenerate and can consequently be regarded as a kind 
of Walsh orbital. 
The structure of the radical cation C4Hi (in the electronic 
ground state) has been studied in the course of an investi- 

Table I .  
butane 

Vertical ionization potentials and orbital energies of cyclo- 

Calculated orbital energies (eV) 1 Orbital 

Drh 
nb inirio 
[a1 

MINDC EHT I character 

-10.50 

-11.82 
- 12.47 
-14.38 

-16.05 
--- 17.53 

- 9.88 

-10.35 
-11.93 
-13.17 

--15.23 
-17.94 

4e 10.7 [b]; 

4al 11.7 
lbl  12.5 
3e 13.4; 

3ai 15.9 
3b2 18.2 

I I .3 (JT) [cl 

13.6 (JT) lcl 

Ial See ref. [41. 
[cl Jahn-Teller splitting. 

[bl Electron iiiipact value: 10.58 eV, cf. [I31 
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a b s t r a c t

The field of paramagnetic NMR has expanded considerably in recent years. This review addresses both
the theoretical description of paramagnetic NMR, and the way in which it is currently practised. We pro-
vide a review of the theory of the NMR parameters of systems in both solution and the solid state. Here
we unify the different languages used by the NMR, EPR, quantum chemistry/DFT, and magnetism com-
munities to provide a comprehensive and coherent theoretical description. We cover the theory of the
paramagnetic shift and shift anisotropy in solution both in the traditional formalism in terms of the mag-
netic susceptibility tensor, and using a more modern formalism employing the relevant EPR parameters,
such as are used in first-principles calculations. In addition we examine the theory first in the simple non-
relativistic picture, and then in the presence of spin-orbit coupling. These ideas are then extended to a
description of the paramagnetic shift in periodic solids, where it is necessary to include the bulk magnetic
properties, such as magnetic ordering at low temperatures. The description of the paramagnetic shift is
completed by describing the current understanding of such shifts due to lanthanide and actinide ions. We
then examine the paramagnetic relaxation enhancement, using a simple model employing a phenomeno-
logical picture of the electronic relaxation, and again using a more complex state-of-the-art theory which
incorporates electronic relaxation explicitly. An additional important consideration in the solid state is
the impact of bulk magnetic susceptibility effects on the form of the spectrum, where we include some
ideas from the field of classical electrodynamics. We then continue by describing in detail the solution
and solid-state NMR methods that have been deployed in the study of paramagnetic systems in chem-
istry, biology, and the materials sciences. Finally we describe a number of case studies in paramagnetic
NMR that have been specifically chosen to highlight how the theory in part one, and the methods in part
two, can be used in practice. The systems chosen include small organometallic complexes in solution,
solid battery electrode materials, metalloproteins in both solution and the solid state, systems containing
lanthanide ions, and multi-component materials used in pharmaceutical controlled-release formulations
that have been doped with paramagnetic species to measure the component domain sizes.
� 2018 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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Chapter 1: Introduction

1.1. Paramagnetic NMR

Nuclear magnetic resonance (NMR) spectroscopy has become
established as an essential method for structural characterisation
in chemistry, biology, and the materials sciences [1,2]. One area
that has seen increased activity in recent years is the study of
the structural and electronic properties of paramagnetic systems
in both solution and the solid state [3–13]. Paramagnetic systems
are defined as molecules or materials that contain one or more
‘paramagnetic centres’, which are atoms or ions possessing at least
one unpaired electron. From the point of view of NMR spec-
troscopy the important property of these systems is that there is
a hyperfine interaction between the unpaired electrons and the
observed nucleus, which is the origin of the paramagnetic shift
and shift anisotropy (SA), the paramagnetic relaxation enhance-
ment (PRE), and additional sources of substantial broadening due
to bulk magnetic susceptibility effects. These interactions poten-
tially yield important information about the system, including
the bonding between the atoms and ions and their spatial arrange-
ment, the delocalisation of the unpaired electrons onto the coordi-
nating atoms and ligands, the dynamics of the system, and,
particularly relevant in the case of lanthanide ions, details about
the crystal-field splitting and consequent optical properties
[14–18]. However the paramagnetism can also cause problems
when attempting to both acquire and interpret the NMR data.
The problem of acquisition arises because the paramagnetic shifts
and SAs are often very large, with the result that excitation of the
nuclei with practicable radio-frequency (RF) powers can be both
inefficient and not sufficiently broadbanded, and the large PREs
cause the coherences to decay rapidly once they have been excited.
The interpretation of the NMR data is not always intuitive, and
usually requires the availability of reliable theoretical models.
The research in the field of method development has therefore.
focused on two areas: the development of new and improved
experimental NMR techniques for acquiring usable data, and the
development of new theoretical techniques for calculating and
interpreting the spectra.

1.2. New techniques for solid-state paramagnetic NMR

The development of new NMR techniques has focused on new
methods for solid samples under magic-angle spinning (MAS).
The motivation for this development arises from the observation
that many conventional techniques that are standard for diamag-
netic systems perform very poorly when applied to paramagnetic
systems. In particular those techniques that require long periods
of RF irradiation, such as cross-polarization (CP) [19] and heteronu-
clear decoupling [20] are found to be inefficient, due to RF field
power not dominating the paramagnetic shift and SA interactions;
in the worst cases this has a deleterious effect on the spectrum. The
most successful techniques applied to paramagnetic solid-state
NMR are generally those that employ short, high-power RF pulses,
such as the spin-echo [21] and transferred-echo double-resonance
(TEDOR) [22] sequences.

Clayton et al. showed that under slow-to-moderate MAS the
linewidths in the 13C spectra of paramagnetic complexes have a
significant contribution due to the 1H–13C dipolar couplings, and
that attempts at conventional 1H decoupling lead to no improve-

ment [23]. However the problem can be alleviated by chemical
substitution of 2H for 1H, which results in narrower lines due to
the smaller heteronuclear dipolar interactions. These observations
were later confirmed by Liu et al., who also showed that detection
of 2H leads to narrower lines than detection of 1H, allowing the
characterization of hydrogen environments closer to the metal
ion [24]. One spectroscopic solution to the problem would be to
design a new, more broadband, decoupling sequence, such as that
proposed by Raleigh et al. [25]. Their solution was to split the irra-
diation over multiple frequencies so that the RF power is dis-
tributed more evenly over the 1H resonances. However this early
method has not achieved widespread usage. Ishii et al. suggested
a different approach using very fast MAS, under which conditions
the dipolar-coupling contribution to the linewidths is sufficiently
narrowed that the decoupling can be dispensed with [26,6]. This
approach has the advantage that the recycle delay can be short-
ened considerably, in the absence of a duty cycle limit, in order
to exploit the PRE of the longitudinal relaxation. Hence both the
resolution and sensitivity are considerably enhanced. Very fast
MAS is the foundation upon which all subsequent paramagnetic
NMR methods have been based.

Further improvements in resolution and sensitivity have been
made by using two-dimensional heteronuclear correlation experi-
ments based on the TEDOR [7], dipolar insensitive nucleus
enhanced by polarization transfer (DINEPT) [27], and dipolar
heteronuclear single-quantum correlation (DHSQC) [28] experi-
ments. These pulse sequences employ short, high-power pulses
and have been shown to give superior results compared to the
CP-based heteronuclear correlation (HETCOR) sequences. The use
of such techniques is crucial if solid-state NMR is to yield unam-
biguous data for paramagnetic systems.

An additional avenue of enquiry is the development of new RF
pulse schemes that are capable of delivering more broadband exci-
tation, therefore making NMR applicable to more demanding para-
magnetic systems experiencing larger interactions. The most
promising schemes to have been proposed to date are those which
employ adiabatic pulses, the most successful example of which is
the family of short high-power adiabatic pulses (SHAP) [29]. It
has been shown that the SHAPs are particularly versatile, and they
have been incorporated into more sophisticated experiments to
enhance sensitivity, such as the SHAP-CPMG sequence [30], and
resolution, such as the adiabatic magic-angle turning (aMAT)
experiment [31]. A second class of adiabatic scheme that has been
proposed is the low-power single-sideband-selective adiabatic
pulse (S3AP) [32–34]. These pulses have been shown to achieve a
broadband NMR response over a frequency range that is an order
of magnitude larger than the applied RF field amplitude, and gen-
erally exhibit optimal performances at higher spinning frequen-
cies. This field has been recently reviewed [35].

1.3. The paramagnetic shift and shift anisotropy

The interpretation of the paramagnetic shift and SA is aided by a
number of different theories and formalisms that have been pro-
posed over the years. Work in this area has been performed by the-
oretical physicists, researchers in quantum chemistry and density-
functional theory (DFT), chemists, and biologists. As a result the
different formalisms take different approaches, and often use dif-
ferent scientific language. It is one main purpose of this review
to unify these different approaches, to identify the common
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ground, and to explain any differences. In brief the different
approaches can be categorised into the groups described below,
between which there is some overlap. For example some theories
are designed for d-block transition-metal ions, whilst others are
specifically for lanthanide ions. There are also different ways of
modelling the magnetic properties of the metal ions. In some cases
the ions are described by their molecular/atomic-level electronic
paramagnetic resonance (EPR) parameters, such as the g-tensor
and zero-field splitting (ZFS), whilst in others the ions are
described by their bulk magnetic susceptibility. Finally another
important distinction that arises is whether the system being
described contains non-interacting metal ions, such as complexes
in solution, or an extended network of interacting metal ions, such
as in periodic solid materials. The link between these cases is not
always obvious.

The first contributions to understanding the paramagnetic
shifts from d-block metal ions are due to McConnell in 1958,
who identified two important contributions to the isotropic shift.
These are the contact shift, which is due to through-bond transfer
of the unpaired electron spin onto the nucleus [36], and the
pseudo-contact shift (PCS), which arises from the through-space
spin-dipolar coupling between the unpaired electrons and the
nucleus [37]. Kurland and McGarvey generalized this formalism
to include d-block metal ions with a more complex description of
the magnetic properties [38]. More recently Moon and Patchkovs-
kii have rejuvenated interest in this area by publishing a modern
formalism describing the whole shift tensor, including the SA, for
metal ions with a single unpaired electron [39]. This has since been
extended to d-block metal ions with arbitrary electronic spin, and a
small spin-orbit coupling parameter, by Pennanen, Vaara, et al.,
where the shift tensor is described in terms of the g-tensor, hyper-
fine tensor, and the ZFS [40,41]. This formalism and its application
in quantum chemistry and DFT calculations have been recently
reviewed by Kaupp and Koehler [42].

An alternative description of the paramagnetic shift and SA due
to d-block transition-metal ions has been given in terms of the bulk
magnetic properties of an ensemble of such ions. Here the param-
agnetic shift tensor is calculated from the magnetic susceptibility
tensor and the hyperfine tensor [43,15,16]. This approach has been
applied extensively to paramagnetic metalloproteins in both solu-
tion [44] and the solid state [45,46], where the observed paramag-
netic shifts are given entirely by the PCS. As a consequence of its
origin from the through-space spin-dipolar interaction, the PCS
has a very well-defined geometrical dependence that can be
exploited to provide information on the position of the observed
nuclei relative to the metal ion, and thence structural restraints
[15]. The advantage of this susceptibility formalism is that it can
be used to describe the paramagnetic shifts in materials with dif-
ferent magnetic properties by changing the form of the magnetic
susceptibility accordingly. For example it has been used to describe
the shift due to a small cluster of paramagnetic d-block metal ions
that are coupled together by exchange interactions [47,48]. In
addition this formalism has been used extensively to rationalize
the paramagnetic shifts in periodic paramagnetic battery materials
[49], glasses, and minerals [50–53]. For these systems it has been
shown that the isotropic shifts are dominated by contact interac-
tions, and the SAs are dominated by spin-dipolar interactions.
One important observation is that the contact shifts can be broken
down into a sum of contributions from the metal ions that transfer
unpaired electronic spin density onto the nucleus, known as ‘path-
way contributions’ [5]. This idea has been instrumental in allowing
the analysis of the contact shifts of very complex battery materials
which contain more than one type of metal ion [31,54–60].

In parallel to these developments there has been some work,
albeit less extensive, in rationalizing the form of the paramagnetic
shift due to lanthanide ions. The first, and still principal, contribu-

tions to this were the Golding and Halton [61] and Bleaney [62]
theories, which gives expressions for the contact shift and PCS
respectively. For the latter the Bleaney theory links the PCS to
the crystal-field splitting parameters of the metal ion [62]. These
theories are considerably simpler than the formalisms for d-block
metal ions described above, and depend on the assumption, which
may not be universally valid [63], that the spin–orbit (SO) coupling
interaction completely dominates the crystal-field splitting. Never-
theless they have been remarkably successful in rationalizing the
observed shifts in both solid-state samples and in solution, and
in pushing the field forward. An extension has been given by
McGarvey, however the improvements are relatively modest and
the theory is still subject to the same basic assumptions [64]. The
basic forms of the Golding and Halton, and Bleaney theories have
been instrumental in the rationalization of the shifts observed in
lanthanide pyrochlores [65,66], and more recently for the solid-
state lighting materials, lanthanide-doped yttrium aluminium gar-
net [66,68]. The Bleaney theory also allows the paramagnetic shift
and SA due to lanthanides to be described in terms of the magnetic
susceptibility [62]. This is an extension of the susceptibility formal-
ism described above, and has been employed for materials in the
solid state [69–71,67,73], small molecules in solution [63,74],
and more extensively for proteins in solution including calcium-
binding metalloproteins such as calbindin D9k [75] and calmodulin
[76,77], and for many other proteins where the lanthanide ions
have been introduced as attached tags [78–86].

Recently van den Heuvel and Soncini have introduced a formal-
ism which describes the paramagnetic shift for any system with
arbitrary SO coupling strength [87–89]. For d metal ions, lan-
thanides, and actinides the shift and SA can either be calculated
directly from the electronic energy levels, or else via an intermedi-
ate step where the EPR parameters are first determined. This is
straightforward for 3d metals, but the equivalent description of
lanthanides and actinides is more complicated due to the more
complex electronic structure of these ions. This formalism has been
explored for isolated d-block metal ions [88,90,91] and actinide
ions [92,93]. In the future it seems likely that this formalism will
become more widely used.

1.4. The paramagnetic relaxation enhancement

The development of formalisms to describe the PRE, and their
applications, have also been researched actively [94–96]. The
earliest and most widely-used formalism is the Solomon–
Bloembergen–Morgan theory, which describes the nuclear
relaxation as the effect of stochastic fluctuations in the hyperfine
interaction as a consequence of a combination of molecular dynam-
ics, fast chemical exchange, and electronic relaxation [95–99]. This
formalism is limited to applications in high external magnetic fields,
and with fast molecular dynamics. Additionally, the electronic relax-
ation is only treated approximately, using phenomenological
parameters. The theory has been extended to describe systems with
molecular dynamics that are much slower than electronic relax-
ation, such as large biomolecules, adding an extra term known as
the Curie relaxation rate [100,101]. The Curie PRE is calculated by
separating the slow molecular dynamics from the faster electronic
relaxation, and treating the relaxation process as a hyperfine
coupling to the average electronic magnetic moment. The Curie con-
tribution has been shown to dominate the linewidths of nuclear
spins in proteins in solution for paramagnetic metals with electron
relaxation times much shorter than the reorientation times [15].
These formalisms have been widely used to interpret PREs as
structural restraints, particularly for proteins [17,102,11].

Further developments have focussed on formalisms that treat
the electronic relaxation explicitly, both in the fast- and slow-
electronic dynamics regimes, and which are also applicable in
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low external magnetic fields. These formalisms have been devel-
oped mainly by research groups in Sweden, Grenoble, and Ann
Arbor, and are consequently referred to as the Swedish slow-
motion [94,103–110], Grenoble [111,112], and Ann Arbor [113–
115] theories respectively. These theories are more complicated
than the Solomon–Bloembergen–Morgan theory and Curie for-
malisms, but have also been shown to be more generally applica-
ble. Explicit calculations of electronic relaxation have been
incorporated, including mechanisms such as distortion of the
metal-site geometry due to solvent collisions in solution samples
[116,117], and molecular vibrations in solutions and solids [118–
120]. The slow-motion theory has been used to describe the relax-
ation of solvent molecules in a solution of paramagnetic metal ions
by the mechanisms of inner- and outer-sphere relaxation [121].
The former mechanism describes the relaxation of molecules in
the solvation sphere of the metal ion that are in exchange with
the bulk solvent, and the latter mechanism describes the PRE of
solvent molecules that never coordinate to the metal ion. The the-
ory that describes these effects, and the calculations it facilitates
[122–125], are of importance to understanding and developing
contrast agents in magnetic resonance imaging (MRI) [126–134].
In addition the studies of the PRE under low-field conditions
enable the calculation of NMR dispersion (NMRD) profiles, which
show how relaxation rates vary with field [135–145]. Such NMRD
profiles are useful for studying dynamic processes such as protein
folding [146,147].

1.5. Bulk magnetic susceptibility effects

The final paramagnetic effects that are considered here are the
bulk magnetic susceptibility (BMS) and anisotropic bulk magnetic
susceptibility (ABMS). These are of particular importance in the
solid-state NMR of paramagnetic single-crystal samples, powders,
and complex and heterogeneous samples such as battery cells.
The BMS effect involves the change in the bulk susceptibility at
the surface of a crystal and in the surrounding medium, which
gives rise to a demagnetizing field within the crystal leading in
turn to changes in the measured paramagnetic shift and to inho-
mogeneous line broadening. For paramagnetic polycrystalline
powder samples with an ABMS, the close packing results in each
crystallite experiencing a demagnetizing field due to the neigh-
bouring crystallites, which is also a source of inhomogeneous
broadening. Importantly this ABMS broadening is not removed
by MAS and can dominate the lineshapes and linewidths of spin-
ning paramagnetic solids, and perturb the intensities of the spin-
ning sidebands so that they can no longer be analysed in terms
of a simple second-rank tensor. What this means in practice is that
the BMS leads to NMR spectra with low resolution, which hinders
the basic assignment, and also impedes the obtaining of accurate
distance information from the analysis of sideband manifolds.

The BMS and ABMS broadening effects were first described by
VanderHart [148], and Alla and Lippmaa [149]. The effects of the
BMS on the linewidth and spinning sideband intensities were
demonstrated on paramagnetic lanthanide stannates by Grey
et al. [150], who also showed that it is possible to remove the per-
turbing effects on the spinning sidebands in materials with isotro-
pic susceptibilities by immersing the crystals in a medium with a
matching magnetic susceptibility, thus removing the effects that
are responsible for the BMS. A more complete theory of the BMS
and ABMS broadening was proposed by Schwerk et al. [151], and
extended by Kubo et al. [152]. More recently a practical method
for calculating the broadening has been proposed by Dickinson
et al., [153], who use ideas from classical electrostatics to calculate
the demagnetizing fields due to a large bulk sample.

The BMS effect has been shown to be very important in the
study of whole battery cells containing a paramagnetic material.

In this case the linewidth and shift varies with the orientation of
the sample within the magnetic field, and so it is crucial that this
be optimized in order to obtain the optimum data [154,155].

1.6. Paramagnetic NMR and dynamic nuclear polarization

One area of magnetic resonance that is very closely related to
paramagnetic NMR is dynamic nuclear polarization (DNP). The
object of this method is to increase, or enhance, the nuclear polar-
ization of a system that also contains unpaired electrons. The elec-
trons have a larger gyromagnetic ratio than any nuclei and so the
electrons also have a larger spin polarization. For example the elec-
tronic gyromagnetic ratio, and therefore the polarization in a mag-
netic field, is larger than that of the proton by a factor of 658. The
DNP methods transfer this polarization to the nuclei via a number
of mechanisms involving the coupling between the electronic and
nuclear magnetic moments, by irradiating the electronic spin tran-
sitions with microwave radiation while acquiring the NMR spectrum.

Dynamic nuclear polarization was first proposed as an enhance-
ment method for metals by Overhauser [156], and was demon-
strated experimentally by Carver and Slichter shortly afterwards
[157,158]. In recent years, the field has been revolutionized by
the development of polarization methods for frozen suspensions
at high magnetic fields [159,160], and application to solids under
MAS [161–163]. The best enhancements have generally been
obtained on diamagnetic samples that have been impregnated
with paramagnetic species based on organic nitroxide-based radi-
cals, and frozen at low temperatures of around 100 K [164–171].
These radicals and conditions are chosen because the polarization
transfer mechanisms are generally more efficient if the electrons
have longer relaxation times, typically of the order of milliseconds.
This approach has been shown to be very successful in NMR
applications in both biology [163,172–177] and materials science
[178–180]. However it has also been demonstrated that DNP
enhancements can be obtained on paramagnetic samples contain-
ing high-spin transition metal ions, such as Mn2+ and Gd3+ which
also have comparatively slow electronic spin relaxation since these
ions have no orbital angular momentum [181,182].

The field of DNP has much in common with that of paramag-
netic NMR. The obvious similarity is that both fields are applicable
to samples containing sources of unpaired electrons, and an under-
standing of both fields requires an appreciation of ‘‘paramagnetic
NMR concepts” such as the hyperfine interaction, electronic relax-
ation, PRE, and BMS. Specifically to explain DNP fully, we need to
understand these paramagnetic effects in samples that have been
impregnated with many paramagnetic radical molecules. For
example two paramagnetic effects that have consequences for
DNP are quenching, and nuclear depolarization. The quenching
effect is important for nuclei that are close to the radicals, and
experience a large PRE or hyperfine coupling that renders them
‘‘invisible” in conventional NMR experiments. This effectively
reduces the number of nuclei that contribute to the NMR signals,
and acts to reduce the size of the DNP enhancement. The depolar-
ization effect, described by Thurber and Tycko, is an interesting
phenomenon where the impregnation of the sample with the rad-
ical has the effect of reducing the initial nuclear polarization in the
absence of microwave irradiation [183]. With microwave irradia-
tion depolarization is expected to reduce the enhancement. Thur-
ber and Tycko showed that depolarization is more effective when
the unpaired electrons have long electronic relaxation times,
meaning that the effect is important for organic radicals at low
temperature, and is increased at higher fields [183]. It was also
shown that spinning samples experience larger depolarization
than static samples, provided the electronic spin relaxation times
are longer than the rotation period. Thurber and Tycko ascribed
depolarization to the cross effect, which becomes more pro-
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nounced in spinning samples due to time-dependent spin-level
crossings that occur in organic biradicals with spatially anisotropic
electronic Zeeman interactions. It is currently unclear whether this
effect is also important for paramagnetic samples containing metal
ions at room temperature, although the indications so far are that
depolarization is negligible for such samples under these condi-
tions, as the metal ions generally have much shorter electronic
relaxation times.

Both the fields of paramagnetic NMR and DNP have their origin
in early contributions made from the 1950s onwards, but have
only experienced an expansion into the mainstream relatively
recently with advances in instrumentation and methodology.
However there are also some subtle differences between the two
fields. Firstly, most applications of DNP are to diamagnetic systems
that have been impregnated with paramagnetic radicals specifi-
cally for the purpose of using the unpaired electrons to obtain
the enhancement. For the subsequent DNP study to be valid, it is
clearly necessary to avoid any structural changes to the system
on adding the radical, and so the impregnation is carried out in
such a way that the part of the system of interest is sufficiently
far from the unpaired electrons not to experience any direct para-
magnetic NMR effects. Beyond experiencing an enhancement and
any relayed paramagnetic effects transferred by spin diffusion, this
part of the system is assumed to be unperturbed by the radical. The
‘‘paramagnetic” part of the sample that is close to the radical is
usually not studied and, as has already been remarked, is often
invisible under the experimental conditions. This is in contrast to
the practice of paramagnetic NMR, where the unpaired electrons
play a key role in the properties of the system, and it is of immense
interest to probe the nuclei that are as close to the paramagnetic
centre as possible. Secondly, the DNP radicals are designed so that
the unpaired electrons have long electronic spin relaxation times,
on the order of milliseconds at low temperature. By contrast para-
magnetic NMR is applied to paramagnetic species with a broader
range of electronic relaxation times, usually ranging from picosec-
onds to milliseconds, but most studies are performed on species
with faster electronic relaxation than DNP. Thirdly, in paramag-
netic NMR we usually model the shift and shift anisotropy by not-
ing that the nuclear spin dynamics occur on a timescale that is
much longer than the electronic relaxation times, meaning that
the nuclear spin effectively interacts with the average electronic
magnetic moment. This model is at the root of all the theories of
the paramagnetic shift and shift anisotropy. We only model the
electronic spin levels explicitly when we need to consider a process
that occurs on a faster timescale, such as the processes leading to
nuclear relaxation. In DNP, on the other hand, the polarization
transfer mechanisms can only be understood from a full consider-
ation of the electronic spin levels at all times. This difference from
paramagnetic NMR is due both to the longer electronic relaxation
times of DNP radicals, and to the fact that the microwave irradia-
tion of the electronic spin transitions has a timescale that is shorter
than, or comparable to, the electronic spin relaxation times.

The field of DNP is currently evolving very rapidly, and there are
many details to be worked out and controversies to be resolved.
Therefore a comprehensive review of the theory and applications
of DNP is at the time of writing extremely difficult, and beyond
the scope of the current review.

1.7. What this review contains

The purpose of this review is to unify the descriptions of para-
magnetic effects in the literature, and set them out in the context
of the most recent work, particularly the theoretical descriptions
of the paramagnetic shift and SA, which have hitherto not been
described in detail for the NMR community. In addition greater
emphasis is placed on the form of the shifts obtained in solid mate-

rials, which has been somewhat neglected in comparison to para-
magnetic molecules in solution. In all cases we pull out the key
equations that are generally used to interpret the spectra so that
the reader does not have to follow all of the derivations, which
we hope makes the chapters more practically useful. We do not
intend this to be comprehensive in terms of a review of the litera-
ture, but simply to review the different approaches and strategies,
and their strengths and weaknesses.

This review is divided into six parts. Part I is the single Chapter
2, which describes the basic concepts that are necessary for under-
standing paramagnetic effects on NMR. Part II comprises Chapters
3–7, and contains a description of all the formalisms for the para-
magnetic shift and SA under different conditions and in different
systems. This part also attempts to provide a unified description
of the different formalisms. Part III contains Chapters 8 and 9,
and describes the PRE in different regimes. Again a unifying
description is provided. Part IV concerns the BMS and ABMS effects
in single-crystal and powder samples, and is formed of the single
Chapter 10. Part V is Chapter 11, and describes the quantum
mechanics of the NMR experiment. It is shown how the different
NMR interactions in paramagnetic systems change the observed
spectral features in both solution and solid-state NMR. The final
part VI, formed from Chapters 12–14, is a practical guide to the
NMR experiments that can be used on different paramagnetic sys-
tems in solution and the solid state, and includes a series of case
studies of different systems.

Chapter 2 describes some basic concepts that are essential for
understanding paramagnetic NMR. These include the basic theory
of magnetism, the chemical shift, and the hyperfine interaction.
This material forms the foundations of NMR [184] and EPR
[185,186] spectroscopy, and it will be seen that an understanding
of paramagnetic effects in NMR can only be obtained through an
understanding of EPR.

Chapter 3 describes the origin of the paramagnetic shift and SA
for the simplest possible example of a spin-only transition-metal
complex. The shift is described both in terms of the EPR parame-
ters, and the bulk magnetic susceptibility, and the two formalisms
are unified. The effects of SO coupling on the paramagnetic shift
and SA due to a d-block transition-metal ion are described in Chap-
ter 4 in terms of the EPR formalism of van den Heuvel and Soncini
[87,89]. The effect of SO coupling on the magnetic susceptibility
and the susceptibility formalism, are given. This chapter concludes
with the first description of a unification of the two formalisms.
The interpretation of the various contributions to the shift and
SA arising from these EPR and susceptibility formalisms is detailed
in Chapter 5. This chapter describes under which conditions the
various contributions become important, and the different types
of structural and electronic information that each can provide.
The following Chapter 6 provides an advanced description of the
EPR formalism of van den Heuvel and Soncini [87,89], and in par-
ticular the role of higher-order effects that may be present in the
EPR description of the metal ion, and with arbitrary spin-orbit cou-
pling strength. This description is first applied to d-block metal
ions, and then extended to the shift and SA due to lanthanide ions
in the Bleaney formalism [62]. The effect of interactions between
neighbouring metal ions in transition-metal clusters and extended
solids is described in Chapter 7. It describes the role of low-
temperature magnetic ordering, such as ferro- and antiferromag-
netic ordering, in determining the sizes of the shifts and SAs. We
also link the solid-state shift formalism described by Kim et al.
[54] to the EPR formalism.

In Chapter 8 we turn our attention to the PRE and the form that
the relaxation rate constants take in different motional regimes,
including rapidly-tumbling molecules in solution, large biomole-
cules, and rigid solids. This chapter presents the Solomon-
Bloembergen-Morgan and Curie relaxation theories, which are
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used to interpret the PRE of small molecules and large
biomolecules under conditions of high field, and with a phe-
nomenological description of electronic relaxation. Chapter 9
extends the relaxation discussion to include explicitly the relevant
mechanisms of electronic relaxation. The Swedish slow-motion
formalism is used to describe the effects of slow electron dynamics,
low field, and inner- and outer-sphere PREs [103–105,108–110].

A feature of paramagnetic solid-state NMR that has hitherto
been neglected by reviews is the presence of BMS effects in
single-crystal and powder samples. However it is a very important
effect as it leads to changes in the measured shift, and to broaden-
ing of the resonances which limits the available resolution. The
BMS effects are described in Chapter 10 in terms of the theory of
classical electrodynamics [187].

The remainder of the review concentrates on howdifferent para-
magnetic effects appear in the NMR spectra of solutions, static, and
spinning solids containingdifferentmetal ions. Chapter 11describes
the basic quantummechanics of NMR.Weexamine how the appear-
ance of the NMR spectrum varies with different interactions due to
paramagnetic metal ions, and how these effects combinewith other
interactions, such as the nuclear quadrupolar interaction, to give
distinctive spectral features. Chapter 12 is a practical guide to the
NMR pulse sequences that can be applied to paramagnetic systems.
The survey has a wide scope, and encompasses small molecules in
solution, solid materials, and proteins both in solution and the solid
state. This chapter aims tofind the general principles that govern the
success or failure of particular NMRmethods when applied to para-
magnetic systems. This links to Chapter 13, which presents a series
of case studies in paramagnetic NMR. The examples that are pre-
sented include small molecules, biomolecules, and solid materials
incorporating a wide range of unpaired electron species including
3d metal ions, lanthanides, and organic radicals. Finally we provide
some concluding remarks, and offer a perspective on the future of
paramagnetic NMR in Chapter 14.

Each chapter ends with a summary of the salient points.

Chapter 2: Introduction to nuclear and electronic magnetism

This chapter introduces the basic concepts describing the mag-
netic properties of nuclei and electrons. Bulk properties, such as
the magnetization and magnetic susceptibility, and molecular/
atomic-level properties, such as magnetic moments, are presented.
We employ Cartesian and spherical tensor formalisms for describ-
ing the spin Hamiltonians of the basic interactions that are relevant
for the NMR of paramagnetic systems, namely the nuclear and
electronic Zeeman interactions, the chemical shielding and shift,
and the hyperfine interaction.

2.1. Nuclear and electronic magnetic moments

In quantum mechanics the magnetic dipole moment of a
nucleus lI is proportional to the dimensionless nuclear spin angu-
lar momentum I,

lI ¼ �hcII; ð2:1Þ

where the constant of proportionality is the product of Planck’s con-
stant divided by 2p (�h), and the nuclear gyromagnetic ratio cI .
Planck’s constant is a fundamental physical constant, whereas cI
takes different values depending on the nuclear species. It is impor-
tant to note that cI is a signed quantity, i.e. it can take either positive
or negative values. For example both 1H and 13C have positive gyro-
magnetic ratios, whereas 15N has a negative value. Fig. 2.1 illus-
trates the relationship between the spin and magnetic moment
vectors. The cases of positive and negative cI are shown in (a) and
(b) respectively.

In describing the electronic magnetic moment we encounter a
difference in the nomenclature used by the NMR and EPR commu-
nities. The definition of the nuclear magnetic moment in Eq. (2.1),
given in terms of �h and cI , is that most commonly employed by the
NMR community. The EPR community, however, predominantly
uses the alternative expression

lI ¼ lNgII; ð2:2Þ
where lN is the nuclear magneton, and gI is the dimensionless
nuclear g-factor. Like �h;lN is a physical constant; it can be related
to other physical constants via the expression

lN ¼ e�h
2mp

; ð2:3Þ

where e is the elementary charge, and mp is the rest mass of the
proton. In this nomenclature, different nuclear species have differ-
ent values of gI . The equivalence between the two sets of parame-
ters describing the magnetic moment is concisely expressed as

�hcI ¼ lNgI: ð2:4Þ
We note that gI is also a signed quantity, and takes the same sign as cI .

In an analogous way the electron magnetic moment lS is pro-
portional to the electron spin S, and can also be written using
two related constants of proportionality as follows:

lS ¼ �hcSS ð2:5Þ
¼ �lBgeS; ð2:6Þ

where cS is the electron gyromagnetic ratio, ge is the free-electron
g-factor, and lB is a physical constant known as the Bohr magneton
which can be calculated from the elementary charge and the rest
mass of the electron me:

lB ¼ e�h
2me

: ð2:7Þ

The relationship between the two sets of constants in the expres-
sion for the electronic magnetic moment is related in a similar
way to Eq. (2.4), but with an additional minus sign:

�hcS ¼ �lBge: ð2:8Þ
This awkward minus sign arises because the electron gyromagnetic
ratio is actually negative, but it remains conventional to define ge as
a positive number with approximate value 2.0023. The relationship
between the electronic spin and magnetic moment is illustrated in
Fig. 2.1(c). In this review we adopt the convention that the angular

Fig. 2.1. Illustration of the relationship between the spin and the magnetic dipole moment for nuclear and electronic spins. In (a) it is shown that a nuclear spin I with a
positive gyromagnetic ratio cI possesses a magnetic moment lI that is parallel to the spin I. If instead the nuclear gyromagnetic ratio is negative, the spin and magnetic
moment are antiparallel, as shown in (b). The free electron has a negative gyromagnetic ratio cS , and so the electronic magnetic moment lS is antiparallel to the electronic
spin S.
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momenta I and S refer to nuclear spins and electronic spins
respectively.

2.2. Magnetic field, magnetization, and the magnetic susceptibility

In the literature one commonly encounters two definitions of
the magnetic field, namely the magnetic field strength H, and the
magnetic induction, also known as the magnetic flux density, B.
When we are describing the application of a magnetic field to a
material containing a large number of magnetic moments, the rela-
tionship between H and B is, in general, rather complicated. The
field induces a net bulk magnetizationM which is the total induced
magnetic moment per unit volume. The relationship between B
and H is then [188]

B ¼ l0ðH þMÞ; ð2:9Þ
where l0 is the permeability of free space. The magnetic field, mag-
netization, and flux density are not always parallel to each other, as
illustrated in Fig. 2.2(a). Here we are concerned with linear materi-
als, which are those materials for which the magnetization is pro-
portional to the field strength [188]

M ¼ vVH; ð2:10Þ
where vV is a dimensionless scalar quantity called the volume mag-
netic susceptibility. Hence the flux density is given by

B ¼ l0ð1þ vV ÞH: ð2:11Þ
In this case the flux density is parallel to the field, as shown in
Fig. 2.2(b). The scope of this review is restricted to paramagnetic
systems which are linear, and for which the volume susceptibility
is small, jvV j � 1, and so the magnetic flux density and field
strength are related by the simple relation

B � l0H: ð2:12Þ
Henceforth we use B for the applied field, and refer to it simply as
the ‘magnetic field’.

This review will focus on how the interaction between the
nuclear and electronic spins in the presence of a magnetic field
can be related to both the macroscopic and the molecular/atomic-
level properties of the system. This link can be made by employing
classical and statistical thermodynamics, and will be summarised
here to facilitate the discussion. The first law of thermodynamics
relates the infinitesimal change in the internal energy U of a system
to the energy supplied as heat and the work done by the system:

dU ¼ TdS� pdV � VM � dB: ð2:13Þ
The heat is equal to TdS, where T is the absolute temperature and S
is the entropy of the system, and the work done by the system is
pdVþ VM � dB where p and V are the pressure and volume of the
system. We define the Helmholtz free energy F as

F ¼ U � TS: ð2:14Þ

The infinitesimal change in F that accompanies the infinitesimal
change in U is

dF ¼ dU � SdT � TdS ð2:15Þ
¼ �SdT � pdV � VM � dB; ð2:16Þ

from which the components of the magnetisation are given by

Mi ¼ � 1
V

@F
@Bi

� �
T;V

; ð2:17Þ

where the subscripts T and V indicate that the partial derivative is
calculated at constant temperature and volume. This establishes
the link between the bulk magnetization and the bulk thermody-
namic properties of the system via the Helmholtz energy. It is also
possible to establish a link to the molecular/atomic-level properties
via statistical thermodynamics, from which it can be shown that F is
given by

F ¼ �NkT lnQ ; ð2:18Þ
where N is the number of particles, k is the Boltzmann constant, and
Q is the partition function. This latter quantity is a sum over the
molecular/atomic-level states jni with energies En:

Q ¼
X
n

expð�En=kTÞ: ð2:19Þ

Hence the expression for magnetization in terms of the molecular/
atomic-level states is

Mi ¼ NkT
V

@ lnQ
@Bi

� �
T;V

: ð2:20Þ

This important link is used later to establish the forms of the chem-
ical shielding and magnetic susceptibility tensors.

2.3. The electronic and magnetic properties of periodic solids

In Chapter 7 we derive and discuss the form of the paramag-
netic shielding tensor in periodic solid materials. In order to do
so we must make a distinction between electronic insulators and
metals, which have distinct electronic properties, and for which
the contributions of the unpaired electrons to the NMR properties
are very different. We therefore summarize the electronic proper-
ties of periodic solids here.

2.3.1. Electronic energy levels and the density of states
In finite systems, such as isolated molecules, the electronic

energy levels form a discrete ladder with well-defined energies,
and the wavefunctions may either be localized to certain atoms
or delocalized to a limited extent across the molecule. However
in an infinite periodic solid the energy spacing between levels is
so small that the levels broaden into continuous bands [189]. The
corresponding wavefunctions are delocalized across the entire
material. In the absence of interactions between the electrons,
the overall wavefunction can be approximated by a product of
one-electron wavefunctions /ðrÞ with energies E that are the solu-
tions of the following Schrödinger equation:

� �h2

2me
$2 þ UðrÞ

 !
/ðrÞ ¼ E/ðrÞ; ð2:21Þ

where r is the position of the electron. The potential UðrÞ is due to
the electrostatic attraction between the electron and all the nuclei
distributed throughout the solid lattice. The potential is periodic
over the lattice, and so satisfies the relation

Uðr þ RÞ ¼ UðrÞ; ð2:22Þ
where the position vector R is a linear combination of the three
primitive vectors ai that span the lattice,

Fig. 2.2. Illustration of the effect of applying a magnetic field to a magnetic
material. The external magnetic field H induces a response from the material in the
form of a bulk magnetization M. The vector sum of H and M is the total magnetic
flux density B. In general these three vector quantities are not parallel to each other,
as shown in (a). The special case of a linear material with an isotropic volume
magnetic susceptibility vV is shown in (b). Here M is parallel to H, and so both are
parallel to B.
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R ¼ n1a1 þ n2a2 þ n3a3; ð2:23Þ
and the ni are integers. The energy levels EnðkÞ found by solving the
Schrödinger equation can be characterized by a band index n, which
is an integer defining the electronic band, and a wavevector k,
which labels the levels within a particular band. Each corresponding
one-electron wavefunction /nkðrÞ is given by the product of a plane
wave that depends on k and is normalized over the sample volume
V, and a normalized function unkðrÞ that depends on both n and k:

/nkðrÞ ¼
ffiffiffiffi
1
V

r
expðik � rÞunkðrÞ: ð2:24Þ

The functions unkðrÞ have the same periodicity as the lattice, i.e.
unkðr þ RÞ ¼ unkðrÞ, and the allowed values of k satisfy

expðik � RÞ ¼ 1: ð2:25Þ
If the electron-electron interactions are weak or absent we can
write the normalized multi-electron wavefunction wðr1; r2; . . . ; rNÞ
describing N electrons as the product of the N one-electron wave-
functions that have been properly symmetrized to satisfy the Pauli
principle:

wðr1; r2; . . . ; rNÞ ¼
ffiffiffiffiffi
1
N!

r X
P

ð�1ÞPP/n1k1 ðr1Þ/n2k2 ðr2Þ . . ./nNkN ðrNÞ:

ð2:26Þ
The operator P permutes the electron labels, the factor ð�1ÞP is a
plus or minus depending on whether an even or odd number of per-
mutations is involved, and ri is the position of the ith electron.

It is frequently the case that we need to calculate certain gen-
eral quantities that are the sum of contributions from the different
electronic levels. For instance we may write a general quantity Q as
the following sum of contributions QnðkÞ
Q ¼

X
n;k

QnðkÞ; ð2:27Þ

where QnðkÞ is the contribution from the level with wavevector k in
band n, and the sum runs over all bands n and the allowed values of
k with in each band. In the limit where the volume of the system V
becomes very large, the allowed values of k become more closely
spaced, and we can replace the sum over k in Eq. (2.27) with an
integral. This allows us to calculate the value of the general quantity
Q per unit volume, q, as

q ¼ lim
V!1

Q
V

ð2:28Þ

¼ 1

ð2pÞ3
X
n

Z
QnðkÞdk: ð2:29Þ

This expression is awkward to evaluate in practice, and so we
replace it with an integral over the energies E. To do this we firstly
calculate the average value of QnðkÞ at constant energy E over all
values of k corresponding to that energy, denoted hQðkÞiE. The value
of q is then given by the following integral

q ¼
Z

hQðkÞiEgðEÞdE: ð2:30Þ

The function gðEÞ is the density of states, which is given by the
derivative of the number of electrons per unit volume (number den-
sity) n ¼ N=V with respect to the energy:

gðEÞ ¼ dn
dE

: ð2:31Þ

Using this definition the number of electrons per unit volume with
energies between E and Eþ dE is gðEÞdE. In the special case where
QnðkÞ depends on n and k only through the energy EnðkÞ, we can
write Eq. (2.30) as

q ¼
Z

QðEÞgðEÞdE: ð2:32Þ

In the discussion so far we have focussed solely on the spatial
properties of the electrons, and have made no reference to the spin.
We account for the spin by multiplying the many-electron spatial
wavefunction in Eq. (2.26) with a properly symmetrized spin
wavefunction. In addition we define separate density-of-state
functions gaðEÞ and gbðEÞ describing the electronic states of elec-
trons in the a and b spin states. In the absence of an external mag-
netic field these functions are simply

gaðEÞ ¼ gbðEÞ ¼
1
2
gðEÞ; ð2:33Þ

i.e. each is exactly half of the total density of states.
The density of states gives us the energies of the levels, but does

not give us their populations. The average occupancy of a level in
band n with wavevector k is given by the Fermi–Dirac distribution
function f nðkÞ. This distribution function is usually given in terms
of the energy to give the following function f ðEÞ,

f ðEÞ ¼ 1
exp E� lð Þ=kT½ � þ 1

; ð2:34Þ

where l is the chemical potential of the system. At zero tempera-
ture the Fermi–Dirac distribution function is a Heaviside step func-
tion [190], which is given by

f ðEÞ ¼ 1; E < l;
0; E > l;

�
ð2:35Þ

i.e. the states with energies below the chemical potential are com-
pletely filled, and those with energies above the chemical potential
are completely unfilled. Hence we see that at zero temperature the
chemical potential is equal to the energy of the highest-energy
occupied electronic level, which is referred to as the Fermi energy
EF, i.e. limT!0ðlÞ ¼ EF. The corresponding level is the Fermi level.
At temperatures above zero the chemical potential deviates from
the Fermi energy according to

l ¼ EF 1� p2

12
T
TF

� �2

þO T
TF

� �4
 !" #

; ð2:36Þ

where TF is the Fermi temperature which is defined via the relation
EF ¼ kTF. However the temperature-dependent correction can usu-
ally be neglected at typical temperatures from 100 to 1000 K, for
example in the case of metals where TF is of the order 104–105 K
[184], and so we simply equate the chemical potential with the
Fermi energy l � EF. The Fermi–Dirac distribution function is plot-
ted for different temperatures in Fig. 2.3. It can be seen that the dis-
tribution is a step function at T ¼ 0, with the discontinuity at E ¼ EF.
However as the temperature increases we can clearly see the pro-
gressive population of states just above the Fermi level at the

Fig. 2.3. Plots of the Fermi–Dirac distribution function versus energy at different
temperatures. At T ¼ 0 (light grey curve) the distribution is a Heaviside step
function with the discontinuity at EF. As T increases (dark grey and black curves) the
discontinuity is smoothed, and the states with energies just above EF are populated
at the expense of those with energies just below.
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expense of those just below the Fermi level. The total number den-
sity of the electrons n is given by the integral expression in Eq.
(2.32), where the quantity QðEÞ is substituted for f ðEÞ:

n ¼
Z

f ðEÞgðEÞdE: ð2:37Þ

There are also analogous expressions for the separate number den-
sities of a and b electrons.

2.3.2. Band structures of insulators, semiconductors, and metals
We are now in a position to distinguish between the different

types of periodic solids, namely insulators, semiconductors, and
metals. The definitions of these materials are illustrated by the
schematics of their band structures shown in Fig. 2.4.

2.3.2.1. Insulators. We discuss the case of insulators first as this is
the class of solid materials to which we devote the most time in
this review. The band structure is shown in Fig. 2.4(a). The highest
occupied band, called the valence band, is completely filled with
electrons, and the next-highest, called the conduction band, is
completely empty. There is an energy gap between the top of the
valence band and the bottom of the conduction band called the
band gap Eg, in the middle of which is the Fermi energy. This gives
us our definition of a non-metallic system, which is a system for
which the Fermi level lies in a band gap. Solid insulators have a
band gap that is large compared to the thermal energy Eg � kT,
so that the conduction band remains unpopulated. We note that
such systems do not necessarily have equal numbers of a and b
electrons, and that such systems behave as paramagnets. There is
no mobility of electronic charge, and we can regard any unpaired
metal electrons as being mainly localised on, for example, the
metal ion. The paramagnetic NMR properties of these systems
are discussed in Section 7.7.

2.3.2.2. Semiconductors. Intrinsic semi-conductors are also
described by the band structure in Fig. 2.4(a), with the Fermi level
being located in a band gap. However the difference here is that the
band gap is comparable to kT at room temperature, and not much
greater, i.e. Eg � kT. Therefore there is some thermal population of
the conduction band and the conduction electrons are delocalized
over the whole lattice, rather than being localized to the paramag-
netic centres. Hence the NMR properties are different to those of
paramagnetic insulators, as discussed in Section 7.12.

2.3.2.3. Metals. The final example we consider is the case of solid
metals, the band structure of which is shown in Fig. 2.4(b). Here
the highest-occupied band is only partly filled, and the Fermi level
coincides with the highest-energy occupied level. Therefore at
non-zero temperatures the levels just above the Fermi level become
partly occupied and the material exhibits conductive behaviour.
This has profound consequences for the NMR properties of nuclei
in such materials as the unpaired electrons, rather than being lar-
gely localised to the paramagnetic centres, are now delocalized
across the whole lattice. These effects are discussed in Section 7.12.

2.3.3. The free-electron model of metals
In order to facilitate a later discussion in Section 7.12 comparing

the NMR shifts observed in paramagnetic insulators andmetals, we
will use a simple model for the electronic structure of a metal
referred to as a free-electron model. This model is summarized
here.

The definition of a free-electron metal is a solid in which there
is no attractive potential between the nuclei and the electrons, so
that UðrÞ ¼ 0. The solid is also periodic in x; y, and z over a length
L. Then the electronic levels are contained in a single band n ¼ 1,
and the one-electron wavefunctions /kðrÞ are simply the normal-
ized plane wave functions

/kðrÞ ¼
ffiffiffiffi
1
V

r
expðik � rÞ; ð2:38Þ

i.e. ukðrÞ ¼ 1. The allowed values of the wavevectors are
k ¼ ð2p=LÞðn1;n2;n3Þ. The corresponding energies EðkÞ depend only
on the magnitude of the wavevector k, and are given by

EðkÞ ¼ �h2k2

2me
: ð2:39Þ

The number density of electrons with wavevector magnitudes
between k and kþ dk is given by the density of states gðEðkÞÞdk
on the one hand. On the other the number density is equal to the
volume of a spherical shell in wavevector space at radius k and

thickness dk divided by the average volume per electron ð2p=LÞ3.
Equating these two expressions we obtain

g EðkÞð Þdk ¼ 2
V

L
2p

� �3

4pk2dk ð2:40Þ

¼ k2

p2 dk; ð2:41Þ

Fig. 2.4. Schematic band structures of solid materials. The bands are shown for (a) an insulator with band gap Eg � kT, and (b) a metal. Intrinsic semi-conductors are also
represented by (a), but now with Eg � kT .
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where the extra factor of two accounts for double occupancy by
electrons with paired spins. The number density of electrons
nðk;0Þ with wavevector magnitudes between 0 and k is given by
the integral

nðk;0Þ ¼
Z k

0
g Eðk0Þ� �

dk0 ð2:42Þ

¼ k3

3p2 : ð2:43Þ

From this we can calculate an expression for the density of states as
a function of energy:

gðEÞ ¼ dnðk;0Þ
dk

dk
dE

ð2:44Þ

¼ 1
2p2

2me

�h2

� �3=2

E1=2: ð2:45Þ

We associate the Fermi level with a Fermi wavevector kF, giving a
Fermi energy of

EF � EðkFÞ ð2:46Þ

¼ �h2k2F
2me

: ð2:47Þ

Combining Eqs. (2.45) and (2.47), we obtain the following simple
expression for the density of states at the Fermi level:

gðEFÞ ¼ 3n
2EF

: ð2:48Þ

This expression will prove very useful when comparing the shifts in
metals and paramagnetic insulators.

2.4. The nuclear and electronic Zeeman interactions

The energy of interaction E between a magnetic moment l and
a magnetic field B is given by the scalar product

E ¼ �B � l; ð2:49Þ
where the magnetic field can either be applied externally or be due
to a second magnetic moment. Fig. 2.5(a) shows the variation of the
interaction energy with the relative orientation of the magnetic
moment with respect to the magnetic field. The corresponding

Hamiltonian bH is given by the same expression with l replaced
with the equivalent operator bl:bH ¼ �B � bl: ð2:50Þ

The interaction of the nuclear magnetic moment with an exter-

nal magnetic field B0 gives the nuclear Zeeman Hamiltonian bHIZbHIZ ¼ �B0 � blI ð2:51Þ
¼ ��hcIB0 � Î; ð2:52Þ

where Î is the nuclear spin operator. By convention the laboratory
axis system is defined so that the external field is parallel to z.
The nuclear Zeeman interaction is therefore given by

bHIZ ¼ ��hcIB0
bIz ð2:53Þ

¼ �hx0
bIz; ð2:54Þ

where bIa is the operator representing the component of the spin
along axis a, and x0 ¼ �cIB0 is the nuclear Larmor frequency. Since
cI is a signed quantity, so is x0. For example we note that both 1H
and 13C have positive gyromagnetic ratios and negative Larmor
frequencies, whereas 15N has a negative gyromagnetic ratio and
positive Larmor frequency. A nucleus of spin quantum number I
has 2I þ 1 states jIMIi which are labelled by the magnetic quantum
numberMI which takes values from �I to þI in integer steps. Whilst
this ‘complete notation’ is the one that is mainly used throughout
this review, in some cases we also employ the more compact, and
less crowded, notation jMIi where the spin quantum number I is
well defined. These states are the eigenstates of the Zeeman Hamil-
tonian, with the following energies EðMIÞ:
EðMIÞ ¼ MI�hx0: ð2:55Þ
Fig. 2.5(b) illustrates the relationship between the nuclear spin vec-
tor, the external field, and the Zeeman energy of interaction. Note
that for a nucleus with positive cI (and therefore negative x0), the
lowest-lying state is jI þ Ii, with energy I�hx0, and the state with
the highest energy is jI � Ii. Allowed transitions obey the selection
rule DMI ¼ 	1, and so the observed frequency of absorption is
�x0, as shown in Fig. 2.6(a). For nuclei with negative cI the energy
order of the states is reversed with the lowest-lying state now being
jI � Ii, with energy �I�hx0, as shown in Fig. 2.6(b). The observed fre-
quency of absorption for transitions obeying the selection rule
DMI ¼ 	1 is now þx0. A nucleus with spin I ¼ 1=2 possesses two
states, which are conventionally labelled j 12 þ 1

2i � jai and
j 12 � 1

2i � jbi.
The electron Zeeman interaction is described by the Hamilto-

nian bHSZ which is given by

bHSZ ¼ �B0 � blS ð2:56Þ
¼ lBgeB0 � bS ; ð2:57Þ

where blS and bS are the operators representing the electronic mag-
netic moment and spin respectively. When the applied magnetic
field is along z the Hamiltonian becomes

bHSZ ¼ lBgeB0
bSz; ð2:58Þ

where bSa is the operator representing the component of Ŝ along axis
a. The electronic spin states are now labelled jSMSi. A free electron
has spin S ¼ 1=2, and therefore two states with energies

Fig. 2.5. Illustration of the relationship between the spin, magnetic moment, external magnetic field, and Zeeman energy of interaction for nuclear and electronic spins. The
classical description is illustrated in (a), with the energy of interaction between the magnetic moment and external field depending on the angle h between the two vectors.
The corresponding quantum-mechanical relationships are shown for the nuclear and electronic spins in (b) and (c), assuming that the external field is along z.
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Eb ¼ � 1
2lBgeB0 and Ea ¼ þ 1

2lBgeB0. The relationship between the
electronic spin, external magnetic field, and Zeeman energy of
interaction is illustrated in Fig. 2.5(c). Note that as the electron
has a negative gyromagnetic ratio, it is the jbi state that has the
lower energy. Fig. 2.6(c) shows the ladder of Zeeman energy levels
and energy of transition of an arbitrary electronic spin S.

2.5. Irreducible spherical tensors and tensor operators

2.5.1. Cartesian tensor representation of the spin Hamiltonian
This review makes extensive use of the various types of spin

interactions that are present in both NMR and EPR spectroscopy,
the basic ideas behind which are summarised here. All NMR and
EPR interactions can be described as a coupling between two vec-
tors, such as two spin vectors either belonging to two different
spins or to the same spin, or a spin coupling to an external mag-
netic field, via a rank-two Cartesian tensor that contains all the
information about the relevant spatial properties of the interaction.
For example the nuclear Zeeman and chemical shielding interac-

tions can be described by a Hamiltonian bHBI of the formbHBI ¼ B � K � Î: ð2:59Þ
The form of this Hamiltonian is instantly recognisable as a gen-

eralised scalar product of the external magnetic field vector B with

the spin vector Î via the real spatial tensor K . As stated earlier in
Chapter 2, I refers to nuclear spins and S to electronic spins. Hence
Eq. (2.59) describes either a nuclear Zeeman or chemical shielding
interaction, and the electronic Zeeman interaction can be obtained

simply by replacing Î with Ŝ. Note that the information about the
field, spatial orientation, and spin is neatly separated into the dif-

ferent parts of bHBI , being represented by B, K , and Î respectively.
Likewise a coupling between two spins S and I has the general

Hamiltonian bHSIbHSI ¼ bS � K � bI : ð2:60Þ

Finally the nuclear quadrupole interaction Hamiltonian is bHII ,bHII ¼ Î � K � Î; ð2:61Þ
which mathematically appears to be the coupling of the spin vector
of I with itself.

2.5.2. Irreducible spherical tensor representation of the spin
Hamiltonian

In addition to the Cartesian representation of the interaction
Hamiltonian, it sometimes proves convenient to adopt an irre-
ducible spherical tensor representation of the field, spin, and spa-
tial parts. A general irreducible spherical tensor is represented as
Plm, with l and m indicating the rank and order respectively. The
order m takes values from �l to þl in integer steps. In the spherical
tensor basis we write Cartesian vectors V , such as the field and
spin, as irreducible spherical tensors of rank 1. They have three
components V10, and V1	1, which are given in terms of the Carte-
sian components by the expressions in Table 2.1. It is usual to cou-
ple together the two vectors in the Hamiltonian to form either a
mixed field-spin tensor operator, in the case of coupling the field
to a spin operator, or a spin-spin tensor operator, in the case of
coupling two spin operators. The coupling of two rank-one tensorsbU1m0 and bV 1m00 , both of which are in general operators, yields the

coupled tensor operator bT lm via the expression [191]

bT lm ¼
Xþ1

m0¼�1

Xþ1

m00¼�1

h11m0m00jlmibU1m0 bV 1m00 ; ð2:62Þ

where h11m0m00jlmi is a Clebsch–Gordan coefficient, l takes the val-
ues 2, 1, and 0 according to the Clebsch–Gordan series, and

m ¼ m0 þm00. Table 2.2 shows the tensor operators bT lm formed by
coupling two rank-one spin tensors for interactions that are com-
monly encountered in NMR spectroscopy.

The real Cartesian spatial tensor K can be broken down into an

isotropic part K iso, an anisotropic antisymmetric part Kasym, and a
traceless anisotropic symmetric part Ksym:

K ¼ K iso1þ Kasym þ Ksym; ð2:63Þ
where 1 is the 3
 3 identity matrix. These three parts are given by

Table 2.1
Irreducible spherical tensor components of a vector V in terms of
the Cartesian components Vi , with V	 ¼ Vx 	 iVy .

V10 V1	1

Vz �
ffiffi
1
2

q
V	

Fig. 2.6. The ladder of energy levels due to the Zeeman interaction. The energy levels are shown for a general nuclear spin I with (a) a positive gyromagnetic ratio, and (b) a
negative gyromagnetic ratio. The energy levels for an arbitrary electronic spin S are shown in (c). Note that the gyromagnetic ratio of the electron is negative. We employ the
compact notation for the spin states, jMIi or jMSi, rather than the complete notation. In each case the energies of the allowed transitions are shown.
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K iso ¼ 1
3
Tr Kð Þ; ð2:64Þ

Kasym ¼ 1
2

K � KT
� 	

; ð2:65Þ

Ksym ¼ 1
2

K þ KT
� 	

� 1
3
Tr Kð Þ1: ð2:66Þ

We see that the nine independent components of K are separated

into these three parts as follows. The isotropic part K iso contains a
single component which corresponds to the orientation-
independent part of K . The anisotropic and antisymmetric part
Kasym contains three independent components, and is therefore
equivalent to a so-called pseudo vector. The final part Ksym, which
is wholly anisotropic (i.e. traceless) and symmetric, contains five
independent components. These five parts can be written in terms
of the irreducible spherical tensors of ranks 0, 1, and 2 respectively
as summarised in Table 2.3. The Hamiltonian written in the irre-
ducible spherical tensor basis is

bH ¼
X2
l¼0

Xþl

m¼�l

ð�1ÞmKlm
bT l�m; ð2:67Þ

which is the form of the generalised scalar product [191].
It is conventional to parameterise the anisotropic parts of the

spatial tensor according to their anisotropy parameters in their
respective principal axis frames (PAFs). The PAF of the antisym-
metric rank-one tensor is defined as the coordinate system in
which the irreducible spherical tensor components are given by

K10 ¼ �i
ffiffiffi
2

p
f; ð2:68Þ

K1	1 ¼ 0; ð2:69Þ
where the overbar indicates that the tensor components are evalu-
ated in the PAF of the antisymmetric part of the tensor. The
antisymmetric anisotropy parameter f is defined as

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kasym

xy

� 	2
þ Kasym

yz

� 	2
þ Kasym

xz

� �2r
ð2:70Þ

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kxy � Kyx
� �2 þ Kyz � Kzy

� �2 þ Kxz � Kzxð Þ2
q

: ð2:71Þ

The PAF of the symmetric part of the tensor is defined as the
frame in which Ksym is diagonal. Note that this frame does not, in
general, coincide with the PAF of the antisymmetric part of K . In
the PAF of Ksym the diagonal elements are ordered according to
the Haeberlen convention so that jKsym

zz j P jKsym
xx j P jKsym

yy j. The
rank-two irreducible spherical tensor components are given by

eK 20 ¼
ffiffiffi
3
2

r
DK; ð2:72ÞeK 2	1 ¼ 0; ð2:73Þ

eK 2	2 ¼ �1
2
gDK; ð2:74Þ

where the tilde indicates that the tensor components are evaluated
in the PAF of the symmetric part of K . The symmetric anisotropy DK
and asymmetry parameter g are given by

DK ¼ eK sym
zz ; ð2:75Þ

g ¼
eK sym

yy � eK sym
xx

DK
: ð2:76Þ

Before leaving this section we note that there are numerous
examples of spatial interaction tensors X, such as the nuclear
quadrupolar interaction, zero-field splitting, and magnetic suscep-
tibility tensors, which have an antisymmetric part of zero, i.e.
X10 ¼ X1	1 ¼ 0. In this case it is possible to define the rank-zero
and rank-two tensors in terms of the components Xij of the com-
plete tensor:

X00 ¼ �
ffiffiffi
3

p
Xiso; ð2:77Þ

eX20 ¼
ffiffiffi
3
2

r
DX; ð2:78ÞeX2	1 ¼ 0; ð2:79Þ

eX2	2 ¼ �1
2
gDX; ð2:80Þ

where the anisotropy DX and asymmetry parameter g have modi-
fied expressions:

Table 2.3
Irreducible spherical tensor components of a matrix K describing the spatial part of an interaction in terms of the Cartesian components Kij . The isotropic part of the tensor is K iso .

Rank Expression in terms of Kij Expression in terms of K iso;Kasym
ij , and Ksym

ij

0 K00 ¼ �
ffiffi
1
3

q
Kxx þ Kyy þ Kzz
� � �

ffiffiffi
3

p
K iso

1 K10 ¼ � iffiffi
2

p Kxy � Kyx
� � �i

ffiffiffi
2

p
Kasym
xy

K1	1 ¼ � 1
2 Kzx � Kxz 	 i Kzy � Kyz

� �
 �
� Kasym

zx 	 iKasym
zy

h i
2 K20 ¼

ffiffi
1
6

q
3Kzz � Kxx þ Kyy þ Kzz

� �
 � ffiffi
3
2

q
Ksym
zz

K2	1 ¼ � 1
2 Kxz þ Kzx 	 i Kyz þ Kzy

� �
 �
� Ksym

zx 	 iKsym
zy

h i
K2	2 ¼ 1

2 Kxx � Kyy 	 i Kxy þ Kyx
� �
 �

1
2 Ksym

xx � Ksym
yy 	 2iKsym

xy

h i

Table 2.2
Rank-two tensors formed by coupling two rank-one spin tensors, or a rank-one spin tensor to a rank-one magnetic field tensor for different internal spin interactions. The names
of both the NMR interactions and their EPR equivalents (in parentheses) are given. The identity operator for the spin is written 1̂.

Interaction bT 00
bT10

bT1	1
bT20

bT2	1
bT2	2

Nuclear shielding (electronic Zeeman) �
ffiffi
1
3

q
B0
bIz 0 � 1

2B0
bI	 ffiffi

2
3

q
B0
bIz � 1

2B0
bI	 0

Dipolar coupling (spin-dipolar hyperfine) 0 0 0
ffiffi
1
6

q
3̂IzŜz � Î � Ŝ
� 	

� 1
2
bIzbS	 þbI	bSz� 	

1
2
bI	bS	

J-coupling (Fermi-contact hyperfine) �
ffiffi
1
3

q
Î � Ŝ � 1

2
ffiffi
2

p bIþbS� �bI�bSþ� 	
1
2
bIzbS	 �bI	bSz� 	 ffiffi

1
6

q
3̂IzŜz � Î � Ŝ
� 	

� 1
2
bIzbS	 þbI	bSz� 	

1
2
bI	bS	

Quadrupolar coupling (zero-field splitting) 0 0 0
ffiffi
1
6

q
3bI2z � IðI þ 1Þ1̂
� 	

� 1
2
bIzbI	 þbI	bIz� 	

1
2
bI2	
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DX ¼ eXzz � Xiso; ð2:81Þ

g ¼
eXyy � eXxx

DX
: ð2:82Þ

These definitions are completely equivalent to those in Eqs.
(2.75) and (2.76).

2.6. Chemical shielding and chemical shift

The nuclear Zeeman Hamiltonian correctly describes the effect
of an external magnetic field applied to an isolated nucleus. How-
ever when the nucleus is part of an atom, ion, or molecule, the Zee-
man Hamiltonian no longer provides an adequate description, and
we must account for the effect of the surrounding electrons. The
external magnetic field causes the electrons to move in such a
way that they produce their own induced magnetic fields that
modify the actual field experienced by the nucleus. In diamagnetic
systems the electronic magnetic fields usually oppose the external
field, thus shielding the nucleus from the external field. This effect
is described by a chemical shielding tensor r which can be
included in the nuclear Zeeman Hamiltonian to give the correct
overall description of the system:

bHI ¼ bHIZ þ bHIC ð2:83Þ
¼ ��hcIB0 � 1� rð Þ � Î; ð2:84Þ

where bHIC ¼ �hcIB0 � r � Î is the term in the Hamiltonian describing
the chemical shielding, and 1 is the identity tensor.

The shielding tensor r, which was first described theoretically
by Ramsey [192], comprises isotropic, antisymmetric, and sym-
metric anisotropic parts. Ramsey showed that for diamagnetic sys-
tems the chemical shielding can be written as the sum of a
‘‘diamagnetic component” rdia and a ‘‘paramagnetic component” rpara:

r ¼ rdia þ rpara: ð2:85Þ
Here we face our first difficulty with the terminology. The terms
‘‘diamagnetic” and ‘‘paramagnetic” do not refer to whether the sys-
tem itself is dia- or paramagnetic, i.e. whether or not it has unpaired
electrons. Rather, the former is the contribution to the shielding from
the electronic ground state of the system, and the latter is due to the
mixing of excited states with the ground state. Both contributions are
present in both dia- and paramagnetic systems [89]. Pennanen and
Vaara refer to the sum of these two terms as the orbital contribution
to the shielding rorb [40]. In true paramagnetic systems we must add
to the orbital contribution a second term that is due solely to the
unpaired electrons rS to give the total shielding tensor:

r ¼ rorb þ rS: ð2:86Þ
It is rS that gives rise to the ‘‘paramagnetic shift”, and it is this that
forms a central subject of this review.

The isotropic, antisymmetric, and symmetric parts of r can be

separated by rewriting bHIC as the generalised scalar product of irre-
ducible spherical tensors. This gives

bHIC ¼ �hcI
Xþ2

l¼0

Xþl

m¼�l

ð�1Þmrlm
bT l�m; ð2:87Þ

where rlm is the component of the chemical shielding tensor with
spherical rank l and order m, and contains the spatial dependence
of the interaction. The rank l can take values of 0 (corresponding
to the isotropic part of the tensor), 1 (antisymmetric anisotropic
part), and 2 (symmetric anisotropic part), and m takes values from
�l to þl in integer steps. The irreducible spherical components of r
are taken from Table 2.3. The irreducible spherical tensor operators

bT lm are formed by coupling the components of the rank-one tensor
representing the external magnetic field vector B1n, and the rank-
one tensor operator containing the components of the nuclear spin

vector bI1n where the order n takes the values �1, 0, and þ1. These
rank-one irreducible spherical tensor components are given in

Table 2.1. The components of bT lm that are formed by coupling the
field and spin tensors are calculated from the formula [191]bT lm ¼

X
n

B1n
bI1;m�nh11n;m� njlmi ð2:88Þ

¼ h110mjlmiB0 Î1m; ð2:89Þ
where the hl1l2m1m2jLMi are the Clebsch–Gordan coefficients,
which are non-zero for values of L equal to
l1 þ l2; l1 þ l2 � 1; . . . ; jl1 � l2j, and for M ¼ m1 þm2. To go to the last
line we used the convention that the magnetic field is applied along
z. The mixed field-spin second-rank tensor components formed by
coupling the field and spin tensors in this manner are given in
Table 2.2.

2.6.1. The high-field approximation
Conventional NMR experiments are performed in the high-field

limit, where the Zeeman interaction of the spin with the external
field dominates all internal interactions, including couplings
between spins, and the interaction of the spin with the external
field via the chemical shielding. In this limit we can simplify the
form of the Hamiltonians describing these internal interactions
by treating them as a perturbation to the Zeeman Hamiltonian.
The perturbation expansion can be calculated by first transforming
the Hamiltonian representing the interaction into the reference
frame rotating at the Larmor frequency (simply referred to as the
rotating frame) [184], and then computing the average Hamiltonian
H over one period of Larmor precession according to the Baker–
Campbell–Hausdorff expansion, which can be written as

H ¼ Hð1Þ þ Hð2Þ þ Hð3Þ þ � � � where HðiÞ is the ith-order term
[193,194].

The transformation of the chemical shielding Hamiltonian in Eq.
(2.87) into the rotating frame gives a time-dependent HamiltonianeHICðtÞ which is equal to

eHICðtÞ ¼ �hcI
Xþ2

l¼0

Xþl

m¼�l

ð�1Þmrlm
bT l�m exp �imx0tð Þ ð2:90Þ

¼ �hcIB0

X
l

X
m

ð�1Þmh110�mjl�mirlm
bI1�m exp �imx0tð Þ: ð2:91Þ

The first-order average Hamiltonian Hð1Þ is given by the time-
average over one period of Larmor precession s0 ¼ 2p=jx0j:

Hð1Þ ¼ 1
s0

Z s0

0
dt1 eHICðt1Þ ð2:92Þ

¼ �hcI
Xþ2

l¼0

rl0
bT l0; ð2:93Þ

where we recall that only those terms with m ¼ 0 contribute. For
the chemical shielding interaction, and indeed all interactions apart
from the coupling of the nuclear quadrupolar moment to the
electric-field gradient, it is sufficient to truncate the average Hamil-
tonian series at the first-order term. We can now substitute in the

expressions for the bT l0 in Table 2.2, noting that bT 10 ¼ 0 and that

both bT 00 and bT 20 are proportional to B0
bIz. The result is

Hð1Þ ¼ ��hx0 �
ffiffiffi
1
3

r
r00 þ

ffiffiffi
2
3

r
r20

 !bIz: ð2:94Þ
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We can rewrite Eq. (2.94) in terms of a high-field chemical shielding
rð1Þ as follows:

Hð1Þ ¼ ��hx0rð1ÞbIz; ð2:95Þ

rð1Þ ¼ �
ffiffiffi
1
3

r
r00 þ

ffiffiffi
2
3

r
r20: ð2:96Þ

We see that, in this high-field regime, the chemical shielding tensor
contains only terms of spherical ranks zero and two, i.e. we only
observe the symmetric part of the tensor. The isotropic term can
be simplified easily by noting, with reference to Table 2.3, that
r00 ¼ �

ffiffiffi
3

p
riso. The rank-two term is more complex to write out,

as r20, by definition, varies with the orientation of the system.
However we can separate the size of the anisotropy and the
orientation dependence in the PAF. According to the Haeberlen
convention the diagonal elements ~rii are ordered as follows:
j~rzz � risoj P j~rxx � risoj P j~ryy � risoj. The irreducible spherical
tensor components of the chemical shielding tensor in the labora-
tory frame r2m can now be written in terms of the components in
the PAF ~r2m using the following relationship:

r2m ¼
Xþ2

m0¼�2

~r2m0Dð2Þ
m0mðaPL;bPL; cPLÞ; ð2:97Þ

where the DðlÞ
m0mða; b; cÞ are the Wigner rotation matrix elements of

rank l, and the Euler angles ðaPL; bPL; cPLÞ give the orientation of
the PAF in the laboratory frame. The Wigner rotation matrix ele-
ments can be written in terms of the reduced matrix elements

dðlÞ
m0mðbÞ by separating the dependence on each Euler angle into three

separate factors:

DðlÞ
m0mða;b; cÞ ¼ expð�im0aÞdðlÞ

m0mðbÞ expð�imcÞ: ð2:98Þ
The complete set of reduced Wigner rotation matrix elements are
tabulated up to rank l ¼ 2 in Table 2.4, along with the single

fourth-rank element dð4Þ
00 ðbÞ. Substituting the matrix elements into

Eq. (2.94) we obtain

Hð1Þ ¼ ��hx0 riso þ
ffiffiffi
2
3

r Xþ2

m¼�2

~r2m expð�imaPLÞdð2Þ
m0ðbPLÞ

 !bIz: ð2:99Þ

Note that the anisotropic part of the chemical shielding interaction
only depends on two Euler angles. This is because the application of
the large magnetic field means that only the shielding spherical ten-
sor components with m ¼ 0 in the laboratory frame are retained in
the Hamiltonian, as seen in Eq. (2.93). Therefore the orientation
dependence is described purely by the Wigner matrix elements

Dð2Þ
m0ðaPL;bPL; cPLÞ in which the second index is zero, and so the

dependence cPL is removed. The symmetric part of the chemical
shielding tensor is conventionally represented as a chemical-
shielding ellipsoid, as shown in Fig. 2.7. Here the value of the chem-
ical shielding tensor is plotted as 1=

ffiffiffiffi
r

p
as a function of orientation

in a Cartesian coordinate system. The tensor has the shape of an
ellipsoid when plotted as 1=

ffiffiffiffi
r

p
. By convention the ii principal com-

ponent is located along the i-axis, and is plotted as 1=
ffiffiffiffi
~r

p
ii.

We can now use Table 2.3 to write down expressions for the
rank-two chemical shielding terms in the PAF of the symmetric
part of the shielding tensor, and substitute these into the Hamilto-
nian to give it an explicit form. Remembering that the off-diagonal
elements are zero in the PAF, the ~r2m are [195]:

~r20 ¼
ffiffiffi
3
2

r
Dr; ð2:100Þ

~r2	1 ¼ 0; ð2:101Þ
~r2	2 ¼ �1

2
gDr; ð2:102Þ

where Dr and g are the chemical shielding anisotropy and asym-
metry parameter respectively. They are defined according to the
Haeberlen convention as

Dr ¼ ~rzz � riso; ð2:103Þ

g ¼ ~ryy � ~rxx

Dr : ð2:104Þ

For completeness we can also give explicit expressions for the
unobservable antisymmetric part of the shielding tensor. The PAF
of the antisymmetric tensor is the reference frame in which

r10 ¼ �i
ffiffiffi
2

p
f; ð2:105Þ

r1	1 ¼ 0; ð2:106Þ

Table 2.4
Expressions for the set of unique reduced Wigner rotation matrix elements dðlÞ

m0mðbÞ for
ranks l ¼ 1=2, 1, 3=2, and 2, and the single fourth-rank element dð4Þ

00 ðbÞ. Additional
elements are generated using the symmetry relations dðlÞ

mm0 ðbÞ ¼ ð�1Þm�m0
dðlÞ
m0mðbÞ and

dðlÞ
�m0�mðbÞ ¼ ð�1Þm�m0

dðlÞ
m0mðbÞ.

l ¼ 1=2 Expression

dð1=2Þþ1=2;þ1=2ðbÞ cosðb=2Þ

dð1=2Þ�1=2;þ1=2ðbÞ sinðb=2Þ

l ¼ 1 Expression

dð1Þþ1;þ1ðbÞ cos2ðb=2Þ
dð1Þ�1;þ1ðbÞ sin2ðb=2Þ
dð1Þ0;þ1ðbÞ sinðbÞ=

ffiffiffi
2

p

dð1Þ0;0ðbÞ cosðbÞ

l ¼ 3=2 Expression

dð3=2Þþ3=2;þ3=2ðbÞ cos3ðb=2Þ
dð3=2Þþ1=2;þ3=2ðbÞ

ffiffiffi
3

p
cos2ðb=2Þ sinðb=2Þ

dð3=2Þ�1=2;þ3=2ðbÞ
ffiffiffi
3

p
cosðb=2Þ sin2ðb=2Þ

dð3=2Þ�3=2;þ3=2ðbÞ sin3ðb=2Þ
dð3=2Þþ1=2;þ1=2ðbÞ cosðb=2Þ 3 cos2ðb=2Þ � 2

� �
dð3=2Þ�1=2;þ1=2ðbÞ � sinðb=2Þ 3 sin2ðb=2Þ � 2

� 	
l ¼ 2 Expression

dð2Þþ2;þ2ðbÞ cos4ðb=2Þ
dð2Þþ1;þ2ðbÞ sinðbÞ 1þ cosðbÞð Þ=2
dð2Þ0;þ2ðbÞ

ffiffi
3
8

q
sin2ðbÞ

dð2Þ�1;þ2ðbÞ sinðbÞ 1� cosðbÞð Þ=2
dð2Þ�2;þ2ðbÞ sin4ðb=2Þ
dð2Þþ1;þ1ðbÞ 2 cosðbÞ � 1ð Þ 1þ cosðbÞð Þ=2
dð2Þ0;þ1ðbÞ

ffiffi
3
2

q
sinðbÞ cosðbÞ

dð2Þ�1;þ1ðbÞ 2 cosðbÞ þ 1ð Þ 1� cosðbÞð Þ=2
dð2Þ0;0ðbÞ 3 cos2ðbÞ � 1

� �
=2

l ¼ 4 Expression

dð4Þ0;0ðbÞ 35 cos4ðbÞ � 30 cos2ðbÞ þ 3
� �

=8

Fig. 2.7. The chemical-shielding ellipsoid. The symmetric part of the chemical
shielding tensor is plotted on three-dimensional Cartesian axes as 1=

ffiffiffiffi
r

p
, with the

three ii principal components plotted as 1=
ffiffiffiffiffiffi
~rii

p
along the i-axes.
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where the antisymmetric anisotropy parameter f is

f ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxy � ryx
� �2 þ ryz � rzy

� �2 þ rxz � rzxð Þ2
q

: ð2:107Þ

The rij in Eq. (2.107) are those in the laboratory frame. We recall
that the PAF of the antisymmetric part does not in general coincide
with that of the symmetric part, and that tensor components in the
former are represented with a tilde, whereas those in the latter are
shown with an overbar. In terms of these parameters the Hamilto-
nian is

Hð1Þ ¼ ��hx0 riso þ Dr
ffiffiffi
2
3

r ffiffiffi
3
2

r
dð2Þ
00 ðbPLÞÞ

("

�1
2
g expð2iaPLÞdð2Þ

�20ðbPLÞ þ expð�2iaPLÞdð2Þ
þ20ðbPLÞ

� 	�bIz
ð2:108Þ

¼ ��hx0 riso þ 1
2
Dr 3 cos2ðbPLÞ � 1� g cosð2aPLÞ sin2ðbPLÞ
n o� bIz:

ð2:109Þ

A nuclear spin with positive gyromagnetic ratio in a crystallite of a
well-defined orientation ðaPL;bPLÞ will therefore resonate in the
rotating frame at a single well-defined frequency XðaPL; bPLÞ which
is given by

XðaPL;bPLÞ ¼ x0 riso þ 1
2
Dr 3 cos2ðbPLÞ � 1� g cosð2aPLÞ sin2ðbPLÞ
n o� 

:

ð2:110Þ

In a polycrystalline powder, in which crystallites of all orientations
are present with a random statistical distribution, each crystallite is
represented by a sharp peak at a particular frequency. These peaks
combine to give a broad resonance referred to as a powder pattern,
an example of which is shown in Fig. 2.8. Superimposed upon this
powder pattern are the positions of five single-crystallite spectra
(a)–(e) of representative orientations. The lineshape has two dis-
continuities, which are located at frequenciesx0 ~rzz andx0 ~rxx, with
the former frequency defined as being the one that is further from
the isotropic frequency x0riso. In addition there is a cusp at fre-
quency x0 ~ryy. In principle, measuring these three positions is suffi-
cient to obtain the three principal values of the symmetric part of
the CSA tensor.

2.6.1.1. Second-order effects in the high-field approximation. In the
majority of known cases the first-order approximation as pre-
sented in the previous section is sufficient for the description of
the chemical shielding under high-field conditions. However for
very large shifts and shift anisotropies, such as those that may be
encountered in superparamagnetic systems [196–198], it may be
necessary to include higher-order terms. We will calculate the
second-order term here as an example, following the protocol of
Ashbrook et al. [194].

We proceed by calculating the second-order average Hamilto-
nian term in the Baker–Campbell–Hausdorff expansion, given by

Hð2Þ ¼ � i
2�hs0

Z s0

0
dt2

Z t2

0
dt1 H

~

Iðt2Þ;H
~

Iðt1Þ
� 

; ð2:111Þ

and extracting the secular terms. Substituting Eq. (2.91) into the
commutator we obtain

eHIðt2Þ; eHIðt1Þ
h i

¼ �h2c2I B
2
0

X
l1 ;l2

X
m

h110�mjl1 �mih110mjl2mirl1mrl2�m


 bI1m;bI1�m

h i
exp �imx0ðt1 � t2Þð Þ; ð2:112Þ

where we have retained only the secular terms withm1 ¼ �m2 ¼ m.
Inserting this expression into Eq. (2.111) and computing the inte-
gral yields the second-order average Hamiltonian:

Hð2Þ ¼ 1
2
�hx0

X
l1 ;l2

X
m–0

1
m

h110�mjl1 �mi


 h110mjl2mirl1mrl2�m
bI1m;bI1�m

h i
: ð2:113Þ

The commutator of rank-one irreducible spherical tensor operators
can be simplified after some tedious algebra by using the mathe-
matical tools of quantum angular momentum, giving

bI1m;bI1�m

h i
¼2

ffiffiffi
3

p
ð�1Þ2Iþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðIþ1Þð2Iþ1Þ

p
h11m�mj10i 1 1 1

I I I

� �bIz ð2:114Þ

¼ ð�1ÞmmbIz; ð2:115Þ

where the array in braces is a Wigner 6j symbol [191]. Finally we
use the explicit expressions for the Clebsch–Gordan coefficients to
give the following second-order chemical shielding Hamiltonian:

Hð2Þ ¼ 1
2
�hx0

X
l1 ;l2

X
m–0

ð�1Þmh110�mjl1 �mih110mjl2mirl1mrl2�m
bIz ð2:116Þ

¼ 1
2
�hx0 r1�1r1þ1 � r2�1r2þ1 þ r1�1r2þ1 � r2�1r1þ1½ �bIz: ð2:117Þ

In analogy to the first-order interaction, we can reformulate Eq.
(2.117) in terms of the second-order chemical shielding:

Hð2Þ ¼ ��hx0rð2ÞbIz; ð2:118Þ

rð2Þ ¼ �1
2
r1�1r1þ1 � r2�1r2þ1 þ r1�1r2þ1 � r2�1r1þ1½ �: ð2:119Þ

The spin part of this Hamiltonian is simply bIz, which is the same as
for the first-order high-field chemical shielding interaction. The
second-order term therefore indicates that the resonance frequency
experienced by a nuclear spin is simply shifted from the frequency
in Eq. (2.94) by the correction term in Eq. (2.117). This correction
term is also proportional to the external magnetic field B0, and
therefore the Larmor frequency x0. The spatial dependence of this

Fig. 2.8. Simulated NMR ‘powder pattern’ spectrum of a static polycrystalline
powder of a system containing a single spin-1=2, with positive gyromagnetic ratio,
which experiences a CSA interaction. The three principal components of the CSA
tensor are labelled, and correspond to the high- and low-frequency discontinuities,
and the cusp in the powder pattern. Superimposed are the five spectra (a)–(e)
corresponding to five representative crystallites of well-defined orientations. The
chemical shielding isotropic and anisotropy parameters used are x0riso=2p ¼ 0,
x0Dr=2p ¼ 500 kHz, and g ¼ 0:3, which correspond to principal components of
x0 ~rxx=2p ¼ �325 kHz, x0 ~ryy=2p ¼ �175 kHz, and x0 ~rzz=2p ¼ 500 kHz. The sin-
gle-crystallite spectra have orientations ðaPL; bPLÞ equal to (a) ð0�;90�Þ, (b)
ð0� ;64:74�Þ, (c) ð45�;54:74�Þ, (d) ð0�;36�Þ, (e) ð0� ;0�Þ, and resonance frequencies
XðaPL;bPLÞ=2p of (a) �325 kHz, (b) �175 kHz, (c) 0 kHz, (d) 215 kHz, and (e)
500 kHz.
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correction term is complicated as it is the sum of four terms, each of
which is a product of two irreducible spherical tensor components,
rl1�1rl2þ1. It should be noted that only the antisymmetric and sym-
metric anisotropic parts of the shielding tensor contribute to the
second-order interaction; no contribution is made by the isotropic
shielding. The spatial dependence is more easily understood by
writing the products rl1mrl2�m in terms of the coupled spatial ten-

sors W Cl1Cl2ð Þ
L0 as follows:

W Cl1 ;Cl2ð Þ
L0 ¼

X
m

hl1l2m�mjL0irl1mrl2�m: ð2:120Þ

The tensor W l1 l2ð Þ
L0 is of rank L, which takes values according to the

Clebsch-Gordan series from l1 þ l2 down to jl1 � l2j in integer steps.
We will see that the only coupled tensors we need to consider are
those of ranks 0, 2, and 4. The rank-zero tensors correspond to spa-
tially isotropic shielding components, the rank-two tensors to the
symmetric shielding anisotropy, and the rank-four tensors to an
additional shielding anisotropy with a different angular depen-
dence. The coupled tensor components have the following symme-
try with regard to the order in which the rl1m are coupled:

W ðCl1 ;Cl2Þ
L0 ¼ ð�1ÞL�l1�l2W ðCl2 ;Cl1Þ

L0 : ð2:121Þ
In order to write the second-order shielding Hamiltonian in

terms of the W l1 l2ð Þ
L0 tensors, we invert Eq. (2.120) to give an expres-

sion for rl1mrl2�m:

rl1mrl2�m ¼
Xl1þl2

L¼jl1�l2 j
hl1l2m�mjL0iW Cl1 ;Cl2ð Þ

L0 ; ð2:122Þ

which we substitute into Eq. (2.117). The final expression is

Hð2Þ ¼ 1
2
�hx0

ffiffiffi
1
3

r
W ðC1;C1Þ

00 þ
ffiffiffi
1
5

r
W ðC2;C2Þ

00

" #̂
Iz

þ 1
2
�hx0

ffiffiffi
1
6

r
W ðC1;C1Þ

20 �
ffiffiffi
2

p
W ðC1;C2Þ

20 �
ffiffiffiffiffiffi
1
14

r
W ðC2;C2Þ

20

" #̂
Iz

�
ffiffiffiffiffiffi
2
35

r
�hx0W

ðC2;C2Þ
40 Îz:

ð2:123Þ

The Hamiltonian in Eq. (2.123) comprises three terms. The first is

spatially isotropic, as it depends on W ðC1;C1Þ
00 and W ðC2;C2Þ

00 which are
formed by coupling two antisymmetric and two symmetric shield-
ing tensor components respectively. It will therefore manifest itself
as a change in the measured isotropic chemical shielding. The sec-
ond term contains coupled tensors of rank 2, formed from coupling
two antisymmetric, one symmetric and one antisymmetric, or two
symmetric shielding components, and therefore contributes to the
symmetric shielding anisotropy in the same way as the rank-two
tensor in Eq. (2.94). One intriguing aspect of these two terms is that
both depend on the antisymmetric part of the shielding tensor,
which is not observable in the conventional high-field (first-order)
limit. The final term is new: it has a rank-four spatial dependence

through W ðC2;C2Þ
40 , which is due to the coupling of two symmetric

shielding tensor components. It is spatially anisotropic, but with a
different angular dependence to the ‘conventional’ shielding aniso-
tropy. Such rank-four spatial terms are well known from the NMR of
quadrupolar nuclei, where they are formed from the coupling
together of two spatial components from the quadrupolar coupling
Hamiltonian or the quadrupolar Hamiltonian with the CSA Hamilto-
nian [194], and are known to lead to broadening of the resonance
[199] as well as being sources of information about the tensor
parameters.

2.6.2. The chemical shift
So far we have formulated the discussion in terms of the chem-

ical shielding. We now introduce the chemical shift convention,
limiting ourselves to the high-field limit where only the first-
order interaction is retained. In experimental NMR we actually
measure the chemical shift tensor d, the isotropic value of which
is equal to the difference between the isotropic shielding of a ref-
erence system rref

iso and the system of interest:

diso ¼ rref
iso � riso: ð2:124Þ

Using the shift convention we define the diagonal components (or
principal values) of the symmetric part of the tensor in the PAF as
~dii, and write the chemical shift anisotropy (CSA) Dd, and asymmetry
parameter g as:

Dd ¼ ~dzz � diso; ð2:125Þ

g ¼
~dyy � ~dxx

Dd
; ð2:126Þ

where we have used the Haeberlen convention to order the princi-
pal values: j~dzz � disoj P j~dxx � disoj P j~dyy � disoj. To obtain the iso-
tropic chemical shift and the CSA in frequency units, we multiple
diso and Dd by the Larmor frequency x0. Note that for nuclei with
a positive gyromagnetic ratio, and therefore a negative Larmor fre-
quency, a positive value of either diso or Dd implies a negative
frequency.

Finally, when we discuss the paramagnetic contribution to the
chemical shielding rS, we can also define a paramagnetic shift ten-
sor. If our reference system is diamagnetic the total isotropic
chemical shift is

diso ¼ rref;orb
iso � rorb

iso � rS
iso; ð2:127Þ

where rref;orb
iso is the orbital contribution to the isotropic shielding of

the reference compound. The total chemical shift is therefore the
sum of the orbital contribution dorbiso and the paramagnetic shift dSiso:

diso ¼ dorbiso þ dSiso; ð2:128Þ
where

dorbiso ¼ rorb;ref
iso � rorb

iso ; ð2:129Þ
dSiso ¼ �rS

iso: ð2:130Þ
This implies that the paramagnetic part of the isotropic shift is sim-
ply given by minus the isotropic part of the paramagnetic shielding
tensor.

2.7. The spin interactions of quadrupolar nuclei

We now extend the previous discussion of nuclear spin interac-
tions to quadrupolar nuclei, which are defined as nuclei with spin

I > 1=2. Quadrupolar nuclei also experience nuclear Zeeman bHIZ

and chemical shielding bHIC interactions, which have the same form
as for spin-1=2 nuclei. However there is an additional term in the

Hamiltonian, known as the nuclear quadrupolar interaction bHIQ ,
which describes the interaction of the nuclear quadrupole moment
with the gradient of the electric field due to the electrons. The total

nuclear spin Hamiltonian bHI is thereforebHI ¼ bHIZ þ bHIQ þ bHIC : ð2:131Þ
Under high-field conditions the magnitudes of the three interac-

tions are generally ordered as follows: jbHIZ j � jbHIQ j > jbHIC j, i.e. the
nuclear Zeeman interaction dominates the chemical shielding and
quadrupolar interactions. In come cases the magnitudes of the
shielding and quadrupolar interactions may be opposite, for
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example for nuclei with small quadrupolar moments such as 6/7Li
and nuclei in a cubic environment. The dominance of the Zeeman
interaction means that the internal spin interactions may be treated
as perturbations, as we have already seen for the chemical shielding
interaction. Hence we can write down a high-field internal spin

interaction Hð2Þ
I with the following form:

Hð2Þ
I ¼ Hð1Þ

IQ þ Hð1Þ
IC þ Hð2Þ

I;Q
Q þ Hð2Þ
I;Q
C þ Hð2Þ

I;C
C : ð2:132Þ

In order of decreasing magnitude the interactions in Eq. (2.132) are

the first-order quadrupolar interaction Hð1Þ
IQ , the first-order chemical

shielding interaction Hð1Þ
IC , and the second-order interactions due to

the nuclear quadrupole Hð2Þ
I;Q
Q , the cross-terms between the quadru-

pole and chemical shielding Hð2Þ
I;Q
C , and the chemical shielding

Hð2Þ
I;C
C . The two Hamiltonians for the chemical shielding Hð1Þ

IC and

Hð2Þ
I;C
C have already been determined for spin-1=2 nuclei in Eqs.

(2.109) and (2.123), and have exactly the same form for a quadrupo-
lar nucleus. However for a quadrupolar nucleus there is the addi-
tional complication in that there are 2I þ 1 spin states, between
which there are Ið2I þ 1Þ transitions in which the magnetic quan-
tum increases. Each transition has an associated frequency for each
interaction. For example the first-order chemical shielding transi-
tion frequency for a transition from state jIM1i to jIM2i is

XðM1!M2Þ
IC ðaPL; bPLÞ ¼ �x0 riso þ 1

2
Dr 3 cos2ðbPLÞ � 1
��

�g cosð2aPLÞ sin2ðbPLÞ
o

ðM2 �M1Þ: ð2:133Þ

We have already fully examined the chemical shielding interac-
tion. The remainder of this section is devoted to the quadrupolar
interaction under high-field conditions.

2.7.1. The nuclear quadrupole Hamiltonian
The nuclear quadrupolar Hamiltonian describes the interaction

between the quadrupolar moment of the nucleus and the electric-
field gradient (EFG) due to the surrounding electrons. The EFG is
calculated from the electric scalar potential of the electrons V by
taking the second derivative with respect to the position coordi-
nates xi. There are therefore nine components of the EFG, which
takes the form of a symmetric and traceless tensor (rank two) with
components Vij ¼ @2V=@xi@xj. We define the PAF of the EFG tensor
as the reference frame in which the tensor is diagonal with

principal components eV ii. These components are ordered as

jeV zzj P jeV yyj P jeVxxj, and are written in terms of the EFG aniso-
tropy eq and asymmetry gQ parameters as follows:

eV zz ¼ eq; gQ ¼
eV xx � eV yyeV zz

: ð2:134Þ

The Euler angles giving the orientation of the PAF relative to the lab-
oratory frame are XQL ¼ aQL;bQL; cQL

� �
.

The nuclear quadrupolar Hamiltonian is given by

bHIQ ¼ eQ
2Ið2I � 1Þ Î � V � Î; ð2:135Þ

where eQ is the nuclear quadrupole moment. Note that althoughbHIQ appears to have the form of an interaction of the nuclear spin
with itself, this is not the correct physical interpretation. As we have
stated, the interaction is between the nuclear quadrupolar moment
and the EFG. By convention we define the quadrupolar coupling
constant CQ (in Hz) and quadrupolar splitting frequency xQ (in
rad s�1) as

CQ ¼ e2qQ
h

; xQ ¼ 3pCQ

2Ið2I � 1Þ : ð2:136Þ

In terms of these quantities we can rewrite bHIQ as

bHIQ ¼ 2�hxQ

3eq
Î � V � Î ð2:137Þ

¼ 2
3
�hxQ Î � v � Î; ð2:138Þ

where we have defined the reduced EFG tensor as v ¼ V=ðeqÞ. We
see that the strength of the interaction is proportional to the
quadrupolar splitting frequency. This Hamiltonian contains the gen-

eralized Cartesian scalar product Î � v � Î. To facilitate the following
discussion, this quantity is more conveniently written in terms of
irreducible spherical tensors, which gives the following equivalent
form of the Hamiltonian:

bHIQ ¼ 2
3
�hxQ

Xþ2

m¼�2

ð�1Þmv2m
bI2�m: ð2:139Þ

We now proceed to calculate the resulting first- and second-order
terms in Eq. (2.132).

2.7.1.1. The first-order nuclear quadrupole interaction. The first-

order quadrupolar interaction Hamiltonian Hð1Þ
IQ is calculated

according to the protocol in Section 2.6.1. The Hamiltonian has a

simple form in which only the term in bI20 is retained from Eq.
(2.139):

Hð1Þ
IQ ¼ 2

3
�hxQv20

bI20 ð2:140Þ

¼ 2
3
�hxQ

bI20 Xþ2

m¼�2

~v2mD
ð2Þ
m0ðXQLÞ; ð2:141Þ

which we see is proportional to xQ . On the second line we have
written v20 in terms of the irreducible spherical tensor components
in the PAF ~v2m, which are given by:

~v20 ¼
ffiffiffi
3
2

r
; ð2:142Þ

~v2	1 ¼ 0; ð2:143Þ
~v2	2 ¼ 1

2
gQ : ð2:144Þ

Substituting these into Eq. (2.141) gives the following explicit

expression for Hð1Þ
IQ :

Hð1Þ
IQ ¼ 1

2
�hxQ 3 cos2ðbQLÞ � 1þ gQ sin2ðbQLÞ cosð2aQLÞ

h i bI2z � 1
3
IðI þ 1Þ1̂

� 
:

ð2:145Þ
The corresponding frequency of transition from state jIM1i to state
jIM2i is therefore:

XðM1!M2Þ
IQ ðaQL;bQLÞ ¼

1
2
xQ 3 cos2ðbQLÞ � 1þ gQ sin2ðbQLÞ cosð2aQLÞ
h i


 M2
2 �M2

1

h i
: ð2:146Þ

We see that, in contrast to the chemical shielding interaction, the
transition frequency depends on the difference in the squares of
the two magnetic quantum numbers. An important consequence
of this is that any symmetric transition with M2 ¼ �M1 has no con-
tribution from the quadrupolar interaction. This point is explored in
more detail in Chapter 11.

2.7.1.2. The second-order nuclear quadrupole interaction. There are
two second-order terms in the Hamiltonian in Eq. (2.141) which
are due to the quadrupolar interaction. The larger and more
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important of these is Hð2Þ
I;Q
Q , which is due solely to the nuclear

quadrupole. It is calculated using the same protocol given for the
second-order chemical shielding term as described in Section
2.6.1.1. The Hamiltonian is given by the time-integral of the

commutator eHIQ ðt2Þ; eHIQ ðt1Þ
h i

in the second-order average

Hamiltonian. Evaluating this gives the following expression:

Hð2Þ
I;Q
Q ¼ �2�hx2

Q

45x0
2 4v2�1v2þ1 þ v2�2v2þ2ð Þ 5bI3z � ð3IðI þ 1Þ � 1ÞbIz� 	h

þ v2�1v2þ1 � v2�2v2þ2ð Þ 4IðI þ 1Þ � 3ð ÞbIzi; ð2:147Þ

which has a magnitude that is proportional tox2
Q=x0. This indicates

that this second-order interaction decreases in size as we increase
the external magnetic field B0.

The spatial properties of the interaction are elucidated by writ-
ing the products v2�mv2m in terms of the following irreducible

spherical tensor components W Q ;Qð Þ
L0 in the coupled representation:

W Q ;Qð Þ
L0 ¼

X
m

h22m�mjL0iv2mv2�m: ð2:148Þ

In this representation the Hamiltonian is

Hð2Þ
I;Q
Q ¼ 4�hx2

Q

9x0
W Q ;Qð Þ

00
3

5
ffiffiffi
5

p 5bI3z � 3IðI þ 1Þ � 1ð ÞbIz� 	
þ 4IðI þ 1Þ � 3

5
ffiffiffi
5

p bIz� 
þ 4�hx2

Q

9x0
W Q ;Qð Þ

20 �3
5

ffiffiffi
2
7

r
5bI3z � 3IðI þ 1Þ � 1ð ÞbIz� 	

þ 4IðI þ 1Þ � 3
10

ffiffiffiffiffiffi
14

p bIz" #

þ 4�hx2
Q

9x0
W Q ;Qð Þ

40 �51
15

ffiffiffiffiffiffi
1
70

r
5bI3z � 3IðI þ 1Þ � 1ð ÞbIz� 	

� 3
10

ffiffiffiffiffiffi
70

p 4IðI þ 1Þ � 3ð ÞbIz" #
:

ð2:149Þ

We see that the interaction contains a part that depends on the

rank-zero tensorW Q ;Qð Þ
00 , and is therefore spatially isotropic. The ani-

sotropic parts are of ranks two and four. Finally we note that the
transition frequencies depend on M2 �M1 and M3

2 �M3
1, and so

symmetric transitions are affected by the quadrupolar interaction
to second order.

2.7.1.3. The second-order quadrupole–SA cross term. The final

second-order interaction Hamiltonian Hð2Þ
I;Q
C is due to the combina-

tion of the quadrupolar and chemical shielding interactions. In the
second-order average Hamiltonian treatment, the Hamiltonian is

given by the integral of eHIQ ðt2Þ; eHICðt1Þ
h i

þ eHICðt2Þ; eHIQ ðt1Þ
h i

, which

is the sum of the two cross terms between these two interactions

[194]. The resulting expression for Hð2Þ
I;Q
C is:

Hð2Þ
I;Q
C ¼ �hxQ r1þ1 þ r2þ1ð Þv2�1 � r1�1 � r2�1ð Þv2þ1½ � bI2z � 1

3
IðI þ 1Þ1̂

� 
;

ð2:150Þ
which we see is proportional to the product of the quadrupolar
splitting frequency xQ and the components of the symmetric and
antisymmetic anisotropic parts of the chemical shielding tensor
r2m and r1m. As before, we can deduce the spatial properties by
writing the tensor products in terms of the coupled tensor compo-

nents W Cl;Qð Þ
L0

W Cl;Qð Þ
L0 ¼

X
m

hl2m�mjL0irlmv2�m; ð2:151Þ

which gives

Hð2Þ
I;Q
C ¼ �hxQ � 2ffiffiffi

5
p W C2;Qð Þ

00 þ
ffiffiffi
2

p
W C1;Qð Þ

20 þ
ffiffiffi
2
7

r
W C2;Qð Þ

20 þ 4

ffiffiffiffiffiffi
2
35

r
W C2;Qð Þ

40

" #


 Î2z �
1
3
IðI þ 1Þ1̂

� 
: ð2:152Þ

As for the other second-order terms, this contribution also has
parts of spatial ranks zero, two, and four. We also note that, as
for the first-order quadrupolar interaction, the transition frequen-
cies are proportional to M2

2 �M2
1, and so this interaction does not

affect symmetric transitions.

2.8. The hyperfine interaction

The coupling interaction between the nucleus and the unpaired
electrons is of central importance when discussing the effect of the
latter on the NMR of paramagnetic systems. This coupling is
referred to as the hyperfine interaction as it results in a ‘‘hyperfine”
splitting structure in the EPR resonance. As we will see the hyper-
fine coupling constant, which describes the dependence of the
interaction on the spatial orientation, contains both an isotropic
contact term, which is analogous to the J-coupling interaction
between nuclei, and a symmetric anisotropic dipolar coupling term.

In deriving the Hamiltonian bHSI describing the hyperfine inter-
action, we can choose to view it either as the interaction of the
nuclear magnetic moment l̂I with a magnetic field due to the elec-
tron, or equivalently as the interaction of the electronic magnetic
moment l̂S with a magnetic field due to the nucleus. A detailed
derivation can be found in Abragam and Bleaney [185], who show

that bHSI is equal to

bHSI ¼ � l0

4p
l̂S � $ð Þ l̂I � $ð Þ � l̂S � l̂Ið Þ$2

h i1
r
; ð2:153Þ

where $ is the vector derivative operator del, which is given by

$ ¼ @

@x
;
@

@y
;
@

@z

� �
: ð2:154Þ

The coordinates ðx; y; zÞ describe the position of a point relative to
the nucleus, and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the distance from the nucleus.

As will become apparent shortly, it is convenient to separate the
Hamiltonian into two parts as follows:

bHSI ¼ � l0

4p
l̂S � $ð Þ l̂I � $ð Þ � 1

3
l̂S � l̂Ið Þ$2

� 
1
r

þ l0

4p
2
3
l̂S � l̂Ið Þ$2

� 
1
r
: ð2:155Þ

The two terms in Eq. (2.155) are the spin-dipolar and contact parts
of the hyperfine interaction respectively, which we now explore in
detail.

2.8.1. Interaction with a single delocalised electron
We assume that the electron is spatially delocalized, and the

nucleus is localised at the single point r ¼ 0. This description is
appropriate when for example considering 3d electrons of first-
row d-block transition-metal ions that are delocalized into ligand
orbitals. The full magnetic interaction is calculated by multiplyingbHSI with the electron density qðrÞ, which is given by the square of

the electron wavefunction wðrÞ, i.e. qðrÞ ¼ jwðrÞj2, and then inte-
grating over all space. We consider two cases, firstly when the elec-
tron and nucleus are well separated, and secondly when the
electron is within the immediate vicinity of the nucleus. In the first
case we set r – 0, which for instance would be the case when the
electron occupies an orbital other than an s-orbital. The second
term in Eq. (2.155) then integrates to zero, and the first termbHr–0

SI becomes [185]

bHr–0
SI ¼ � l0

4p

Z
3 l̂S � rð Þ l̂I � rð Þ � l̂S � l̂Ið Þr2

r5
jwðrÞj2d3r ð2:156Þ

¼ � l0

4p

Z
3 l̂S � eð Þ l̂I � eð Þ � l̂S � l̂I½ � jwðrÞj

2

r3
d3r; ð2:157Þ
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where r is the vector displacement of the electron with respect to
the nucleus, e is the corresponding unit vector, and wðrÞ is the
electron wavefunction. The square of the magnitude of the wave-

function, jwðrÞj2, gives the electron density at position r. This
interaction term is referred to as the spin-dipolar interaction.

The situation where the electron is in the immediate vicinity of
the nucleus corresponds to setting r ¼ 0. Physically we would
encounter this situation when the electron resides in an s-orbital
centred at the nucleus. It can be shown that, in this case, the dipo-
lar coupling term of the hyperfine interaction is equal to zero, and
we are then left with the second term of Eq. (2.155) which inte-

grates to give bHr¼0
SI :

bHr¼0
SI ¼ �2

3
l0 l̂S � l̂Ið Þjwð0Þj2: ð2:158Þ

This term, which is referred to as the Fermi-contact interaction, is
purely isotropic and arises due to the delocalisation of the electron
onto the nucleus [185], which is reflected by the dependence of the

size of the interaction on jwð0Þj2, which is the electron density at the

nucleus, where r ¼ 0. Summing bHr–0
SI and bHr¼0

SI yields the full hyper-
fine Hamiltonian,

bHSI¼�l0

4p

Z
3 l̂S �rð Þ l̂I �rð Þ� l̂S � l̂Ið Þr2

r5
jwðrÞj2d3rþ8p

3
l̂S � l̂Ið Þjwð0Þj2

� 
:

ð2:159Þ
The Fermi-contact and spin-dipolar interactions with a delocalised
electron are illustrated in Fig. 2.9(a) and (b).

2.8.2. Interaction with a single localised electron
In cases where we can model the electron as being completely

localised on the paramagnetic centre, we treat the electron as a
point charge and point dipole. In this case we replace the electron

density jwðrÞj2 in Eq. (2.159) with the three-dimensional Dirac
delta function dðr � RÞ [190], where R is the position of the elec-
tron relative to the nucleus, and the integral simplifies toZ

3 l̂S � rð Þ l̂I � rð Þ � l̂S � l̂Ið Þr2
r5

jwðrÞj2d3r

¼
Z

3 l̂S � rð Þ l̂I � rð Þ � l̂S � l̂Ið Þr2
r5

dðr � RÞd3r ð2:160Þ

¼ 3 l̂S � eð Þ l̂I � eð Þ � l̂S � l̂I

R3 ð2:161Þ

where R is the distance of the electron from the nucleus. We note
here that, formally, R is the position of the unpaired electron relative
to the nucleus of interest. However in situations where this nucleus
of interest is different to the paramagnetic centre, R is effectively
the position of the nucleus of the paramagnetic centre relative to
the nucleus of interest, i.e. the positions of the nucleus and electron

of the paramagnetic centre are essentially indistinguishable. If the
errors introduced by this approximation are non-negligible, then
we are automatically not in the point-dipole regime, which is the
situation described by Walder et al. [200]. Assuming that the
point-dipole approximation holds, the total hyperfine Hamiltonian is

bHSI ¼ � l0

4p
3 l̂S � eð Þ l̂I � eð Þ � l̂S � l̂I

R3 þ 8p
3

l̂S � l̂Ið ÞdðRÞ
� 

; ð2:162Þ

The first term is the well-known interaction between point dipoles
[195], and the second term is the Fermi-contact interaction which is
equal to zero unless the nucleus is actually located at the exact posi-
tion of the electron, i.e. R ¼ 0. This is illustrated in Fig. 2.9(c).

In order to simplify the calculation of the hyperfine interaction
it is frequently assumed that we can apply the point-dipole
approximation to determine the spin-dipolar part, and need only
use electron delocalization for the Fermi-contact part. The errors
in the former approximation are not great at large distances from
the paramagnetic centre, i.e. typically when R > 4 Å, but can lead
to inaccuracies for nuclei that are closer. This comparison has been
discussed in some detail by Autschbach et al. [201]. The point-
dipole approximation for the spin-dipolar interaction has been
widely used for both paramagnetic proteins, and solid materials
[45,46,102,11,17,66,67].

2.8.3. Interaction with a paramagnetic centre of multiple delocalised
electrons

The expression for the hyperfine interaction Hamiltonian given
above describes a hyperfine coupling to a single electron. For a sys-
tem containing an ion with multiple unpaired electrons iwith total
electronic spin S, the Hamiltonian in Eq. (2.159) is modified so that
we sum over all the electrons [185]:

ĤSI ¼ � l0

4p
X
i

Z
3 l̂s;i � ri
� �

l̂I � rið Þ � l̂s;i � l̂I
� �

r2i
r5i

jwiðriÞj2d3ri

�
þ8p

3
l̂s;i � l̂I
� �jwið0Þj2


; ð2:163Þ

where l̂s;i and wiðriÞ are the magnetic moment and wavefunction of
electron i at position ri. We can simplify the Hamiltonian by writing
the sum over the electrons i in terms of the average spin density per
electron qa�bðrÞ=ð2SÞ, where qa�bðrÞ is the total spin-unpaired
electron density at position r, and 2S is the number of unpaired
electrons. The Fermi-contact term can then be written as

�2l0

3

X
i

l̂s;i � l̂I
� �jwið0Þj2 ¼ �2l0

3
l̂S � l̂Ið Þ 1

2S
qa�bð0Þ; ð2:164Þ

where l̂S ¼
P

il̂s;i is the magnetic moment operator for the total

electron spin Ŝ. Likewise the spin-dipolar term can be written as

Fig. 2.9. Illustration of the hyperfine interaction between a nucleus and unpaired electron. In (a) is shown the contact interaction. The nucleus n interacts with a delocalised
electron, the electron density of which here takes the shape of a 3d-orbital centred on a different nucleus. The size of the interaction is proportional to the electron density
located at the nuclear position r ¼ 0 (Eq. (2.158)). In (b) the same unpaired electron interacts with a more remote nuclear spin via the spin-dipolar interaction. The size of the
interaction is given by the integral over all positions r relative to the nucleus in Eq. (2.157). When the electron is approximated as a point electronic dipolar moment e in (c),
the hyperfine interaction is given by Eq. (2.162), and depends on the distance R between the nucleus and electron. Now if R– 0 the Fermi-contact interaction is zero, and the
hyperfine interaction is purely spin-dipolar in nature.
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� l0

4p
X
i

Z
3 l̂s;i � ri
� �

l̂I � rið Þ � l̂s;i � l̂I
� �

r2i
r5i

jwiðriÞj2d3ri

¼ � l0

4p

Z
3 l̂S � rð Þ l̂I � rð Þ � l̂S � l̂Ið Þr2

r5
qa�bðrÞ

2S
d3r:

ð2:165Þ

The total hyperfine Hamiltonian is therefore

bHSI ¼� l0

8pS

Z
3 l̂S �rð Þ l̂I �rð Þ� l̂S � l̂Ið Þr2

r5
qa�bðrÞd3rþ8p

3
l̂S � l̂Ið Þqa�bð0Þ

� 
:

ð2:166Þ

2.8.4. Interaction with a paramagnetic centre of multiple localised
electrons

Finally we consider the case where all the electrons are loca-
lised at the same position R, which we refer to as the position of
the paramagnetic centre. The densities of each of the electrons i
can now be replaced with the same Dirac delta function

jwiðrÞj2 ¼ dðr � RÞ, and we can write the hyperfine Hamiltonian in
terms of the effective spin electronic magnetic moment l̂S as
follows:

bHSI¼�l0

4p
X
i

3 l̂s;i �e
� �

l̂I �eð Þ� l̂s;i � l̂I

R3 þ8p
3

l̂s;i � l̂I
� �

dðRÞ
� 

ð2:167Þ

¼�l0

4p
3 l̂S �eð Þ l̂I �eð Þ� l̂S � l̂I

R3 þ8p
3

l̂S � l̂Ið ÞdðRÞ
� 

; ð2:168Þ

which is the same as Eq. (2.162). Note in particular that, for loca-
lised electrons, there is no scaling of the hyperfine Hamiltonian
by the factor 1=ð2SÞ.

2.8.5. The hyperfine coupling constant
For all the situations we have described above, we can write the

hyperfine Hamiltonian in terms of the spin operators. Substituting
in the corresponding expressions for the nuclear and electronic

magnetic moments, namely l̂I ¼ �hcI Î and l̂S ¼ �lBgeŜ, we obtain
an expression of the formbHSI ¼ Ŝ � A � Î; ð2:169Þ
where A is the hyperfine coupling tensor, which we have seen can

be divided into the isotropic Fermi-contact coupling constant AFC

and the traceless and symmetric spin-dipolar tensor ASD:

A ¼ AFC1þ ASD
: ð2:170Þ

If the electrons are delocalised onto the ligands, the Fermi-contact
coupling constant and the Cartesian components of the spin-
dipolar tensor are given by [185,202]

AFC ¼ l0lBge�hcI
3S

qa�bð0Þ; ð2:171Þ

ASD
ij ¼ l0lBge�hcI

8pS

Z
3rirj � dijr2

r5
qa�bðrÞd3r; ð2:172Þ

where i and j are equal to x; y, or z; ei is the unit vector along axis i,
and dij is the Kronecker delta. The coupling constant describing the
hyperfine interaction to a multi-electron paramagnetic centre has a
complicated interpretation. The Fermi-contact coupling constant is
proportional to the total unpaired electron spin density transferred
to the nucleus, i.e. the sum of the contributions from the individual
electrons. But since each unpaired electron resides in a different
orbital with a different spatial distribution of electron density, the
contribution to the hyperfine interaction from each electron is
different. For example, imagine a diatomic system comprising a
d-transition-metal centre whose dz2 orbital is coordinated to an
s-orbital of the atom containing the nucleus of interest. We would
expect the contribution to the Fermi-contact term from the dz2

orbital to be non-zero. However an electron in the dxy orbital may
not be delocalized at all into the s-orbital due to the different symme-
try, and so would have a Fermi-contact contribution of zero. In order
to make the Fermi-contact contributions from different metal ions in
different systems comparable we divide the coupling constant by the
number of unpaired electrons, which is equal to 2S so as to give a
‘‘Fermi-contact coupling constant per electron”, which is also known
as the many-electron Fermi-contact coupling constant. The same
considerations also apply to the spin-dipolar interaction.

If, on the other hand, the electrons can be treated as a point
dipole with spin S, the hyperfine coupling tensor parameters are

AFC ¼ 2l0lBge�hcI
3

dðRÞ; ð2:173Þ
ASD
ij ¼ bSI 3eiej � dij


 �
; ð2:174Þ

where the point-dipole coupling constant bSI is

bSI ¼ l0lBge�hcI
4pR3 : ð2:175Þ

Here the scaling by the number of electrons has already been
implicitly included. Since the electrons are point dipoles, the differ-
ent spatial variation of the individual orbitals is suppressed, and
each electron makes exactly the same contribution to the interac-
tion. Hence the factor of 2S is not present.

We can also write Eq. (2.169) in terms of irreducible spherical
tensors as follows

bHSI ¼
X
l¼0;2

Xþl

m¼�l

ð�1ÞmAlm
bT l�m: ð2:176Þ

In the high-field limit, only the terms with m ¼ 0 are retained and
the Hamiltonian reduces tobHSI ¼ A00

bT 00 þ A20
bT 20: ð2:177Þ

The spin tensors bT l0 can be written down after referring to Table 2.2,
with one important difference. Because the energy corresponding to
the difference between the electron and nuclear Larmor frequencies
is several orders of magnitude greater than the hyperfine coupling

constant, the scalar product Î � Ŝ can be simplified as the flip-flop

term bIxbSx þbIybSy is averaged to zero in the calculation of the first-

order average Hamiltonian, and only the longitudinal term bIzbSz

remains [1]. Therefore the spin tensors are

bT 00 ¼ �
ffiffiffi
1
3

r bIzbSz ð2:178Þ

bT 20 ¼
ffiffiffi
2
3

r bIzbSz: ð2:179Þ

The spatial tensor components Al0 can be written down after refer-
ring to Table 2.3. Using this information we can write the spatial
tensor components for delocalised electrons as

A00 ¼ �
ffiffiffi
3

p
AFC

; ð2:180Þ
eA20 ¼

ffiffiffi
3
2

r eAzz � AFC
� 	

ð2:181Þ

¼
ffiffiffi
3
2

r
l0lBge�hcI

8pS

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF; ð2:182Þ

eA2	1 ¼ 0; ð2:183ÞeA2	2 ¼ �1
2
gSD eAzz � AFC
� 	

; ð2:184Þ

where gSD is the asymmetry parameter, and ri;PAF is a position coor-
dinate measured in the PAF of the spin-dipolar tensor. Note that the
spin-dipolar interaction is not necessarily axially symmetric. For
localised electrons, the spatial tensor components are:
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A00 ¼ �
ffiffiffi
3

p
AFC

; ð2:185Þ
eA20 ¼

ffiffiffi
3
2

r eAzz � AFC
� 	

ð2:186Þ
¼

ffiffiffi
6

p
bSI; ð2:187ÞeA2	1 ¼ 0; ð2:188ÞeA2	2 ¼ 0; ð2:189Þ

where eAzz � AFC ¼ 2bSI . The spin-dipolar interaction between two
point magnetic dipoles is always axially symmetric, and so gSD

and eA2	2 are therefore zero.

2.8.6. The hyperfine interaction in solid insulators
We now consider the form of the hyperfine interaction in solids.

As discussed in Section 2.3.2, insulating materials exhibit no charge
conductivity, and so we can treat the unpaired electrons as being
largely localized on the paramagnetic centres. In this case we can
write the hyperfine interaction Hamiltonian as a sum of terms of
the type given in Section 2.8.5, to give

bHIS ¼
X
A

bS ðAÞ � AðAÞ � Î: ð2:190Þ

Here bS ðAÞ and AðAÞ are the electronic spin operator and the
hyperfine coupling tensor due to the unpaired electrons on param-
agnetic centre A.

2.8.7. The hyperfine interaction in solid metals
The hyperfine interaction Hamiltonian in metallic materials has

a similar form to the Hamiltonian describing an isolated paramag-
netic centre, but with some notable differences. Firstly we note
that we cannot necessarily write the interaction in terms of a total

electronic spin operator Ŝ. We therefore write the Hamiltonian as a
sum over the N electrons:

bHIS ¼ l0lBge�hcI
4p Î �

X
l

3 rl � ŝlð Þrl � r2l ŝl
r5l

þ 8p
3

dðrlÞŝl
� 

: ð2:191Þ

Secondly, in the sum over the electrons l, only electrons in states
close to the Fermi level contribute to the hyperfine coupling. The
other electrons are spin paired, and so do not contribute. Eq.
(2.191) assumes that the electrons can be approximated as free
electrons, with g-factor ge.

We proceed as before and calculate the expectation value of bHIS

with respect to the electronic spatial degrees of freedom in a spa-
tial state described by the many-electron wavefunction of Eq.
(2.26). The result is a sum of hyperfine interactions with the indi-
vidual electronic spins:bHIS ¼

X
l

ŝl � al � Î; ð2:192Þ

where al is the hyperfine coupling tensor describing the interaction
with electron l, which is given by

al ¼ l0lBge�hcI
4p

Z
wðr1; r2; . . . ; rNÞ 3rlrl � r2l 1

r5l
þ 8p

3
dðrlÞ1

� 

wðr1; r2; . . . ; rNÞd3r1d

3r2 . . .d
3rN : ð2:193Þ

The NMR properties that result from this interaction are explored in
Section 7.12.

2.8.8. Finite nucleus effects
The treatment of the hyperfine interaction in this section has so

far assumed that the nucleus can be accurately modelled as a point

charge eZ, with a distribution of infinitesimal width given by
qðrIÞ ¼ eZdðrIÞ, where rI is the nuclear position coordinate. Assum-
ing this model, we obtain a hyperfine Hamiltonian of the form of
Eq. (2.159), from which follow all the remaining formulae up to
the end of Section 2.8.7. However it has been shown that finite
nucleus effects, where the nuclear charge has a finite volume,
can have a non-negligible effect on the hyperfine interaction, par-
ticularly for heavy nuclei [203–206]. A finite nucleus has two
effects on the hyperfine interaction, namely the change in elec-
tronic structure due to the non-zero nuclear volume and the
change to the relevant operators due to the spread of nuclear
charge [205].

The effect of a finite nucleus is modelled by replacing the point
nuclear charge with a charge distribution qðrIÞ of finite width. This
distribution can be modelled with any suitable function, but a
radial Gaussian GnðrIÞ is commonly used [203–206]:

qðrIÞ ¼ eZGnðrIÞ; ð2:194Þ

GnðrIÞ ¼ n
p

� �3=2

exp �nr2I
� �

; ð2:195Þ

where n is a parameter that is inversely proportional to the mean-
square width of the distribution hr2I i:

n ¼ 3
2hr2I i

; ð2:196Þ

and the distribution is centred at rI ¼ 0. The electron–nucleus
potential VSIðrÞ is then given by

VSIðrÞ ¼ � Ze
r
P 1=2; nr2
� �

; ð2:197Þ

where r is the position of the electron relative to the centre of the
nuclear charge distribution. The function Pða; xÞ is defined as

Pða; xÞ ¼ 1
CðaÞ

Z x

0
ta�1 expð�tÞdt; ð2:198Þ

where CðaÞ is the gamma function, and a > 0.
The hyperfine interaction Hamiltonian can now be modified to

include the finite nucleus effect. If we consider the hyperfine inter-
action with a single unpaired electron, we simply modify Eq.
(2.159) to include the nuclear distribution. The modified hyperfine
Hamiltonian is

bHSI ¼ � l0

4p

Z
P 5=2; nr2
� �3 l̂S � rð Þ l̂I � rð Þ � l̂S � l̂Ið Þr2

r5
jwðrÞj2d3r

�
þ8p

3
l̂S � l̂Ið Þ

Z
GnðrÞjwðrÞj2


: ð2:199Þ

The first term is due to the spin-dipolar interaction with a nucleus
of finite charge distribution, and the second term is the correspond-
ing Femi-contact distribution. For the remainder of this review, we
do not consider finite nucleus effects further. However we should
remember that these effects become important for heavy elements
[203–206].

2.9. Key concepts

� Nuclei and unpaired electrons possess magnetic moments, due
to their spin, which define their molecular/atomic-level mag-
netic properties.

� The magnetization and magnetic susceptibility define the bulk
magnetic properties of ensembles of nuclei and electrons.

� Solid materials with unpaired electrons can be characterized as
insulators, semi-conductors, or metals according to their elec-
tronic structure.
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� The molecular/atomic-level magnetic moments of nuclei and
unpaired electrons couple with an external magnetic field, giv-
ing the Zeeman interaction, which is responsible for both the
NMR and EPR spectra.

� The nuclear Zeeman resonance frequency depends on the local
environment of the nucleus, with nuclei in different chemical
sites having different resonance frequencies. This is the origin
of the chemical shielding and chemical shift.

� The chemical shielding, in general, depends on the orientation
of the chemical environment with respect to the external mag-
netic field. The orientationally-dependent part of the shielding
is known as the CSA, and is described by a rank-two spherical
tensor.

� The nuclear and electronic magnetic moments couple to each
other resulting in the hyperfine interaction.

� The hyperfine interaction in isolated molecules, solid insulators,
and metals is described by a hyperfine coupling constant, which
comprises a ‘through-bond’ isotropic Fermi-contact term, and a
‘through-space’ anisotropic spin-dipolar term.

� For heavy nuclei, finite nuclear effects modify the hyperfine
interaction. Here the nuclear charge distribution is modelled
by a function of non-zero spatial width.

Chapter 3: The paramagnetic shift in electron spin-only systems

In this chapter we describe the origin of the paramagnetic shifts
of nuclei that are coupled to the unpaired electrons of paramag-
netic systems such as organic radicals or transition-metal ions.
The discussion is initially limited to spin-only paramagnets, where
the electrons occupy a non-degenerate orbital state, with the more
complicated effects due to orbital angular momentum, spin-orbit
coupling, and the crystal field being dealt with in the following
chapters.

The first question that is answered is why the hyperfine interac-
tion, which takes exactly the same form as a heteronuclear coupling
interaction, causes a shift in the nuclear resonance frequency and
not a splitting of the NMR resonance. The reason for this is that
the unpaired electrons relax on a timescale that is several orders
of magnitude shorter than the timescales of both nuclear relaxation
and the NMR experiment. Values of electron relaxation times for a
range of metal ions have been tabulated [15], and are generally
between 10�14 and 10�8 s, which are considerably shorter than
typical nuclear longitudinal relaxation times of between 1 ms and
several minutes. As a result the nucleus in effect does not interact
with an electronic magnetic moment, but rather with its average
value. This interaction has the same form as a chemical shift.

Three different, but essentially equivalent, explanations of why
the paramagnetic shift occurs are proposed. Firstly we calculate
the form of the NMR spectrum of a nucleus coupled to a free elec-
tron, and show that the effect of the fast electron relaxation is to
average the two components of the resonance splitting to a single
line that is shifted with respect to the nominal nuclear Larmor fre-
quency. Secondly we show that we can also explain the shift as a
result of the nucleus coupling to an average electronic magnetic
moment that can be calculated from an average over the
thermally-accessible electron energy levels. Thirdly we show that
the thermal average of the electron magnetic moment is related
to the bulk magnetic properties of the material via the magnetic
susceptibility, and that we can therefore relate the paramagnetic
shift to these bulk properties.

3.1. The origin of the paramagnetic shift

We begin by deriving the form of the spectrum of a heteronu-
clear spin system comprising two spins-1/2, which is already

familiar to an NMR audience. Following this we will then substi-
tute a single free electron for the second nucleus, and derive the
corresponding paramagnetic shift.

3.1.1. Two-spin system comprising two spin-1/2 heteronuclei
We initially consider a spin system comprising two nuclear

spins-1/2 I and S of different species that interact via an isotropic
J-coupling. Note however that the argument that follows also
applies to a dipolar coupling in a static single crystal, and can be
extended in a straightforward manner to powder samples, and to
include the effects of sample rotation. We also assume that the
gyromagnetic ratios of I and S are positive and negative respec-
tively, and that jx0;Sj > jx0;Ij � jJj, where x0;S and x0;I are the I-
spin and S-spin Larmor frequencies respectively, and J is the
heteronuclear J-coupling constant in rad s�1, which is here taken
to be positive. This choice allows us to change the S-spin into an
electron later on, without having to change the signs in all of the
derived expressions.

The high-field Hamiltonian is

bH ¼ �hx0;I
bIz þ �hx0;S

bSz þ �hJbIzbSz; ð3:1Þ
where the first and second terms represent I-spin and S-spin Zee-
man interactions respectively, and the third term is the heteronu-

clear J-coupling interaction. The eigenstates of bH are the functions
jIMI; SMSi, which depend on the four quantum numbers I ¼ 1=2,
S ¼ 1=2, MI , and MS. Here we omit I and S, and use the labels a
and b to represent the allowed values of bothMI andMS. In addition
it proves useful to emphasize the energy order of the four spin
states, and so we also label them as j1i; j2i; j3i, and j4i in order of
increasing energy as follows:

j1i ¼ jabi; ð3:2Þ
j2i ¼ jbbi; ð3:3Þ
j3i ¼ jaai; ð3:4Þ
j4i ¼ jbai: ð3:5Þ
The corresponding energies En are

E1 ¼ 1
2
�hx0;I � 1

2
�hx0;S � 1

4
�hJ ð3:6Þ

E2 ¼ �1
2
�hx0;I � 1

2
�hx0;S þ 1

4
�hJ; ð3:7Þ

E3 ¼ 1
2
�hx0;I þ 1

2
�hx0;S þ 1

4
�hJ; ð3:8Þ

E4 ¼ �1
2
�hx0;I þ 1

2
�hx0;S � 1

4
�hJ: ð3:9Þ

Note that the order of the energies is correct as x0;I < 0 and
x0;S > 0. A schematic of the energy levels is shown in Fig. 3.1(a).

We are interested in the transitions which give resonances in
the NMR spectrum of the I-spin. These are the two single quantum
transitions j1i ! j2i and j3i ! j4i, which have the transition fre-
quencies Dx1!2 and Dx3!4 given by:

Dx1!2 ¼ E2 � E1

�h
ð3:10Þ

¼ �x0;I þ 1
2
J; ð3:11Þ

Dx3!4 ¼ E4 � E3

�h
ð3:12Þ

¼ �x0;I � 1
2
J: ð3:13Þ

The two resonances are split by the coupling constant J and centred
on �x0;I , and so can be interpreted as the two components of the I-
spin doublet, with the component due to the j1i ! j2i transition
representing the I-spin single-quantum transition when the S-spin
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is in the jbi state, and the j3i ! j4i transition occurring with the
S-spin in the jai state.

The intensity of each peak is proportional to the population
difference of the two states. For example the intensity In!p of the
transition jni ! jpi varies as

In!p / Pn � Pp: ð3:14Þ
The population of the state jni; Pn is given by the Boltzmann
distribution,

Pn ¼ expð�bEnÞ
Q

; ð3:15Þ

where b ¼ 1=kT, k is the Boltzmann constant, T is the absolute tem-
perature, and Q is the partition function

Q ¼
X
n

expð�bEnÞ: ð3:16Þ

Using these expressions we can write down the fraction f n!p of the
total spectral intensity that is contained in the peak due to the tran-
sition jni ! jpi. For the two I-spin transitions these fractional inten-
sities are:

f 1!2 ¼ I1!2

I1!2 þ I3!4
ð3:17Þ

¼ P1 � P2

P1 � P2 þ P3 � P4
; ð3:18Þ

f 3!4 ¼ I3!4

I1!2 þ I3!4
ð3:19Þ

¼ P3 � P4

P1 � P2 þ P3 � P4
: ð3:20Þ

Note that, according to these definitions, f 1!2 þ f 3!4 ¼ 1.
We can simplify these expressions somewhat by noting that the

thermal energy kT greatly exceeds the energy separation of the
four energy levels, which allows us to expand the exponential in
the expression for the population of the state jni as a Taylor series
in b, and to truncate it at the first-order term:

expð�bEnÞ ¼ 1� bEn þOðb2Þ: ð3:21Þ

Substituting this into the expressions in Eqs. (3.18) and (3.20) we
obtain, to zeroth order in b,

f 1!2 ¼ E2 � E1

E4 � E3 þ E2 � E1
þOðbÞ ð3:22Þ

¼ Dx1!2

Dx3!4 þ Dx1!2
þOðbÞ; ð3:23Þ

f 3!4 ¼ E4 � E3

E4 � E3 þ E2 � E1
þOðbÞ ð3:24Þ

¼ Dx3!4

Dx3!4 þ Dx1!2
þOðbÞ; ð3:25Þ

and hence

Fig. 3.1. Illustration of the spin energy levels and NMR spectrum of a two-spin-1=2 system I–S, showing the differences between a system of two coupled nuclear spins-1=2 of
different species, and a spin-1=2 coupled to an electron. In (a) is shown the array of four energy levels, 1–4, assuming that jx0;Sj > jx0;Ij > jJj,x0;S > 0,x0;I < 0, and J > 0. The
two I-spin transitions are shown with a red and blue arrow, and are labelled with their frequencies Dx1!2 and Dx3!4. The corresponding schematic of the I-spin NMR
spectrum is shown in (b) for the case where S is a second nuclear spin. The spectrum contains two components of a doublet with the same intensity, centred on �x0;I , and
separated by the coupling constant J. Decoupling of the S-spin, or other fast exchange of the two S-spin spin states leads to a singlet at �x0;I as shown in (c). The energy level
diagram in (a) also applies to a nuclear spin I coupled to an electron S if we substitute J for A=—h. The corresponding nuclear I-spin spectrum is shown in (d), and exhibits the
same features as the spectrum in (b) with the exception that the two components of the doublet now have different intensities because the larger energy separation between
the pairs of I-spin energy levels in the two transitions leads, via the Boltzmann distribution, to different equilibrium spin state population differences. The rapid electronic
relaxation of S ‘decouples’ the I spin spectrum to give a singlet which is positioned at the centre of mass of the two doublet components as shown in (e). The singlet is thus
offset from �x0;I by an offset frequency �x0;Id

S
iso , where dSiso is the ‘paramagnetic shift’ due to the electron S.
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f 1!2 ¼ �x0;I þ 1
2 J

�2x0;I
; ð3:26Þ

f 3!4 ¼ �x0;I � 1
2 J

�2x0;I
: ð3:27Þ

Remembering that jJj � jx0;Ij, we see that both transitions, and
therefore both components of the doublet, have the same fractional
intensity of 1=2. A schematic of the corresponding I-spin spectrum
is shown in Fig. 3.1(b).

Now let us imagine that the spectrum is acquired whilst the jai
and jbi spin states of the S-spin are rapidly interconverted. Such a
situation may arise either because we are applying decoupling irra-
diation to S, or because S is relaxing on a timescale that is fast com-
pared to the I-spin relaxation. Under these circumstances the two
components of the I-spin doublet collapse to a singlet, the spectral
position of which x is given by the average of the two spectral
frequencies:

x ¼ f 1!2Dx1!2 þ f 3!4Dx3!4 ð3:28Þ

¼ 1
2

�x0;I þ 1
2
J

� �
þ 1
2

�x0;I � 1
2
J

� �
ð3:29Þ

¼ �x0;I; ð3:30Þ
i.e. the peak appears at minus the I-spin Larmor frequency, as
shown in Fig. 3.1(c).

3.1.2. Two-spin system comprising one spin-1/2 nucleus and a free
electron

A spin system comprising a single spin-1/2 nucleus I coupled to
a free electron S can be treated in an analogous way. The high-field
Hamiltonian is the same as in Eq. (3.1), with the exception that we
write the electron Zeeman interaction in terms of lBge, and we
replace the coupling �hJ with a hyperfine coupling constant A
(which is in units of energy, rather than frequency):

Ĥ ¼ �hx0;I Îz þ lBgeB0Ŝz þ ÂIzŜz: ð3:31Þ
The eigenstates are the same as those in Eqs. (3.2)–(3.5), and

have the corresponding energies:

E1 ¼ 1
2
�hx0;I � 1

2
lBgeB0 � 1

4
A; ð3:32Þ

E2 ¼ �1
2
�hx0;I � 1

2
lBgeB0 þ 1

4
A; ð3:33Þ

E3 ¼ 1
2
�hx0;I þ 1

2
lBgeB0 þ 1

4
A; ð3:34Þ

E4 ¼ �1
2
�hx0;I þ 1

2
lBgeB0 � 1

4
A: ð3:35Þ

The two nuclear-spin transitions have the following
frequencies:

Dx1!2 ¼ E2 � E1

�h
ð3:36Þ

¼ �x0;I þ 1
2
�h�1A; ð3:37Þ

Dx3!4 ¼ E4 � E3

�h
ð3:38Þ

¼ �x0;I � 1
2
�h�1A: ð3:39Þ

Here we encounter the key difference between the energy levels
of the heteronuclear two-spin system, and the nucleus-electron
two-spin system, which is that the electron Zeeman interaction
is much larger than the nuclear Zeeman interaction. This is
reflected in the values of the gyromagnetic ratios for 1H and the
free electron which are 2:675
 108 rad s�1 and �1:761
 1011

rad s�1 respectively (ratio jcS=cIj ¼ 658), and the Larmor frequen-
cies of �500 MHz and þ329 GHz at a magnetic field of 11.74 T.

Therefore when we calculate the intensities of the spectral peaks
using Eqs. (3.18) and (3.20) we have to bear in mind that the larger
ratio of lBge=ðkTÞmeans we can no longer truncate the exponential
factors in the Boltzmann distribution at first order in b, and must
include terms of order b2:

expð�bEnÞ ¼ 1� bEn þ 1
2
b2E2

n þOðb3Þ: ð3:40Þ

If we again assume that the coupling constant has a negligible effect
on the populations of the states the intensities of the two nuclear
transitions are, to first order in b:

f 1!2 ¼ 1
2
þ 1
4
lBgeB0 b; ð3:41Þ

f 3!4 ¼ 1
2
� 1
4
lBgeB0 b: ð3:42Þ

We see that the transition between the two lower states, j1i and j2i,
has a greater intensity than the transition between the two higher
states, j3i and j4i. The corresponding NMR spectrum is illustrated
in Fig. 3.1(d). In a magnetic field of 11.74 T at a temperature of
298 K, the difference in peak intensities is approximately 0.03, or
3%. At first sight this appears to be very small, but as we will see
it is enough to exert a decisive effect on the NMR spectrum.

The rapid electron relaxation effectively ‘‘decouples” the NMR
spectrum, resulting in a singlet appearing at a frequency x that
is the weighted average of the two peaks. This frequency is

x ¼ f 1!2Dx1!2 þ f 3!4Dx3!4 ð3:43Þ

¼ �x0;I þ lBgeAB0

4�hkT
: ð3:44Þ

The corresponding spectrum is shown in Fig. 3.1(e). We see imme-
diately that the resonance is offset from �x0;I by an amount
lBgeAB0=ð4�hkTÞ that is proportional to the magnetic field B0. It is
therefore equivalent to an isotropic chemical shift which, from

Eqs. (2.109) and (2.130), has a Hamiltonian bH ¼ �hx0;Ið1þ dSisoÞ from
which we can calculate a transition frequency

x ¼ �x0;I 1þ dSiso
� �

: ð3:45Þ

Comparing Eqs. (3.44) and (3.45) we deduce that the shift is equal
to

dSiso ¼
lBgeA
4�hcIkT

: ð3:46Þ

We have identified this contribution as the paramagnetic shift, as it
is due solely to the interaction between the nucleus and the
unpaired electron. The paramagnetic shift scales as A=ðkTÞ, which
can be understood as follows. Increasing the temperature results
in a smaller shift, simply because the higher-energy states become
more populated relative to the lower-energy states, and the differ-
ence between the intensities of the two transitions is reduced.
Eventually we approach the limit encountered in the case of the
heteronuclear two-spin system, with the paramagnetic shift tend-
ing to zero. This inverse proportionality is a form of the Curie
Law, which we will see again in the discussion of the magnetic sus-
ceptibility. On the other hand as we increase the hyperfine coupling
constant the shift also increases as we are averaging over a larger
separation of the peaks.

These observations all point to the idea that the hyperfine inter-
action has been scaled down by a temperature-dependent factor to
give the paramagnetic shift. This is an idea we will return to later,
and quantify more formally, when we discuss the role of the mag-
netic susceptibility.
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3.2. The thermal average of the electron magnetic moment: the
Brillouin function and the Curie spin

The ideas developed in the previous section act as a visual
explanation of why we observe a paramagnetic shift in the pres-
ence of unpaired electrons. However this is not the most conve-
nient way to calculate the shift, especially for more complex
systems with multiple electrons and orbital angular momentum.
A better method turns out to be to calculate the average electronic
magnetic moment first, and then to couple that to the nucleus via
the hyperfine interaction.

3.2.1. The Hamiltonian and the pseudo spin
The Hamiltonian we use in this section is

bH ¼ �hx0;I
bIz þ lBgeB0

bSz þ Ŝ � A � Î; ð3:47Þ
where the first term is the nuclear Zeeman interaction, which
ignores the effects of the orbital contribution to the chemical
shielding, the second term is the electron Zeeman interaction, and
the third term is the hyperfine coupling.

For the electron Zeeman interaction we assume that the inter-
action is spatially isotropic, with a g-factor equal to ge. However
we no longer restrict the discussion to a single free electron, but
to a paramagnetic centre containing N unpaired electrons with total
spin S. Such a situation is appropriate, for instance, for describing
spin-only transition-metal ions in a perfectly cubic ligand-field
environment. Here we introduce the concept of pseudo spin, where
we model the energy levels of the electrons as being due to a single

effective spin eS which has the same multiplicity 2eS þ 1 as the true
states [185]. For the first-row d-block transition metals the pseudo
spin is the same as the true spin S, so we drop the tilde.

The form of the hyperfine interaction we use here does not
make use of the high-field approximation. This allows us to treat
coupling constants that are not small compared to the Zeeman
interactions in the most general way possible. At this point we
remind ourselves that the hyperfine coupling tensor is the sum
of an isotropic Fermi-contact term, and a symmetric spin-dipolar
tensor.

We saw in the previous section that the paramagnetic shift is
due to electronic relaxation, which occurs on a timescale that is
orders of magnitude shorter than nuclear relaxation, so that during
the observation of the nuclear-spin transitions the electronic spins
are effectively sampling all the electronic energy levels according
to their equilibrium configuration. This means that, in effect, the

hyperfine interaction bHSI does not really couple the nuclear mag-
netic moment to the electronic magnetic moment, but rather to
the average of the electronic magnetic moment. Before continuing,
we note that whilst this model is sufficient for understanding the
paramagnetic shift, it does not give a correct explanation of nuclear
relaxation in paramagnetic systems. This is because the random
processes that cause nuclear relaxation occur on timescales that
are several orders of magnitude shorter than those of nuclear
relaxation itself, and so we must consider the full interaction
between the nuclear and electronic dipole moments. This is dis-
cussed in more detail in Chapters 8 and 9. For now we confine
our discussion to the shift, and are therefore able to write the
hyperfine Hamiltonian as

bHSI ¼ hŜi � A � Î; ð3:48Þ

where hŜi is the expectation value of the electronic spin vector. This
expectation value represents the time average of the electron spin,
which we will assume to be equivalent to the average over the
entire ensemble of paramagnetic centres. The latter is equal to

the Boltzmann average of the components bSi of the spin:

hbSii ¼
P

nhnjbSijni expð�bEnÞP
n expð�bEnÞ ; ð3:49Þ

where the jni and the En are the eigenstates and energies of the
Hamiltonian in Eq. (3.47). To proceed we simplify matters by noting
that the dominant term in the Hamiltonian is the electronic Zeeman
interaction, and that the other terms have a negligible effect on the
electronic spin energy levels. Therefore we take the eigenstates and
energies simply to be those of the Zeeman interaction, namely

jni ¼ jSMSi; En � EðS;MSÞ ¼ lBgeB0MS: ð3:50Þ
We note that the lowest-energy state is jS� Si, which is conse-
quence of the negative gyromagnetic ratio of the electron.

We see immediately that the transverse components of the
expectation value of the spin are zero:

hbSxi ¼ hbSyi ¼ 0: ð3:51Þ
This is because these components are perpendicular to the applied
field, and so there is no driving force for inducing a net magnetic
moment in these directions. However there is such a driving force

parallel to the field, resulting in the longitudinal component hbSzi
being non-zero:

hbSzi ¼
PþS

MS¼�ShSMSjbSzjSMSi expð�bEðS;MSÞÞPþS
MS¼�S expð�bEðS;MSÞÞ

ð3:52Þ

¼
PþS

MS¼�SMS expð�blBgeB0MSÞPþS
MS¼�S expð�blBgeB0MSÞ

: ð3:53Þ

Defining x ¼ �blBgeB0 we can write Eq. (3.53) as

hbSzi ¼
PþS

MS¼�SMS expðMSxÞPþS
MS¼�S expðMSxÞ

ð3:54Þ

¼ d
dx

ln
XþS

MS¼�S

expðMSxÞ
" #

; ð3:55Þ

where the move to the last line can be verified by calculating the
derivative. The sum is a simple geometric progression, which can
be written in the following closed form:

XþS

MS¼�S

expðMSxÞ ¼
sinh Sþ 1

2

� �
x


 �
sinh 1

2 x

 � : ð3:56Þ

Calculating the derivative now gives, after some algebra:

d
dx

ln
sinh Sþ 1

2

� �
x


 �
sinh 1

2 x

 �" #

¼ Sþ 1
2

� �
coth Sþ 1

2

� �
x

� 
� 1
2
coth

1
2
x

� 
:

ð3:57Þ
The expectation value of the z-component of the spin is now

hbSzi ¼ �SBSðyÞ; ð3:58Þ
where the Brillouin function BSðyÞ is defined as

BSðyÞ ¼ 2Sþ 1
2S

coth
2Sþ 1
2S

� �
y

� 
� 1
2S

coth
y
2S

� 	
; ð3:59Þ

and y ¼ blBgeB0S ¼ �Sx.
Eq. (3.58) is a general expression for the value of the expecta-

tion value of bSz for any temperature and magnetic field. Represen-
tative curves are plotted in Fig. 3.2(a) for a range of magnetic fields
and temperatures. However for typical values of the field and tem-
perature in high-resolution NMR, including the current maximum
available field of 28.18 T and the lowest readily-available temper-
ature of 90 K, we are in the high-temperature limit lBgeB0=kT � 1,
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and the general form of the Brillouin function is not needed. We
can therefore expand the coth function as a Laurent series [190],

cothðzÞ ¼ 1
z
þ 1
3
z� 1

45
z3 þ 2

945
z5 þOðz7Þ; ð3:60Þ

and truncate at the lowest order in y to give the following approx-
imation to the Brillouin function:

BSðyÞ ¼ Sþ 1
3S

yþOðy3Þ: ð3:61Þ

The expectation value of bSz is therefore

hbSzi ¼ �lBgeSðSþ 1ÞB0

3kT
: ð3:62Þ

The hbSzi above is referred to as the Curie spin, as it exhibits a Curie
temperature dependence of 1=T. The Brillouin function is an odd
function in b, and so the next-lowest-order term in the expansion
varies as 1=T3, i.e. there is no term in 1=T2 for an isotropic spin
system. Comparisons of the full Brillouin function and the high-
temperature approximation are shown in Fig. 3.2(b).

We see immediately that the Curie spin is negative, which we
rationalise by noting that, at finite temperature, the states with
the more negative values of MS are more populated, as we see in
Fig. 3.3(a). In addition we see that the magnitude of the Curie spin
is proportional to the electron Zeeman energy lBgeB0. If we
increase this energy, for example by raising the magnetic field,
the separation between the energy levels increases and the
lower-energy states with negative MS become more populated rel-
ative to the higher energy states, as seen in Fig. 3.3(b). A similar
argument also explains the Curie temperature dependence, namely
that a lower thermal energy kT increases the populations of the
lower-energy states relative to the higher-energy states, as we
see in Fig. 3.3(c). In both cases the magnitude of the Curie spin
increases. The components of the expectation value of the
electronic magnetic moment are proportional to those of the Curie

spin, i.e. hl̂ii ¼ �lBgehbSii, and are given by the following
expressions:

hl̂xi ¼ hl̂yi ¼ 0; ð3:63Þ

hl̂zi ¼ l2
Bg

2
e SðSþ 1ÞB0

3kT
: ð3:64Þ

Fig. 3.2. The Brillouin function in Eq. (3.59) for an electronic spin S ¼ 1=2 plotted as a function of the applied magnetic field for a range of experimentally-available
temperatures. The plots in (a) show the Brillouin function BSðyÞ for values of the external field up to 2000 T for temperatures of 100, 200, and 300 K. Saturation is reached at
values of B0 between approximately 300 T (at 100 K) and 1500 T (300 K). Part (b) shows an expansion of the plots in (a) up to the commercially-available magnetic field of
28 T (black curves), along with the linear approximation of Eq. (3.61) (grey curves). For each temperature the two curves are indistinguishable, except for the lowest
temperature of 100 K where there is a small departure of BSðyÞ from linear behaviour.

Fig. 3.3. Illustration of the factors affecting the populations of the electronic spin states according to the Boltzmann distribution, and the resulting Curie spin. The population
distribution of the electronic spin states jSMSi is shown for an electronic spin S ¼ 3=2 in (a). The states with more negative MS lie lower in energy and are more populated
relative to the higher-energy states, hence the Curie spin is negative. The populations of the lower-energy states can be increased relative to those of the higher-energy states
either by increasing the size of the external magnetic field B0 (b), or decreasing the temperature T (c). When the field is increased, or the temperature is lowered, sufficiently
that lBgeB0=kT ! 1 only the lowest-energy state with MS ¼ �S is populated, and the electronic spins are saturated, as shown in (d).
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We note that hl̂zi is proportional to the square of the magnitude of
the total electronic magnetic moment leff ¼ lBge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þp

.
Another regime of interest is the saturation regime, where

either the field is sufficiently high or the temperature is sufficiently
low that lBgeB0=kT ! 1. In this case both the coth function and

BSðyÞ tend to unity, and the expectation value of bSz; hbSzisat, is

hbSzisat ¼ �S: ð3:65Þ

At saturation only the lowest-energy state with MS ¼ �S is popu-
lated, with all the paramagnetic centres having this same MS. This
situation is shown in Fig. 3.3(d).

Returning to the high-temperature regime we see that the Curie
spin is linear in B0, so is the corresponding hyperfine interaction

Hamiltonian hŜi � A � Î. It has exactly the same form as the nuclear
shielding interaction Hamiltonian in Eq. (2.84), and we can equate
the two to determine the corresponding paramagnetic shielding
tensor:

�hcIB � rS � Î ¼ hŜi � A � Î; ð3:66Þ
from which we obtain:

�hcIB � rS ¼ hŜi � A: ð3:67Þ
Our calculation of the Curie spin assumes a magnetic field B0 along
z, and so the only components of the paramagnetic shielding we
obtain are the rzj, where j is x, y, or z:

rzj ¼ hbSziAzj

�hcIB0
: ð3:68Þ

We can repeat the calculation with the field along x or y, with a Zee-

man interaction of lBgeB0
bSx or lBgeB0

bSy respectively, and obtain the
corresponding x- and y-components of the Curie spin, which are the
same as the z-component above, i.e.:

hbSxi ¼ hbSyi ¼ hbSzi ¼ �lBgeSðSþ 1ÞB0

3kT
: ð3:69Þ

Note that, for each calculation, the components of the Curie spin
that are perpendicular to the applied field are zero, and so in order
to obtain the full paramagnetic shielding tensor we must apply the
field along each of the three axes in turn. This is because only three
of the nine components of the shielding tensor dictate the response
of the system to a field applied in a single direction. The full form of
the shielding tensor is therefore

rS ¼ �lBgeSðSþ 1Þ
3�hcIkT

A: ð3:70Þ

The Curie spin is, of course, proportional to the thermal average of
the magnetic moment of the total spin S, and multiplying the hyper-
fine coupling constant in Eqs. (2.171) and (2.172) by the Curie spin
gives the total paramagnetic shift due to all the unpaired electrons.

Note that although the hyperfine tensor A depends on the
nuclear species, the ratio A=ð�hcIÞ, which appears in the expression
for the paramagnetic shielding in Eq. (3.70) does not, as it is inde-
pendent of cI . This independence from the nuclear species is a gen-
eral property of all chemical shielding tensors.

We can write the paramagnetic shielding tensor in terms of the
irreducible spherical tensor components rS

lm, and apply the high-
field approximation. We saw in Section 2.6 that the only compo-
nents that are significant at high field are rS

00 and rS
20. Note that,

although the high-field approximation may not be valid for the
hyperfine interaction, it can be more safely applied to the param-
agnetic shielding interaction as the size of the hyperfine coupling
constant is scaled down by the Curie spin. The irreducible spherical
tensor components are therefore

rS
00 ¼ �lBgeSðSþ 1Þ

3�hcIkT
A00; ð3:71Þ

rS
20 ¼ �lBgeSðSþ 1Þ

3�hcIkT
A20: ð3:72Þ

The orientation dependence of the rank-two part of r is exactly the
same as the orientation dependence of the rank-two part of A, and
both share the same PAF.

The isotropic part of the paramagnetic shielding tensor rS
iso is

rS
iso ¼ �

ffiffiffi
1
3

r
rS

00 ð3:73Þ

¼ �lBgeSðSþ 1Þ
3�hcIkT

�
ffiffiffi
1
3

r
A00

 !
ð3:74Þ

¼ �lBgeSðSþ 1Þ
3�hcIkT

AFC
: ð3:75Þ

We see that the Fermi-contact interaction gives a paramagnetic
shielding that is entirely isotropic. Substituting in the expression
in Eq. (2.171) we obtain

rS
iso ¼ �l0l2

Bg
2
e ðSþ 1Þ

9kT
qa�bð0Þ: ð3:76Þ

By contrast we expect the spin-dipolar contribution to the para-
magnetic shielding to be wholly anisotropic and symmetric, and
therefore contribute only to the anisotropy and asymmetry of the
interaction. If we compare the spherical components of the rank-
two part of the shielding and hyperfine tensors in their common
PAF:

~rS
20 ¼

ffiffiffi
3
2

r
DrS;

eA20 ¼
ffiffiffi
3
2

r eAzz � AFC
� 	

¼
ffiffiffi
3
2

r
l0lBge�hcI

8pS

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF; ð3:77Þ

~rS
2	1 ¼ 0; eA2	1 ¼ 0; ð3:78Þ

~rS
2	2 ¼ �1

2
gSDrS; eA2	2 ¼ �1

2
gSD eAzz � AFC
� 	

; ð3:79Þ

we can deduce that the shielding anisotropy DrS and asymmetry
parameter gS are:

DrS ¼ �l0l2
Bg

2
e ðSþ 1Þ

24pkT

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF; ð3:80Þ

gS ¼ gSD: ð3:81Þ
In terms of the shift convention, these expressions become

dSiso ¼
l0l2

Bg
2
e ðSþ 1Þ

9kT
qa�bð0Þ; ð3:82Þ

DdS ¼ l0l2
Bg

2
e ðSþ 1Þ

24pkT

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF; ð3:83Þ

gS ¼ gSD: ð3:84Þ
The interaction of a nucleus with a single paramagnetic centre
therefore results in an isotropic paramagnetic shift dSiso due to the
Fermi-contact interaction, usually referred to as the Fermi-contact
shift and first described by McConnell and Chesnut [36], and a
shielding anisotropy DdS due to the spin-dipolar interaction, and
hence referred to as the dipolar shift anisotropy.

Finally we note that if we set S ¼ 1=2 in Eq. (3.82) we obtain the
same value for the isotropic shift in Eq. (3.46) that we derived by
averaging the position of the two components of the doublet in
the NMR spectrum.
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3.3. The magnetic susceptibility

As discussed in the previous section, the effect of applying a
magnetic field to an electronic spin system is to lift the degeneracy
of the manifold of states, giving the net magnetic moment in Eq.
(3.64) that is parallel to the direction of the applied field, and
whose magnitude is proportional to the Curie spin. To complement
the quantum mechanical treatment we have already seen, we can
also determine the average effect of the magnetic field on the bulk
material via the magnetic susceptibility v, which is of interest as
this property can be measured independently. Following the
description by Bertini et al. [16], we describe the susceptibility
and relate it to the paramagnetic shift tensor.

3.3.1. Magnetism of the bulk
The application of an external magnetic field H0 to an ensemble

of spins induces a bulk magnetization M (the total induced mag-
netic moment lind per unit volume V), which is proportional to
H0, as seen from Eq. (2.10):

M ¼ vVH0; ð3:85Þ

where the dimensionless constant of proportionality vV is the mag-
netic susceptibility per unit volume. As seen in Section 2.2 we can,
for a linear and paramagnetic material, relate the magnetic field H0

to the induction B0 via the expression

B0 � l0H0; ð3:86Þ

and so the magnetisation is given by [188]:

M ¼ 1
l0

vVB0: ð3:87Þ

In addition to vV there are other definitions of the susceptibility.
For example the molar susceptibility vM (units m3 mol�1) relates
the size of the induced magnetic moment per mole to the external
field. The molar susceptibility is given by vM ¼ VMvV , where VM is
the volume that contains one mole of the paramagnetic system,
and so

MVM ¼ lind
VM

V
¼ 1
l0

vMB0; ð3:88Þ

where we identify lindVM=V as the total induced magnetic moment
per mole. For a large ensemble of spins, we can write this quantity
as hliNA, where hli is the ensemble average of the induced mag-
netic moment, and NA is Avogadro’s number. This leads us to
another definition of the susceptibility, which is the magnetic
susceptibility per molecule v ¼ vM=NA (units m3), which relates
hli to the external field as follows:

hli ¼ 1
l0

vB0: ð3:89Þ

Throughout the rest of this review this definition is the one we uti-
lise, and we refer to v simply as the ‘‘magnetic susceptibility”. In a
solid paramagnetic material containing a single species of metal
ion, and in which there are no clear molecular units, v is more
properly identified as the magnetic susceptibility per metal ion.

Eq. (3.89) gives the average magnetic moment per molecule
induced by a magnetic field B0, which is in turn a result of the
Zeeman interaction of the individual magnetic moments of the

spins i;lðiÞ ¼ �lBgeS
ðiÞ
z , where SðiÞz is the z-component of the spin

i. We are therefore able to draw a parallel between the bulk sus-
ceptibility v and the g-factor ge, and identify the former as a ‘bulk
representation’ of the latter. This correspondence will be presented
more formally in the following section.

3.3.2. The susceptibility in terms of the molecular/atomic-level
parameters

We can immediately relate the average induced magnetic
moment hli in Eq. (3.89) to the expectation value of l̂z. We have
already calculated this in the high-temperature limit, with the
result shown in Eq. (3.64), and reproduced below:

hl̂zi ¼ l2
Bg

2
e SðSþ 1ÞB0

3kT
: ð3:90Þ

Comparing this with Eq. (3.89) gives us the expression for the
magnetic susceptibility [16]:

v ¼ l0

B0
hl̂zi ð3:91Þ

¼ l0l2
Bg

2
e SðSþ 1Þ
3kT

: ð3:92Þ

The susceptibility has a Curie temperature dependence, and is pro-
portional to the square of the magnitude of the electronic magnetic
moment leff .

3.3.3. Relating the paramagnetic shift to the magnetic susceptibility
We now derive the expression for the paramagnetic shift tensor

in terms of the magnetic susceptibility. As before we begin with
the Hamiltonian describing the hyperfine interaction, this time
using the form in Eq. (2.166) which is in terms of the electronic
and nuclear magnetic moments. However, as before, we must
remember that the nuclear magnetic moment couples to the
expectation value of the electronic magnetic moment hl̂Si, and so
we must modify Eq. (2.166) accordingly to give the paramagnetic

shielding Hamiltonian bH:

bH ¼ � l0

8pS

Z
3 hl̂Si � rð Þ l̂I � rð Þ � hl̂Si � l̂Ið Þr2

r5
qa�bðrÞd3r

�
þ8p

3
hl̂Si � l̂Ið Þqa�bð0Þ


; ð3:93Þ

where we have assumed that the electrons are delocalised. The
above Hamiltonian can easily be modified for localised electrons
as described previously. The expectation value of the electronic
magnetic moment in terms of the susceptibility is the operator
equivalent of Eq. (3.89) which, for an arbitrary direction of the
external magnetic field B0 is

hl̂Si ¼ 1
l0

vB0: ð3:94Þ

Using this expression, and the expression for the nuclear magnetic

moment in terms of the nuclear spin, l̂I ¼ �hcIbI , gives the following
Hamiltonian:

bH ¼ � �hcI v
8pS

Z 3 B0 � rð Þ Î � r
� 	

� B0 � Î
� 	

r2

r5
qa�bðrÞd3r

24
þ8p

3
B0 � Î
� 	

qa�bð0Þ

: ð3:95Þ

This Hamiltonian is linear in both the magnetic field and the
nuclear spin, and so can be written in terms of a chemical shield-
ing tensor rv, with isotropic and anisotropic parts rv

iso and rv
aniso

as follows:bH ¼ �hcIB0 � rv � Î; ð3:96Þ
¼ �hcIB0 � rv

iso1þ rv
aniso

� � � Î: ð3:97Þ
Comparing Eq. (3.95) with Eq. (3.97) we identify the isotropic and
anisotropic parts of the shielding tensor as
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rv
iso ¼ � v

3S
qa�bð0Þ; ð3:98Þ

rv
aniso;ij ¼ � v

8pS

Z
3rirj � r2dij

r5
qa�bðrÞd3r; ð3:99Þ

where we see that the former is due to the Fermi-contact interac-
tion, and the latter is due to the spin-dipolar interaction. We note
that this expression for the paramagnetic shielding is symmetric,
as is the expression in terms of the Curie spin rS.

We can also write the shielding tensor as the product of the sus-
ceptibility and a reduced coupling tensor C:

rv ¼ �vC; ð3:100Þ
where

C ¼ 1
l0lBge�hcI

A: ð3:101Þ

This tensor C is the sum of an isotropic Fermi-contact part CFC and
anisotropic spin-dipolar part CSD:

C ¼ CFC1þ CSD; ð3:102Þ
where

CFC ¼ qa�bð0Þ
3S

ð3:103Þ

CSD
ij ¼ 1

8pS

Z
3rirj � r2dij

r5
qa�bðrÞd3r: ð3:104Þ

This way of writing down the shielding tensor emphasises that it
can be separated into two factors which describe different parts
of the shielding interaction. The magnetic susceptibility is a bulk
quantity that describes the unpaired electrons in that it quantifies
the size of the average electronic magnetic moment per unit field,
or equivalently the Curie spin per unit field, that we can expect from
our paramagnetic centre at a certain temperature. It is important to
draw the distinction that v represents an average over the whole
system, whereas the paramagnetic shielding tensor describes local
structural and electronic effects. Therefore the susceptibility
description of the shielding may not capture more local phenom-
ena, such as we may encounter in a heterogeneous solid material.
The coupling tensor describes the relationship of the nucleus of
interest with respect to the paramagnetic centre, with CFC giving
the unpaired spin density per electron that is delocalized onto the
nucleus, and CSD giving the geometrical position of the nucleus with
respect to the paramagnetic centre. These are molecular/atomic-
level properties that depend on the geometry and bonding in the
paramagnetic material. Note that neither the susceptibility nor
the reduced coupling tensor depends on the nuclear species, as is
usual for shielding tensors, which are independent of cI .

Using this description we can write down the irreducible spher-
ical tensor components of the paramagnetic shielding rv

lm in terms
of the corresponding components of the reduced hyperfine cou-
pling tensor Clm:

rv
lm ¼ �vClm: ð3:105Þ

In the high-field regime, only the components rv
00 and rv

20 are
retained. The isotropic part is proportional to C00, which is given by:

C00 ¼ �qa�bð0Þffiffiffi
3

p
S

: ð3:106Þ

The isotropic shielding rv
iso is:

rv
iso ¼ �vCFC ð3:107Þ

¼ �vq
a�bð0Þ
3S

ð3:108Þ

¼ �l0l2
Bg

2
e ðSþ 1Þ
9kT

qa�bð0Þ; ð3:109Þ

which is exactly the same as the expression derived in Eq. (3.76).
The anisotropy parameters can be determined from rv

20, which is
proportional to C20. In the PAF of the reduced coupling tensor, the

spherical components eC2m are:

eC20 ¼
ffiffiffi
3
2

r eCzz � Ciso

� 	
ð3:110Þ

¼
ffiffiffi
3
2

r
1

8pS

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF; ð3:111Þ

eC2	1 ¼ 0; ð3:112ÞeC2	2 ¼ 1
2
eCxx � eCyy

� 	
ð3:113Þ

¼ �1
2
gSD eCzz � Ciso

� 	
: ð3:114Þ

If the electrons are localised at the paramagnetic centre, we can
write the unpaired electron density as qa�bðrÞ ¼ 2Sdðr � RÞ, where
R is the position of the electrons relative to the nucleus. The Carte-
sian components of the reduced hyperfine coupling tensor are then

Cij ¼ 1
4p

3RiRj � R2dij
R5 þ 8p

3
dðRÞdij

" #
; ð3:115Þ

and the spherical-tensor components in the PAF become

C00 ¼ �2dðRÞffiffiffi
3

p ; ð3:116Þ

eC20 ¼
ffiffiffi
3
2

r
1

2pR3 ; ð3:117ÞeC2	1 ¼ 0; ð3:118ÞeC2	2 ¼ 0: ð3:119Þ
In the general case the spherical components of the shielding

tensor are:

~rv
20 ¼ �

ffiffiffi
3
2

r
v

8pS

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF; ð3:120Þ

~rv
2	1 ¼ 0; ð3:121Þ

~rv
2	2 ¼ gSDv

16pS

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF; ð3:122Þ

and hence the following shielding anisotropy Drv and asymmetry
parameter gv have the forms:

Drv ¼
ffiffiffi
2
3

r
rv

20 ð3:123Þ

¼ � v
8pS

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF ð3:124Þ

¼ �l0l2
Bg

2
e ðSþ 1Þ

24pkT

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF; ð3:125Þ

gv ¼ gSD: ð3:126Þ
We see that these are exactly the same expressions in Eqs. (3.80)
and (3.81) that we derived using the Curie spin, thus demonstrating
the equivalence of the two approaches.

Finally in terms of the chemical shift convention, the isotropic
paramagnetic shift dviso, paramagnetic SA Ddv, and asymmetry
parameter gv are

dviso ¼ vq
a�bð0Þ
3S

ð3:127Þ

¼ l0l2
Bg

2
e ðSþ 1Þ

9kT
qa�bð0Þ; ð3:128Þ

Ddv ¼ v
8pS

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF ð3:129Þ

¼ l0l2
Bg

2
e ðSþ 1Þ

24pkT

Z
3z2PAF � r2PAF

r5PAF
qa�bðrPAFÞd3rPAF; ð3:130Þ

gv ¼ gSD: ð3:131Þ
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3.4. The scaling factor

In the previous sections we commented that the paramagnetic
shielding tensor, which has the form shown in Eq. (3.70), is essen-
tially proportional to the hyperfine tensor, with the proportionality
constant equal to a factor that scales down the size of the interac-
tion. So far we have avoided giving a precise description of the
exact quantity that is scaled down, and what the scaling factor rep-
resents. A full discussion will be presented in this section, follow-
ing the description of Kim et al. [54], who use the idea of scaling
the hyperfine interaction calculated from first principles to deter-
mine a paramagnetic shift.

The calculation is performed on a system in which all the effec-
tive electron spins are aligned parallel in a ferromagnetic configu-
ration. Note that the ferromagnetic alignment is not necessarily the
lowest-energy configuration, but reflects the system in the satura-
tion regime at a temperature of 0 K that we have discussed previ-
ously. It turns out that this arrangement is convenient for
performing the calculation. So far, we have not included any inter-
actions between the paramagnetic centres, which we still assume
to be independent of each other, and so there is no energetic driv-
ing force for preferential alignment of the electronic spins. The cal-
culation provides the total unpaired-spin density qa�bðrÞ, whence
is determined the total hyperfine tensor A, which is the sum of
Fermi-contact AFC1 and spin-dipolar ASD parts as before. The
hyperfine Hamiltonian takes the usual form:bHSI ¼ Ŝ �A � Î; ð3:132Þ
in which the calculated Fermi-contact and spin-dipolar contribu-
tions are

AFC ¼ 2
3
l0lBge�hcIq

a�bð0Þ; ð3:133Þ

ASD
ij ¼ l0lBge�hcI

4p

Z
3rirj � r2dij

r5
qa�bðrÞd3r: ð3:134Þ

We note that this definition of the hyperfine tensor, involving the
full unpaired electron spin density, has not been normalised by
dividing by the number of electrons. The spin-dipolar tensor is usu-
ally written in a form in which the total electronic wavefunction
jwðrÞi of the unpaired electrons is expressed as a superposition of
basis functions, for example molecular orbitals, j�i, combined with
the a and b spin functions as follows

jwðrÞi ¼
X
�

ca� j�ijai þ cb� j�ijbi ð3:135Þ

where the ca� and cb� are coefficients relating to electrons of a and b
spin in molecular orbital j�i. The expansion can, in principle, include
contributions from several unit cells. The resulting tensors are

AFC ¼ 2
3
l0lBge�hcI

X
�s

Pa�b
�s h�jdðrÞjsi; ð3:136Þ

ASD
ij ¼ l0lBge�hcI

4p
X
�s

Pa�b
�s

�
�
����3rirj � r2dij

r5

����s�; ð3:137Þ

where Pa�b
�s ¼ c�acas � c�bcbs is the spin density matrix, and the over-

bar represents the complex conjugate.
The size of the hyperfine splitting expressed as a chemical

shielding is proportional to the hyperfine coupling constant
divided by the nuclear Zeeman energy:

� A

2�hcIB0
; ð3:138Þ

where the factor of 1=2 is included because, in the high-field
regime, the hyperfine interaction splits the nuclear resonance into
two peaks which appear at frequencies located at 	Azz=2 either side

of the nuclear Larmor frequency. This chemical shielding is the
value that would be observed when all the effective electron spins

are aligned, which occurs at saturation. The expectation value of bSz

is, under these circumstances, given by Eq. (3.65),

hbSzisat ¼ �S: ð3:139Þ
Experimentally we observe the system in the weaker paramagnetic

regime, in which hbSzi has been scaled down by the Brillouin func-
tion. Therefore in order to obtain the shielding tensor of the param-
agnetic system, we must scale the expression in Eq. (3.138) by

hbSzipara
hbSzisat

¼ BS
lBgeB0S

kT

� �
ð3:140Þ

� lBgeðSþ 1ÞB0

3kT
: ð3:141Þ

In terms of the susceptibility the scaling factor is

hbSzipara
hbSzisat

¼ vB0

l0lBgeS
: ð3:142Þ

The paramagnetic shielding tensor thus obtained is

rS ¼ � A

2�hcIB0

hbSzipara
hbSzisat

ð3:143Þ

¼ � v
l0lBge�hcI

A

2S
ð3:144Þ

¼ �lBgeSðSþ 1Þ
3�hcIkT

A

2S
; ð3:145Þ

which, when we note that A ¼ A=ð2SÞ, is the same expression as the
one obtained in Eq. (3.70).

3.5. Key concepts

� In a system of two coupled spin-1=2 nuclei I and S, the I-spin
NMR spectrum contains a resonance that is centred on the I-
spin Larmor frequency, and split into two peaks separated by
the coupling constant.

� In a system of a nuclear spin-1=2 I coupled to an electron S, the
NMR spectrum contains a single peak offset from the I-spin Lar-
mor frequency by the ‘‘paramagnetic shift”.

� The paramagnetic shift is the result of the electron relaxation
between its Zeeman spin states occurring on a timescale that
is orders of magnitude faster than the corresponding nuclear
dynamics.

� The paramagnetic shift can be calculated from the hyperfine
coupling between the nucleus and the electronic pseudo-spin
with a thermally averaged magnetic moment (the Curie spin).

� The Curie spin, and therefore the paramagnetic shift, both have
a Curie temperature dependence of 1=ðkTÞ.

� We can also calculate the paramagnetic shift from the bulk
magnetic susceptibility.

� The role of the magnetic susceptibility in determining the para-
magnetic shift is to scale down the hyperfine coupling constant
between the nuclear and electronic spins, from the saturation
regime to the high-temperature paramagnetic regime.

Chapter 4: The paramagnetic shift due to d-block transition-
metals with spin-orbit coupling

The EPR parameters in many d-block transition-metal systems
are strongly influenced by the effects of spin-orbit (SO) coupling.
In turn these changes to the EPR properties strongly influence
the form of the paramagnetic shift and SA. The formalism pre-
sented in the previous chapter ignored the effects of SO coupling,
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and so is only valid when the metal ion behaves strictly as a spin-
only ion. Whilst this formalism could be applied successfully to
more complex systems where the paramagnetic shifts are domi-
nated by non-SO effects, such as the Fermi-contact interaction
[54], it is often inadequate for describing the shift when such
non-SO effects are small [15]. Kurland and McGarvey were the first
to derive a general equation for the isotropic shift that includes
these additional effects, but this did not describe the effects leading
to the SA [38]. More recently Moon and Patchkovskii proposed a
formula for the entire shift tensor due to a paramagnetic centre
with spin S ¼ 1=2 in terms of the EPR parameters; this remains
the benchmark for all theoretical work that has been proposed
since [39]. Following this milestone Pennanen and Vaara extended
the theory to describe the paramagnetic shifts at high temperature
of first-row (3d) transition-metal ions with spin S > 1=2, which are
subject to a SO coupling that is smaller than the ligand-field inter-
action [40]. More recently van den Heuvel and Soncini proposed a
different formalism which extends the theory to low temperatures,
and larger SO coupling interactions [87,89]. This generalised treat-
ment gives the paramagnetic shift in terms of the effective spin
EPR parameters for electronic spins greater than S ¼ 1=2.

We begin this chapter by deriving the form of the EPR effective
spin Hamiltonian, the parameters in which are used to calculate
the paramagnetic shift. The discussion here will be limited to d-
transition-metal ions with spin-orbit coupling that is weak com-
pared to the ligand-field interaction, and which is described by
the Russell-Saunders (LS) coupling scheme. We then outline an
EPR theory of the paramagnetic shielding tensor and highlight
the new features that are introduced as a result of SO coupling.
Finally we show that the magnetic susceptibility of such systems
becomes anisotropic [16], and we show how this tensor can be
related to the paramagnetic shielding tensor.

4.1. The EPR effective spin Hamiltonian

4.1.1. Derivation
For a spin-only d-block transition-metal ion we have seen that

the electronic magnetic moment is proportional to the effective

spin, i.e. l̂S ¼ �lBgeŜ. Transition-metal ions with non-zero orbital
angular momentum L, on the other hand, have an orbital contribu-

tion to the magnetic moment l̂L ¼ �lBL̂, where L̂ is the operator
representing the total orbital angular momentum, that is
orientation-dependent. In the limit of LS coupling we can define

the total angular momentum operator bJ as the sum of L̂ and Ŝ,

i.e. bJ ¼ L̂þ Ŝ, and the total magnetic moment operator m̂ as

m̂ ¼ �lB L̂þ geŜ
� 	

: ð4:1Þ

We note that the vectors representing the total angular momentum
and total magnetic moment, shown in Fig. 4.1(a) and (b) respec-
tively, are not parallel because ge is not equal to unity. The orbital
angular momentum is quantized and represented by the quantum

number L which takes integer values. Each level L comprises a man-
ifold of 2Lþ 1 states that are labelled by the orbital magnetic quan-
tum number ML which takes integer values from �L to þL.

The Hamiltonian bH describing the electronic spin system of a d-
block transition-metal ion in a ligand field is given bybH ¼ bHLF þ bH1; ð4:2Þ
where bHLF is the interaction of the ion with the ligand field, and bH1

encompasses the other interactions. The ligand-field interaction is

the largest contribution to bH, giving rise to a splitting in the energy

levels of the order of 104 cm�1. The smaller contribution bH1 can be
broken down into a sum of the following terms:bH1 ¼ bHSO þ bHSS þ bHHF þ bHZ: ð4:3Þ

The first term bHSO is the Hamiltonian representing the SO coupling
interaction which, for LS coupling and assuming Hund’s rules are
obeyed, isbHSO ¼ kL̂ � Ŝ; ð4:4Þ
k ¼ 	f=2S: ð4:5Þ
The many-electron SO coupling parameter k is given above in terms
of the single-electron SO coupling parameter f, where for the free
ion the + sign is required for a shell that is less than half filled,
and the � sign for a shell that is more than half filled. Values of f
have been tabulated by Abragam and Bleaney [185], and take values
between 102 and 103 cm�1 for 3d metal ions. The SO coupling is
therefore the largest interaction after the ligand-field splitting.

The second term bHSS is the spin-spin interaction which represents
the magnetic coupling between the individual electrons. In the LS
coupling regime it is given by [185]

bHSS ¼ �q L̂ � Ŝ
� 	2

þ 1
2

L̂ � Ŝ
� 	

� 1
3
LðLþ 1ÞSðSþ 1Þ1̂

� 
; ð4:6Þ

where q is an energy coefficient that, for 3d metal ions, takes values
up to 1 cm�1. We can also write the spin-spin interaction Hamilto-
nian as

bHSS ¼ �q
X
ij

1
2
bLibLj þ bLjbLi� 	

� 1
3
LðLþ 1Þdij

� bSi
bSj: ð4:7Þ

The third term bHHF is the hyperfine interaction Hamiltonian which,
for spin-only systems, was derived in Section 2.8. For systems with

non-zero orbital angularmomentum bHHF can be generalised to [185]

bHHF ¼ P nLðLþ 1Þ � jf g Ŝ � Î
� 	

� 3
2
n L̂ � Ŝ
� 	

L̂ � Î
� 	

þ L̂ � Î
� 	

L̂ � Ŝ
� 	n o

þ L̂ � Î
� 

;

ð4:8Þ
P ¼ l0lBge�hcI

4p
1
r3

� �
; ð4:9Þ

n ¼ 2lþ 1� 4S
Sð2l� 1Þð2lþ 3Þð2L� 1Þ ; ð4:10Þ

Fig. 4.1. The angular momentum properties of a metal ion subject to Russell–Saunders spin–orbit coupling. The total angular momentum J, which is the vector sum of the
spin S and orbital angular momentum L, is shown in (a). The total magnetic momentm, which is the sum of the spin and orbital magnetic moments lS and lL is shown in (b).
We note that m is not parallel to J.
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where P is the dipolar coupling constant, n is a coefficient that
depends on the total spin and orbital quantum numbers S and
L and the one-electron orbital quantum number l, and j is a
dimensionless number that accounts for the Fermi-contact term.

Finally we have the electronic Zeeman interaction bHZ which is

the sum of the orbital Zeeman lBB0 � L̂ and spin Zeeman

lBgeB0 � Ŝ terms:

bHZ ¼ lBB0 � L̂þ geŜ
� 	

: ð4:11Þ

The Zeeman splitting varies with the applied magnetic field B0, with
lBB0 taking a maximum value of 13 cm�1 at the maximum
field of 28.18 T that is currently commercially available
(lBgeB0 ¼ 26 cm�1). The typical ranges of the magnitudes of the
ligand-field interaction and the additional four perturbation inter-
actions are plotted in Fig. 4.2. For now we neglect the nuclear Zee-
man interaction and the orbital contribution to the chemical
shielding as they are both much smaller than the interactions
above.

Clearly the perturbation Hamiltonian depends on both the
spin- and spatially-dependent orbital angular momentum opera-
tors. It is our task to convert this to a Hamiltonian that contains
only spin operators, and which can therefore be used in the
interpretation of both EPR and paramagnetic NMR experiments.
We do this by applying time-independent perturbation theory
[207] to the eigenstates jni of the ligand-field Hamiltonian,
which have energies En, i.e.bHLFjni ¼ Enjni: ð4:12Þ
The jni are orbital states, and so have no dependence on the spin.

We apply perturbation theory to the orbital ground state j0i,
which for ease of derivation we assume to be a singlet. Orbital
ground states of larger degeneracy are more difficult to treat, and
so we do not discuss them further. The consequence of assuming
a singlet ground state is that the expectation values of the compo-

nents of the orbital angular momentum operator bLi in the ground
state are zero:

h0jbLij0i ¼ 0: ð4:13Þ
The first-order perturbation Hamiltonian bHð1Þ

1 is given by

bHð1Þ
1 ¼ h0jbH1j0i: ð4:14Þ

Inserting the expression for bH1 in Eq. (4.3) we obtain

bHð1Þ
1 ¼h0jbHSOj0iþh0jbHSSj0iþh0jbHHFj0iþh0jbHZj0i ð4:15Þ

¼k
X
i

h0jbLij0ibSi�q
X
ij

h0j 1
2
bLibLjþbLj

bLi� 	
�1
3
LðLþ1Þdij

� 
j0ibSi

bSj

þP
X
ij

h0j nLðLþ1Þ�jf gj0idijbSi
bI j�h0j3

2
n bLibLjþbLjbLin o

j0ibSi
bIjþdijh0jbLij0ibI j� 

þlB

X
i

B0;i h0jbLij0iþh0j0ige
bSi

� 	
ð4:16Þ

¼�q
X
ij

bSilijbSj�P
X
ij

bSi jdijþ3nlij
� �bIjþlBge

X
i

B0;i
bSi: ð4:17Þ

This is an example of an effective spin Hamiltonian, which com-
prises three terms. The first is referred to either as the zero-field
splitting (ZFS) or the electric quadrupole interaction [208]. The lat-
ter name emphasises the fact that the Hamiltonian is formally

equivalent to that of a nuclear quadrupole interaction Î � Q � Î, where
Q is the tensor describing the orientation dependence of the
quadrupolar coupling. To first order the ZFS is due to the spin-
spin interaction, and has a spatial dependence given by the tensor
lij whose components are given by

lij ¼ 1
2
h0jbLibLj þ bLjbLij0i � 1

3
LðLþ 1Þdij: ð4:18Þ

In common with the quadrupolar coupling interaction the ZFS ten-
sor is symmetric, and is equal to zero for S < 1 or for an environ-
ment of perfectly cubic symmetry.

The second term is the hyperfine interaction comprising both
the isotropic Fermi-contact �Pj and anisotropic spin-dipolar
�3Pnlij parts. The third term is the electron Zeeman interaction.
The Hamiltonian in Eq. (4.17) is often referred to as non-
relativistic (NR) as it does not depend on the SO coupling [202].
In fact this Hamiltonian is only valid in the absence of SO coupling
effects, for example for spin-only metal ions. When SO coupling is
present we must continue the perturbation theory calculation to at
least second order, remembering that as the SO interaction is the

largest term in bH1, some of the second-order terms may be larger
than the first order terms in the NR Hamiltonian.

The second-order perturbation Hamiltonian bHð2Þ
1 is given by

[207]

bHð2Þ
1 ¼ �

X
n–0

h0jbH1jnihnjbH1j0i
En � E0

ð4:19Þ

¼ h0jbH1R̂bH1j0i; ð4:20Þ

where R̂ is a sum of the projection operators of the excited orbital
states jnihnj where each term is weighted by the reciprocal of the
difference in the energy of the state from the ground state E0:

R̂ ¼ �
X
n–0

jnihnj
En � E0

: ð4:21Þ

The expression in Eq. (4.20) contains products between all the

various terms in bH1, the largest of which is expected to be the self

term involving bHSO SO–SO, which is

h0jbHSOR̂bHSOj0i ¼ k2
X
ij

h0jbLiR̂bLjj0ibSi
bSj ð4:22Þ

¼ �k2
X
ij

ŜiKijŜj; ð4:23Þ

where

Kij ¼
X
n–0

h0jbLijnihnjbLjj0i
En � E0

: ð4:24Þ

We see that this term varies as the square of the SO coupling energy

coefficient k2, and is bilinear in the components of Ŝ, and so it

Fig. 4.2. Typical ranges of the magnitudes of electronic-spin interactions that are
relevant to the EPR properties of the metal ion. The largest interaction is the ligand
field (LF). The four relevant perturbations are the spin-orbit (SO) coupling,
electronic Zeeman (Z), hyperfine (HF), and the electronic spin-spin (SS) interactions.
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contributes to the ZFS in the effective spin Hamiltonian. The spatial
tensor Kij is real and symmetric.

Whilst the SO–SO self term is the largest of the second-order
contributions, we also expect there to be significant contributions

from the cross terms between bHSO and the other parts of bH1. These
are the only remaining terms we consider here, and we ignore the
smaller contributions such as the cross terms between the spin-
spin and hyperfine interactions. The cross term between the
spin-spin and SO interactions SS–SO is given by

h0jbHSOR̂bHSSþ bHSSR̂bHSOj0i¼�1
2
kq
X
ijk

h0jbLiR̂ bLjbLkþbLk
bLj� 	

j0ibSi
bSj
bSk

�1
2
kq
X
ijk

h0j bLjbLkþbLk
bLj� 	

R̂bLij0ibSi
bSj
bSk ð4:25Þ

¼kq
X
ij

bSi K0
ijþK0

ji

� 	bSj; ð4:26Þ

where the tensor K0
ij is given by

K0
ij ¼ � i

2

X
kl

eikl
X
n–0

h0jbLljnihnjbLjbLk þ bLkbLjj0i
En � E0

; ð4:27Þ

and eijk is the Levi-Civita tensor. Note that K0
ij is not necessarily

symmetric. This term is again a contribution to the ZFS which is
proportional to the product of the spin-spin and SO interaction
energies, and so we expect it to be smaller than the SO–SO term.
It is also spatially symmetric, even though K0

ij may not be. The cross
term between the SO and hyperfine Hamiltonians SO–HF gives a
contribution to the hyperfine part of the effective spin Hamiltonian:

h0jbHSOR̂bHHF þ bHHFR̂bHSOj0i ¼ �2kP
X
ij

bSiKij
bIj

þ 3nkP
X
ij

bSiK
0
ij
bIj; ð4:28Þ

where the first term is symmetric and the second, in general, is not.
The final cross term we will consider is that between the SO and
Zeeman Hamiltonians SO–Z, which gives us a contribution to the
electronic Zeeman Hamiltonian:

h0jbHSOR̂bHZ þ bHZR̂bHSOj0i ¼ lBk
X
ij

B0;ih0jbLiR̂bLj þ bLjR̂bLij0ibSj ð4:29Þ

¼ �2lBk
X
ij

B0;iKij
bSj: ð4:30Þ

More specifically, this is the cross term between the SO and orbital
Zeeman interactions, as the cross term with the spin Zeeman inter-
action is zero. We note that the tensor coupling the electronic spin
to the magnetic field is now spatially anisotropic, and is propor-
tional to lBk. All these second-order terms sum to give us an SO,
or relativistic, contribution to the effective spin Hamiltonian.

We collect all of the above first- and second-order contributions

to give the total EPR effective spin Hamiltonian bHEPR:bHEPR ¼ lBB0 � g � Ŝ þ Ŝ � A � Î þ Ŝ � D � Ŝ; ð4:31Þ
which comprises three terms. The first term is the electronic Zee-
man interaction describing the interaction of the magnetic moment
of the electrons with the external magnetic field. We see that this
interaction is now spatially anisotropic, and is described by a g-
tensor g which is given by:

gij ¼ gedij � 2kKij: ð4:32Þ
This is the sum of the free-electron g-factor and the g-shift term
�2kKij which arises because of SO coupling. This g-shift plays the
role of a ‘‘chemical shielding” for the electron as it modifies the ref-
erence resonance frequency that is due to ge, in the same way that

the chemical shielding of the nucleus gives a deviation of the nuclear
resonance frequency from the Larmor frequency. We note that the
g-shift contribution above is symmetric. However we must bear in
mind that this is not a general feature and that, on including other
cross terms and higher-order perturbations, the g-tensor is not nec-
essarily symmetric [209,210]. We can see that, from this form of the
Zeeman interaction, we can write down an expression for the
electronic magnetic moment operator m̂ in terms of the g-tensor:

m̂ ¼ �lBg � Ŝ: ð4:33Þ
This expression is apparently different to that in Eq. (4.1) which
contains both the orbital and electronic contributions to m̂. The dif-
ference can be understood by noting that the expression in Eq. (4.1)

contains L̂, thus giving the magnetic moment an intrinsic spatial
dependence. On calculating the effective spin Hamiltonian we

remove the explicit dependence on L̂ and, by definition, retain only
the spin operators. However the spatial dependence is retained and
is encoded in the g-tensor anisotropy, the leading contribution to
which is the cross term between the SO coupling and orbital Zee-
man interaction Hamiltonians. As we will see, this definition of
the electronic magnetic moment operator corresponds to that used
by van den Heuvel and Soncini in their description of the EPR for-
malism of the paramagnetic shielding tensor [87,89].

The second term is the hyperfine interaction from which we can
write down a hyperfine coupling tensor A as follows:

Aij ¼ �P jdij þ 3nlij þ 2kKij � 3nkK0
ij

� 	
: ð4:34Þ

The first two terms of A are due to the NR Fermi-contact and spin-
dipolar interactions, and the second two terms are due to SO cou-
pling. Both of the SO terms contribute to the anisotropy of A, which
is now not necessarily symmetric due to the presence of the last
term which is proportional to K0

ij. The final interaction is the ZFS,
which is mediated by a tensor D, the Cartesian components of
which are given by

Dij ¼ �k2Kij � qlij þ kq K0
ij þK0

ji

� 	
: ð4:35Þ

This interaction is only non-zero for effective spins S > 1=2, in com-
plete analogy with the nuclear quadrupole interaction which is only
non-zero for I > 1=2. The first term �k2Kij is dominant for 3d metal
ions due to the relative sizes of the SO and spin-spin splitting
parameters k and q. The ZFS tensor D is always symmetric due to
the symmetric form of the ZFS Hamiltonian. We also note that,
whilst D is not necessarily traceless, we can ignore the isotropic
contribution as it shifts all the spin energy levels by the same
amount in the same direction, and so does not affect the frequencies
of the transitions between these levels. Henceforth we refer to the
ZFS as a traceless and symmetric interaction.

4.1.2. The NMR and EPR tensors
If we now include the nuclear Zeeman and chemical shielding

interactions the EPR Hamiltonian becomes

bHEPR ¼ ��hcIB0 � 1� rorb� � � Î þ lBB0 � g � Ŝ þ Ŝ � A � Î þ Ŝ � D � Ŝ:
ð4:36Þ

As we have already discussed in Section 2.6.1 it is common practice
in NMR to employ high-field conditions, in which we retain only
those terms in the Hamiltonian that commute with the unmodified

Zeeman interaction, which in this case is �hx0
bIz þ lBgeB0

bSz. Such an
approximation is only valid if the Zeeman interaction is several
orders of magnitude larger than the other interactions. However

this is not necessarily the case for bHEPR as the dominant interaction
may be the ZFS, and so the high-field approximation does not apply.

38 A.J. Pell et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 111 (2019) 1–271



We can expand the EPR tensors as Taylor series in the fine struc-
ture constant a which takes the value 1=137:036 [202]. For
instance the g-tensor can be written as the sum of the NR and SO
terms

g ¼ gNR þ gSO; ð4:37Þ

where the NR term gNR is of order Oða0Þ and the SO term gSO is
Oða2Þ. These two terms can further be written as [210]

gNR ¼ ge1; Oða0Þ; ð4:38Þ
gSO ¼ Dgiso1þ Dg; Oða2Þ: ð4:39Þ

Thus, as indicated by the previous perturbation theory calculation,
the NR contribution is simply the isotropic free-electron g-factor,
and the SO contribution can be separated into an isotropic part
Dgiso and a traceless anisotropic part Dg that is not necessarily
symmetric.

In the same way we can expand the hyperfine coupling constant
as a Taylor series in a [211]:

A ¼ ANR þ ASO; ð4:40Þ
ANR ¼ AFC1þ ASD

; Oða2Þ; ð4:41Þ
ASO ¼ AFC;21þ ASD;2 þ Aas

; Oða4Þ: ð4:42Þ

The NR contribution is the sum of the isotropic Fermi-contact term
and the symmetric and anisotropic spin-dipolar part that we have
already encountered. The SO contribution contains an isotropic part

AFC;2 which has been referred to as a ‘pseudo-contact’ term [211],
but since this leads to confusion with the established NMR term
‘pseudo-contact shift’ we will simply refer to it as a second-order
Fermi-contact coupling constant. The SO hyperfine constant also

comprises a symmetric and anisotropic component ASD;2 which is
labelled as a second-order spin-dipolar interaction, but is actually
an interaction of shorter range than the NR spin-dipolar term. Nev-

ertheless we include it with ASD as it is also a rank-two tensor. We
note that this is similar to diamagnetic NMR where the anisotropic
J-coupling is often absorbed into the larger dipolar coupling. Finally
there is also an antisymmetric anisotropic contribution to the
hyperfine tensor Aas. Explicit expressions for the SO coupling contri-
bution to the hyperfine tensors are given in Appendix B.

The ZFS tensor is given by [212]

D ¼ DNR þ DSO; ð4:43Þ

where the NR part DNR is due to the electron spin-spin interaction,
and is usually dominated by the SO term DSO. We recall that D is
symmetric and traceless, and is equal to zero either for electronic
spins S < 1 or for transition metals in perfectly cubic environments.

We expect the NR terms of all three tensors to be the only con-
tributions to spin-only 3d metal ions, with the SO terms only being
observed in the presence of SO coupling. We recall that we have
already encountered the NR contributions to both g and A in
Chapter 3 when we calculated the paramagnetic shift tensors in
spin-only systems. That theoretical treatment ignored the NR
spin-spin contribution to the ZFS, and so is only an approximation
for S > 1=2.

We can write all the terms in the EPR Hamiltonian in terms of
irreducible spherical tensor operators, according to Eq. (2.67).
The expressions for the spin-spin spherical tensors used in the
hyperfine and ZFS interactions, and the spin-field tensor used in
the electronic Zeeman interaction are given in Table 2.2. The spher-
ical spatial tensors are given in Table 2.3, and can in turn be writ-
ten in terms of the isotropic value, antisymmetric anisotropy,
symmetric anisotropy, and asymmetry parameter. We return to
this topic in Chapter 5. For now we give the single example of

the ZFS. The spatial tensor is symmetric and traceless, and so con-
tains only rank two components. The Hamiltonian is therefore

bS � D � bS ¼
Xþ2

m¼�2

ð�1ÞmD2mT̂2�mðSSÞ ð4:44Þ

¼
Xþ2

m¼�2

ð�1ÞmT̂2�mðSSÞ
Xþ2

m0¼�2

eD2m0Dð2Þ
m0mðaDL; bDL; cDLÞ; ð4:45Þ

where ðaDL;bDL; cDLÞ are the Euler angles that give the orientation of

the ZFS PAF in the laboratory frame. The spin operators bT 2mðSSÞ are
equivalent to the spin operators describing the nuclear quadrupole
interaction:

bT 20ðSSÞ ¼
ffiffiffi
1
6

r
3bS2

z � SðSþ 1Þ1̂
� 	

; ð4:46Þ

bT 2	1ðSSÞ ¼ �1
2
bSz
bS	 þ bS	bSz

� 	
; ð4:47Þ

bT 2	2ðSSÞ ¼ 1
2
bS2
	: ð4:48Þ

The spatial irreducible spherical tensors D
~

2m in the PAF are given by

eD20 ¼
ffiffiffi
2
3

r
D; ð4:49ÞeD2	1 ¼ 0; ð4:50ÞeD2	2 ¼ E; ð4:51Þ

where D and E are the established symbols for the axial and rhom-
bic anisotropies:

D ¼ eDzz � 1
2
ðeDxx þ eDyyÞ; ð4:52Þ

E ¼ 1
2
eDxx � eDyy

� 	
: ð4:53Þ

Note that for the ZFS it is conventional to define the interaction in
terms of D and E, rather than the anisotropy DD and asymmetry g.

4.2. The EPR formalism of the paramagnetic shielding

In Chapter 3 we saw that the hyperfine interaction between the
nucleus and unpaired electrons results in a ‘‘paramagnetic shift” of
the nuclear resonance frequency, rather than a splitting, and that
the shielding tensor depends on the electronic g-factor and hyper-
fine coupling tensor. We have a similar situation when the metal
ion is subject to SO coupling, but the details of the theory are more
complicated. In the following we relate the EPR tensor parameters
to the paramagnetic shielding tensor.

4.2.1. General derivation of the paramagnetic shielding tensor
The description of the chemical shielding interaction in param-

agnetic systems follows that of van den Heuvel and Soncini.
Although the remainder of this chapter is concerned with 3d metal
ions, it should be noted that the derivation of van den Heuvel and
Soncini is more general, since there are no assumptions made
about whether or not the theory is at the relativistic level, or about
the SO coupling strength. Therefore the expression we derive here
is one we will return to later in Chapter 6 when considering more
complex metal ions, such as lanthanides and actinides. There is a
short review of this formalism by Autschbach, which summarizes
its theory and practice in quantum chemistry [213].

We equate the chemical shielding interaction to the terms in
the effective temperature-dependent Hamiltonian that are linear
in both the external magnetic field and the nuclear magnetic
moment. This effective Hamiltonian is given by the single-
particle Helmholtz free energy F, to which we apply Rayleigh-
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Schrödinger perturbation theory to find the chemical shielding
tensor, the components of which are [89]

rij ¼ 1
�hcI

@2F

@B0;i@bIj
 !

B0¼0;̂I¼0̂

: ð4:54Þ

The electronic Hamiltonian bHðB0; ÎÞ is written as the sum of bH0,
which describes the electrons in the absence of the external field
and the nuclear magnetic moments, and a perturbative termbV ðB0; ÎÞ which includes these latter effects:bHðB0; ÎÞ ¼ bH0 þ bV ðB0; ÎÞ: ð4:55Þ

The term bH0 is the dominant part of the Hamiltonian and includes
parts such as the Born-Oppenheimer Hamiltonian, the crystal-field

interaction, and the ZFS interaction. The smaller term bV is written

as the sum of three parts that are linear in either B0; Î, or both:

bV ¼ bHZ þ bHHF þ bHD; ð4:56ÞbHZ ¼ �B0 � m̂; ð4:57ÞbHHF ¼ F̂ � Î; ð4:58ÞbHD ¼ B0 �D � Î: ð4:59Þ

The Hamiltonian bHZ is the electronic Zeeman interaction between

the electronic magnetic moment operator m̂ ¼ �lBðL̂þ geŜÞ and

the external field, bHHF is the hyperfine interaction between the
hyperfine field operator F̂ and the nuclear magnetic moment oper-

ator, and bHD represents the diamagnetic nuclear-electron field cou-
pling via the spatial tensor D. There are additional terms of higher

degree in B0 and Î, but these do not contribute to the shielding ten-
sor, and so are not considered here. It proves convenient to partition
the Hamiltonian as followsbH ¼ bH0 þ kbH1 þ k2 bH2; ð4:60Þ
where k is a perturbation parameter that represents the combined

order of B0 and Î, and bH1 and bH2 arebH1 ¼ bHZ þ bHHF; ð4:61ÞbH2 ¼ bHD: ð4:62Þ
The Helmholtz free energy is given by Eq. (2.18) as

F ¼ �1
b
lnQ ; ð4:63Þ

where Q is the partition function. We write Q as the sum of the diag-
onal elements of the matrix representation of the density operator
q̂, that has been computed in the basis operators of the electronic
spin:

Q ¼ TrSðq̂Þ: ð4:64Þ
The notation TrS indicates that the sum is over the matrix elements
of a spin operator, and not a sum of the diagonal elements of a spa-
tial tensor. The equilibrium density operator is defined as

q̂ ¼ exp �bbH� 	
: ð4:65Þ

We can expand both q̂ and Q as Taylor series in k:

q̂ ¼ q̂0 þ kq̂1 þ k2q̂2 þOðk3Þ; ð4:66Þ
Q ¼ Q0 þ kQ1 þ k2Q2 þOðk3Þ; ð4:67Þ

where q̂0 ¼ exp �bbH0

� 	
; q̂n is the nth-order correction to q̂, and

Qn ¼ TrSðq̂nÞ is the nth-order correction to Q. We are now in a
position to expand F as a power series in k:

F ¼ �1
b
ln Q0 þ kQ1 þ k2Q2 þOðk3Þ
 � ð4:68Þ

¼ �1
b
lnQ0 �

1
b
ln 1þ k

Q1

Q0
þ k2

Q2

Q0
þOðk3Þ

� 
ð4:69Þ

¼ F0 � k
b
Q1

Q0
þ k2

b
1
2

Q1

Q0

� �2

� Q2

Q0

" #
þOðk3Þ; ð4:70Þ

where F0 ¼ �b�1 lnQ0 is the Helmholtz free energy in the absence
of the external magnetic field and nuclear magnetic moment. The
principle of time-reversal symmetry [191] states that the free
energy must be time-even, and therefore an even function of the

time-odd parameters B0 and Î. Hence it must only contain even
powers of k, from which we deduce that Q1 must be zero. The free
energy is therefore

F ¼ F0 � k2

b
Q2

Q0
þOðk4Þ: ð4:71Þ

We now need an expression for the partition function Q2. We
note that q̂ satisfies a form of the Schrödinger equation:

@q̂
@b

¼ �bHq̂: ð4:72Þ

On substituting Eqs. (4.60) and (4.66) for bH and q̂ into the Schrödin-
ger equation, and collecting terms of equal order in k, we obtain the
following differential equations for q̂1 and q̂2:

@q̂1

@b
¼ �bH0q̂1 � bH1q̂0; ð4:73Þ

@q̂2

@b
¼ �bH0q̂2 � bH1q̂1 � bH2q̂0: ð4:74Þ

The solutions to these equations can be found using standard tech-
niques [190], which give:

q̂1 ¼ �
Z b

0
dw exp w� bð ÞbH0

� 	bH1 exp �wbH0

� 	
; ð4:75Þ

q̂2 ¼ �
Z b

0
dw exp w� bð ÞbH0

� 	bH2 exp �wbH0

� 	
þ
Z b

0
dw

Z w

0
dw0 exp w� bð ÞbH0

� 	bH1


 exp w0 �wð ÞbH0

� 	bH1 exp �w0 bH0

� 	
: ð4:76Þ

Alternatively one can substitute Eqs. (4.75) and (4.76) into Eqs.
(4.73) and (4.74) to verify that the former are solutions of the latter.
The partition function Q2 is given by the trace of q̂2. Taking the trace
of the first term gives

TrS �
Z b

0
dw exp w� bð ÞbH0

� 	bH2 exp �wbH0

� 	� 
¼ �

Z b

0
dwTrS exp w� bð ÞbH0

� 	bH2 exp �wbH0

� 	h i
¼ �

Z b

0
dwTrS exp �wbH0

� 	
exp w� bð ÞbH0

� 	bH2

h i
¼ �

Z b

0
dwTrS exp �bbH0

� 	bH2

h i
¼ �bTrS q̂0

bH2

h i
; ð4:77Þ

where to go to the third line, we have used the identity

TrðbAbBbCÞ ¼ TrðbC bAbBÞ ¼ TrðbBbC bAÞ, and then to go to the final line, we

have evaluated the integral. The Boltzmann average hbUi0 of an oper-

ator bU over the energy levels of bH0 is equal to

hbUi0 ¼
TrS q̂0

bU� 	
Q0

; ð4:78Þ
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and so Eq. (4.77) can be written in its final form as

�bhbH2i0Q0; ð4:79Þ

i.e. this part of q̂2 is proportional to the thermal average of bH2 over

the energy levels of bH0.
The trace of the second term in Eq. (4.76) is more complex to

compute. We start by noting that

TrS
Z b

0
dw
Z w

0
dw0exp w�bð ÞbH0

� 	bH1 exp w0 �wð ÞbH0

� 	bH1 exp �w0 bH0

� 	� 
¼
Z b

0
dw
Z w

0
dw0TrS q̂0 exp w�w0ð ÞbH0

� 	bH1 exp � w�w0ð ÞbH0

� 	bH1

h i
ð4:80Þ

¼
Z b

0
du
Z u

0
dvTrS q̂0 exp v bH0

� 	bH1 exp �v bH0

� 	bH1

h i
; ð4:81Þ

where to go to the last line we have performed a change in the
dummy integration variables u ¼ w and v ¼ w�w0. This integral
is still rather tricky to evaluate in its present form, but fortunately
it can be simplified after some straightforward algebra. Firstly we
apply the change of variable v 0 ¼ v � b to the first integral, which
givesZ b

0
du
Z u�b

�b
dv 0TrS q̂0 exp �v 0 bH0

� 	bH1 exp v 0 bH0

� 	bH1

h i
; ð4:82Þ

followed by a second change of variable v ¼ �v 0, which yieldsZ b

0
du
Z b

b�u
dvTrS q̂0 exp v bH0

� 	bH1 exp �v bH0

� 	bH1

h i
: ð4:83Þ

Secondly we apply a similar change of variables to u in the second
integral, namely u0 ¼ u� b which givesZ 0

�b
du0

Z b

�u0
dvTrS q̂0 exp v bH0

� 	bH1 exp �v bH0

� 	bH1

h i
; ð4:84Þ

followed by u ¼ �u0 after which the double integral becomesZ b

0
du
Z b

u
dvTrS q̂0 exp v bH0

� 	bH1 exp �v bH0

� 	bH1

h i
: ð4:85Þ

The integrals in Eqs. (4.81) and (4.85) sum to giveZ b

0
du
Z u

0
dvTrS q̂0 exp v bH0

� 	bH1 exp �v bH0

� 	bH1

h i
þ
Z b

0
du
Z b

u
dvTrS q̂0 exp v bH0

� 	bH1 exp �v bH0

� 	bH1

h i
¼
Z b

0
du
Z b

0
dvTrS q̂0 exp v bH0

� 	bH1 exp �v bH0

� 	bH1

h i
: ð4:86Þ

However the integrals on the first line are equal, and so we can
finally write Eq. (4.81) in a form that is more straightforward to
evaluate:Z b

0
du
Z u

0
dvTrS q̂0 exp v bH0

� 	bH1 exp �v bH0

� 	bH1

h i
¼ 1

2

Z b

0
du
Z b

0
dvTrS q̂0 exp v bH0

� 	bH1 exp �v bH0

� 	bH1

h i
ð4:87Þ

¼ b
2

Z b

0
dvTrS q̂0 exp v bH0

� 	bH1 exp �v bH0

� 	bH1

h i
ð4:88Þ

¼ b
2

Z b

0
dw exp wbH0

� 	bH1 exp �wbH0

� 	bH1

� �
0
Q0; ð4:89Þ

i.e. it is proportional to the Boltzmann average of the integral of

exp wbH0

� 	bH1 exp �wbH0

� 	bH1 over w. Combining Eqs. (4.71),

(4.79), and (4.89) we arrive at the final expression for the Helmholtz
free energy

F ¼ F0 þ hbH2i0 �
1
2

Z b

0
dw exp wbH0

� 	bH1 exp �wbH0

� 	bH1

� �
0
þ . . . ;

ð4:90Þ
where we have set k ¼ 1, as it has served its purpose as an expan-
sion parameter and is no longer needed. Substituting in the expres-

sions for bH1 and bH2 and performing the double differentiation gives
us the expression for the chemical shielding:

rij ¼ 1
�hcI

@2F

@B0;i@bIj
 !

B0¼0;̂I¼0̂

ð4:91Þ

¼ 1
�hcI

hDiji0 þ
1

2�hcI

Z b

0
dw exp wbH0

� 	
m̂i exp �wbH0

� 	
F̂ j

� �
0

þ 1
2�hcI

Z b

0
dw exp wbH0

� 	
F̂ j exp �wbH0

� 	
m̂i

� �
0
: ð4:92Þ

The second integral can be rewritten as

1
2�hcI

Z b

0
dw exp wbH0

� 	
F̂ j exp �wbH0

� 	
m̂i

� �
0

¼ 1
2�hcIQ0

Z b

0
dwTrS exp �bbH0

� 	
exp wbH0

� 	
F̂ j exp �wbH0

� 	
m̂i

h i
ð4:93Þ

¼ 1
2�hcIQ0

Z b

0
dwTrS exp �wbH0

� 	
m̂i exp �bbH0

� 	
exp wbH0

� 	
F̂ j

h i
: ð4:94Þ

Making a change of variable u ¼ b�w we obtain

1
2�hcIQ0

Z b

0
duTrS exp �bbH0

� 	
exp ubH0

� 	
m̂i exp �ubH0

� 	
F̂ j

h i
¼ 1

2�hcI

Z b

0
du exp ubH0

� 	
m̂i exp �ubH0

� 	
F̂ j

� �
0
; ð4:95Þ

which is equal to the first integral in Eq. (4.92). The expression for
the shielding tensor is therefore

rij ¼ 1
�hcI

hDiji0 þ
1
�hcI

Z b

0
dw exp wbH0

� 	
m̂i exp �wbH0

� 	
F̂ j

� �
0
:

ð4:96Þ
To evaluate the integral we need to write the Boltzmann aver-

ages in terms of the energy levels and states of the HamiltonianbH0. We will denote the eigenstates as jnmi where m denotes the
states with the same energy En, i.e.bH0jnmi ¼ Enjnmi: ð4:97Þ
Using this we write Eq. (4.96) as

rij ¼ 1
�hcIQ0

X
nm

expð�bEnÞhnmjDijjnmi

þ 1
�hcIQ0

X
nm;ml

expð�bEnÞhnmjm̂ijmlihmljF̂ jjnmi



Z b

0
dw exp w En � Emð Þð Þ: ð4:98Þ

This integral is now easy to evaluate, and we obtain as the final
result for the chemical shielding tensor

rij ¼ 1
�hcI

1
Q0

X
n

expð�bEnÞ
X
m
hnmjDijjnmi

"

þ 1
Q0

X
n

expð�bEnÞ
X
m–n

X
m;l

hnmjm̂ijmlihmljF̂ jjnmi þ c:c:
Em � En

þ b
Q0

X
n

expð�bEnÞ
X
m;m0

hnmjm̂ijnm0ihnm0jF̂ jjnmi
#
; ð4:99Þ

where c.c. is the complex conjugate of hnmjm̂ijmlihmljF̂ jjnmi.
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This apparently complicated expression comprises three terms.
The first two are the ‘diamagnetic’ rdia

ij and ‘paramagnetic’ rpara
ij

contributions to the chemical shielding that Ramsey calculated
for a non-degenerate, singlet ground state [192], and which van
den Heuvel and Soncini generalised to an open-shell electronic
configuration with thermally accessible electronic excited states
[87,89]:

rdia
ij ¼ 1

�hcIQ0

X
n

expð�bEnÞ
X
m
hnmjDijjnmi; ð4:100Þ

rpara
ij ¼ 1

�hcIQ0

X
n

expð�bEnÞ
X
m–n

X
m;l

hnmjm̂ijmlihmljF̂ jjnmi þ c:c:
Em � En

: ð4:101Þ

We again note that Ramsey’s use of the term ‘paramagnetic’ is dif-
ferent to the one employed here. Pennanen and Vaara gathered the
diamagnetic term and the spin-independent part of the paramag-
netic term together into the ‘orbital’ component of their chemical
shielding tensor rorb

ij . However we must bear in mind that, for
open-shell configurations exhibiting appreciable SO coupling, the
‘paramagnetic’ term includes the spin-dependent terms in both m̂
and F̂ , and so rpara is not a pure orbital term. The third term in
Eq. (4.99) exhibits a leading Curie temperature dependence of
1=ðkTÞ, which is familiar from our earlier discussions. One interest-
ing feature of this term is that it receives a zero contribution from
any levels n that are non-degenerate. Hence if we have an isolated
non-degenerate ground state n ¼ 0 we obtain

rij ¼ 1
�hcI

h0jDijj0i þ 1
�hcI

X
m–0

X
l

h0jm̂ijmlihmljF̂ jj0i þ c:c:
Em � E0

; ð4:102Þ

which is the Ramsey expression [192].
In our discussion of paramagnetic shifts, we retain both the

Curie term and the spin-dependent part of the ‘paramagnetic’ term
and combine both in our paramagnetic shielding rS

ij:

rS
ij ¼

2
�hcIQ0

X
n

expð�bEnÞ
X
m–n

X
m;l

hnmjm̂ijmlihmljF̂ jjnmi
Em � En

þ b
�hcIQ0

X
n

expð�bEnÞ
X
m;m0

hnmjm̂ijnm0ihnm0jF̂ jjnmi: ð4:103Þ

Note that hnmjm̂ijmlihmljF̂ jjnmi in the first term is always real, and
so we have removed the c.c. and replaced it with a factor of 2 in
front of the sum. Henceforth we only consider rS

ij in our discussion.

4.2.2. The EPR formalism applied to d-block transition-metal systems
Eq. (4.103) is a correct, if opaque, form of the paramagnetic

shielding tensor. However for d-block transition-metal ions we
can convert it to an intuitively more useful form by using the expli-
cit EPR Hamiltonian in Eq. (4.36), from which we can write downbH0 and bH1 asbH0 ¼ Ŝ � D � Ŝ; ð4:104ÞbH1 ¼ lBB0 � g � Ŝ þ Ŝ � A � Î; ð4:105Þ
where we see that the ZFS interaction is the Hamiltonian in the
absence of the external field and nuclear magnetic moments. We
can deduce the expressions for both the magnetic moment m̂i and
the hyperfine field F̂ j operators to be

m̂i ¼ �lB

X
k

gik
bSk; ð4:106Þ

F̂ j ¼
X
l

bSlAlj: ð4:107Þ

Substituting these into the EPR expression for the paramagnetic
shielding in Eq. (4.103) we obtain

rS
ij ¼� 2lB

�hcI

X
kl

gikAlj
1
Q0

X
n

expð�bEnÞ
X
m–n

X
m;l

hnmjbSkjmlihmljbSljnmi
Em � En

� lB

�hcIkT
X
kl

gikAlj
1
Q0

X
n

expð�bEnÞ
X
m;m0

hnmjbSkjnm0ihnm0jbSljnmi;

ð4:108Þ
where the jnmi and En are the eigenstates and eigenvalues of the ZFS
interaction Hamiltonian. This is simplified to give

rS
ij ¼ � lB

�hcI

X
kl

gikZklAlj; ð4:109Þ

or alternatively

rS ¼ � lB

�hcI
g � Z � A: ð4:110Þ

The tensor Zkl contains all the information pertaining to the ZFS, and
the form of the temperature dependence of the whole shielding ten-
sor. It takes the form

Zkl ¼
Z b

0
dw exp wbH0

� 	bSk exp �wbH0

� 	bSl

� �
0

ð4:111Þ

¼ 1
Q0

TrS exp �bbH0

� 	Z b

0
dw exp wbH0

� 	bSk exp �wbH0

� 	bSl

� �
ð4:112Þ

¼ 2
Q0

X
n

expð�bEnÞ
X
m–n

X
m;l

hnmjbSk jmlihmljbSl jnmi
Em�En

þ b
Q0

X
n

expð�bEnÞ
X
m;m0

hnmjbSkjnm0ihnm0jbSljnmi:
ð4:113Þ

In the absence of a ZFS interaction D ¼ 0 and there is a single
degenerate level n ¼ 0 with energy E0 ¼ 0. In this case Eq. (4.108)
reduces to a simple expression with a Curie temperature
dependence:

rS
ij ¼ � lB

�hcIkT
X
kl

gikAlj

X
m;m0

h0mjbSkj0m0ih0m0jbSlj0mi
2Sþ 1

ð4:114Þ

¼ � lB

�hcIkT
X
kl

gikAlj

TrS bSk
bSl

� 	
2Sþ 1

ð4:115Þ

¼ � lB

�hcIkT
X
kl

gikAlj
1
3
SðSþ 1Þdkl ð4:116Þ

¼ �lBSðSþ 1Þ
3�hcIkT

X
k

gikAkj; ð4:117Þ

which can also be written

rS ¼ �lBSðSþ 1Þ
3�hcIkT

g � A: ð4:118Þ

In fact this is the same expression that was derived by Moon and
Patchkovskii [39]. We note the following features. Firstly this
expression is reminiscent of that for the spin-only ion in Eq.
(3.70), with the main difference that the g-factor ge has been
replaced by the full g-tensor g. The tensors g and A couple together
via conventional matrix multiplication. Secondly, as in Eq. (3.70),
the temperature dependence varies according to the 1=kT Curie
law. We see in the next section that this is not the case when there
is a non-zero ZFS.

4.2.3. The EPR formalism in different temperature limits
It is instructive to explore the form of the EPR expression for the

paramagnetic shielding tensor in different temperature regimes.
This has been investigated in some detail by Martin and Autsch-
bach, who considered expansions of the EPR expression for the
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shielding tensor up to 1=ðkTÞ3 for metal ions with the full range of
spins appropriate for the d-block, which range from 1=2 to 5=2
[90,91]. It is particularly informative to consider the case of high
temperatures, where the expression is considerably simplified.
The term ‘high temperature’ refers to the size of kT with respect
to the ZFS parameters D and E, and is therefore quantified by the
ratios jDj=kT and jEj=kT, with smaller ratios indicating a better
agreement with the high-temperature limit. We examine two
related facets of this limit in order to illustrate the connection
between the two formalisms. Firstly we note that the integral in
Eq. (4.112) is over values of w from 0 to b, which corresponds to
temperatures from infinity down to the experimental temperature
T. If we assume that this range of temperatures is ‘high’, such that

we can approximate the operators exp 	wbH0

� 	
by the identity

operator, then Zkl reduces to the expression calculated by Penna-
nen and Vaara ZPV

kl [40]:

Zkl ¼ 1
Q0

TrS exp �bbH0

� 	Z b

0
dwexp wbH0

� 	bSk exp �wbH0

� 	bSl

� �
ð4:119Þ

� 1
Q0

TrS exp �bbH0

� 	Z b

0
dwbSk

bSl

� �
ð4:120Þ

¼ b
TrS exp �bbH0

� 	bSk
bSl

n o
Q0

ð4:121Þ

¼ ZPV
kl : ð4:122Þ

The Pennenan-Vaara expression is therefore a high-temperature
approximation of the EPR expression [41]. Note that we have not

explicitly assumed that exp �bbH0

� 	
is also approximated by the

identity; this approximation has only been applied to temperatures
higher than T.

Even higher temperatures can be examined further by expand-
ing both ZPV

kl and Zkl as Taylor series in b. The expansion of the for-
mer is straightforward:

ZPV
kl ¼ b

TrS bSk
bSl

� 	
Q0

� b2
TrS bH0

bSk
bSl

� 	
Q0

þ b3

2

TrS bH2
0
bSk
bSl

� 	
Q0

þOðb4Þ:
ð4:123Þ

The expansion of the EPR expression Zkl requires more tedious
algebra, which gives the following

The first term of order b2 is proportional to the trace of bH0
bSk; bSl

h i
,

which is equal to zero:

TrS bH0
bSk;bSl

h in o
¼
X
m;n;p

X
l;m;p

hmljbH0jnmi hnmjbSkjppihppjbSljmli�hnmjbSljppihppjbSkjmli
h i

ð4:127Þ

¼
X
n;p

X
m;p

En hnmjbSkjppihppjbSljnmi�hnmjbSljppihppjbSkjnmi
h i

ð4:128Þ

¼0; ð4:129Þ

where to go to the last line we use the argument set out in Appendix
D. We therefore see that ZPV

kl and Zkl are identical out to and includ-

ing the terms in 1=ðkTÞ2, and differ only in the third-order terms and
above. Both formalisms therefore give the same second-order
expression:

Zkl ¼ b
TrS bSk

bSl

� 	
Q0

� b2
TrS bH0

bSk
bSl

� 	
Q0

ð4:130Þ

¼ b
3
SðSþ 1Þdkl � b2

30
SðSþ 1Þð2S� 1Þð2Sþ 3ÞDkl; ð4:131Þ

where we have replaced bH0 with the ZFS interaction Hamiltonian.
The calculation is described in detail in Appendix D. This form of
Zkl results in a high-temperature expression for the paramagnetic
shielding tensor that was first derived by Bleaney [62]:

rS ��lBSðSþ1Þ
3�hckT

g �AþlBSðSþ1Þð2S�1Þð2Sþ3Þ
30�hcIðkTÞ2

g �D �A: ð4:132Þ

The conclusion is that if kT is sufficiently large that the Boltzmann
average over the ZFS energy levels can be well-approximated to

1=ðkTÞ2 in the Taylor expansion, both the Pennanen-Vaara and
van den Heuvel-Soncini EPR formalisms give the same result.

4.2.3.1. An example of the temperature dependence of the paramag-
netic shielding tensor. The deviation of both the Bleaney and
Pennanen–Vaara theories from the EPR shielding formalism
becomes important at low temperature, and for very large values
of the ZFS. To investigate this we employ a discussion along the
lines of van den Heuvel and Soncini [88], upon which we expand,
and calculate the form of the shielding tensor due to a paramag-
netic centre with spin S ¼ 1. Initially we assume that the ZFS
interaction is axially symmetric and traceless. In the PAF of the

Zkl ¼ 1
Q0

TrS 1̂� bbH0 þ 1
2
b2 bH2

0 �
1
6
b3 bH3

0 þOðb4Þ
� ��



Z b

0
dw 1̂þwbH0 þ 1

2
w2 bH2

0 þOðw3Þ
� �bSk 1̂�wbH0 þ 1

2
w2 bH2

0 þOðw3Þ
� �bSl

� ð4:124Þ

¼ 1
Q0

TrS 1̂� bbH0 þ 1
2
b2 bH2

0 �
1
6
b3 bH3

0 þOðb4Þ
� ��


 bbSk
bSl þ 1

2b
2 bH0

bSk
bSl � 1

2b
2bSk

bH0
bSl þ 1

6b
3 bH2

0
bSk
bSl � 1

3 b
3 bH0

bSk
bH0
bSl þ 1

6b
3bSk

bH2
0
bSl þOðb4Þ

� 	o ð4:125Þ

¼ b
TrS bSk

bSl

� 	
Q0

þ b2
TrS bH0

bSk
bSl � bSl

bSk

� 	� 	
2Q0

�
TrS bH0

bSk
bSl

� 	
Q0

24 35þ b3
TrS bH2

0
bSk
bSl þ bSl

bSk

� 	
þ bH0

bSk
bH0
bSl

n o
6Q0

24 35þOða4Þ: ð4:126Þ
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ZFS the Hamiltonian ~̂H is given by

êH ¼ eD20
bT 20 ð4:133Þ

¼ D bS2
z �

1
3
SðSþ 1Þ1̂

� �
; ð4:134Þ

and has the following eigenstates and energies:

j1i ¼ j þ 1i; E1 ¼ 1
3
D; ð4:135Þ

j2i ¼ j0i; E2 ¼ �2
3
D; ð4:136Þ

j3i ¼ j � 1i; E3 ¼ 1
3
D; ð4:137Þ

where we see that states j1i and j3i are degenerate and form a dou-
blet state, and j2i is a non-degenerate singlet state. The energy
levels are shown in Fig. 4.3 and the matrix representations of the

spin operators bSi are given in Table 4.1. It should be noted that these
energy levels are of the same form as those that describe nuclear
quadrupolar resonance (NQR) spectra of nuclei with spin I ¼ 1.

We obtain the components of the tensor Zkl by taking all
possible products of the matrix elements of two spin operators.
In the full EPR formalism we obtain the following diagonal
components:

eZxx ¼ eZyy ¼ 2
D

e2bD=3 � e�bD=3

2e�bD=3 þ e2bD=3
; ð4:138Þ

eZzz ¼ 2b
e�bD=3

2e�bD=3 þ e2bD=3
: ð4:139Þ

The off-diagonal elements are zero, as a result of our working in the
PAF of the ZFS tensor. The implication is that the both the Z- and ZFS

tensors share the same PAF. Furthermore we see that eZxx ¼ eZyy, and
so the Z-tensor is axially symmetric, like the ZFS. In the Pennanen–

Vaara formalism we calculate eZPV
kl in a similar way to obtain the

following diagonal elements:

eZPV
xx ¼ eZPV

yy ¼ b
e�bD=3 þ e2bD=3

2e�bD=3 þ e2bD=3
; ð4:140Þ

eZPV
zz ¼ 2b

e�bD=3

2e�bD=3 þ e2bD=3
: ð4:141Þ

We can see immediately that the two formalisms give different

results for the eZxx and eZyy, but the same value for eZzz. However, as

seen above, if we expand both eZPV
xx and eZxx as Taylor series

eZPV
xx ¼ 2

3
bþ 1

9
Db2 þ 1

54
D2b3 þOðb4Þ; ð4:142Þ

eZxx ¼ 2
3
bþ 1

9
Db2 � 1

27
D2b3 þOðb4Þ; ð4:143Þ

we see that the deviation only appears in the terms of order b3 and
higher. Finally we use the Taylor expansions to obtain the Bleaney

expressions for the Z-tensor eZB
kl, which are:

eZB
xx ¼ eZB

yy ¼
2
3
bþ 1

9
Db2; ð4:144Þ

eZB
zz ¼

2
3
b� 2

9
Db2: ð4:145Þ

We need an idea of the size of the discrepancies between the
three theories under standard conditions for high-resolution
NMR. Fig. 4.4 shows plots of the three diagonal components of
the Z-tensor as a function of temperature in the EPR, Pennanen–
Vaara, and Bleaney formalisms. Parts (a) and (b) compare the tem-

perature variation of eZxx;yy and eZzz respectively for each formalism
from 0 K to 400 K for a large axial ZFS of D ¼ 50 cm�1. The non-
Curie behaviour of all four curves is immediately seen, and for
the xx and yy components we see that the differences between
the three curves are only apparent below approximately 100 K,
with both the Pennanen–Vaara and Bleaney curves tending to
infinity at 0 K, whilst the EPR curve shows better behaviour by
tending to a constant, finite value of 2=D. The EPR and Penna-
nen–Vaara curves of the zz component are coincident, as we have
shown with the calculations above, and both tend to zero at zero
temperature. The Bleaney curve is not well-behaved at very low
temperatures (here below 50 K), as it tends to minus infinity. Nev-
ertheless the Bleaney curve matches extremely well with the
others at higher temperatures.

The discrepancies between the curves appear at higher temper-
atures if the system possesses a larger ZFS. Interestingly we note
that the Bleaney theory, although considerably simpler than the
other two, performs remarkably well down to temperatures of
100 K, and in particular has very good agreement with the more
complicated Pennanen–Vaara theory. However out of the these
three formulae we would expect the full EPR formula to be more
likely to be correct at low temperatures simply because at very
low temperatures only the lowest-energy state j2i � j0i is popu-
lated, and so the shielding tensor should be temperature indepen-
dent and not tend to infinity [88].

We can repeat the calculation for a ZFS of rhombic symmetry
with the Hamiltonian

Fig. 4.3. Energy levels of an electronic spin S ¼ 1 subject to a ZFS in its PAF. The
levels are shown in coordination environments of axial and rhombic symmetry. The
dotted line represents the barycentre at zero energy.

Table 4.1
Matrix representations of the spin operators bSi in the basis of a spin S ¼ 1 subject to a ZFS interaction of axial or rhombic symmetry.

Symmetry bSx bSy bSz
Axial 0 1=

ffiffiffi
2

p
0

1=
ffiffiffi
2

p
0 1=

ffiffiffi
2

p
0 1=

ffiffiffi
2

p
0

0@ 1A 0 �i=
ffiffiffi
2

p
0

i=
ffiffiffi
2

p
0 �i=

ffiffiffi
2

p
0 i=

ffiffiffi
2

p
0

0@ 1A 1 0 0
0 0 0
0 0 �1

0@ 1A
Rhombic 0 1 0

1 0 0
0 0 0

0@ 1A 0 0 0
0 0 �i
0 i 0

0@ 1A 0 0 �1
0 0 0
�1 0 0

0@ 1A
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êH ¼ eD20
bT 20 þ eD2�2

bT 2þ2 þ eD2þ2
bT 2�2 ð4:146Þ

¼ D bS2
z �

1
3
SðSþ 1Þ1̂

� �
þ E bS2

x � bS2
y

� 	
; ð4:147Þ

where we are once again working within the PAF of the ZFS tensor.
The eigenstates and energies are:

j10i ¼
ffiffiffi
1
2

r
j þ 1i þ j � 1ið Þ; E0

1 ¼ 1
3
Dþ E; ð4:148Þ

j20i ¼ j0i; E0
2 ¼ �2

3
D; ð4:149Þ

j30i ¼
ffiffiffi
1
2

r
�j þ 1i þ j � 1ið Þ; E0

3 ¼ 1
3
D� E: ð4:150Þ

The rhombic terms bT 2	2 are double-quantum operators, being pro-

portional to bS2
	, and so mix together the states j 	 1i, which are no

longer degenerate but are split by 2E, and leave j0i unperturbed.
The energy levels under rhombic symmetry are shown in Fig. 4.3.

We need the matrix elements of bSi in the new basis, the represen-
tations within which are given in Table 4.1.

The EPR formula gives the following non-zero diagonal values ofeZkl:

eZxx ¼ 2
Dþ E

e2bD=3 � e�bðD=3þEÞ

e�bðD=3þEÞ þ e2bD=3 þ e�bðD=3�EÞ ; ð4:151Þ

eZyy ¼ 2
D� E

e2bD=3 � e�bðD=3�EÞ

e�bðD=3þEÞ þ e2bD=3 þ e�bðD=3�EÞ ; ð4:152Þ

eZzz ¼ 1
E

e�bðD=3�EÞ � e�bðD=3þEÞ

e�bðD=3þEÞ þ e2bD=3 þ e�bðD=3�EÞ : ð4:153Þ

We note that the Z-tensor is still diagonal, but no longer axially
symmetric due to the introduction of the rhombic anisotropy E.
The Pennanen–Vaara formula gives the following non-zero values

of eZPV
kl :

eZPV
xx ¼ b

e�bðD=3þEÞ þ e2bD=3

e�bðD=3þEÞ þ e2bD=3 þ e�bðD=3�EÞ ; ð4:154Þ

eZPV
yy ¼ b

e2bD=3 þ e�bðD=3�EÞ

e�bðD=3þEÞ þ e2bD=3 þ e�bðD=3�EÞ ; ð4:155Þ

eZPV
zz ¼ b

e�bðD=3þEÞ þ e�bðD=3�EÞ

e�bðD=3þEÞ þ e2bD=3 þ e�bðD=3�EÞ : ð4:156Þ

We see that the expressions for the zz components are no longer the
same, which is a result of the lifting of the axial symmetry. However
the Taylor series of the expressions up to b2 are once again identical,
and are equal to the expressions obtained from the Bleaney theory:

eZB
xx ¼

2
3
bþ 1

9
ðD� 3EÞb2; ð4:157Þ

eZB
yy ¼

2
3
bþ 1

9
ðDþ 3EÞb2; ð4:158Þ

eZB
zz ¼

2
3
b� 2

9
Db2: ð4:159Þ

All these expressions for eZxx; eZyy, and eZzz are plotted in
Fig. 4.4(c)–(e) for ZFS anisotropies of D ¼ 50 cm�1 and E ¼ 20 cm�1.
Once again the discrepancies from the EPR curves are only apparent
at low temperatures, here below 100 K for these specific values of D

and E, with the EPR curves for eZxx and eZyy tending to constant values
of 2=ðDþ EÞ and 2=ðD� EÞ respectively at 0 K. It is once again strik-
ing how well the Bleaney theory performs at higher temperatures.

Therefore the conclusion is that the general EPR formalism, due
to van den Heuvel and Soncini, presented in this chapter gives an
exact description of the paramagnetic shielding tensor at all tem-
peratures. However the simpler Pennanen–Vaara or Bleaney forms
can be used if the temperature is sufficiently high that the shield-

ing expression can be truncated at 1=ðkTÞ2. In practice, this means
that for first-row transition-metal ions for which D has a maximum
of approximately 50 cm�1 at temperatures above 100 K we can
safely use either the Pennanen–Vaara or Bleaney formula.

4.3. The magnetic susceptibility tensor

4.3.1. Magnetism of the bulk
We saw that for a linear material containing an ensemble of

spin-only transition metal centres, an applied magnetic field
induces a bulk magnetisation that is proportional in size and par-
allel in direction to the field, with the constant of proportionality
equal to the volume magnetic susceptibility, as shown in Eq.
(3.87). In particular we noted that the magnetization is indepen-
dent of the relative orientation of the field to the material. Such a
bulk material is said to be magnetically isotropic. This situation
is shown in Fig. 4.5(a). For spin systems subject to SO coupling

Fig. 4.4. Comparison between the expressions of the paramagnetic chemical shielding Z-tensor as a function of temperature as derived using the EPR formalism of van den
Heuvel and Soncini [87,89], and the Pennanen–Vaara [40], and Bleaney [62] theories for a spin S ¼ 1 subject to the ZFS interaction. In each plot the EPR curve is in black, the
Pennanen–Vaara curve is in red, and the Bleaney curve is in grey. Shown in (a) and (b) are the Z

~

xx=Z
~

yy and Z
~

zz curves due to an axially symmetric ZFS with D ¼ 50 cm�1. In (b)
the black and red curves are exactly coincident. The temperature variations of Z

~

xx , Z
~

yy , and Z
~

zz are shown in (c), (d), and (e) for a rhombic ZFS interaction with D ¼ 50 cm�1 and
E ¼ 20 cm�1.
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we can apply the same reasoning to determine the induced magne-
tization, with one important difference. Because the magnetic
moments of the paramagnetic centres are now spatially anisotro-

pic, via either L̂ or g depending on how we choose to define the
spin Hamiltonian, we also expect the induced magnetization vec-
tor M to vary as the direction of the applied field is changed. The
bulk material is therefore anisotropic, and Eq. (3.87) should be
modified to account for this:

M ¼ 1
l0

vV � B0: ð4:160Þ

The constant of proportionality is replaced by the volume magnetic
susceptibility tensor vV , in which is encoded the anisotropic
response of the material to the field. The effect of the anisotropic
susceptibility tensor is that in general the magnetisation vector is
no longer parallel to the field, as shown in Fig. 4.5(b). From here
we can also generalise Eq. (3.89) to give an expression for the aver-
age induced magnetic moment per paramagnetic centre hl̂Si of such
spin systems:

hl̂Si ¼ 1
l0

v � B0; ð4:161Þ

where v is the molecular magnetic susceptibility tensor.
To calculate the average energy E per paramagnetic centre that

results from the interaction of the average moment with the field
we recall Eq. (2.13), which gives the infinitesimal change in inter-
nal energy of the whole sample due to a change in magnetic field at
constant entropy and constant volume as �VM � dB. From this we
express the infinitesimal change in the average energy per param-
agnetic centre as

dE
dB0

¼ �hl̂Si ð4:162Þ

¼ � 1
l0

v � B0: ð4:163Þ

Integrating this expression we obtain

E ¼ � 1
2l0

B0 � v � B0; ð4:164Þ

from which we see that the v tensor must be symmetric. It there-
fore just contains zeroth- and second-rank irreducible spherical
tensor components v00 and v2m. Writing the latter in the PAF these
components are

v00 ¼ �
ffiffiffi
3

p
viso; ð4:165Þ

ev20 ¼
ffiffiffi
2
3

r
Dvax; ð4:166Þev2	1 ¼ 0; ð4:167Þ

ev2	2 ¼ 1
2
Dvrh; ð4:168Þ

where viso is the isotropic susceptibility, and Dvax and Dvrh are the
axial and rhombic susceptibility anisotropies which are defined as

Dvax ¼ evzz � 1
2
evxx þ evyy
� � ð4:169Þ

Dvrh ¼ evxx � evyy: ð4:170Þ
Note that in this convention we order the principal components of
the tensor as evzz > evyy > evxx.

4.3.2. The susceptibility tensor in terms of the molecular/atomic-level
parameters according to the EPR formalism

The EPR formalism for the paramagnetic shielding tensor can be
adapted to calculate the magnetic susceptibility tensor [89]. Here,
following the computation of the Helmholtz free energy we look
for terms that are bilinear in the external magnetic field, which
is done by calculating the following derivative:

vij ¼ �l0
@2F

@B0;i@B0;j

 !
B0¼0

: ð4:171Þ

The paramagnetic susceptibility tensor can written down from Eq.
(4.103) on substituting m̂j for F̂ j. The expression is

vij ¼
2l0

Q0

X
n

expð�bEnÞ
X
m–n

X
m;l

hnmjm̂ijmlihmljm̂jjnmi
Em � En

þ l0

kT
1
Q0

X
n

expð�bEnÞ
X
m;m0

hnmjm̂ijnm0ihnm0jm̂jjnmi; ð4:172Þ

which is a form of the van Vleck equation [214]. This is the general
expression for the paramagnetic susceptibility tensor.

In the specific case of an ensemble of d-block transition-metal
ions, we once again write the electronic magnetic moment opera-

tor as m̂i ¼ �lB

P
kgik
bSk, and we obtain Eq. (4.173):

v ¼ l0l
2
B g � Z � gT ; ð4:173Þ

where the matrix Z is the same as that encountered earlier in Eq.
(4.113). If the EPR expression for Z is used, this expression gives
the susceptibility tensor at arbitrary temperature. The expression
for the susceptibility tensor reduces to the Pennanen–Vaara expres-
sion if we use ZPV for Z. In addition, as for the paramagnetic shield-
ing tensor, we can also approximate v to second order in 1=ðkTÞ.
Once again the expression for Z approximates to the same expres-
sion ZB regardless of which formalism we employ, and we obtain
the Bleaney expression for v:

v�l0l2
BSðSþ1Þ
3kT

g �gT �l0l2
BSðSþ1Þð2S�1Þð2Sþ3Þ

30ðkTÞ2
g �D �gT : ð4:174Þ

This describes the susceptibility tensor in the high-temperature
limit, such that jDj, jEj � kT .

4.3.3. Relating the paramagnetic shift to the magnetic susceptibility
tensor

We can now derive the connection between the paramagnetic
shielding and the magnetic susceptibility tensors. We start by writ-
ing down the Hamiltonian describing the hyperfine interaction
between the nuclear spin and the average electronic magnetic
moment. The general widely-used expression is [215,216]bHSI ¼ �l0hl̂Si � C � l̂I; ð4:175Þ
where we write the reduced hyperfine coupling tensor in a com-
pletely general way as the sum of isotropic Ccon, antisymmetric

Cas, and traceless symmetric Cdip parts:

C ¼ Ccon1þ Cas þ Cdip: ð4:176Þ
We will see shortly that the isotropic and symmetric anisotropic

parts Ccon and Cdip are not strictly equal to the NR Fermi-contact

Fig. 4.5. Illustration of the induced magnetic moment per paramagnetic ion due to
magnetically isotropic and anisotropic materials. A magnetically isotropic material
is shown in (a). The size of the induced magnetic moment per paramagnetic ion is
proportional to the size of the external field, and does not vary with the field
direction. However the induced magnetic moment always remains parallel to the
field. In a magnetically anisotropic material, shown in (b), the induced magnetic
moment per paramagnetic ion is in general not parallel to the external field, and
changes in size and direction as the material is rotated within the field.
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and spin-dipolar parts CFC and CSD respectively. Nevertheless this
approximation is frequently made, in which case the expressions

for Ccon and Cdip are the same as those for CFC and CSD given in
Eqs. (3.103) and (3.104), and the corresponding irreducible
spherical tensor components are those given in Eqs. (3.106) and
(3.110)–(3.114). This equivalence (or lack thereof) is a subtle point
that is discussed further in Sections 4.4 and 4.5. The antisymmetric
hyperfine term Cas is characterised by the antisymmetric anisotropy
fC , which is given by

fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cas
xy

� 	2
þ Cas

yz

� 	2
þ Cas

xz

� �2r
: ð4:177Þ

In the PAF of Cas, the three rank-one irreducible spherical tensor
components are

C10 ¼ �i
ffiffiffi
2

p
fC ; ð4:178Þ

C1	1 ¼ 0: ð4:179Þ
Substituting the expressions for the average electronic mag-

netic moment in Eq. (4.161) and the nuclear magnetic moment
operator into Eq. (4.175), we obtainbHSI ¼ �B0 � v � C � l̂I ð4:180Þ

¼ ��hcIB0 � v � C � Î: ð4:181Þ
This Hamiltonian represents an interaction that is linear in the com-
ponents of both the magnetic field and the nuclear spin, i.e. a chem-
ical shielding. We can therefore write the interaction in the form
�hcIB0 � rv � Î, where the shielding due to the susceptibility tensor
rv is

rv ¼ �v � C: ð4:182Þ
This is the generalised form of Eq. (3.100) which we derived for
spin-only paramagnetic centres. Note that Eq. (4.182) has been
derived without making any specific assumptions about the form
of the susceptibility tensor, other than it being field-independent.
We now provide the last link in the connection between the EPR
and susceptibility formalisms. We start from the Hamiltonian of
the hyperfine interaction

bHSI ¼ �l0l̂S � C � l̂I; ð4:183Þ

and we substitute in the expressions for the magnetic moment

operators l̂I ¼ �hcI Î and l̂S ¼ �lBg � Ŝ. This expression for the elec-
tronic magnetic moment encodes both the orbital and spin compo-
nents of the magnetic moment. The hyperfine interaction
Hamiltonian becomesbHSI ¼ l0lB�hcI Ŝ � gT � C � Î ð4:184Þ

¼ Ŝ � A � Î; ð4:185Þ
where the hyperfine coupling constant is given by

A ¼ l0lB�hcIg
T � C: ð4:186Þ

We have written it as the matrix product of the transpose of the g-
matrix and the reduced hyperfine coupling matrix gT � C. We note
that writing the hyperfine tensor in this form means that the mag-
nitude and sign of the interaction change as the spatially-
anisotropic electronic magnetic moment changes orientation due
to the presence of gT . This property is missing in the EPR expression

for the hyperfine tensor, which is dominated by the NR terms AFC

and ASD, which only contain information about the NR part of the
electronic magnetic moment via ge. We note that it is exactly this
inclusion of the g-tensor in Eq. (4.186), and in particular the aniso-

tropic part of the g-tensor, which means that Ccon and Cdip are not

strictly equivalent to CFC and CSD. Rather, Ccon contains contributions

from both AFC and ASD. We also note that this discrepancy is not
addressed by including the SO coupling terms from Eq. (4.42) in
the EPR expression. Firstly these terms usually have a negligible
impact on the shift when compared to other SO coupling effects,
such as the g-shift and ZFS. Secondly the second-order contribution

to the hyperfine tensor ASD;2 is only referred to as a ‘‘dipolar cou-

pling” as it is symmetric like the NR contribution ASD, but does
not have the same long-range dependence on distance. This is due
to it being a cross term in the perturbation expansion of the
effective-spin Hamiltonian, and therefore representing a shorter-
range effect. Combining the expression in Eq. (4.186) with the
EPR formula for the paramagnetic shielding in Eq. (4.109) gives

rS ¼ � lB

�hcI
g � Z � A ð4:187Þ

¼ �l0l
2
Bg � Z � gT � C ð4:188Þ

¼ �v � C: ð4:189Þ
Eqs. (4.182) and (4.189) are the same, thus establishing the self-
consistency of the derived expressions. This provides the founda-
tion for showing that the EPR and susceptibility expressions rS

and rv for the paramagnetic shielding tensor are indeed equivalent.
A previous attempt at providing a similar argument was made by
Benda et al., which covered a lot of ground on unifying the descrip-
tion of the PCS in both formalisms [217]. However there are still
some subtleties that remain in the argument, which mainly origi-
nate from the interpretation of the hyperfine tensors A and C. These
points are addressed in the following sections on the scaling-factor
model of Kim et al. (Section 4.4) [54], and on the Kurland–McGarvey
formalism (Section 4.5) [38]. We begin by writing the susceptibility
tensor as the sum of the isotropic viso and anisotropic Dv parts, i.e.
v ¼ viso1þ Dv, and the expression for rv becomes

rv ¼ �visoCcon1� DvCcon � visoCas � Dv � Cas � visoCdip � Dv � Cdip:

ð4:190Þ
This establishes that rv is the sum of different terms that

originate from different parts of the hyperfine interaction, and
contribute differently to the isotropic shift and SA. If the different
contributions to the hyperfine tensor are interpreted correctly,
the susceptibility expression for the paramagnetic shielding is
exactly equivalent to the EPR formalism. However if we make

the approximation Ccon ¼ CFC and Cdip ¼ CSD differences do arise
between the formalisms.

We examine these points in more detail in the next Sections 4.4
and 4.5, and later in Chapter 5.

4.4. The scaling factor revisited

It was shown in Section 3.4 that the paramagnetic shielding
tensor for spin-only transition-metal ions can be viewed as the
ratio of the hyperfine coupling tensor to the nuclear Zeeman
energy, given by �A=ð2�hcIB0Þ, that is calculated in the saturation
regime, and then scaled into the high-temperature paramagnetic
regime by multiplication with a scaling factor that depends on
both temperature, and the electronic magnetic moment. This scal-
ing factor is proportional to the magnetic susceptibility, and so can
be determined from measurements of the bulk magnetism. When
we include the effects of SO coupling this picture becomes more
complicated. We have seen that the magnetic susceptibility
becomes a spatially-anisotropic tensor, and so we would expect
the scaling factor to also be anisotropic. However if we restrict
the discussion to an NR hyperfine tensor, and only account for
the SO coupling effects in the electronic magnetic moment, we
can apply a modified form of the scaling-factor idea of Kim et al.
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[54], which has been employed by Clément et al. to first-row
d-block ions [31].

The idea is to scale down the same NR hyperfine tensor expres-
sion �A=ð2�hcIB0Þ, comprising the NR Fermi-contact and spin-
dipolar parts, as shown in Section 3.4, but with a scaling factor that
includes SO coupling effects. This scaling factor is the ratio of the
paramagnetic electronic magnetic moment to the saturated mag-
netic moment. The electronic angular momentum properties are
described in full in Section 6.4.1. However for present purposes we
simply note that the paramagnetic centre is described by a total
angular momentum J, and has a magnetic moment operator given

by m̂ ¼ �lBgJ
bJ , where gJ is the isotropic Born–Landé g-factor. We

note here that we do not account for the spatial anisotropy of the
g-tensor. Following the discussion in Section 3.2, the z-component
of the average electronic magnetic moment hm̂zipara is given by

hm̂zipara ¼ lBgJJBJðyÞ; ð4:191Þ
where BJðyÞ is a form of the Brillouin function that depends on the
total angular momentum quantum number J:

BJðyÞ ¼ 2J þ 1
2J

coth
2J þ 1
2J

� �
y

� 
� 1
2J

coth
y
2J

� 
; ð4:192Þ

and y ¼ blBgJB0J. In the high-temperature limit the Brillouin func-
tion is approximated by BJðyÞ � yðJ þ 1Þ=ð3JÞ, and hm̂zipara is given by

hm̂zipara ¼
l2

effB0

3kT
: ð4:193Þ

In Eq. (4.193) we have defined the magnitude of the effective elec-
tronicmagneticmoment asleff ¼ lBgJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp

. However in practice
we treat leff as an empirical parameter that can be determined from
measurements of the magnetic susceptibility, which is given by

viso ¼ l0l2
eff

3kT
: ð4:194Þ

The treatment of leff in this way avoids the need for any explicit
calculation of the SO coupling effects. The average electronic mag-
netic moment in the saturation regime hm̂zisat is formally given by
lBgJJ. However, as we do not include SO coupling effects in the cal-
culation of either the electronic magnetic moment or the hyperfine
tensor, we instead use the NR expression derived in Section 3.2,
where J ! S and gJ ! ge:

h bmzisat ¼ lBgeS: ð4:195Þ
The scaling factor is therefore

h bmzipara
h bmzisat

¼ visoB0

l0lBgeS
ð4:196Þ

¼ l2
effB0

3lBgeSkT
: ð4:197Þ

The expression in terms of the magnetic susceptibility is the same
as for spin-only paramagnetic centres. However in the present case
we note that the magnetic susceptibility here includes the SO cou-
pling contributions to the electron magnetic moments, and does not
have the same expression as in the spin-only case. Finally, in this
formalism, the paramagnetic shielding tensor is

rS ¼ �h bmzipara
h bmzisat

A

2�hcIB0
ð4:198Þ

¼ � viso

l0lBge�hcI
A

2S
ð4:199Þ

¼ � l2
eff

3lBge�hcIkT
A

2S
ð4:200Þ

¼ � l2
eff

3lBge�hcIkT
A; ð4:201Þ

where have written A ¼ A=ð2SÞ as the hyperfine tensor per elec-
tron. As mentioned earlier the effective electronic magnetic
moment in Eq. (4.201) can be treated as an empirical parameter
which hides all the SO coupling effects, such as the g-shift. The
hyperfine tensor A is calculated in the NR regime, and so if we make

the approximations Ccon ¼ CFC and Cdip ¼ CSD, the shielding tensor in

this formalism is equivalent to the part �visoCcon1� visoCdip in Eq.
(4.190). This model of the paramagnetic shielding tensor is there-
fore an approximation, as it neglects SO coupling effects in the
hyperfine tensor and does not account for magnetic anisotropy,
which gives rise to the PCS. Nevertheless it has been shown to be
very effective for calculating the contact shifts of solid paramag-
netic battery materials [31,55–57].

4.4.1. The scaling tensor in the presence of magnetic susceptibility
anisotropy

The scaling factor picture can be modified in a straightforward
manner to also account for the effects of the susceptibility aniso-
tropy due to both the g-anisotropy and ZFS. We note that when
the susceptibility anisotropy is taken into account, rather than
the scaling factor being a scalar quantity that is proportional to
the isotropic magnetic susceptibility, the scaling factor becomes
a tensor with the same spatial properties as the susceptibility ten-
sor. We can back-calculate the scaling factor from the shielding
tensor in the susceptibility formalism in Eq. (4.182). If we assume
that the hyperfine tensor is still well approximated in the NR
regime, Eq. (4.186) gives is the following expression for the total
hyperfine tensor:

A ¼ 2Sl0lBge�hcIC: ð4:202Þ
Rearranging Eq. (4.182) gives us

rv ¼ � B0v
l0lBgeS

� A

2�hcIB0
: ð4:203Þ

From here we can define the scaling tensor as

B0

l0lBgeS
v: ð4:204Þ

The physical explanation for this expression comes from the fact
that the electronic magnetic moments that contribute to the mag-
netic susceptibility tensor are orientation-dependent, and so the
required scaling of the hyperfine interaction into the paramagnetic
regime is also orientation-dependent. When we compare this
expression for the shielding with Eq. (4.190) we see that it contains

the following terms: �visoCcon1� DvCcon � visoCdip � Dv � Cdip, i.e. all
the cross terms between the isotropic and anisotropic parts of the
susceptibility tensor and the contact and spin-dipolar parts of the
hyperfine tensor, with only contributions from the antisymmetric
hyperfine tensor missing. Therefore the model of the paramagnetic
shielding in terms of a scaling tensor accounts for both the contact
shift [54] and PCS [16].

4.5. The Kurland–McGarvey formalism

We complete our survey of the different formalisms for the
paramagnetic shielding tensor by examining the classic general
treatment by Kurland and McGarvey [38]. The expression for the
PCS in the Kurland–McGarvey formalism exactly matches that in
the susceptibility formalism introduced in Eq. (4.190), namely

�Dv � Cdip, but there is a discrepancy in the expressions for the con-
tact shielding, which in the susceptibility and scaling-factor for-
malisms is given by �visoCcon1. This reason for this discrepancy
can be understood by noting that in the susceptibility formalism,
we neglect the effect of the g-shift in the expression linking the
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two hyperfine interactions in the definition in Eq. (4.186), where
we choose to write:

AFC ¼ l0lBge�hcIC
con; ð4:205Þ

ASD ¼ l0lBge�hcIC
dip: ð4:206Þ

This is the approach taken in the exposition of the scaling-factor
models in Section 4.4. However there may be cases in which the
g-shift in Eq. (4.186) cannot be neglected. The correct expression
for C to use in the susceptibility formalism is given by inverting
Eq. (4.186) to give [201]:

C ¼ 1
l0lB�hcI

gT
 ��1 � A: ð4:207Þ

This, in turn, gives us the following expression for the paramagnetic
shielding in the susceptibility formalism:

rv ¼ � 1
l0lB�hcI

v � gT
 ��1 � A: ð4:208Þ

We now write the hyperfine tensor as the sum of the NR Fermi-
contact and spin-dipolar parts, which results in a shielding tensor
which is the sum of two terms:

rv ¼ � AFC

l0lB�hcI
v � gT
 ��1 � 1

l0lB�hcI
v � gT
 ��1 � ASD

: ð4:209Þ

The first term gives us the Fermi-contact shift and associated SA,
whilst the second gives us the PCS and the SA due to the spin-
dipolar interaction.

The isotropic contact shielding is given by

rFC ¼ � AFC

3l0lB�hcI
Tr v � gT
 ��1
h i

ð4:210Þ

The trace can, of course, be computed in any spatial reference
frame. For convenience, we choose the common PAF of both the
susceptibility and symmetric part of the g-tensor. Evaluating the
trace then gives us the Kurland–McGarvey expression for the con-
tact shielding [38]:

rFC ¼ � AFC

3l0lB�hcI

evxxegxx
þ evyyegyy

þ evzzegzz

� 
: ð4:211Þ

On comparing this expression with that from the scaling-factor
model in Eq. (4.199), we see that the two are only equal when the
g-tensor is equal to the free-electron g-factor, which is one of the
initial assumptions of the scaling-factor model [54]. The Kurland–
McGarvey expression for the contact shielding in Eq. (4.211) can
therefore be regarded as a generalization of the contact shielding
calculated using the scaling-factor approach in the susceptibility
formalism. In commenting on the difference between the two
expressions, we note that to use the Kurland–McGarvey expression
we need to know the principal values of the susceptibility tensor,
which cannot be independently measured for molecules in solution,
or for solid powders, and may also be difficult to determine for sin-
gle crystals, as discussed in Chapter 7. The scaling-factor expression,
on the other hand, only requires knowledge of the isotropic suscep-
tibility, which can be readily obtained for all these samples. There-
fore the scaling-factor model is almost always more convenient to
use than the Kurland–McGarvey formula.

The pseudo-contact shielding is given by the expression

rPCS ¼ � 1
3l0lB�hcI

Tr v � gT
 ��1 � ASD
h i

: ð4:212Þ

If we write ASD in terms of CSD via Eq. (3.102) we obtain

rPCS ¼ �1
3
Tr v0 � CSD
h i

; ð4:213Þ

where v0 ¼ v � gT

 ��1ge is the pseudo-susceptibility tensor defined

by Benda et al. in their description of the PCS obtained following
a first-principles calculation of v via the g- and ZFS tensors [217].
As for the contact shielding, there is a discrepancy between this
expression for the pseudo-contact shielding and that from the sus-

ceptibility formalism, �Dv � Cdip. The reason for this discrepancy can
be traced back to the difference between the NR hyperfine spin-
dipolar tensor CSD and the traceless symmetric tensor in the pres-

ence of SO coupling Cdip. The former is a ‘true’ dipolar coupling,
and may be represented as a point-dipolar interaction where appro-
priate, whereas the latter is the second-rank component of C that is

proportional to gT

 ��1 � A and is not a pure spin-dipolar contribu-

tion, as there is a contribution from the g-anisotropy. Care is needed
in differentiating between these two cases.

4.6. Key concepts

� The coupling between the electronic spin and orbital angular
momentum changes the form of the EPR parameters, resulting
in the Hamiltonian of Eq. (4.36).

� The free-electron g-factor is modified so that it becomes a spa-
tially anisotropic g-tensor.

� The hyperfine tensor gains additional contributions to the iso-
tropic and symmetric parts, as well as an antisymmetric part.

� For electronic spins greater than 1=2 there is also a zero-field
splitting interaction.

� The SO-induced changes to the EPR parameters also change the
form of the paramagnetic shielding tensor, as given in the EPR
formalism (Eq. (4.109)).

� The SO coupling also introduces anisotropy to the bulk mag-
netic properties, with the magnetic susceptibility becoming a
spatially anisotropic tensor (Eq. (4.173)).

� The paramagnetic shielding can also be calculated in terms of
the susceptibility tensor, as in Eq. (4.189).

� The paramagnetic shielding due to SO coupling can also be
approximated by a scaling of the NR hyperfine tensor. The scaling
factor contains anempirical effective electronicmagneticmoment
that can be calculated, or measured, separately (Eq. (4.201)).

� The susceptibility formalism also provides the Kurland–McGar-
vey expressions for the contact and pseudo-contact shieldings
(Eqs. (4.211) and (4.213)). These expressions may be regarded
as generalizations of those obtained from the scaling-factor
formalism.

Chapter 5: The interpretation of the paramagnetic shielding
tensor of d-block transition-metal ions

This chapter contains a full discussion of the various terms that
arise from the expression for the paramagnetic shielding tensor
presented in Chapter 4, and how they may be interpreted in terms
of the structural and electronic properties of the system under
study. We explore the form of the shielding tensor in two different
formalisms: the EPR formalism, in terms of the molecular/atomic-
level EPR tensor parameters, and the susceptibility formalism, in
terms of the bulk magnetic susceptibility tensor. In each formalism
the shielding tensor is broken down into a number of contributions
that can be grouped according to the different parts of the hyper-
fine interaction. There are three such groups of terms, correspond-
ing to the isotropic contact interaction, the symmetric anisotropic
spin-dipolar interaction, and the antisymmetric hyperfine interac-
tion. We derive explicit formulae for all these contributions using
both formalisms, and link both approaches together. It is particu-
larly important to link the two formalisms, so that we can compare
the forms of the paramagnetic shielding tensor we obtain from
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each, and to be able to judge whether the differences we observe
are merely superficial, or due to the fundamental differences
between the two pictures.

5.1. Correspondence between the EPR and susceptibility formalisms of
the paramagnetic shielding tensor

The terms in both the EPR and susceptibility formalisms are
listed in Table 5.1 and ordered into three groups: terms giving rise
to the contact shift (con), the dipolar shift (dip), and the shift from
the antisymmetric part of the hyperfine tensor (as). We recall that

ASD;2 is not a long-range interaction term, unlike ASD, and that the
notation ‘SD,2’ is somewhat misleading. Nevertheless we include it
with the other dipolar terms, since it is also a rank-two tensor and
shares the same angular properties. A similar argument is made for

including the SO contribution to the isotropic hyperfine tensor AFC;2

with the contact terms.
We see that the correspondence between the formalisms is not

perfect, as for example in the lack of rank-one contact shielding
terms in the susceptibility formalism. This reason for this discrep-
ancy is that in the EPR formalism the magnetic anisotropy of the
metal ion is accounted for by the local SO coupling effects which
give rise to the g-anisotropy and ZFS, whereas in the susceptibility
formalism the magnetic anisotropy is described wholly as a bulk
effect in the magnetic susceptibility tensor. So for instance we
see that the rank-one contact shielding tensor components are
due to the antisymmetric part of the g-tensor in the EPR formalism.
In the susceptibility formalism, on the other hand, the antisym-
metric part of the g-tensor is ‘hidden’ in the susceptibility tensor,
which itself is symmetric and so does not produce any rank-one
terms in the contact shielding. For the spin-dipolar interaction
the antisymmetric shielding terms are present, but we will see that
these are due to the coupling of the symmetric susceptibility ani-
sotropy tensor with the dipolar coupling tensor. However we do
not dwell on this specific point, since the rank-one shielding terms
are unobservable under high-field conditions. A second reason for
any possible discrepancy is that the terms present in the EPR for-
malism form a series expansion in the fine structure constant a,
with only terms of order up to and including a4 being retained.

Throughout this chapter we assume that the chemical shielding
interaction is in the high-field approximation. Even though this
approximation may not be valid for the ZFS and electron Zeeman
interactions in the EPR Hamiltonian, it can be applied more safely
to the paramagnetic shielding interaction as the latter is obtained

by scaling down the hyperfine tensor, as we have seen previously
[54]. In the high-field approximation the paramagnetic shielding
in terms of irreducible spherical tensors is given by Eq. (2.96):

rð1Þ ¼ �
ffiffiffi
1
3

r
rS

00 þ
ffiffiffi
2
3

r
rS

20 ð5:1Þ

¼ rS
iso þ

ffiffiffi
2
3

r Xþ2

m¼�2

erS
2m expð�imaPLÞdð2Þ

m0 bPLð Þ; ð5:2Þ

from which we see that we are only able to observe the isotropic
and symmetric parts of the shielding tensor. Hence we do not con-
cern ourselves with the rank-one parts of the shielding tensor. In
Cartesian tensor components the high-field paramagnetic shielding
adopts the simple form

rð1Þ ¼ rS
zz: ð5:3Þ

The same interaction can also be written in terms of the susceptibil-
ity expression for the paramagnetic shielding as follows:

rð1Þ ¼ �
ffiffiffi
1
3

r
rv

00 þ
ffiffiffi
2
3

r
rv

20 ð5:4Þ

¼ rv
iso þ

ffiffiffi
2
3

r Xþ2

m¼�2

erv
2m expð�imaPLÞdð2Þ

m0 bPLð Þ; ð5:5Þ

¼ rv
zz: ð5:6Þ

We now proceed to analyse the terms in Table 5.1 in both for-
malisms, and examine in detail the contributions from the contact,
spin-dipolar, and antisymmetric hyperfine interactions.

5.2. Summary of the relevant tensor parameters

The interpretation of the paramagnetic shielding tensor using
either the susceptibility or EPR formalisms requires the definition
of a number of spatial tensors.

5.2.0.1. The magnetic susceptibility tensor
The magnetic susceptibility tensor v is symmetric, and can be

decomposed into two components as follows:

v ¼ viso1þ Dv; ð5:7Þ
where viso is the isotropic part, and Dv is the traceless and symmet-
ric susceptibility anisotropy. The susceptibility anisotropy is param-
eterised according to one of two conventions. The first is in terms of
the axial and rhombic anisotropies Dvax and Dvrh, which are defined
in terms of the PAF components evii as

Table 5.1
Comparison of the terms contributing to the paramagnetic shielding tensor arising from the EPR formalism [87,89] with those arising from the susceptibility formalism. The
different terms are separated into groups arising from the contact interaction (con), spin-dipolar interaction (dip), and the antisymmetric hyperfine interaction (as). The spatial
irreducible spherical tensor ranks have been included for situations in which the ZFS is both present and absent.

Type rS rv

Term Order With ZFS Without ZFS Expression Rank

Expressiona Rank Expressionb Rank

con 1 a2 geA
FCZ 0, 2 geA

FC 0 �visoCcon 0

3 a4 geA
FC;2Z 0, 2 geA

FC;2 0 �DvCcon 2

6 a4 DgisoA
FCZ 0, 2 DgisoA

FC 0

8 a4 AFCDg � Z 0, 1, 2 AFCDg 1, 2

dip 2 a2 geZ � ASD 0, 1, 2 geA
SD 2 �visoCdip 2

4 a4 geZ � ASD;2 0, 1, 2 geA
SD;2 2 �Dv � Cdip 0, 1, 2

7 a4 DgisoZ � ASD 0, 1, 2 DgisoA
SD 2

9 a4 Dg � Z � ASD 0, 1, 2 Dg � ASD 0, 1, 2

as 5 a4 geZ � Aas 1, 2 geA
as 1 �visoCas 1

�Dv � Cas 1, 2

a Multiply by �lB=ð—hcIÞ to obtain full shielding expression.
b Multiply by �lBSðSþ 1Þ=ð3—hcIkTÞ to obtain full shielding expression.
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Dvax ¼ evzz � 1
2
evxx þ evyy
� �

; ð5:8Þ
Dvrh ¼ evxx � evyy: ð5:9Þ
The PAF components are defined so that evzz P evyy P evxx. Alterna-
tively we can define the PAF components to satisfy
jevzz � visoj P jevxx � visoj P jevyy � visoj, and define the anisotropy
Dv and asymmetry parameter gv as

Dv ¼ evzz � viso; ð5:10Þ

gv ¼ evyy � evxx

Dv : ð5:11Þ

The orientation of the PAF of Dv is specified by the Euler angles
XXL ¼ ðaXL;bXL; cXLÞ.

The susceptibility tensor is given in terms of the EPR parameters
by the following expression

v ¼ l0l
2
Bg � Z � gT : ð5:12Þ

The expressions for both the isotropic and anisotropic parts of the
susceptibility contain the g-shift and ZFS tensors, which are both
due to SO coupling.

5.2.0.2. The hyperfine coupling tensor
The hyperfine coupling tensor A takes the following form

A ¼ AFC þ AFC;2
� 	

1þ Aas þ ASD þ ASD;2
� 	

: ð5:13Þ

The isotropic part Aiso is due to the NR Fermi-contact and the SO
second-order contact interactions:

Aiso ¼ AFC þ AFC;2
: ð5:14Þ

The antisymmetric part is due entirely to the SO-coupling term Aas

and is characterised by the antisymmetric anisotropy fA which is
given by

fA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aas
xy

� 	2
þ Aas

yz

� 	2
þ Aas

xz

� �2r
: ð5:15Þ

The orientation of the PAF of Aas is specified by the Euler angles
XAAL ¼ ðaAAL; bAAL; cAALÞ. The symmetric part is due to the NR and

SO spin-dipolar terms ASD and ASD;2. The symmetric anisotropy DA
and asymmetry parameter gA are therefore given by

DA ¼ eASD
zz þ eASD;2

zz ; ð5:16Þ

gA ¼
eASD
yy þ eASD;2

yy � eASD
xx � eASD;2

xx

DA
: ð5:17Þ

The tilde denotes that the matrix elements are evaluated in the PAF

of the symmetric part of the whole hyperfine tensor, i.e. ASD þ ASD;2.
The orientation of this PAF is specified by the Euler angles
XASL ¼ ðaASL; bASL; cASLÞ. Note that in the point-dipole approximation,
the interaction is given by the long-range NR term, and the aniso-
tropy and asymmetry parameter are

DA ¼ 2bSI; ð5:18Þ
gA ¼ 0; ð5:19Þ

where bSI is the dipolar coupling constant.
In the susceptibility formalism we make use of the reduced

hyperfine coupling tensor C, which comprises an isotropic contact
term Ccon, antisymmetric term Cas, and a symmetric spin-dipolar

term Cdip. If we approximate the isotropic contact term as the NR
Fermi-contact coupling constant, as in Sections 4.3.3 and 4.4, it is
equal to

Ccon ¼ 1
3S

qa�bð0Þ; ð5:20Þ

i.e. it is proportional to the unpaired electron spin density at the
nucleus qa�bð0Þ. The antisymmetric hyperfine term Cas is charac-
terised by the antisymmetric anisotropy fC , which is given by

fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cas
xy

� 	2
þ Cas

yz

� 	2
þ Cas

xz

� �2r
: ð5:21Þ

If we approximate the rank-two hyperfine tensor as the NR spin-
dipolar coupling, the symmetric anisotropy DC and asymmetry
parameter gC are given by

DC ¼ eCdip
zz ; ð5:22Þ

gC ¼
eCdip
yy � eCdip

xx

DC
: ð5:23Þ

We will see that the corresponding expressions in the point-dipole
approximation are of interest; these are derived from Eqs. (3.115)–
(3.119) to give:

DC ¼ 1
2pR3 ; ð5:24Þ

gC ¼ 0: ð5:25Þ
The orientations of the PAFs of the antisymmetric and symmetric
parts of C are specified by the Euler angles XCAL ¼ ðaCAL;bCAL; cCALÞ
and XCSL ¼ ðaCSL;bCSL; cCSLÞ respectively. We recall that if we employ
the Kurland–McGarvey formalism described in Section 4.5, the
interpretation of the parts of C with ranks zero, one, and two are
more complicated than that given here (c.f. Eq. 4.186), and in fact
we recover the expressions for the shielding tensor from the EPR
formalism.

5.2.0.3. The g-tensor
The g-tensor has the following generic form:

g ¼ ge þ Dgisoð Þ1þ Dg; ð5:26Þ
where the isotropic free-electron g-factor ge is the NR contribution.
The effect of SO coupling manifests itself in the g-shift part of the
tensor, which comprises an isotropic part Dgiso and an anisotropic
part Dg which, in general, contains both symmetric and antisym-
metric contributions.

The isotropic g-tensor is simply

giso ¼ ge þ Dgiso: ð5:27Þ
The anisotropic g-tensor is defined by both the antisymmetric

and symmetric anisotropy parameters. The antisymmetric g-
anisotropy f g is given by

f g ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dgxy � Dgyx

� �2 þ Dgyz � Dgzy

� �2 þ Dgxz � Dgzxð Þ2
q

; ð5:28Þ

and the symmetric g-anisotropy Dg and asymmetry g g are:

Dg ¼ fDgzz; ð5:29Þ

g g ¼
fDgyy � fDgxx

Dg
; ð5:30Þ

where the fDgii are the principal components of the symmetric part
of Dg in its PAF. The orientations of the PAFs of the antisymmetric
and symmetric parts of g are specified by the Euler angles
XGAL ¼ ðaGAL;bGAL; cGALÞ and XGSL ¼ ðaGSL; bGSL; cGSLÞ respectively.

5.2.0.4. The zero-field splitting and Z tensors
The final interaction of interest for single transition-metal ions

is the ZFS, which is characterised by a traceless and symmetric
spatial tensor D. This tensor is described by the axial and rhombic
anisotropy parameters D and Ewhich are conventionally defined in

terms of the principal values eDii as follows:
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D ¼ eDzz � 1
2
eDxx þ eDyy

� 	
; ð5:31Þ

E ¼ 1
2
eDxx � eDyy

� 	
: ð5:32Þ

Note that the definition of the rhombic anisotropy E differs from the
rhombic susceptibility Dvrh by a factor of 1=2 included in the former.
Alternatively we can adopt an alternative convention and specify the
ZFS anisotropy DD and asymmetry parameter gD as follows:

DD ¼ eDzz; ð5:33Þ

gD ¼
eDyy � eDxx

DD
; ð5:34Þ

where we use the following convention for the ordering of the prin-

cipal values: jeDzzj P jeDxxj P jeDyyj. The orientation of the PAF of D is
specified by the Euler angles XDL ¼ ðaDL;bDL; cDLÞ.

The ZFS tensor does not usually enter the expression for the
paramagnetic shielding directly, but rather does so within the ten-
sor Z, which is an average of a product of electronic spin operators
over the ZFS energy levels. The tensor can be written as the sum of

an isotropic part Ziso and a symmetric anisotropic part DZ:

Z ¼ Ziso1þ DZ: ð5:35Þ
We recall that a general expression for Z is given by the van den
Heuvel–Soncini theory in Eq. (4.113), of which the Pennanen–Vaara
theory (Eq. (4.121)) is a high-temperature approximation. As for the
other symmetric anisotropic tensors, we can define the anisotropy
DZ and asymmetry parameter gZ according to

DZ ¼ eZzz � Ziso; ð5:36Þ

g Z ¼
eZyy � eZxx

DZ
; ð5:37Þ

where the eZii are the principal components of the whole Z tensor

which have been ordered according to: jeZzz � Zisoj P jeZxx � Zisoj P
jeZyy � Zisoj. The PAF of Z coincides with that of D, and therefore
has an orientation specified by the Euler angles XZL ¼ XDL.

In general the expressions for Ziso, DZ, and g Z are complicated.
However, as has been shown in the previous chapter, when we
apply the high-temperature limit up to second order in 1=ðkTÞ, as
shown in Eq. (4.131), they simplify to the expressions derived by
Bleaney [62]:

Ziso � SðSþ 1Þ
3kT

; ð5:38Þ

DZ � � SðSþ 1Þð2S� 1Þð2Sþ 3Þ
30ðkTÞ2

D: ð5:39Þ

In this high-temperature limit the first-order term is wholly isotro-
pic, and the second-order term is wholly anisotropic. We subse-
quently see that, in this regime, the anisotropy and asymmetry of
Z are proportional to those of D:

DZ ¼ � SðSþ 1Þð2S� 1Þð2Sþ 3Þ
30ðkTÞ2

DD; ð5:40Þ

g Z ¼ gD: ð5:41Þ

It is worth examining the temperature dependence of Ziso, DZ,
and g Z more closely through an example. In Section 4.2.3 we
calculated the Z-matrix of an electronic spin S ¼ 1 subject to a
ZFS interaction with rhombic symmetry. The principal values of
Z were given in Eqs. (4.151)–(4.153). They are reproduced below
for convenience, having been reordered according to the Haeberlen
convention assuming D ¼ 5E=2 > 0:

eZxx ¼ 1
E

e�bðD=3�EÞ � e�bðD=3þEÞ

e�bðD=3þEÞ þ e2bD=3 þ e�bðD=3�EÞ ; ð5:42Þ

eZyy ¼ 2
Dþ E

e2bD=3 � e�bðD=3þEÞ

e�bðD=3þEÞ þ e2bD=3 þ e�bðD=3�EÞ ; ð5:43Þ

eZzz ¼ 2
D� E

e2bD=3 � e�bðD=3�EÞ

e�bðD=3þEÞ þ e2bD=3 þ e�bðD=3�EÞ : ð5:44Þ

The previous example focussed on the case where the axial and
rhombic anisotropies areD ¼ 50 cm�1 and E ¼ 20 cm�1 respectively,

giving ordered principal values of D of eDxx ¼ 33:33 cm�1,eDyy ¼ 3:33 cm�1, and eDzz ¼ �36:67 cm�1. Fig. 5.1 shows plots of
the isotropic value and anisotropy of Z as a function of temperature.
Part (a) compares the isotropic values of Z calculated from Eqs.
(5.42)–(5.44) with the high-temperature Bleaney expression in Eq.
(5.38). The comparison of the values of DZ calculated from Eqs.
(5.42)–(5.44) with the high-temperature Bleaney expression in Eq.
(5.40) is shown in (b). Interestingly, we note that the asymmetry
parameter gZ is temperature-independent, and is always equal to
the ZFS asymmetry parameter gD, taking in this case the value
gZ ¼ 9=11.

We note that, as seen previously in Section 4.2.3, the curves cal-
culated from the high-temperature approximation match the exact
curves very well down to a temperature of 100 K. The general value
of this high-temperature ‘cut-off’ threshold depends on the values
of D=ðkTÞ and E=ðkTÞ. We also see that the anisotropy of Z tends
to zero at higher temperaturesmore quickly than the isotropic part,
on account of the latter varying as 1=ðkTÞ, and the former being due

to a second-order effect with a temperature dependence of 1=ðkTÞ2.

Fig. 5.1. Example plots of the isotropic value Ziso and anisotropy DZ of the Z-tensor as a function of temperature. The isotropic part is plotted in (a), and the anisotropy is
plotted in (b). The asymmetry parameter is temperature-independent. For both plots the curves in black are calculated from the general EPR expressions in Eqs. (5.42)–(5.44).
The red curves are plotted from the high-temperature Bleaney expressions in Eqs. (5.38) and (5.40). The electronic spin is S ¼ 1, and the ZFS parameters are D ¼ 50 cm�1 and
E ¼ 20 cm�1, giving properly-ordered principal values of D

~

xx ¼ 33:33 cm�1, D
~

yy ¼ 3:33 cm�1, D
~

zz ¼ �36:67 cm�1, and an anisotropy and asymmetry of DD ¼ �36:67 cm�1, and
gD ¼ 9=11.
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5.3. The paramagnetic shift in the susceptibility formalism

We now examine in detail the terms contributing to the param-
agnetic shielding tensor according to the susceptibility formalism,
as listed in Table 5.1. In this section we treat the susceptibility ten-
sor as an empirical quantity that can be either measured experi-
mentally or calculated using Eq. (5.12). However we remember
that viso depends on both NR and SO coupling effects, and that
Dv is due entirely to SO coupling, and so the simple expressions
obtained in this section actually hide a high level of complexity.
At this stage we do not make the explicit link between the various
terms and the EPR parameters, the discussion of which we defer
until Section 5.4. We separate the terms into three groups, which
are (1) terms due to a contact interaction (contact shielding), (2)
terms due to a spin-dipolar interaction (dipolar shielding), and
(3) terms due to the antisymmetric hyperfine interaction (antisym-
metric hyperfine shielding). Within each group we examine the
isotropic and symmetric anisotropic contributions to the shielding
tensor. Note that as the antisymmetric shielding is not observable
under high-field conditions we neglect it.

5.3.1. The contact shift and shift anisotropy
The contact shielding contains two terms, namely �visoCcon and

�CconDv, which are of spherical-tensor ranks 0 and 2. They con-
tribute to the isotropic shift and shift anisotropy respectively.

5.3.1.1. The contact shift. In the approximation described in Section
4.4, the isotropic contact shielding rcon;v

iso is proportional to both the
isotropic susceptibility and the contact coupling constant:

rcon;v
iso ¼ �visoCcon: ð5:45Þ

The contact coupling constant is proportional to the unpaired elec-
tron density at the nucleus, and so rcon;v

iso can be written as

rcon;v
iso ¼ �viso

3S
qa�bð0Þ: ð5:46Þ

Using the chemical shift convention we can also define the contact
shift as dcon;viso ¼ �rcon;v

iso , which then has the form given by McConnell
and Chesnut [36]

dcon;viso ¼ visoCcon ð5:47Þ

¼ viso

3S
qa�bð0Þ: ð5:48Þ

There are three things to note about the contact shift. Firstly it is
proportional to the isotropic magnetic susceptibility, indicating that
paramagnetic metal ions that exhibit a stronger tendency for their
electronic magnetic moments to align with the external magnetic
field also give larger contact shifts. Secondly the contact shift is also
proportional to the magnitude of the unpaired electron density that
is present at the nuclear site. This indicates that larger shifts result
from the more extensive overlap between the orbitals of the metal
ion and the orbitals of the nucleus via the orbitals of any bridging
atoms. Finally the sign of the contact shift is the same as that of
the unpaired electron density at the nucleus. Therefore the contact
shift can be used as a tool to determine whether the unpaired elec-
trons are delocalised onto the nucleus, giving a positive shift, or
whether the unpaired electrons polarise a negative spin density at
the nucleus, which gives a negative shift [218].

5.3.1.2. The contact shift anisotropy. The term�CconDv gives rise to a
purely anisotropic paramagnetic chemical shielding which is param-
eterised by the anisotropy Drcon;v and asymmetry parameter gcon;v.
The form of these anisotropy parameters is easily deduced by noting
that this contribution to the shielding tensor has exactly the same
symmetry as Dv, and therefore the same PAF. The value of Drcon;v is
then simply proportional to Dv, and the gcon;v is exactly equal to gv:

Drcon;v ¼ �CconDv ð5:49Þ

¼ �Dv
3S

qa�bð0Þ; ð5:50Þ
gcon;v ¼ gv: ð5:51Þ
This form of the contact shielding anisotropy has obvious similari-
ties to that of the isotropic contact shift. The size and sign of
Drcon;v both depend on the size and sign of the unpaired electron
density transferred to the nuclear site. However the anisotropy is
proportional to Dv, rather than viso, indicating that metals which
exhibit a greater degree of spatial anisotropy in the tendency for
their electronic magnetic moments to align with the external field
also give larger contact shielding anisotropies. In addition the shape
of the shielding tensor, as described by the ellipsoid in Fig. 2.7,
exactly matches the shape of the susceptibility tensor.

5.3.2. The spin-dipolar shift and shift anisotropy
The spin-dipolar shielding contribution to the paramagnetic

chemical shielding tensor has two terms, namely �visoCdip and

�Dv � Cdip. The former has a simple form and is purely anisotropic
with spherical-tensor rank 2. However the latter is more compli-

cated as it couples together the two rank-two tensors Dv and Cdip

and therefore requires special consideration.

The secular part rð1Þ of �Dv � Cdip is, in terms of the Cartesian
tensor components:

rð1Þ ¼ �DvzxC
dip
xz � DvzyC

dip
yz � DvzzC

dip
zz : ð5:52Þ

It proves convenient to rewrite this expression in terms of the irre-

ducible spherical tensor components Dv2m and Cdip
2m:

rð1Þ ¼ �2
3
Dv20C

dip
20 þ 1

2
Dv2�1C

dip
2þ1 þ

1
2
Dv2þ1C

dip
2�1: ð5:53Þ

The spatial dependence of rð1Þ can now be deduced by writing the

products Dv2mC
dip
2�m in terms of the coupled irreducible spherical

tensor components WL0ð22Þ, which are defined as

WL0ð22Þ ¼
Xþ2

m¼�2

h22m�mjL0iDv2mC
dip
2�m; ð5:54Þ

where the rank L can take values between 0 and 4 in integer steps.
The inverse of Eq. (5.54) is

Dv2mC
dip
2�m ¼

X4
L¼0

h22m�mjL0iWL0ð22Þ: ð5:55Þ

Substituting Eq. (5.55) into Eq. (5.53) we obtain the following
expression for the secular shielding in terms of the coupled tensor
components:

rð1Þ ¼
X4
L¼0

aLWL0ð22Þ; ð5:56Þ

where the coefficients aL are given by

aL ¼ �2
3
h2200jL0i þ 1

2
h22� 1þ 1jL0i þ 1

2
h22þ 1� 1jL0i ð5:57Þ

¼ �2
3
h2200jL0i þ 1

2
1þ ð�1ÞL
� 	

h22� 1þ 1jL0i: ð5:58Þ

The Clebsch–Gordan coefficients are easily evaluated to obtain

a0 ¼ �
ffiffiffi
5

p

3
; ð5:59Þ

a1 ¼ 0; ð5:60Þ

a2 ¼ 1
3

ffiffiffi
7
2

r
; ð5:61Þ

a3 ¼ 0; ð5:62Þ
a4 ¼ 0: ð5:63Þ
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The terms with odd L are zero due to the symmetry properties of
the Clebsch–Gordan coefficients. Furthermore we see that there
are no terms of rank L ¼ 4. This is because the coupling of the
two tensors is a standard matrix multiplication. The only terms that
contribute to the secular shielding tensor are therefore of ranks 0
and 2, which correspond to the isotropic and symmetric anisotropic
parts of the interaction. The shielding is therefore given by

rð1Þ ¼ 1
3

�
ffiffiffi
5

p
W00ð22Þ þ

ffiffiffi
7
2

r
W20ð22Þ

 !
: ð5:64Þ

The W00ð22Þ term is the only isotropic component of the shielding
tensor that originates from the spin-dipolar interaction, and results
in the so-called ‘pseudo-contact shift’ (PCS). The shift anisotropy
term resulting from W20ð22Þ is present in addition to the shift ani-

sotropy due to the �visoCdip term. Both contributions are referred to
as spin-dipolar anisotropy. The three contributions are now
discussed.

5.3.2.1. The pseudo-contact shift. The sole isotropic term in the para-
magnetic shielding is due to the W00ð22Þ term in Eq. (5.64). On
comparing this expression with Eq. (5.4) we see that the isotropic
pseudo-contact shielding rpcs;v

iso is given by

rpcs;v
iso ¼ �

ffiffiffi
5

p

3
W00ð22Þ: ð5:65Þ

The isotropic tensor W00ð22Þ is given in terms of Dv2m and Cdip
2m by

Eq. (5.54), which gives the following

rpcs;v
iso ¼ �

ffiffiffi
5

p

3

Xþ2

m¼�2

h22m�mj00iDv2mC
dip
2�m ð5:66Þ

¼ �1
3

Xþ2

m¼�2

ð�1ÞmDv2mC
dip
2�m; ð5:67Þ

where to go to the second line we have used the identity
h22m�mj00i ¼ ð�1Þm=

ffiffiffi
5

p
. The sum in Eq. (5.67) is recognisable

as the generalised scalar product of the tensors Dv and Cdip written
in the irreducible spherical tensor basis [191]. Further progress is

made by writing Dv2m and Cdip
2�m in terms of their PAF values:

rpcs;v
iso ¼ �1

3

X
m0

fDv2m0
X
m00

eCdip
2m00
X
m

ð�1ÞmDð2Þ
m0mðaXL;bXL; cXLÞ


 Dð2Þ
m00�mðaCS;L; bCS;L; cCS;LÞ: ð5:68Þ

The second Wigner rotation matrix element can be rewritten as

Dð2Þ
m00�mðaCS;L; bCS;L; cCS;LÞ ¼ ð�1Þm00�mDð2Þ

m�m00 ð�cCS;L;�bCS;L;�aCS;LÞ;
ð5:69Þ

where ð�cCS;L;�bCS;L;�aCS;LÞ are the Euler angles representing the
inverse rotation to ðaCS;L;bCS;L; cCS;LÞ. The pseudo-contact shielding
then simplifies to

rpcs;v
iso ¼ � 1

3

X
m0

fDv2m0
X
m00

eCdip
2m00
X
m

ð�1Þm00


Dð2Þ
m0mðaXL;bXL; cXLÞDð2Þ

m�m00 ð�cCS;L;�bCS;L;�aCS;LÞ
¼ � 1

3

X
m0

fDv2m0
X
m00

eCdip
2m00
X
m

Dð2Þ
m0mðaXL;bXL; cXLÞ


Dð2Þ
m�m00 ð�cCS;L;�bCS;L;�aCS;LÞ

ð5:70Þ

¼ �1
3

X
m0

fDv2m0
X
m00

eCdip
2m00D

ð2Þ
m0�m00 ðaX;CS; bX;CS; cX;CSÞ; ð5:71Þ

where ðaX;CS;bX;CS; cX;CSÞ are the Euler angles that specify the orien-
tation of the PAF of the susceptibility tensor relative to the PAF of

the spin-dipolar tensor. To go to the second line, we have used

the fact that eCdip
2	1 ¼ 0 and therefore m00 is always even, and to go

to the last line we have used the following closure identity for the
Wigner rotation matrix elements [191]:X
m00

DðlÞ
mm00 ða1; b1; c1ÞDðlÞ

m00m0 ða2;b2; c2Þ ¼ DðlÞ
mm0 ða;b; cÞ; ð5:72Þ

where ða;b; cÞ represents the rotation resulting from applying
ða1; b1; c1Þ followed by ða2;b2; c2Þ. Now we can substitute the expli-

cit expressions for the fDv2m and the eCdip
2m in terms of the relevant

anisotropy and asymmetry parameters, which are given in Eqs.
(5.8), (5.9) and (5.22)–(5.25) respectively, to give the final form of
the pseudo-contact shielding:

rpcs;v
iso ¼�1

6
DC Dvax 3cos2 bX;CS

� ��1
� �þ3

2
Dvrh sin

2 bX;CS

� �
cos 2aX;CSð Þ

�
�gC Dvax sin

2 bX;CS

� �
cos 2cX;CS

� 	
þDvrh cos

4ðbX;CS=2Þcosð2ðaX;CS þcX;CSÞÞ
n

þDvrh sin
4ðbX;CS=2Þcosð2ðaX;CS �cX;CSÞÞ

oi
:

ð5:73Þ
Using the chemical shift convention we obtain the pseudo-contact
shift dpcs;viso :

dpcs;viso ¼ 1
6
DC Dvax 3 cos2ðbX;CSÞ � 1

� �þ 3
2
Dvrh sin

2ðbX;CSÞ cosð2aX;CSÞ
�

� gC Dvax sin
2ðbX;CSÞ cosð2cX;CSÞ

n
þDvrh cos

4ðbX;CS=2Þ cosð2ðaX;CS þ cX;CSÞÞ
þDvrh sin

4ðbX;CS=2Þ cosð2ðaX;CS � cX;CSÞÞ
oi

: ð5:74Þ

The Euler angles ðaX;CS; bX;CS; cX;CSÞ depend only on the internal
geometry of the system, and so are independent of crystallite ori-
entation as required for an isotropic shift. We can also specify
the orientation between the two PAFs in terms of the Euler angles
ðaCS;X; bCS;X; cCS;XÞ, which give the orientation of the PAF of the dipo-
lar coupling tensor relative to the PAF of the susceptibility. In this
case Eq. (5.71) becomes

rpcs;v
iso ¼ �1

3

X
m0

fDv2m0
X
m00

eCdip
2m00D

ð2Þ
m00�m0 ðaCS;X;bCS;X; cCS;XÞ; ð5:75Þ

and the final expression for the PCS is

dpcs;viso ¼ 1
6
DC Dvax 3 cos2ðbCS;XÞ � 1

� �þ 3
2
Dvrh sin

2ðbCS;XÞ cosð2cCS;XÞ
�

� gC Dvax sin
2ðbCS;XÞ cosð2aCS;XÞ

n
þ Dvrh cos

4ðbCS;X=2Þ cosð2ðaCS;X þ cCS;XÞÞ
þDvrh sin

4ðbCS;X=2Þ cosð2ðaCS;X � cCS;XÞÞ
oi

: ð5:76Þ

The PCS is a shift that originates from the through-space spin-
dipolar interaction, and so has a form that is very different to that
of the contact shift. Both depend on the interaction with the
unpaired electron spin density, but whereas the contact shift
results from the spin density at the nuclear site, the PCS is a
longer-range effect that depends on the spatial position of the
nucleus with respect to the paramagnetic ion. This form of the
PCS emphasises that it depends only on the susceptibility aniso-
tropy, through the axial and rhombic anisotropy parameters, and
not on the isotropic susceptibility. Therefore the PCS only arises
for metal ions with electronic configurations that are subject to
SO coupling. At ion–nucleus separations that are sufficiently large,
typically more than 4 Å, we can employ the point-dipole approxi-
mation for the unpaired electrons. The PCS then takes on the well-
known form that was first derived by McConnell and Robertson
[37]:
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dpcs;viso ¼ 1
12pR3 Dvax 3 cos2ðhÞ � 1

� �þ 3
2
Dvrh sin

2ðhÞ cosð2/Þ
� 

:

ð5:77Þ
The angles h and / are the polar and azimuthal angles that are
defined through bX;CS ¼ h and aX;CS ¼ /, or equivalently bCS;X ¼ h

and cCS;X ¼ /. Hence ðh;/Þ can be interpreted either as the angles
relating the PAF of the susceptibility tensor relative to the metal
ion–nucleus vector, or vice versa. The point-dipole PCS therefore
depends on five parameters: the spherical polar coordinates
ðR; h;/Þ of the nucleus relative to the PAF of the susceptibility tensor
of the metal ion, and the axial and rhombic anisotropy parameters
of the susceptibility. Two examples of the position-dependence of
the PCS are shown in Fig. 5.2, for an axially-symmetric susceptibil-
ity tensor (a), and a susceptibility tensor with a rhombic component
(b). The former plot has the appearance of a 3dz2 orbital, which is
due to the polar-angle dependence of 3cos2ðhÞ � 1

� �
in Eq. (5.77).

The inclusion of the rhombic term has the effect of splitting the
‘doughnut’ ring into two distinct lobes.

Equivalent expressions for the PCS in different coordinate sys-
tems can be formulated; an extensive list of these has been pro-
vided by Bertini et al. for the point-dipole regime [16]. Here we
give two expressions in Cartesian coordinates for the case where
the point-dipole model applies. We write the PCS as

dpcsiso ¼ 1
3
Tr Dv � Cdip
� 	

: ð5:78Þ

Starting from Eq. (3.104) we write the Cartesian components of

Cdip as

Cdip
ij ¼ 3RiRj � R2dij

4pR5 : ð5:79Þ

Because the PCS is isotropic, we obtain the same result independent
of which reference frame we use. Therefore for convenience we

adopt the PAF of the susceptibility tensor, so that Dvij ¼ fDviidij. In
this frame the Cartesian coordinates ðx; y; zÞ give the position of
the nucleus in the PAF of the susceptibility tensor. The PCS can
now be evaluated easily:

dpcsiso ¼ 1
12pR5 Tr

fDvxx 0 0

0 fDvyy 0

0 0 fDvzz

0BB@
1CCA 3x2�R2 3xy 3xz

3xy 3y2�R2 3yz
3xz 3yz 3z2�R2

0B@
1CA

2664
3775

¼ 1
12pR5

fDvxx 3x2�R2
� 	

þ fDvyy 3y2�R2
� 	

þ fDvzz 3z2�R2
� 	h i

:

ð5:80Þ
In terms of the axial and rhombic susceptibility anisotropy param-
eters Eq. (5.80) becomes

dpcsiso ¼ 1
12pR5 Dvax 2z2 � x2 � y2

� �þ 3
2
Dvrh x2 � y2

� �� 
: ð5:81Þ

This form of the PCS again emphasises that the shift depends only
on the susceptibility anisotropy, and not on the isotropic
susceptibility.

5.3.2.2. The spin-dipolar shift anisotropy. There are two contribu-
tions to the spin-dipolar shift anisotropy, namely the anisotropic

shielding term �visoCdip, and the anisotropic component of

�Dv � Cdip as given in Eq. (5.64). The symmetry of the former
shielding tensor exactly matches the symmetry of the dipolar cou-
pling tensor, and so they both share the same PAF, the same aniso-
tropy to within a multiplicative constant of proportionality, and
the same asymmetry parameter. The shielding anisotropy
Drdip;v;1 and asymmetry parameter gdip;v;1 are therefore

Drdip;v;1 ¼ �visoDC; ð5:82Þ
gdip;v;1 ¼ gC : ð5:83Þ
The former is proportional to the isotropic magnetic susceptibility.
In the point-dipole approximation the anisotropy DC is equal to
twice the reduced dipolar coupling constant 1=ð4pR3Þ, and the
asymmetry parameter gC is zero. The anisotropic shielding param-
eters are therefore

Drdip;v;1 ¼ � viso

2pR3 ; ð5:84Þ

gdip;v;1 ¼ 0: ð5:85Þ

Fig. 5.2. Representative surfaces plots of the PCS as a function of the position ðx; y; zÞ of the NMR-active nucleus relative to an anisotropic paramagnetic centre. The PCS due to
two examples of the magnetic susceptibility are shown with the susceptibility in (a) being axially symmetric, and that in (b) having a non-zero rhombic component. The
susceptibility anisotropy parameters are: Dvax ¼ 10�32 m3 in both cases, and Dvrh ¼ 0 for (a) and Dvrh ¼ 0:9
 10�32 m3 for (b). The surfaces show the position at which we
see a positive PCS of 1 ppm (in red), and a negative PCS of �1 ppm (in blue).
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We expect this contribution to the spin-dipolar shielding aniso-
tropy to be the most dominant of the two.

The second shift anisotropy contribution from Eq. (5.64) gives a

rank-2 shielding rdip;v;2
20 equal to

rdip;v;2
20 ¼ 1

2

ffiffiffi
7
3

r
W20ð22Þ: ð5:86Þ

The anisotropy Drdip;v;2 and asymmetry parameter gdip;v;2 of this
contribution to the shielding match those of the coupled tensor
W20ð22Þ, which we denote as DWð22Þ and gWð22Þ respectively:

Drdip;v;2 ¼ 1
3

ffiffiffi
7
2

r
DWð22Þ; ð5:87Þ

gdip;v;2 ¼ gWð22Þ: ð5:88Þ
These parameters contain information on the anisotropic properties
of both the susceptibility and dipolar coupling tensors.

5.3.3. The antisymmetric hyperfine shift anisotropy
The final contribution to consider is that due to the antisym-

metric hyperfine interaction Cas. The only contribution to the
shielding that is observable under high-field conditions is the sym-
metric anisotropic part of �Dv � Cas, which contributes to the shift
anisotropy. This term is calculated from the secular part of
�Dv � Cas, which is given by

rð1Þ ¼ �DvzxC
as
xz � DvzyC

as
yz; ð5:89Þ

where we have acknowledged that Cas
zz is zero by definition. Apply-

ing the same treatment as for the coupled spin-dipolar contribution
to the shielding, we rewrite Eq. (5.89) in terms of the irreducible
spherical tensor basis to obtain

rð1Þ ¼ �1
2
Dv2�1C

as
1þ1 þ

1
2
Dv2þ1C

as
1�1: ð5:90Þ

We can now express the tensor products Dv2mC
as
1�m in terms of the

coupled tensor components WL0ð21Þ which are defined through the
relations

WL0ð21Þ ¼
Xþ1

m¼�1

h21m�mjL0iDv2mC
as
1�m; ð5:91Þ

Dv2mC
as
1�m ¼

X3
L¼1

h21m�mjL0iWL0ð21Þ; ð5:92Þ

where the rank L runs from 1 to 3. In terms of the WL0ð21Þ the sec-
ular shielding is

rð1Þ ¼
X3
L¼1

bLWL0ð21Þ; ð5:93Þ

where the coefficients bL are given by

bL ¼ �1
2
h21� 1þ 1jL0i þ 1

2
h21þ 1� 1jL0i ð5:94Þ

¼ �1
2

1þ ð�1ÞL
� 	

h21� 1þ 1jL0i: ð5:95Þ

We see immediately that the coefficients are zero if L is odd, and
therefore the only contribution is from the rank-2 part W20ð21Þ:
b1 ¼ 0; ð5:96Þ

b2 ¼
ffiffiffi
1
2

r
; ð5:97Þ

b3 ¼ 0: ð5:98Þ
The secular shielding is therefore

rð1Þ ¼
ffiffiffi
1
2

r
W20ð21Þ: ð5:99Þ

The corresponding shielding anisotropy Dras;v and asymmetry
parameter gas;v are given in terms of the corresponding anisotropy
and asymmetry of W20ð21Þ, which we denote as DWð21Þ and
gWð21Þ respectively:

Dras;v ¼
ffiffiffi
1
2

r
DWð21Þ; ð5:100Þ

gas;v ¼ gWð21Þ: ð5:101Þ

5.3.4. Summary
The various terms in the susceptibility formalism of the param-

agnetic shielding, and their contributions to the isotropic paramag-
netic shift, shift anisotropy, and asymmetry are summarised in
Table 5.2. The questions that now arise are what is the relative
importance of these various terms, and can the interpretation of
the observed shifts and shift anisotropies in the NMR spectrum
be simplified by considering only a subset of them.

5.3.4.1. Magnetically isotropic transition-metal ions. The first case to
consider is that of transition metal ions with an isotropic magnetic
susceptibility. This includes metal ions that are not subject to SO
coupling, such as those with a half-full high-spin d-shell configura-
tion, for example Mn2+, and metal ions which may exhibit SO cou-
pling effects, but in a perfectly cubic coordination environment. In
this case the only contributions to the shielding tensor are terms A
and C. Hence the isotropic paramagnetic shift is due entirely to the
contact interaction, and the shift anisotropy is due entirely to the
spin-dipolar interaction. In such systems the interpretation of the
NMR spectrum is relatively straightforward, with the isotropic
and anisotropic shifts providing information on the spin-transfer
pathways from the unpaired electrons to the nucleus, and the spa-
tial geometry of the system, respectively. One important observa-
tion is that the shift anisotropy has a distance dependence of
1=R3, and so is considerably longer range than the spin-transfer

Table 5.2
Summary of the various terms in the paramagnetic shielding tensor in the susceptibility formalism, and their respective contributions to the isotropic paramagnetic shift,
shielding anisotropy, and asymmetry parameter.

Type Term rv diso Dr g Present in magnetically isotropic transition-metal systems?

con A �visoCcon visoCcon 0 — Yes
B �DvCcon 0 �DvCcon gv No

dip C �visoCdip 0 �visoDC gC Yes

D �Dv � Cdip dpcsiso 1
3

ffiffi
7
2

q
DWð22Þ gWð22Þ No

as E �visoCas 0 0 — No
F �Dv � Cas 0

ffiffi
1
2

q
DWð21Þ gWð21Þ No
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that gives the isotropic shift. Therefore nuclei that are outside the
coordination environment of the metal ion, and hence exhibit no
contact shift, are still expected to have a significant shift anisotropy
due to the spin-dipolar interaction.

5.3.4.2. The effect of magnetic anisotropy. Metal ions that are subject
to SO coupling effects, and in coordination environments of non-
cubic symmetry, possess a susceptibility anisotropy which results
in a more complicated form of the paramagnetic shielding tensor,
as can be seen from Table 5.2. In such systems the isotropic para-
magnetic shift is a combination of the contact (term A) and
pseudo-contact (term D) interactions. These give complementary
information on the through-bond and through-space interactions
with the unpaired electrons. Whether one or the other is dominant
is a complex issue, and depends on the precise nature of the sys-
tem. In situations where the s-orbitals of the relevant nucleus
receive appreciable transfer of electronic spin density due to, for
example, favourable orbital overlap, the contact shift is likely to
dominate the overall isotropic shift and the PCS can safely be
neglected. However in situations where the orbital overlap is less
favourable, or where the nucleus is outside the immediate coordi-
nation environment of the metal ion, the contact shift is small, and
the PCS becomes more important. In structural studies of proteins
with a paramagnetic centre, the PCS is observed for nuclei up to a
range of approximately 50 Å, at which distance the contact shift is
zero. Because of the long-range nature of the PCS, and its depen-
dence on the position of the nucleus with respect to the suscepti-
bility tensor of the metal ion, the PCS is an extremely useful tool
here, as will be seen in Chapters 12 and 13.

The form of the overall shielding anisotropy is more compli-
cated, having four contributions that are due to the anisotropy of
the hyperfine tensor, the susceptibility tensor, and the coupling
of the two. The anisotropy due to term B is due to the susceptibility
anisotropy and the contact interaction, and is therefore only
expected to be important for nuclei that are within the coordina-
tion environment of a metal ion with large magnetic anisotropy.
Terms C and D are longer-range effects, being due to the spin-
dipolar interaction. Term C is proportional to the isotropic suscep-
tibility whereas term D depends on the susceptibility anisotropy,
and so the former is expected to be the more important contribu-
tion of the two, especially for metal ions with a small magnetic ani-
sotropy. In addition both C and D contain the product of an NR
termwith a SO coupling term, and so both are expected to be larger
than term F, which is formed by coupling together two tensors due
entirely to SO coupling, namely Dv and Cas.

5.4. The paramagnetic shift in terms of the molecular/atomic-level EPR
parameters

We now begin the more complex task of interpreting the form
of the paramagnetic shielding tensor in terms of the EPR tensor
parameters, and elucidating more thoroughly the links between
this formalism and the susceptibility formalism. This link can be
summarised by the expression for the magnetic susceptibility ten-
sor in Eq. (5.12). If we expand this expression by using the full
forms of g and Z we obtain

v ¼ l0l
2
B ge1þ Dgiso1þ Dgð Þ � Ziso1þ DZ

� 	
� ge1þ Dgiso1þ DgT
� �

: ð5:102Þ

We see that both the isotropic and anisotropic parts of v contain
contributions due to the SO coupling. In the absence of SO coupling
however both Z and the susceptibility are wholly isotropic, and v
reduces to the NR form we have seen previously:

viso ¼ l0l
2
Bg

2
eZ

iso ð5:103Þ

¼ l0l2
Bg

2
e SðSþ 1Þ
3kT

; ð5:104Þ

where we have used the NR expression for Z. We begin by
re-examining the NR case, and then include the SO coupling terms.
The contributions are separated into contact, spin-dipolar, and
antisymmetric hyperfine terms in the same way as for the
susceptibility formalism.

5.4.1. Magnetically isotropic transition-metal ions in the absence of
spin-orbit coupling

In the absence of SO coupling the only terms in Table 5.1 that
remain are the Fermi-contact term (1), and the NR spin-dipolar
term (2). These give rise to the isotropic paramagnetic shift and
shift anisotropy respectively. The expressions given in this section
are the same as those presented in Chapter 3.

5.4.1.1. The Fermi-contact shift. The isotropic Fermi-contact param-
agnetic shielding rFC;S

iso is given by

rFC;S
iso ¼ �lBgeSðSþ 1Þ

3�hcIkT
AFC

: ð5:105Þ

We can also define the corresponding Fermi-contact shift dFC;Siso

as

dFC;Siso ¼ lBgeSðSþ 1Þ
3�hcIkT

AFC: ð5:106Þ

This expression is exactly equal to the corresponding contact shift
in the susceptibility formalism dcon;viso ¼ visoCcon when we note that
both viso and Ccon take their respective NR forms:

dcon;viso ¼ visoCcon ð5:107Þ

¼ l0l2
Bg

2
e SðSþ 1Þ
3kT

� 
qa�bð0Þ

3S

� 
ð5:108Þ

¼ lBgeSðSþ 1Þ
3�hcIkT

� 
1
3S

l0lBge�hcIq
a�bð0Þ

� 
ð5:109Þ

¼ lBgeSðSþ 1Þ
3�hcIkT

AFC
; ð5:110Þ

where to go to the third line we have multiplied the numerator and
denominator by �hcI . The final expression is exactly the one given in
Eq. (5.106).

5.4.1.2. The spin-dipolar shift anisotropy. The shielding anisotropy
due to the spin-dipolar term SD is parameterised in terms of the
shielding anisotropy and asymmetry, which are given by:

DrSD;S ¼ �lBgeSðSþ 1Þ
3�hcIkT

DASD
; ð5:111Þ

gSD;S ¼ gSD; ð5:112Þ

where DASD and gSD are the anisotropy and asymmetry parameter of
the NR spin-dipolar interaction. The overall shielding tensor there-
fore has the same PAF and anisotropic properties as the NR spin-
dipolar coupling tensor. By following the same line of reasoning
as with the Fermi-contact shift in Eqs. (5.107)–(5.110), we can show
that this value of DrSD;S is exactly equivalent to the corresponding
NR expression given by the susceptibility formalism

Drdip;v;1 ¼ �visoDC when we note that DASD ¼ l0lBge�hcIDC.

5.4.2. The contact shift and shift anisotropy
We now examine the contact contribution to the shielding ten-

sor in the presence of SO coupling. The relevant terms from
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Table 5.1 are (1), (3), (6), and (8). Terms (1), (6), and (8) are due to

the NR Fermi-contact interaction with coupling constant AFC,
whilst term (3) originates from the SO contact term with coupling

constant AFC;2. The link can be made to the susceptibility formalism

when we note that Ccon contains contributions from both AFC and

AFC;2.

5.4.2.1. The contact shift. All four terms have an isotropic part, the
sum of which gives the overall isotropic contact shielding rcon;S

iso :

rcon;S
iso ¼ � lB

�hcI
Ziso geA

FC þ geA
FC;2 þ DgisoA

FC
h i

� lB

3�hcI
Tr Dg � DZ½ �AFC

: ð5:113Þ

The first three terms (1, 3, and 6) in Eq. (5.113) depend on the iso-
tropic part of the g-tensor, and the isotropic part of Z. Therefore the
leading temperature dependence of these terms matches that of

Ziso, which is first order in 1=ðkTÞ. On the other hand the final isotro-
pic term (8) is formed from coupling together the anisotropic part of
Z and the anisotropic and symmetric part of g. The temperature

dependence of this term is that of DZ, which is 1=ðkTÞ2, i.e. second
order. This is also observed in the corresponding isotropic shielding
in the susceptibility formalism where, in the presence of SO cou-
pling, viso contains contributions from DZ and Dg in addition to

Ziso and ge þ Dgiso. The overall isotropic contact shift is given by

dcon;Siso ¼ lB

�hcI
Ziso geA

FC þ geA
FC;2 þ DgisoA

FC
h i

þ lB

3�hcI
Tr Dg � DZ½ �AFC

: ð5:114Þ

This expression is completely general for transition-metal ions sub-
ject to SO coupling.

In the high-temperature limit we can approximate the contact

shift to 1=ðkTÞ2, which gives the Bleaney expression:

dcon;Siso ¼ lBSðSþ 1Þ
3�hcIkT

geA
FC þ geA

FC;2 þ DgisoA
FC

h i
� lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ

90�hcIðkTÞ2
Tr Dg � D½ �AFC

: ð5:115Þ

This form of the contact shift emphasises that both the isotropic g-
factor, including the SO coupling contribution, and the SO coupling
contribution to the Fermi-contact interaction appear to first order in
1=ðkTÞ. The g-anisotropy and ZFS, on the other hand, only appear to
second order in 1=ðkTÞ. In the absence of the ZFS the fourth term is
zero and we are left with

dcon;Siso ¼ lBSðSþ 1Þ
3�hcIkT

geA
FC þ geA

FC;2 þ DgisoA
FC

h i
; ð5:116Þ

which is a simple modification of the NR expression that accounts
for the SO-coupling-induced changes to both the isotropic g-factor
and contact coupling interaction.

5.4.2.2. The contact shift anisotropy. The anisotropy associated with
the contact shielding is represented by the symmetric anisotropic
part of the contact shielding, which we denote rcon;sym;S. The full
expression is

rcon;sym;S ¼ � lB

�hcI
geA

FC þ geA
FC;2 þ DgisoA

FC
h i

DZ

� lB

�hcI
AFCZisoDgsym � lB

�hcI
AFC Dg � DZf gsym; ð5:117Þ

where the notation Asym indicates the symmetric anisotropic part of
A, and A � Bf gsym represents the symmetric anisotropic part of the

matrix product of A and B. Hence Dgsym and Dg � DZf gsym are the
symmetric anisotropic parts of those tensors, which are given by

Dgsym ¼ 1
2

Dg þ DgT
� �

; ð5:118Þ

Dg � DZf gsym ¼ 1
2

Dg � DZ þ DZ � DgT
� �� 1

3
Tr Dg � DZð Þ1: ð5:119Þ

All of these terms correspond to the single term in the susceptibility
formalism �DvCcon. Thus the shielding anisotropy is the sum of
three terms rcon;sym;A;S;rcon;sym;B;S, and rcon;sym;C;S, to each of which
can be ascribed an anisotropy Drcon;X;S and asymmetry parameter
gcon;X;S, X ¼ A, B, C. These are given by:

Drcon;A;S ¼ � lB

�hcI
geA

FC þ geA
FC;2 þ DgisoA

FC
h i

DZ; ð5:120Þ

gcon;A;S ¼ g Z ; ð5:121Þ
Drcon;B;S ¼ � lB

�hcI
AFCZisoDg; ð5:122Þ

gcon;B;S ¼ g g ; ð5:123Þ
Drcon;C;S ¼ � lB

�hcI
AFCD Dg � DZf g; ð5:124Þ

gcon;C;S ¼ g Dg�DZf g; ð5:125Þ
where D Dg � DZf g and g Dg�DZf g are shorthand notation for the aniso-
tropy and asymmetry parameter respectively of the matrix product
Dg � DZf g. In general each term has its own PAF which does not nec-
essarily coincide with the other two, and therefore the overall con-
tact shift anisotropy and asymmetry parameter are not simple
combinations of the contributions given above, but are rather calcu-
lated by diagonalising the total symmetric anisotropic contact
shielding rcon;sym;S. Nevertheless it is instructive to analyse the three
terms separately to understand better the anisotropic properties of
the contact shielding. Term A depends on the ZFS tensor, with the
anisotropy and asymmetry parameter being proportional to DZ
and gZ respectively, and the PAF being coincident with that of the
ZFS. Term B depends only on the anisotropic g-tensor, with an ani-
sotropy proportional to Dg, an asymmetry parameter equal to g g ,
and the same PAF as the symmetric g-tensor. Term C is more com-
plicated, with an anisotropy, asymmetry parameter, and PAF that
depend on the product of the anisotropic parts of Z, and g.

In the high-temperature limit the anisotropic contact shielding
is given by

rcon;sym;S ¼ lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
30�hcIðkTÞ2

geA
FC þ geA

FC;2 þ DgisoA
FC

h i
D

� lBSðSþ 1Þ
3�hcIkT

AFCDgsym

þ lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
30�hcIðkTÞ2

AFC Dg � Df gsym:

ð5:126Þ

The three contributions to the contact shielding anisotropy and
asymmetry parameter are now

Drcon;A;S ¼ lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
30�hcIðkTÞ2

geA
FC þ geA

FC;2 þ DgisoA
FC

h i
DD;

ð5:127Þ
gcon;A;S ¼ gD; ð5:128Þ

Drcon;B;S ¼ �lBSðSþ 1Þ
3�hcIkT

AFCDg; ð5:129Þ

gcon;B;S ¼ g g ; ð5:130Þ

Drcon;C;S ¼ lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
30�hcIðkTÞ2

AFCD Dg � Df g; ð5:131Þ

gcon;C;S ¼ g Dg�Df g: ð5:132Þ

58 A.J. Pell et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 111 (2019) 1–271



We see that the ZFS only contributes to second order in 1=ðkTÞ,
whereas the g-anisotropy contributes to first order. Finally in the
absence of the ZFS interaction we obtain the following simple
expression for the contact shielding anisotropy:

rcon;sym;S ¼ �lBSðSþ 1Þ
3�hcIkT

AFCDgsym: ð5:133Þ

Only term B is present, and so the total shielding anisotropy and
asymmetry parameter are wholly given by the anisotropic proper-
ties of the symmetric part of the g-tensor:

Drcon;B;S ¼ �lBSðSþ 1Þ
3�hcIkT

AFCDg; ð5:134Þ

gcon;B;S ¼ g g : ð5:135Þ

5.4.3. The spin-dipolar shift and shift anisotropy
The spin-dipolar contribution to the shielding tensor comprises

four terms from Table 5.1, namely (2), (4), (7), and (9). Three of
these terms (2, 7, and 9) are due to the NR spin-dipolar interaction

with coupling tensor ASD, and the fourth term (4) is due to the SO

coupling contribution ASD;2. As for the contact shielding, the link to

the susceptibility formalism can be made when we note that Cdip

includes both the NR and SO parts of the dipolar coupling tensor.

5.4.3.1. The pseudo-contact shift. In order to obtain an isotropic
chemical shielding from the spin-dipolar interaction in the EPR for-
malism we need the terms that contain a matrix product of the
spin-dipolar tensor with at least one other anisotropic and sym-
metric tensor. Writing down these terms and taking the trace we
obtain the pseudo-contact shielding rpcs;S

iso :

rpcs;S
iso ¼ � lB

3�hcI
geTr DZ � ASD

� 	
þ geTr DZ � ASD;2

� 	
þ DgisoTr DZ � ASD

� 	h i
� lB

3�hcI
ZisoTr Dg � ASD

� 	
þ Tr Dg � DZ � ASD

� 	h i
:

ð5:136Þ

From this we can write down the expression for the PCS dpcs;Siso :

dpcs;Siso ¼ lB

3�hcI
geTr DZ � ASD

� 	
þ geTr DZ � ASD;2

� 	
þ DgisoTr DZ � ASD

� 	h i
þ lB

3�hcI
ZisoTr Dg � ASD

� 	
þ Tr Dg � DZ � ASD

� 	h i
:

ð5:137Þ
The first three terms (2, 4, and 7) of both Eqs. (5.136) and (5.137)
contain the product of the symmetric part of the Z-tensor with a
spin-dipolar coupling tensor, the fourth term (9) contains the pro-
duct of the g-anisotropy tensor with the NR spin-dipolar coupling
tensor, with only the symmetric part of Dg contributing to the

PCS, and the fifth (also 9) contains the triple product Dg � DZ � ASD.
The term containing the SO spin-dipolar term is of shorter range
than the other four, and so has a negligible contribution to rpcs;S

iso

at longer distances from the metal. However it may be important
at shorter distances. In analogy with the PCS in the susceptibility
formalism we can deduce the following about this form of the PCS.

The first and third terms depend on the Euler angles XASDD

which specify the orientation of the PAF of the NR spin-dipolar ten-
sor relative to the PAF of the ZFS tensor. The second term is similar,
with the difference that the relevant Euler angles XASD;2D are those
that now specify the orientation of the PAF of the SO coupling spin-
dipolar tensor relative to the PAF of the ZFS tensor. Both terms

have a leading temperature dependence of 1=ðkTÞ2. The fourth
term, which has a leading temperature dependence of 1=ðkTÞ,
depends on the Euler angles XASD ;GS, which give the orientation of

the PAF of the NR spin-dipolar tensor relative to the PAF of the
symmetric part of the g-tensor. The fifth term is more complicated,
and depends on the orientation of the NR spin-dipolar tensor PAF
relative to the PAF of the symmetric part of the product Dg � DZ.
It has a leading temperature dependence of 1=ðkTÞ2.

In the high-temperature limit we obtain the following PCS

dpcs;Siso ¼ lBSðSþ 1Þ
9�hcIkT

Tr Dg � ASD
� 	

� lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
90�hcIðkTÞ2

geTr D � ASD
� 	h

þgeTr D � ASD;2
� 	

þ DgisoTr D � ASD
� 	i

� lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
90�hcIðkTÞ2

Tr Dg � D � ASD
� 	

: ð5:138Þ

The g-anisotropy appears in terms with both a first- and second-
order temperature dependence, whilst the ZFS only affects the
PCS to second order. In the absence of the ZFS all the terms bar
the first are zero, and we are left with a very simple form of the PCS

dpcs;Siso ¼ lBSðSþ 1Þ
9�hcIkT

Tr Dg � ASD
� 	

: ð5:139Þ

The PCS now depends only on the g-anisotropy, and the orientation
of the PAF of the NR dipolar coupling tensor with respect to the PAF
of the symmetric part of the g-tensor.

The question that now arises is how different are the two
expressions for the PCS that are given in Eqs. (5.76) and (5.137)?
This point was explored in Section 4.5. There it was shown that
if we attempt to interpret the rank-two part of the reduced hyper-
fine tensor as a pure spin-dipolar interaction, we recover an
expression for the PCS where the true susceptibility tensor is
substituted by a modified (non-symmetric) tensor v0. Therefore we
recover an equation of the form of Eq. (5.76), but containing the ten-
sor components of the rank-two part of v0. If this substitution is
made, Eqs. (5.76) and (5.137) become exactly equivalent [217].

5.4.3.2. The spin-dipolar shift anisotropy. The anisotropic shielding
rdip;sym;S that arises from the spin-dipolar interaction is given by

rdip;sym;S ¼ � lB

�hcI
Ziso geA

SD þ geA
SD;2 þ DgisoA

SD
h i

� lB

�hcI
Ziso Dg � ASD
n osym

� lB

�hcI
ge DZ � ASD
n osymh

þ ge DZ � ASD;2
n osym

þ Dgiso DZ � ASD
n osymi

� lB

�hcI
Dg � DZ � ASD
n o

:
sym

ð5:140Þ

The first three terms correspond to an anisotropy that depends
wholly on the NR and SO-coupling dipolar part of the hyperfine ten-
sor, and corresponds to the term in the susceptibility formalism

�visoCdip. The remaining terms contain one or both of the anisotro-
pic part of the g-tensor and of the ZFS tensor, as part of DZ, and
therefore correspond to the anisotropic symmetric part of

�Dv � Cdip.
In the high-temperature approximation the expression for

rdip;sym;S becomes

rdip;sym;S ¼ �lBSðSþ 1Þ
3�hcIkT

geA
SD þ geA

SD;2 þ DgisoA
SD

h i
� lBSðSþ 1Þ

3�hcIkT
Dg � ASD
n osym

þ lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
30�hcIðkTÞ2

ge D � ASD
n osym

þ ge D � ASD;2
n osymh

þDgiso D � ASD
n osymi

þ lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
30�hcIðkTÞ2

Dg � D � ASD
n osym

:

ð5:141Þ
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The first four terms, which depend only on the dipolar coupling ten-
sors and g-anisotropy, have a leading temperature dependence of
1=ðkTÞ. The other terms, which also depend on the ZFS tensor, have

a leading temperature dependence of 1=ðkTÞ2 as we have seen with
the other contributions to the shielding tensor. In the absence of the
ZFS interaction the anisotropic shielding is

rdip;sym;S ¼ �lBSðSþ 1Þ
3�hcIkT

geA
SD þ geA

SD;2 þ DgisoA
SD

h i
� lBSðSþ 1Þ

3�hcIkT
Dg � ASD
n osym

; ð5:142Þ

which contains contributions due to ASD
;ASD;2

;Dgiso, and Dg. In all

these cases we note again that ASD;2 represents a shorter-range

interaction than ASD, and so is only important at shorter distances
from the metal ion.

5.4.4. The antisymmetric hyperfine shift anisotropy
The final term to consider is the paramagnetic chemical shield-

ing due to the antisymmetric hyperfine interaction, as given by
term (5) in Table 5.1. This contribution corresponds to the suscep-
tibility formalism contribution �Dv � Cas. As in the susceptibility
formalism the anisotropic hyperfine interaction does not con-
tribute to the isotropic paramagnetic shift, but does contribute to
the shielding anisotropy through the term

ras;sym;S ¼ � lB

�hcI
ge DZ � Aas� �sym

: ð5:143Þ

The anisotropic properties therefore depend on those of the matrix
product DZ � Aas. The g-anisotropy does not play a role here, but the
dependence on DZ indicates that the shielding anisotropy and
asymmetry do depend on the ZFS. In the high-temperature limit
Eq. (5.143) becomes

ras;sym;S ¼ lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
30�hcIðkTÞ2

ge D � Aas� �sym
: ð5:144Þ

The leading temperature dependence is therefore 1=ðkTÞ2. In the
absence of the ZFS this term disappears altogether.

5.4.5. Summary
As has been seen in this chapter, the form of the paramagnetic

shielding tensor in terms of the EPR parameters is rather complex.
Therefore to finish this discussion we outline the salient points,
which are the roles that the various EPR parameters play in the
forms of the isotropic shift and shift anisotropy, the temperature
dependences of the various contributions, and which are the most
important for different systems. This last point closely follows the
corresponding discussion of the susceptibility formalism in Section
5.3.4. The different terms are summarised in Table 5.3, where it is
shown whether each term contributes to the shift and/or shift
anisotropy, and also the leading temperature dependence of each
contribution.

5.4.5.1. In the absence of spin-orbit coupling. As has been shown, the
only terms to contribute to metal ions which do not exhibit SO
coupling are (1a) and (2a), which contribute to the isotropic shift
and shift anisotropy respectively. The shielding tensor therefore
has a simple form, with a temperature dependence of 1=kT . Such
paramagnetic systems only show an isotropic paramagnetic shift
if the nucleus is within the coordination environment of the metal
ion and receives unpaired electron density within its s-orbital.
Nuclei outside the coordination site therefore have zero isotropic
paramagnetic shift. The shift anisotropy is longer range, as it
depends on the spin-dipolar interaction, and so nuclei exhibit a
shift anisotropy even when several 10 s of Å from the metal ion.

5.4.5.2. The effect of spin-orbit coupling. The simple picture
described above is complicated significantly when SO coupling is
present, with the extra contributions to the hyperfine, g- and ZFS
tensors adding several more terms to the paramagnetic shielding
tensor. The ZFS tensor is responsible for a more complicated
temperature dependence, through the tensor Z. In the high-
temperature limit, such that Z can be truncated at second order

in 1=ðkTÞ2, the ZFS tensor only appears in the shielding with a lead-

ing temperature dependence of 1=ðkTÞ2. For metal ions where the
ZFS is small its contribution to the shielding can be neglected,

Table 5.3
Summary of the terms appearing in the EPR formalism of the paramagnetic shielding tensor, including the leading temperature dependence of the isotropic and anisotropic parts.
A tick shows that the shielding contribution gives an isotropic shift or shift anisotropy of the indicated leading temperature dependence. The different terms are separated into
groups arising from the contact interaction (con), spin-dipolar interaction (dip), and the antisymmetric hyperfine interaction (as). The term numbering 1, 2, . . .corresponds to that
in Table 5.1, with the appended letter a and b representing a term containing Ziso and DZ respectively.

Type Term Shielding expressiona Leading temp dependence 1=kT Leading temp dependence 1=ðkTÞ2

Isotropic shift Shift anisotropy Isotropic shift Shift anisotropy

con 1a geZ
isoAFC U

3a geZ
isoAFC;2 U

6a DgisoZ
isoAFC U

8a ZisoAFCDg U

1b geA
FCDZ U

3b geA
FC;2DZ U

6b DgisoA
FCDZ U

8b AFCDg � DZ U U

dip 2a geZ
isoASD U

4a geZ
isoASD;2 U

7a DgisoZ
isoASD U

9a ZisoDg � ASD U U

2b geDZ � ASD U U

4b geDZ � ASD;2 U U

7b DgisoDZ � ASD U U

9b Dg � DZ � ASD U U

as 5a geZ
isoAas

5b geDZ � Aas U

a Multiply by �lB=ð—hcIÞ to obtain full shielding expression.
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and the temperature dependence is simply 1=kT . Under these cir-
cumstances the contact shift is given by the sum of terms (1a),
(3a), and (6a) with the NR term (1a) dominating. In addition the
PCS is due entirely to the coupling of the g-anisotropy to the NR
dipolar coupling tensor in term (9a). The total shift anisotropy con-
tains a contact contribution from the g-anisotropy, in term (8a),
and four terms due to the spin-dipolar interaction (2a), (4a), (7a),
and (9a). The dominant spin-dipolar term is expected to be the
NR contribution (2a). The contact anisotropy is only significant if
the nucleus is within the coordination environment of the metal
ion, so that the Fermi-contact interaction is comparable to or
greater than the spin-dipolar interaction.

For metal ions with a larger ZFS anisotropy, the terms in

1=ðkTÞ2 become important. The isotropic contact shift now

includes a contribution in 1=ðkTÞ2, term (8b), and the contact
shift anisotropy includes four extra terms (1b), (3b), (6b), and
(8b). The ZFS contribution to the PCS comprises four terms
(2b), (4b), (7b), and (9b), of which (2b) is expected to be the
most important as it depends on the product of the NR free-
electron g-factor ge and the NR spin-dipolar coupling constant,
whereas in the other terms either the g-tensor or hyperfine ten-
sor is an SO coupling contribution. The relative importance of
the ZFS contribution (2b) and the g-anisotropy contribution
(9a) depends on the relative sizes of the g- and ZFS anisotropies.
There are also four additional contributions to the spin-dipolar
anisotropy, which are terms (2b), (4b), (7b), and (9b). Finally
there is one more contribution to the shift anisotropy (5b) which
comes from the antisymmetric hyperfine interaction, which can
usually be neglected.

As discussed in Section 5.3.4 the isotropic shift is dominated by
the contact shift (1a) when nucleus is in the coordination site of
the metal ion, and the transfer of unpaired electronic spin density
is large. In situations where the orbital overlap is poor and the spin
transfer is relatively low, or where the nucleus is outside the coor-
dination environment of the metal the PCS terms begin to domi-
nate. For nuclei outside the coordination environment of the
metal ion the dominant contribution to the shift anisotropy is
the spin-dipolar term (2a). The contact anisotropy terms become
more important for nuclei within the coordination environment.

5.5. Key concepts

� The paramagnetic shielding tensor can be expressed either in
terms of the EPR parameters, or the bulk magnetic susceptibility
tensor. The correspondence between the two formalisms is
given in Table 5.1.

� In both formalisms we can separate the shift into contributions
from the contact, spin-dipolar, and antisymmetric hyperfine
interactions.

� The contact interaction gives an isotropic contact shift that is
proportional to the isotropic susceptibility, and a shift aniso-
tropy that is proportional to the susceptibility anisotropy. Both
contributions are also proportional to the unpaired electron
spin density at the nuclear site.

� The spin-dipolar interaction produces an isotropic pseudo-
contact shift, that depends on the susceptibility anisotropy
and the spatial position of the nucleus with respect to the PAF
of the susceptibility tensor, and a shift anisotropy that is dom-
inated by the product of the isotropic susceptibility and spin-
dipolar coupling tensor.

� The terms in the EPR formalism of the paramagnetic shielding
tensor are summarised in Table 5.3.

Chapter 6: The paramagnetic shift due metal ions with arbitrary
spin-multiplicity and spin-orbit coupling strength: application
to d-transition metals, lanthanides, and actinides

Chapters 4 and 5 provide a practicable formalism for the para-
magnetic shielding tensor in terms of the g-, hyperfine, and ZFS
tensors due to a d-block transition-metal ion. The initial part of
the derivation gives an exact expression for the chemical shielding
that is valid for an arbitrary electronic spin S, and makes no
assumptions about the relative orientations of the tensors in the
EPR Hamiltonian. Following the derivation of the general expres-
sion, a number of assumptions are applied in order to make further
progress. These assumptions are that (i) the effective electronic
spin S is equal to the real spin of the ion, (ii) the SO coupling is
weak in comparison to the ligand-field interaction, (iii) the spin
system can be described by the EPR Hamiltonian in Eq. (4.36),
and (iv) we need only consider contributions from the ground state
spin manifold, i.e. there are no thermally-accessible excited states.
Assumption (iii) effectively means that the final expression is only
exact for electronic spins up to S ¼ 1 and is only an approximation
for larger spins, and all three assumptions limit the theory to the
application of d metal ions.

We now extend the description to paramagnetic ions with arbi-
trary SO coupling strength and arbitrary spin, such as the lan-
thanides and actinides. In systems with lanthanide ions the
crystal-field interaction is much weaker than the SO coupling,
whilst for actinides both interactions are large, and of comparable
magnitude. In both cases the EPR Hamiltonian is more complex
than the perturbation expression derived in Chapter 4, and in par-
ticular higher-order terms in the EPR Hamiltonian need to be con-
sidered to provide a proper description.

We first describe the crystal-field interaction explicitly, and
extend the concept of ‘‘effective electronic spin”. We then gener-
alise the EPR Hamiltonian and use this to derive an expression
for the paramagnetic shielding tensor and the magnetic suscepti-
bility of a paramagnetic system of arbitrary SO coupling strength
and spin. This is first applied to d-block transition-metal ions,

and spin-only f-block ions with an f 7 electronic configuration
which exhibit equivalent behaviour. Then we indicate how the
EPR formalism may be applied to lanthanides and actinides gener-
ally, and we link the EPR formalism to the Bleaney theory of para-
magnetic shifts due to lanthanides.

The Bleaney formalism assumes that the magnetic properties of
the coordinated lanthanide ions can be approximated by those of
the free ion, and that the crystal-field interaction is sufficiently
small that all levels are equally thermally populated. Therefore this
part of the discussion begins with a description of the electronic
properties of the free lanthanide ions in terms of the total angular
momentum J, and the Landé g-factor gJ .

Finally we include a short discussion about the paramagnetic
shieldings in paramagnetic actinide complexes.

6.1. The crystal-field interaction and the effective spin

In Chapter 4 we introduced the concept of the crystal- or
ligand-field, as the interaction between the metal ion and the
ligands following the immersion of a free metal ion into a coordi-
nation complex. For the d-block transition-metal ions to which we
have hitherto restricted the discussion the crystal-field interaction
is sufficiently large that (1) only the ground state is thermally pop-
ulated at relevant experimental temperatures and (2) it dominates
the other interactions relevant to the EPR properties, such as the
SO coupling. This results in an EPR Hamiltonian that is charac-
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terised by a spin quantum number that is equal to the true spin of
the metal ion. This description is not valid for metal ions such as
lanthanides and actinides where the larger SO coupling and
greater complexity of the electronic structure result in a more
complicated form of the shielding tensor. In lanthanides the con-
tracted nature of the 4f -orbitals containing the unpaired electrons
results in a weaker crystal-field interaction, which is now domi-
nated by the SO coupling, whereas for lanthanides the 5f electrons
participate directly in bonding to the ligand, and so the
crystal-field and SO interactions are both large, and of comparable
magnitude. In these cases we need to describe the crystal-field
interaction explicitly.

6.1.1. The effective spin
For a free ion subject to SO coupling the electron configuration

gives rise to a series of energy levels each of which is, in general,

degenerate. Each level can be represented as an effective spin eS
whose multiplicity 2eS þ 1 matches the degeneracy of the level. In

general eS is not equal to the true spin S. In addition the different
levels will, in general, have different effective spins. If we immerse
the free ion into a complex the effect of the crystal field is to
separate the energies of the states of each level, thus reducing their
degeneracy. This results in the formation of a number of sub-levels
from each level, each of which has lower degeneracy compared to
the original level. Each sub-level can therefore be represented by a
new effective spin, again whose multiplicity matches the degener-
acy of that sub-level.

In order to interpret the EPR and NMR data of paramagnetic
systems with an arbitrary SO coupling strength we apply the fol-
lowing logic. Firstly the combination of the SO coupling and
crystal-field interactions creates a ladder of (degenerate) energy
sub-levels n, to each of which can be assigned an effective spineSn, whose multiplicity matches the degeneracy of the correspond-
ing sub-level. These energy levels are properties of the metal ion
and the surrounding crystal-field environment and, of course, are
independent of the external magnetic field and nuclear magnetic
moments. Secondly we introduce the effects of the external mag-
netic field and nuclear magnetic moments as ‘external’ perturba-
tions, which allows us to define an electronic Zeeman
interaction, a hyperfine interaction, and a ZFS for each level nwhich

are dependent on the effective spin eSn of that level. Since the
corresponding EPR tensor parameters depend on the effective spin,
rather than the true spin, they are different in the different sub-
levels. This idea is explored further in this chapter.

6.1.2. The crystal-field interaction
The crystal field can be modelled as the interaction of the

unpaired electrons of the metal ion with a potential VðrÞ due to
the ligands of the coordination site. The potential is given by

VðrÞ ¼ � e
4pe0

X
l

Zl

jRl � rj ; ð6:1Þ

where e0 is the permittivity of free space, and the sum is over all the
ligands l, each one of which is modelled as a point charge �Zle at
position Rl [219]. We define the positions of the ligand charges with
the spherical polar coordinates ðal; hl;/lÞ, and place the unpaired
electron at ðr; h;/Þ. If we assume that the electron is closer to the
paramagnetic centre than to the ligands, so that al > r, we can

expand the factor jRl � rj�1 as a sum of products of spherical
harmonic functions Ykqðh;/Þ to give

VðrÞ ¼ � e
4pe0

X
l

X1
k¼0

Xþk

q¼�k

4p
2kþ 1

Zl

akþ1
l

rkYkqðh;/ÞYkqðhl;/lÞ; ð6:2Þ

where k and q are the spherical harmonic rank and order. The
crystal-field Hamiltonian ĤCF is given by the sum of the interactions
of the unpaired electrons i with the potential:

bHCF ¼ �e
X
i

VðriÞ ð6:3Þ

¼ e2

4pe0

X
i

X
l

X1
k¼0

Xþk

q¼�k

4p
2kþ 1

Zl

akþ1
l

rki Ykqðhi;/iÞYkqðhl;/lÞ; ð6:4Þ

where ri ¼ ðri; hi;/iÞ is the position of the ith electron.
It was shown by Stevens that this Hamiltonian can be trans-

formed into a different form bHCF by replacing each term in the
sum over k and q with an operator equivalent [220]. The most con-
venient choice of operator basis comprises the irreducible spheri-

cal tensors operators bOkq of rank k and order q, which represent
either the orbital or total angular momentum according to the par-
ticular situation. These operator equivalents are formed by cou-

pling together the tensor components bO1q of rank 1 with those

components bOk�1;q of rank k� 1 using the expression

bOkq ¼
X
q1 ;q2

bOk�1;q1
bO1q2 hk� 11q1q2jkqi: ð6:5Þ

The expressions for these irreducible spherical tensor operators
have been tabulated extensively by Buckmaster et al. [221]. This
gives the following Hamiltonian:

bHCF ¼
X
k

Xþk

q¼�k

ð�1ÞqBkq
bOk�q; ð6:6Þ

where the Bkq are components of the crystal-field spatial tensor in
the irreducible spherical tensor basis, which satisfy

B
kq ¼ ð�1ÞqBk�q: ð6:7Þ

Not all the components in Eq. (6.6) are retained, and it can be shown
that only those components of even rank, up to a maximum of
k ¼ 6, are non zero.[219]. In addition the rank-zero component
has the effect of simply shifting all the energy levels by the same
amount, resulting in no effect on the transition frequencies, and
so is also dropped. Therefore the remaining spherical tensor compo-
nents in the crystal-field Hamiltonian have ranks 2 and 4, for d-
block transition-metal ions, and ranks 2, 4, and 6 for f-block
transition-metal ions [219].

6.1.3. Crystal-field vs zero-field splitting
The crystal-field terms with k ¼ 2 have the same mathematical

form as the ZFS interaction, which we have already encountered in
the discussion of the first-row transition metal ions. However great
care must be taken in correctly interpreting the crystal-field and
ZFS interaction Hamiltonians [222]. In summary the crystal-field
interaction is a physical property of the metal ion and its coordina-
tion environment, and therefore depends on the orbital and total
angular momenta of the system. This interaction lifts the degener-
acy of the electron configuration in zero external magnetic field,
and creates a number of distinct sub-levels. To each sub-level

can be assigned an effective spin eS, the multiplicity 2eS þ 1 of which
matches the degeneracy of the sub-level. Each sub-level is associ-
ated with a set of effective EPR Hamiltonians including the elec-
tronic Zeeman, hyperfine, and ZFS interactions, each of which

acts only within the designated sub-space that is defined by eS.
Hence the effective spin Hamiltonians are properties of the effective
spin only. One consequence is that for a particular metal ion the
tensor parameters change according to the sub-level under consid-
eration [222]. We can see from this that the crystal-field and ZFS
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interactions are completely different, and should not be confused
with each other.

6.2. The generalized EPR spin Hamiltonian and paramagnetic shielding
tensor

At arbitrary SO coupling strength we can no longer treat the SO
coupling interaction as a perturbation to the ligand, or crystal, field
interaction, and in fact the former may be larger than the latter.
Nevertheless we can still write down the EPR Hamiltonian within
each sub-level n in terms of an effective electronic spin operatorêS which represents the effective spin quantum number eS which
we have seen may or may not be equal to the true spin quantum
number. The general Hamiltonian is equal to a sum of terms of

the form KBreSsIt , where Br is a product of the components of the

external magnetic field with degree r, and eSs and It respectively
are products of s and t components of the electronic and nuclear
spin operators respectively [223]. The size and spatial dependence
of the interaction is given by K, which is a component of the rele-
vant tensor. The EPR Hamiltonian in Eq. (4.36) contains terms with
r ¼ t ¼ 1 and s ¼ 0 (the orbital chemical shielding interaction),
r ¼ s ¼ 1 and t ¼ 0 (the electronic Zeeman interaction), s ¼ t ¼ 1
and r ¼ 0 (the hyperfine interaction), and finally s ¼ 2 and
r ¼ t ¼ 0 (the ZFS interaction). However these are not the only
terms that are present in the Hamiltonian, as we could in principle
include terms with larger values of r; s, and t. There are three con-
ditions that we must impose on the form of the terms, the first
being that r þ sþ t must be even in order to ensure that the Hamil-
tonian is even with respect to time reversal [191], since the field
and spin angular momenta are each time-odd. Secondly the maxi-

mum value that s can take is 2eS, i.e. twice the effective electronic
spin, and the third condition is that the maximum value of t is 2I
[223]. The electronic configurations of d-block transition metals
result in a maximum possible spin of S ¼ 5=2 and so, for systems
containing these ions, we need only consider terms containing

products of êS with s � 5. Likewise for f-block metal ions, the max-
imum spin is S ¼ 7=2, and so the maximum value of swe need con-
sider is 7.

The dominant terms in the nuclear chemical shielding interac-
tion are linear in both the external field and nuclear spin with
higher-order terms being negligible. We therefore ignore any
terms with r > 1 and t > 1 as these will not give us the required
chemical shielding tensor. Nevertheless we retain any terms with
s > 1 as these can contribute important effects to the electronic
Zeeman, hyperfine, and ZFS interactions. The term with t ¼ 2 and
r ¼ s ¼ 0 is due to the nuclear quadrupole interaction which is pre-
sent for quadrupolar nuclei with spin I > 1=2 [199]. This is a very
important interaction in the NMR of such nuclear spins, but since
it does not directly impact on our discussion of paramagnetic shifts
we do not consider it further. We can therefore write the general-

ized EPR Hamiltonian bHEPR asbHEPR ¼ ��hcIB0 � 1� rorb� � � Î þ bHZ þ bHHF þ bHZFS; ð6:8Þ

where bHZ, bHHF, and bHZFS are the Hamiltonians representing the elec-
tronic Zeeman, hyperfine, and ZFS interactions as described below.
Henceforth, in the interests of simplifying the notation, we denote

the effective spin operator as Ŝ rather than êS , i.e. we omit the tilde.

6.2.1. The electronic Zeeman interaction
We can write the general electronic Zeeman interaction Hamil-

tonian as

bHZ ¼ �
X
i

B0;im̂i; ð6:9Þ

where, in an electronic state with effective spin S, the general mag-
netic moment vector operator m̂i is [223]

m̂i ¼ �lB

X2S
k¼0

Xþk

q¼�k

ð�1ÞqbSk�qgkq;i; ð6:10Þ

and the gkq;i are the components of a complex g-tensor of rank k and
order q. The complex conjugate of gkq;i is

g
kq;i ¼ ð�1Þqgk�q;i; ð6:11Þ

which ensures that bHZ is Hermitian. We note that, because bHZ is lin-
ear in B0;i the sum in Eq. (6.10) only contains terms of odd rank k.
Explicitly this means that the terms of ranks 1, 3, and 5 are relevant
for d-block metal ions, whereas terms of ranks 1, 3, 5, and 7 are
needed for f-block metal ions. We have already encountered the
terms of rank one in Chapter 4.

As an example, we consider the generalized Zeeman interaction
of Gd3+, which has spin S ¼ 7=2. The relevant g-tensors are approx-
imately isotropic as the 4f subshell is half filled, giving an elec-
tronic ground state with term 8S7=2. We can therefore write the
Zeeman Hamiltonian as [224]bHZ ¼ lBgB0

bSz þ lBg
0B0
bS3
z þ lBg

00B0
bS5
z þ lBg

000B0
bS7
z ; ð6:12Þ

where g, g0, g00, and g000 are the g-factors associated with the Zeeman
interactions of increasing order, consistent with measurements of
the g-factors of Gd3+ defects within diamagnetic host crystalline lat-
tices of different symmetries. Early measurements of the first-order
factors g have been reviewed by Buckmaster and Shing, and are
found to be slightly smaller than ge, taking typical values of
1.985–1.992. The higher-order g-factors have also been examined
separately by Marshall and Tilton [225], and Buckmaster et al.
[226]. Marshall and Tilton acquired EPR spectra of Gd3+ in ThO2,
and measured an upper bound of g0 of 2
 10�7, with the higher-
order g-factors expected to have progressively smaller values
[225]. Buckmaster et al. measured the g-factors of Gd3+ in La(C2H5-
SO4)3�H2O, and found that g0 has an upper bound of 2
 10�6 [226].
This indicates that, although measurable, the higher-order Zeeman
interactions in these systems are much weaker than the first-order
Zeeman interaction, and consequently less important to the EPR/
NMR properties.

6.2.2. The hyperfine interaction
The general hyperfine interaction can be written as a scalar pro-

duct between the nuclear spin operator and the hyperfine field
vector operator F̂ ,bHHF ¼

X
i

F̂ i
bIi: ð6:13Þ

The hyperfine field operator in an electronic state with effective
spin S has a form that is similar to the magnetic moment vector
operator in Eq. (6.10) in that it is written in terms of the irreducible

spherical tensor operators bSkq [223]:

F̂ i ¼
X2S
k¼0

Xþk

q¼�k

ð�1ÞqbSk�qAkq;i: ð6:14Þ

The Akq;i are the components of a complex hyperfine tensor of rank k
and order q which, like the gkq;i components, obey the following
relation:

A
kq;i ¼ ð�1ÞqAk�q;i: ð6:15Þ
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We note that, as for the electronic Zeeman interaction, the hyper-
fine field vector operator contains only terms of odd rank k to
ensure the time-even nature of the hyperfine interaction Hamilto-
nian, i.e. k ¼ 1, 3, and 5 for d-block metal ions, and k ¼ 1, 3, 5,
and 7 for f-block metal ions. We have already encountered the
terms of rank one in Chapter 4.

6.2.3. The ZFS interaction
The general ZFS interaction Hamiltonian is

bHZFS ¼
X2S
k¼0

Xþk

q¼�k

ð�1ÞqDkq
bSk�q; ð6:16Þ

where the ZFS irreducible spherical spatial tensor components Dkq

have rank k and order q, and satisfy the relation:

D
kq ¼ ð�1ÞqDk�q: ð6:17Þ

In contrast to the Zeeman and hyperfine interactions, the ZFS
retains non-zero terms with even k, i.e. k ¼ 2, and 4 for d-block
metal ions, and k ¼ 2, 4, and 6 for f-block metal ions. We have
already encountered the terms of rank two in Chapter 4. The prin-
cipal values of the generalized ZFS tensor of rank k and order q

are conventionally written in terms of the energy parameters bjqj
k .

In cubic systems we define the three principal axes to be along
the three fourfold (proper or improper) rotation axes, whereas in
tetragonal, hexagonal, and trigonal systems the principal z-axis is
defined to be parallel to the highest-order rotation axis. In
orthorhombic groups the principal axes are defined according to
the twofold rotation axes. Adopting these conventions we obtain
the principal values of the ZFS tensors described by Buckmaster
and Shing, which are tabulated in Table 6.1.

The rank-four ZFS parameters have been measured for Mn2+

and Fe3+ (both S ¼ 5=2) [208], and the rank-four and rank-six
parameters have been measured extensively for Gd3+ in diamag-
netic host lattices of various symmetry groups [224]. The maxi-
mum values of the ZFS parameters for Gd3+ are generally found

to be b0
2 � 1 GHz, b0

4 � 100 MHz, and b0
6 � 10 MHz. In non-cubic

systems the rank-two ZFS is generally expected to dominate the
other ZFS terms. However in cubic systems with either a small or
no rank-two ZFS, the higher-order ZFS interactions may become
important.

6.2.4. The EPR formalism of the paramagnetic shielding tensor
The form of the generalized EPR Hamiltonian has a profound

effect on the form of the paramagnetic shielding tensor, which is
given by the EPR formula in Eq. (4.103) and reproduced below
for convenience:

rS
ij ¼

2
�hcIQ0

X
n

expð�bEnÞ
X
m–n

X
m;l

hnmjm̂ijmlihmljF̂ jjnmi
Em � En

þ b
�hcIQ0

X
n

expð�bEnÞ
X
m;m0

hnmjm̂ijnm0ihnm0jF̂ jjnmi: ð6:18Þ

The EPR expression in Eq. (6.18) is a completely general formula for
the paramagnetic shielding tensor due to a paramagnetic centre of
any spin multiplicity and SO coupling strength. As we mentioned in
Section 4.2.1, this formalism makes no assumptions about the level
of theory, i.e. relativistic or not, the SO coupling strength, or the
multiplicity of the electronic energy levels. Therefore this formalism
has a much wider scope than the 3d metal ions we have so far
discussed, and can be applied to more complex ions such as
lanthanides and actinides. The general, and unspecified, forms of
the electronic magnetic moment m̂ and hyperfine F̂ operators in
Eq. (6.18) are valid for situations where several energy levels of
the crystal-field interaction are thermally populated. However this
formula suffers from the disadvantage of being rather unwieldy.
The remainder of this chapter is orientated towards examining
the situations in which we may simplify the formalism.

6.2.4.1. Paramagnetic chemical shielding of a thermally-isolated
degenerate ground state. Van den Heuvel proposed a simplification
of Eq. (6.18) that can be employed when only the ground state sub-
manifold due to the crystal-field splitting is thermally occupied
[89]. In practice this would occur when the energy separation

Table 6.1
The principal values of the spatial parts of the generalized ZFS interaction up to rank six. The second-rank parameters are related to the axial and rhombic ZFS anisotropies by
b0
2 ¼ D and b2

2 ¼ 3E. The point groups corresponding to each symmetry class are: Oh , O, Td , and T (cubic); C4, C4v , C4h , D4, D4h , and D2d (tetragonal); C6, C6v , C6h , C3h , D6, D6h , and D3h

(hexagonal); C3, S6, C3v , D3, and D3d (trigonal); C2v , D2, and D2h (orthorhombic). In the cubic groups the principal axes of the PAF are along the three fourfold rotation axes. In the
tetragonal, hexagonal, and trigonal groups the PAF is defined so that the z-axis is aligned with the highest-order rotation axis. In the orthorhombic groups, the three principal axes
coincide with the three twofold rotation axes.

Rank k Order q
D
~

kq for different symmetries

Cubic Tetragonal Hexagonal Trigonal Orthorhombic

2 0 0 ffiffiffiffiffiffiffiffi
2=3

p� 	
b02

ffiffiffiffiffiffiffiffi
2=3

p� 	
b02

ffiffiffiffiffiffiffiffi
2=3

p� 	
b02

ffiffiffiffiffiffiffiffi
2=3

p� 	
b02

	1 0 0 0 0 0
	2 0 0 0 0 1=3ð Þb22

4 0 ffiffiffiffiffiffi
70

p
=30

� 	
b04

ffiffiffiffiffiffi
70

p
=30

� 	
b04

ffiffiffiffiffiffi
70

p
=30

� 	
b04

ffiffiffiffiffiffi
70

p
=30

� 	
b04

ffiffiffiffiffiffi
70

p
=30

� 	
b04

	1 0 0 0 0 0
	2 0 0 0 0 ffiffiffi

7
p

=60
� 	

b24
	3 0 0 0 	

ffiffiffi
2

p
=6

� 	
b34

0

	4 1=6ð Þb04 1=30ð Þb44 0 0 1=30ð Þb44
6 0 ffiffiffiffiffiffiffiffiffi

231
p

=315
� 	

b06
ffiffiffiffiffiffiffiffiffi
231

p
=315

� 	
b06

ffiffiffiffiffiffiffiffiffi
231

p
=315

� 	
b06

ffiffiffiffiffiffiffiffiffi
231

p
=315

� 	
b06

ffiffiffiffiffiffiffiffiffi
231

p
=315

� 	
b06

	1 0 0 0 0 0
	2 0 0 0 0 ffiffiffiffiffiffiffiffiffiffiffi

11=5
p� 	

=315
� 	

b26
	3 0 0 0 	 ffiffiffiffiffiffiffiffiffiffiffi

11=5
p� 	

=18
� 	

b36
0

	4 � ffiffiffiffiffiffiffiffiffiffiffi
11=6

p� 	
=15

� 	
b06

ffiffiffiffiffiffiffiffiffiffiffi
11=6

p� 	
=315

� 	
b46

0 0 ffiffiffiffiffiffiffiffiffiffiffi
11=6

p� 	
=315

� 	
b46

	5 0 0 0 0 0
	6 0 0 1=315ð Þb66 1=315ð Þb66 1=315ð Þb66
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between the ground sub-manifold n ¼ 0 and the lowest-lying
excited sub-manifold is much greater than kT. In this case Eq.
(6.18) can be simplified to give

reSij ¼ b
�hcI

1

2eS þ 1

X
m;m0

h0mjm̂ð0Þ
i j0m0ih0m0jF̂ ð0Þ

j j0mi ð6:19Þ

¼ b
�hcI

1

2eS þ 1
TreS m̂ð0Þ

i F̂ ð0Þ
j

h i
ð6:20Þ

¼ �lBb
�hcI

1

2eS þ 1

X
k;k0

X
q;q0

ð�1Þqþq0gð0Þ
kq;iA

ð0Þ
k0q0 ;jTreS bSk�q

bSk0�q0

h i
; ð6:21Þ

where we have added a superscript ð0Þ to the g- and hyperfine ten-
sor parameters to reflect the fact that they are properties of the
n ¼ 0 sub-manifold. The trace can be further simplified following
the discussion in Appendix D to give

reSij ¼ � lB

�hcIkT
X2eS
k¼0

heSkbSkkeSi2
2kþ 1

Xþk

q¼�k

ð�1Þqgð0Þ
kq;iA

ð0Þ
k�q;j; ð6:22Þ

where only the terms with k0 ¼ k and q0 ¼ q remain. The hSkbSkkS0i
are the reduced matrix elements of the tensor bSk [191] which, for

tensors bSk that are formed according to Eq. (6.5) with bOkq ¼ bSkq,
can be calculated from the formula of Buckmaster et al. [221]:

hSkbSkkS0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k!k!ð2Sþ kþ 1Þ!
2kð2kÞ!ð2S� kÞ!ð2Sþ 1Þ

s
dSS0 : ð6:23Þ

The paramagnetic shielding in this expression has a Curie tem-
perature dependence, which is because the electronic spin system
behaves analogously to the spin system with an anisotropic g-
tensor and no ZFS discussed by Moon and Patchkovskii [39]. In fact
we may regard Eq. (6.22) as the generalization of the Moon–Patch-
kovskii equation (4.118) resulting from considering the EPR inter-
action terms with ranks k greater than one. If we retain only those
terms with k ¼ 1, then Eq. (6.22) reduces to Eq. (4.118).

6.3. The paramagnetic shielding and magnetic susceptibility tensors
due to a transition-metal ion with arbitrary spin multiplicity

In this sectionwe return to the case of a d-block transition-metal
ion in a thermally-isolated ground state n ¼ 0 of the crystal-field
splitting interaction Hamiltonian, in which the effective spin is
the same as the formal true spin. The generalized EPR Hamiltonian
in Section 6.2 describes the electronic spin properties of this ground
state, and dictates the form of the paramagnetic shielding tensor.
We use the forms of the operators m̂ and F̂ that are given in terms

of bSkq, and set the energy levels of the Boltzmann averages so that
they correspond to the eigenvalues of the generalized ZFS Hamilto-
nian. Note that this situation is different to that which resulted in
Eq. (6.22), since in that case it is also assumed that the electronic
spin system is thermally isolated in the ZFS ground state in addition
to the crystal field splitting ground state. In the present case the
paramagnetic shielding tensor then takes the form:

rS
ij ¼ � lB

�hcI

X2S
k¼0

X2S
k0¼0

Xþk

q¼�k

Xþk0

q0¼�k0
ð�1Þqþq0gkq;iZkk0qq0Ak0q0 ;j; ð6:24Þ

where the dependence on both the temperature and the zero-field
Hamiltonian is encoded in Zkk0qq0 , which is given by

Zkk0qq0 ¼
2
Q0

X
n

expð�bEnÞ
X
m–n

X
m;l

hnmjbSk�qjmlihmljbSk0�q0 jnmi
Em � En

þ b
Q0

X
n

expð�bEnÞ
X
m;m0

hnmjbSk�qjnm0ihnm0jbSk0�q0 jnmi:

ð6:25Þ

To second order in 1=ðkTÞ the paramagnetic shielding tensor is
given by

rS
ij ¼ � lB

�hcI
b

2Sþ 1

X
kk0qq0

ð�1Þqþq0gkq;iAk0q0 ;jTrS bSk�q
bSk0�q0

� 	24
� b2

2Sþ 1

X
kk0k00qq0q00

ð�1Þqþq0þq00gkq;iAk0q0 ;jDk00q00TrS bSk�q
bSk0�q0

bSk00�q00

� 	35
þOðb3Þ: ð6:26Þ

The details of the calculation are given in Appendix D. This expres-
sion can be simplified by calculating the traces (also see Appendix
D). The term that is first-order in 1=ðkTÞ, rS;1

ij , is then given by [89]:

rS;1
ij ¼ � lB

�hcIkT
X2S
k¼0

hSkbSkkSi2
2kþ 1

Xþk

q¼�k

ð�1Þqgkq;iAk�q;j; ð6:27Þ

where we notice that the only contributing terms from the sum are
those with k ¼ k0 and q ¼ �q0. This is an analogous expression to
that in Eq. (6.22). However we recall that here the electronic spin
is not thermally isolated in the ground state of the ZFS. The
second-order term rS;2

ij is given by

rS;2
ij ¼ lB

�hcIðkTÞ2
ð�1Þ2Sð2Sþ 1Þ1=2

X
kk0k00

hSkbSkkSihSkbSk0 kSihSkbSk00 kSi


 k0 k00 k

S S S

( )


X
qq0q00

gkq;iAk0q0 ;jDk00q00
k0 k00 k

�q0 �q00 �q

 !
;

ð6:28Þ

where the arrays contained in parentheses and braces are Wigner 3j
and Wigner 6j symbols respectively.

It is important to note that the symmetry properties of the
Wigner 3j and Wigner 6j symbols impose restrictions on both
the ranks and orders of the irreducible spherical tensors that can
contribute to the second-order paramagnetic chemical shielding.
Firstly the symmetry of the 6j symbol dictates that the triplets
ðk; S; SÞ, ðk0; S; SÞ, and ðk00; S; SÞ must satisfy the triangle condition k,
k0, k00 � 2S. This is simply a reinforcement of the restriction on
the ranks of the interaction tensors that we stated earlier. Sec-
ondly, both the 3j and 6j symbols require ðk; k0; k00Þ to also satisfy
the triangle condition that any one of the three ranks must be less
than or equal to the sum of the other two. This has important con-
sequences for the shielding tensor to second order, as we will see
later. Finally, from the 3j symbol, the sum of the three orders must
be zero, qþ q0 þ q00 ¼ 0.

As we have also noted in Chapter 4, the g-tensor is responsible
for introducing a term into the paramagnetic shielding tensor with
a leading temperature dependence of 1=ðkTÞ, and the ZFS gives a

term with a leading temperature dependence of 1=ðkTÞ2. This fea-
ture is also present in the Bleaney expression in Eq. (4.132). How-
ever the present situation is more general, as we have explicitly
considered the higher-order irreducible spherical tensor compo-
nents of the EPR parameters. Hence Eqs. (6.27) and (6.28) are gen-
eralized forms of the Bleaney expression in Eq. (4.132).

6.3.1. The Bleaney expression for d-block metal ions revisited
We now calculate the paramagnetic shielding tensor up to

Oð1=ðkTÞ2Þ for a Hamiltonian comprising an electronic Zeeman

term and a hyperfine term that are both linear in bS , and a ZFS term
with terms of ranks 2, 4, and 6:
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bH ¼ lBB0 � g � bS þ bS � A � Î þ
X

k¼2;4;6

Xþk

q¼�k

ð�1ÞqDkq
bSk�q ð6:29Þ

¼ lB

X
i

B0;i

Xþ1

q¼�1

ð�1ÞqbS1�qg1q;i þ
X
i

Xþ1

q¼�1

ð�1ÞqbS1�qA1q;îIi

þ
X

k¼2;4;6

Xþk

q¼�k

ð�1ÞqDkq
bSk�q: ð6:30Þ

In the ZFS term, we encounter the terms of rank 4 for transition
metal ions with S P 2, and the rank-6 terms for the lanthanide ions
[185]. Henceforth we concentrate on the transition-metal ions of

the d block and those of the f block with an f 7 configuration, such
as Gd3+, with the aim being to reproduce the Bleaney expression
in Eq. (4.132). We can write down the first- and second-order parts
of the shielding tensor from Eqs. (6.27) and (6.28):

rS;1
ij ¼ � lB

�hcIkT
hSkbS1kSi2

3

Xþ1

q¼�1

ð�1Þqg1q;iA1�q;j; ð6:31Þ

rS;2
ij ¼ lB

�hcIðkTÞ2
ð�1Þ2Sð2Sþ 1Þ1=2hSkbS1kSi2

X
k00¼2;4;6

hSkbSk00 kSi
1 k00 1
S S S

( )



X
qq0q00

g1q;iA1q0 ;jDk00q00
1 k00 1
�q0 �q00 �q

 !
:

ð6:32Þ
As we have come to expect, the first-order term is proportional to
the product of the g- and hyperfine tensors, and is independent of
the ZFS tensor. In the second-order term we have hitherto retained
terms in the ZFS tensor of all possible ranks, but we can see that a
simplification is possible. Since k, k0, and k00 must satisfy the triangle
condition, the only ZFS tensor components that contribute to the
second-order shielding tensor are of rank k00 ¼ 2, as was previously
noted by Bleaney [62], and McGarvey and Kurland [38].

We can now proceed with the calculation by writing down the
analytical expressions of all the factors involved. The reduced
matrix elements of the first- and second-rank spin tensors are
given by Eq. (6.23), and have the following explicit expressions:

hSkbS1kSi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ

p
; ð6:33Þ

hSkbS2kSi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þð2S� 1Þð2Sþ 3Þ

6

r
: ð6:34Þ

The exact expression for the Wigner 6j symbol with k00 ¼ 2 has been
derived by Edmonds [227], and is

1 2 1
S S S

� �
¼ ð�1Þ2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2S�1Þð2Sþ3Þ

30SðSþ1Þð2Sþ1Þ

q
; S P 1

0; otherwise:

(
ð6:35Þ

It can also be shown that the exact expression for the Wigner 3j
symbol is [191]

1 2 1
�q0 �q00 �q

� �
¼ ð�1Þ�q0�q



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ q0Þ!ð2� q00Þ!ð2þ q00Þ!ð1� qÞ!
30ð1� q0Þ! ð1þ q0 þ q00Þ!ð Þ2 ð1� q00 � qÞ!ð Þ2ð1þ qÞ!

s
;

ð6:36Þ

for qþ q0 þ q00 ¼ 0 and zero otherwise. Finally the components of
the g- and hyperfine tensors g1q;i and A1q;i can be calculated from
the Cartesian components. The g-tensor comprises three vectors
g1q, one for each value of q, which are equal to:

g1	1 ¼ �
ffiffiffi
1
2

r gxx 	 igxy

gyx 	 igyy

gzx 	 igzy

0B@
1CA; g10 ¼

gxz

gyz

gzz

0B@
1CA: ð6:37Þ

Likewise the three vectors comprising the hyperfine tensor A1q are:

A1	1 ¼ �
ffiffiffi
1
2

r Axx 	 iAyx

Axy 	 iAyy

Axz 	 iAyz

0B@
1CA; A10 ¼

Azx

Azy

Azz

0B@
1CA: ð6:38Þ

Combining all these expressions results in the final expression for
the paramagnetic shielding tensor to second order in 1=ðkTÞ:

rS ¼ �lBSðSþ 1Þ
3�hckT

g � Aþ lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
30�hcðkTÞ2

g � D � A;

ð6:39Þ
where D is the second-rank part of the ZFS interaction tensor. This
expression is identical to that derived earlier in Eq. (4.132), but is in
fact more general. The former expression was calculated assuming
that the zero-field Hamiltonian was described entirely by the
second-rank ZFS tensor, whereas the present derivation has shown
that the fourth- and sixth-rank parts do not contribute to the
shielding tensor to second order in 1=ðkTÞ. However these higher-
order components are present in the terms of third order and higher
in 1=ðkTÞ [38]. We recall that if the higher-order ZFS terms are zero
or negligible, the shielding tensor has the form of Eq. (4.109).

6.3.2. The EPR formalism of the magnetic susceptibility tensor
The EPR formalism can also be used to calculate the magnetic

susceptibility tensor [89]. Following the discussion leading to the
paramagnetic shielding tensor in Eq. (6.24), and substituting the
hyperfine field operator for the electronic magnetic moment oper-
ator, we obtain a susceptibility tensor of a similar form:

vij ¼ l0l
2
B

X2S
k¼0

X2S
k0¼0

Xþk

q¼�k

Xþk0

q0¼�k0
ð�1Þqþq0gkq;iZkk0qq0gk0q0 ;j: ð6:40Þ

We can write down the first- and second-order terms in 1=ðkTÞ in
the susceptibility tensor following the same procedure as for the

paramagnetic shielding tensor. The first-order term vð1Þ
ij is

vð1Þ
ij ¼ l0l2

B

kT

X2S
k¼0

hSkbSkkSi2
2kþ 1

Xþk

q¼�k

ð�1Þqgkq;igk�q;j; ð6:41Þ

and the second-order term vð2Þ
ij is

vð2Þ
ij ¼ �l0l2

B

ðkTÞ2
ð�1Þ2Sð2Sþ 1Þ1=2

X
kk0k00

hSkbSkkSihSkbSk0 kSihSkbSk00 kSi


 k0 k00 k
S S S

( )


X
qq0q00

gkq;igk0q0 ;jDk00q00
k0 k00 k
�q0 �q00 �q

 !
:

ð6:42Þ
We immediately notice the similarity between these expressions
and the corresponding expressions for the shielding tensor in Eqs.
(6.27) and (6.28).

If we further assume that the system can be described with the
EPR Hamiltonian in Eq. (6.30) we obtain Eq. (4.174), which is
reproduced below

v � l0l2
BSðSþ 1Þ
3kT

g � gT � l0l2
BSðSþ 1Þð2S� 1Þð2Sþ 3Þ

30ðkTÞ2
g � D � gT :

ð6:43Þ
Once again, as noted by Bleaney [62] and Kurland and McGarvey
[38], the only terms of the ZFS Hamiltonian that contribute to the
susceptibility tensor to second order are those of spatial rank two.
We recall at this point that higher-order ZFS terms do contribute

to shielding terms of order higher than 1=ðkTÞ2. However when
the fourth- and sixth-rank ZFS terms are either zero or negligible

66 A.J. Pell et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 111 (2019) 1–271



we can write down a general form of the susceptibility tensor as
follows

v ¼ l0l
2
B g � Z � gT ; ð6:44Þ

which is the same expression as given in Eq. (4.173).

6.4. Electronic properties of the lanthanide ions

We now turn our attention to the lanthanide ions, focussing on
the formalism for the paramagnetic shielding and magnetic sus-
ceptibility tensors proposed by Bleaney [62]. This approach
assumes that the coordinated lanthanides can be modelled as free
metal ions with the crystal-field due to the ligands added as a per-
turbation. We therefore begin by summarizing the free-ion proper-
ties, and then introduce the crystal-field interaction.

6.4.1. The free lanthanide ions
The lanthanide ions are predominantly, but not exclusively,

trivalent with the unpaired electrons residing in the 4f orbitals.
Unlike the 3d shell of the first-row transition-metal ions, the 4f
orbitals of the lanthanides are not valence orbitals and so partici-
pate in the metal–ligand bonding to a lesser extent. In addition
the SO coupling strength of the lanthanides is much larger than
for the 3d metal ions. This places the lanthanide ions in the ‘weak
crystal-field limit’, where the SO coupling is much stronger than
the crystal-field interaction, and so cannot be treated as a pertur-
bation as in Chapter 4. We therefore use the approach of Bleaney
[62], which is to assume that the 4f orbitals are sufficiently radially
contracted for the properties of the coordinated metal ions to be
adequately described by the free ions, with the crystal-field inter-
action added as a perturbation.

The magnetic properties of the free lanthanides are described in
terms of the total angular momentum J which, in the limit of LS
coupling, is written as the sum of the total orbital L and spin S
angular momenta of the electronic configuration, according to
the LS coupling scheme:

J ¼ Lþ S: ð6:45Þ
The total angular momentum is quantized, and labelled with the
total angular momentum quantum number J which takes values
according to the Clebsch–Gordan series, i.e. Lþ S; Lþ S� 1, . . .,
jL� Sj. The electronic levels corresponding to the configuration of
the free ion can therefore be labelled by these three quantum num-

bers and are usually represented by term symbols 2Sþ1LJ . The ground
level is given by Hund’s rules [207], and is generally the only level
that is thermally occupied at room temperature and is therefore the
only state we need consider. The exceptions to this assertion are the

ions with configurations 4f 5 and 4f 6, namely Sm3+ and Eu3+, where
we also have to consider the lowest-lying excited states. The free-
ion properties of the trivalent lanthanides Ln3+ with between 1
and 13 4f electrons, and the one-electron and many-electron SO
coupling constants f and k [186], are given in Table 6.2.

Each electronic level 2Sþ1LJ comprises 2J þ 1 electronic states that
are labelled with the azimuthal quantum number MJ , which takes
values fromþJ to�J in integer steps. In the absence of other interac-
tions the states of a particular level are degenerate, and may there-

fore be described as corresponding to an effective spin eS ¼ J whose

multiplicity 2eS þ 1matches the true degeneracy. Clearly levels with
different J therefore correspond to different effective spins.

The effective spin EPR Hamiltonian can therefore be written in

terms of the operator for the total angular momentum bJ . For the
free ion the ZFS is zero by symmetry, and so we need only consider
the electronic Zeeman interaction, and the hyperfine coupling
between the unpaired electrons and the lanthanide nucleus. We
have seen that the total magnetic moment lJ is not parallel to
the total angular momentum J, as illustrated in Fig. 4.1. However,
from the projection theorem outlined in Appendix A.1, the matrix

elements of the operator l̂J are proportional to those of bJ , and so
the component of the magnetic moment that appears in the Zee-

man interaction Hamiltonian is that which commutes with bJ , i.e.
�lBgJ

bJ , as shown in Fig. 6.1. The Zeeman interaction HamiltonianbHZ ¼ lBB0 � L̂þ geŜ
� 	

can therefore be written in terms of bJ :
bHZ ¼ lBgJB0 � bJ : ð6:46Þ

The number gJ is the isotropic Landé g-factor which is given by

gJ ¼
gS þ gL

2
þ ðgL � gSÞ

LðLþ 1Þ � SðSþ 1Þ
2JðJ þ 1Þ ; ð6:47Þ

where gL and gS are the orbital and electronic g-factors. Writing
gL ¼ 1 and approximating gS as 2 gives us the familiar expression

gJ ¼
3
2
þ SðSþ 1Þ � LðLþ 1Þ

2JðJ þ 1Þ : ð6:48Þ

Table 6.2
List of the trivalent lanthanide ions, and the parameters defining the electronic ground states of the free ions assuming LS-coupling. The f-electron configurations are given, along
with the total spin S, orbital L, and total J angular momenta. The ground state is given by Hund’s rules, and is represented by the term symbol. The one-electron f and many-
electron k SO coupling parameters are also given, except for Pm3+, which is radioactive, and Gd3+, which has a half-filled 4f shell and therefore an SO interaction of zero.

Ion Configuration S L J Term f/cm�1a k/cm�1b

Ce3+ f 1 1=2 3 5=2 2F5=2 640 640

Pr3+ f 2 1 5 4 3H4 750 375

Nd3+
f 3 3=2 6 9=2 4I9=2 900 300

Pm3+
f 4 2 6 4 5I4 – –

Sm3+
f 5 5=2 5 5=2 6H5=2 1180 236

Eu3+
f 6 3 3 0 7F0 1360 227

Gd3+
f 7 7=2 0 7=2 8S7=2 – –

Tb3+ f 8 3 3 6 7F6 1620 �270

Dy3+ f 9 5=2 5 15=2 6H15=2 1820 �364

Ho3+ f 10 2 6 8 5I8 2080 �520

Er3+ f 11 3=2 6 15=2 4I15=2 2470 �823

Tm3+
f 12 1 5 6 3H6 2750 �1375

Yb3+ f 13 1=2 3 7=2 2F7=2 2950 �2950

a Values taken from Weil and Bolton [186].
b Calculated using k ¼ 	f=ð2SÞ with the plus sign for f-shells that are less than half full, and the minus sign for shells that are more than half full. When the shell is exactly

half full, the SO coupling is essentially zero.
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This expression for gJ can be derived by calculating the projection of
the total magnetic moment lJ onto the total angular momentum J,
as shown in Appendix A.1. The Zeeman interaction lifts the degen-
eracy of the each level J and, for an external magnetic field along z,
the Zeeman energy of each state is MJlBgJB0. One important prop-
erty of the Landé g-factor is that it varies with J, and so we would
expect a different g-factor, and therefore a different Zeeman split-
ting, for each level. This may appear trivial, but does in fact have
important consequences for the EPR and NMR spectra of lanthanide
compounds subject to a large crystal-field splitting of the electronic
energy levels.

We can write the hyperfine coupling Hamiltonian bHHF asbHHF ¼ AJ
bJ � Î; ð6:49Þ

where AJ is an isotropic contact hyperfine coupling constant. HerebHHF describes the interaction between the unpaired 4f electrons
and the lanthanide nuclear spin.

6.4.2. The crystal-field interaction
The crystal-field interaction Hamiltonian can be described by

Eq. (6.6), but in terms of the total angular momentum. The expres-
sion is here given explicitly:

bHCF ¼
X

k¼2;4;6

Xþk

q¼�k

ð�1ÞqBkq
bJk�q; ð6:50Þ

where the bJkq are irreducible spherical tensor operators of the total
angular momentum of rank k and order q. In the absence of an
external magnetic field and nuclear magnetic moments, this Hamil-
tonian has the effect of lifting the degeneracy of the manifold of
states of level J, creating a set of sub-manifolds each with a multi-
plicity lower than 2J þ 1.

It is common to write the crystal-field splitting Hamiltonian bHCF

using the following alternative form, rather than in terms of the
irreducible spherical tensor operators:

bHCF ¼
X

k¼2;4;6

Xþk

q¼0

Aq
khrkihJkkkJibOq

k: ð6:51Þ

In Eq. (6.51) the spin part of the interaction is represented by the

Stevens operator equivalents bOq
k of rank k, and an order q that takes

values from 0 to þk [220]. These operators should not be confused

with the irreducible spherical tensor operators bOkq introduced

earlier. For example the operators bO0
2 and bO2

2 are given bybO0
2 ¼ 3bJ2z � JðJ þ 1Þ1̂; ð6:52ÞbO2
2 ¼ 1

2
bJ2þ þ bJ2�� 	

; ð6:53Þ

and the additional relevant expressions for k P 2 can be found in
Abragam and Bleaney [185]. The spatial part of the interaction is
represented by the A-energy coefficients Aq

k of rank k and order q.

The reduced matrix elements hJkkkJi are numerical coefficients that
depend only on J. It is common to use the notation a;b, and c for
k ¼ 2, 4, and 6 so that, for example, hJkakJi � hJk2kJi. However we
do not use that convention here. The remaining factor hrki is the
mean kth power of the electronic radius of the 4f orbitals. The prin-

cipal values of the rank-two part of the B-tensor, eBii, are related to

A0
2 and A2

2 as follows [62]:

eBxx ¼ hr2ihJk2kJi A2
2 � A0

2

� 	
; ð6:54Þ

eByy ¼ hr2ihJk2kJi �A2
2 � A0

2

� 	
; ð6:55ÞeBzz ¼ hr2ihJk2kJi2A0

2; ð6:56Þ
from which we can define the axial and rhombic anisotropies of
B;DBax and DBrh, as

DBax ¼ hr2ihJk2kJi3A0
2; ð6:57Þ

DBrh ¼ hr2ihJk2kJi2A2
2: ð6:58Þ

These crystal-field splitting parameters can be calculated from first
principles as demonstrated by, for example, Vonci et al. [74].

Each sub-manifold can therefore be described by an effective

spin eS chosen so that the degeneracy is equal to 2eS þ 1. We can
now write down the EPR Hamiltonian of the lanthanide within a
particular sub-manifold n as

bHðnÞ ¼ lB

X
i

B0;i

X2eS
k¼0

Xþk

q¼�k

ð�1ÞqbSk�qg
ðnÞ
kq;i

þ
X2eS
k¼0

Xþk

q¼�k

ð�1ÞqbSk�q

X
i

AðnÞ
kq;i
bIi þX2eS

k¼0

Xþq

q¼�k

ð�1ÞqDðnÞ
kq
bSk�q; ð6:59Þ

where the superscript ðnÞ denotes the EPR tensor parameters in the
nth sub-level.Wenote that the g-tensor in each sub-level is no longer
isotropic due to the lowering of the symmetry of the metal environ-
ment, and that the hyperfine interaction can now refer to the cou-
pling between the unpaired electrons and a nucleus in the ligand.
These tensor parameters are actually different for the different sub-
manifolds that are present as a result of the crystal field splitting
[185]. To take an example, the four states of the J ¼ 3=2 level of a free
lanthanide ion will, when subjected to an axially-symmetric crystal-
field of spatial rank two, split into two doubly-degenerate

sub-manifolds, each corresponding to an effective spin eS ¼ 1=2. The
PAF components of the rank-one g-tensor are egzz ¼ 3gJ andegxx ¼ egyy ¼ 0 for one sub-manifold, and egzz ¼ gJ and egxx ¼ egyy ¼ 2gJ

for theother. Inpractice thismeans that the effectiveg- andhyperfine
tensors that we measure during an EPR experiment depend on the
relative populations of the sub-manifolds at the given temperature.

6.5. The Bleaney theory of the paramagnetic shielding tensor due to
lanthanide ions

Bleaney derived a form of the paramagnetic chemical shielding
tensor for lanthanide ions using a method that is distinct from the
EPR formalism [62]. He assumed that (i) only the ground-state J
manifold is thermally occupied, and that (ii) the 2J þ 1 states are
split by the crystal field by an overall amount that does not exceed
kT. Condition (i) is a good assumption for the lanthanide ions, with

the exception of those metal ions with either a 4f 5 or 4f 6 configu-
ration. However Bleaney calculated corrections involving the
excited states for these cases. Condition (ii) is reasonable for many
lanthanide compounds. This latter assumption also allows us to
make a simplification to the form of the electron Zeeman interac-
tion. We have seen that the different sub-manifolds of the level J
under the crystal-field splitting have g-tensors with different

Fig. 6.1. Illustration of the relationship between the total angular momentum J and
the total magnetic moment lJ under the Russell–Saunders coupling scheme. In
general lJ is not parallel to J. However the electronic Zeeman interaction depends
only on the component of the magnetic moment that is parallel to J, namely �lBgJJ.
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anisotropies, and whose PAFs have different orientations. Kurland
and McGarvey pointed out that, when all the sub-manifolds have
a substantial thermal population, the g-anisotropies from the dif-
ferent sub-manifolds cancel to a first approximation, and we are
left with an overall g-tensor that is isotropic, and equal to the
Landé factor gJ . We can therefore write down a Hamiltonian that
comprises this Zeeman interaction, and terms for the hyperfine
and crystal-field interactions as:

bHJ ¼ lBgJB0 � bJ þ bJ � A � Î þ
X

k¼2;4;6

Xþk

q¼�k

ð�1ÞqBkq
bJk�q: ð6:60Þ

Note that, in contrast to the effective-spin Hamiltonians we have so
far encountered, the Hamiltonian in Eq. (6.60) is a property of the
total angular momentum of the physical system, rather than of
the effective spin of a particular sub-level. This is why there is a
term for the crystal-field interaction, rather than a ZFS. We can
use this Hamiltonian to derive an expression for the paramagnetic
shielding tensor in terms of the total angular momentum. We begin
by deriving the following electronic magnetic moment and hyper-
fine field operators:

m̂i ¼ �lB

Xþ1

q¼�1

ð�1ÞqbJ1�qg1q;i; ð6:61Þ

F̂ i ¼
Xþ1

q¼�1

ð�1ÞqbJ1�qA1q;i; ð6:62Þ

where

g1	1 ¼ �
ffiffiffi
1
2

r
gJ

1
	i
0

0B@
1CA; g10 ¼ gJ

0
0
1

0B@
1CA; ð6:63Þ

and

A1	1 ¼ �
ffiffiffi
1
2

r Axx 	 iAyx

Axy 	 iAyy

Axz 	 iAyz

0B@
1CA; A10 ¼

Azx

Azy

Azz

0B@
1CA: ð6:64Þ

The hyperfine coupling constant can be written as A ¼ Acon1þ Adip,
i.e. as the sum of an isotropic contact term and an anisotropic dipo-
lar term.

We can now derive the Bleaney expression for the shielding
tensor rJ

ij by expanding the expression from the EPR formalism

to second order in 1=ðkTÞ, which gives us (from Appendix D),

rJ
ij ¼ � lB

�hcI
b

2J þ 1

X
qq0

ð�1Þqþq0g1q;iA1q0 ;jTrJ bJ1�q
bJ1�q0

� 	"

� b2

2J þ 1

X
k00qq0q00

ð�1Þqþq0þq00g1q;iA1q0 ;jBk00q00TrJ bJ1�q
bJ1�q0

bJk00�q00

� 	35þOðb3Þ;

ð6:65Þ
where we have replaced Swith J, and TrJ refers to a summation over
the 2J þ 1 states of the level J. As previously we can simplify the
traces to obtain (see Appendix D) the first-order and second-order
contributions to the shift rJ;1

ij and rJ;2
ij :

rJ;1
ij ¼ � lB

�hcIkT
hJkbJ1kJi2

3

Xþ1

q¼�1

ð�1Þqg1q;iA1�q;j; ð6:66Þ

rJ;2
ij ¼ lB

�hcIðkTÞ2
ð�1Þ2Jð2J þ 1Þ1=2hJkbJ1kJi2 X

k00¼2;4;6

hJkbJk00 kJi 1 k00 1
J J J

( )



X
qq0q00

g1q;iA1q0 ;jBk00q00
1 k00 1
�q0 �q00 �q

 !
:

ð6:67Þ

Substituting in the values for the spatial tensor parameters, and the
3j and 6j symbols, we obtain the Bleaney expression for the param-
agnetic shielding tensor:

rJ � �lBgJ JðJ þ 1Þ
3�hckT

Aþ lBgJ JðJ þ 1Þð2J � 1Þð2J þ 3Þ
30�hcðkTÞ2

B � A; ð6:68Þ

where we note that only the rank-two terms in the crystal-field
Hamiltonian contribute to the shielding tensor to second order.

6.5.1. The paramagnetic chemical shielding in terms of the magnetic
susceptibility tensor

We can also use the EPR formula to derive the paramagnetic
susceptibility tensor, in terms of J, of a system containing an

ensemble of lanthanide ions. To second order in 1=ðkTÞ2, the sus-
ceptibility tensor is

v � l0l2
Bg

2
J JðJ þ 1Þ
3kT

1� l0l2
Bg

2
J JðJ þ 1Þð2J � 1Þð2J þ 3Þ

30ðkTÞ2
B: ð6:69Þ

This expression exhibits a complete separation of the isotropic and
anisotropic contributions of the susceptibility according to their
temperature dependence, which is a direct result of treating the
g-tensor of the lanthanide ions as isotropic. The term that varies

as 1=ðkTÞ is purely isotropic whereas the 1=ðkTÞ2 term is purely ani-
sotropic, with an anisotropy that is proportional to that of, and with
the same orientation as, the second-rank part of the spatial tensor of
the crystal-field interaction Hamiltonian.

As for the first-row transition metals, we can write the hyper-
fine coupling constant in terms of the reduced coupling constant
C as

A ¼ l0lBgJ�hcIC; ð6:70Þ

where C is the sum of an isotropic contact part Ccon1 and an aniso-

tropic dipolar part Cdip. The paramagnetic shielding tensor rv in
terms of the susceptibility tensor now takes on a form that we have
seen before:

rv ¼ �v � C: ð6:71Þ
We are now in a position to write down all the terms in the expres-
sion for the shielding tensor that are formed from the cross-terms
between the coupling constant and the susceptibility tensor. They
are summarised in Table 6.3, where we have written the first-
and second-order terms in the susceptibility as vð1Þ and vð2Þ respec-
tively. The contact interaction produces two terms in the shielding
tensor, both of which are due to the unpaired electron spin density
that is present at the nucleus. Term 1 is purely isotropic, and exhi-
bits a temperature dependence of 1=ðkTÞ whilst term 2 is purely

anisotropic, with a temperature dependence of 1=ðkTÞ2 and aniso-
tropy parameters that are proportional to those of the second-
rank crystal-field splitting tensor. The two terms 3 and 4 are a result
of the long-range spin-dipolar interaction between the nucleus and
metal ion. Term 3 is purely anisotropic, with tensor parameters that
are proportional to those of the dipolar coupling tensor, and exhi-
bits a temperature dependence of 1=ðkTÞ. Term 4 is more complex
because it is given by the matrix product of the crystal-field split-
ting tensor with the dipolar coupling tensor, and so contains isotro-
pic, antisymmetric, and symmetric anisotropic parts. Like term 2, it

also has a 1=ðkTÞ2 temperature dependence. The isotropic part of
term 4 is a psuedo-contact shielding, as it is given by the product
of the anisotropic part of the susceptibility tensor with the dipolar
coupling tensor. Assuming that the 4f electrons can be modelled as
point-dipole moments, the pseudo-contact shielding is given by Eq.
(5.77) as
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rpcs
iso ¼� 1

12pR3 Dvax 3cos2ðhÞ�1
� �þ3

2
Dvrhsin

2ðhÞcosð2/Þ
� 

; ð6:72Þ

where h and / are the polar and azimuthal angles describing the
orientation of the susceptibility tensor to the dipolar coupling ten-
sor. In terms of the axial and rhombic crystal-field splitting tensor
parameters DBax and DBrh, the pseudo-contact shielding is equal to

rpcs
iso ¼ l0l2

Bg
2
J JðJ þ 1Þð2J � 1Þð2J þ 3Þ

360pðkTÞ2R3


 DBax 3cos2ðhÞ � 1
� �þ 3

2
DBrhsin

2ðhÞ cosð2/Þ
� 

: ð6:73Þ

This is the main result of Bleaney’s theory.

6.5.1.1. Trends in the contact and pseudo-contact shielding, and
shielding anisotropy. We are now in a position to decompose the
terms in the paramagnetic shielding tensor in Eq. (6.68) into prod-
ucts of two contributions, the first of which depends on the elec-
tronic properties of the free lanthanide ion, and the second of
which depends on the coordination environment. For example
the first term in Eq. (6.68), which is proportional to the hyperfine
tensor A, can be decomposed as follows. The free-ion part of the
dominant contribution to the SA, that depends on the lanthanide
ion being studied, is a function of gJ and J, and is equal to

CSA
J ¼ g2

J JðJ þ 1Þ: ð6:74Þ

We recall that the hyperfine tensor is proportional to gJ , hence the
above factor contains g2

J . The coordination environment is due to
the unpaired electron density present in the s-orbital of the
observed nuclear spin, and the distance of this nucleus from the lan-
thanide ion, both of which are contained within the hyperfine ten-
sor. These factors dictate the size of the dominant part of the SA.
Therefore the factor CSA

J indicates the sign and magnitude of the
dominant part of the SA. The form of the contact shielding is actu-
ally more complicated than predicted by the simple Bleaney theory,
and requires special treatment, as first proposed by Golding and
Halton [61]. This is discussed below.

The second term of Eq. (6.69) gives rise to the PCS, and a sec-
ondary contribution to the SA. The lanthanide-ion-dependent part
is

Cpcs
J ¼ g2

J JðJ þ 1Þð2J � 1Þð2J þ 3ÞhJk2kJi; ð6:75Þ

and the coordination-environment-dependent part is due to the

crystal-field splitting factors hr2iA0
2 and hr2iA2

2.
The form of the contact contribution to the isotropic shielding is

more complicated than suggested by the Bleaney theory. The rea-
son for this is that the contact interaction requires the through-
bond transfer of the unpaired electronic spin density, and so we
cannot separate the shielding into parts that depend solely on
the properties of the free ion and coordination environment. One

way of treating the contact shielding has been proposed by Golding
and Halton [61]. The idea is to essentially treat the electronic con-
figuration of the lanthanide as a free ion, but include a modification
to account for the bonding to the ligands. This modification is the
inclusion of an orbital reduction parameter c that takes values
close to unity. The factor Ccon

J which gives the sign and magnitude
of the contact shielding when the ion is in an SO coupling level J
can be shown to be

Ccon
J ¼ ðgJ � cÞgJ JðJ þ 1Þ

2� c
þ 2kT

k

� � ðgJ � cÞðgJ � 2Þ
2� c

: ð6:76Þ

The first term has a similar form to CSA
J , with the inclusion of the c

factor. The second term accounts for the effect of the SO coupling
strength k.

Numerical values of the ion-dependent contributions for all
these terms in the paramagnetic shielding are given in Table 6.4.
These values depend only on the nature of the ion, and so can be
used to compare the size of the expected shifts and SAs for a series
of lanthanide ions in the same coordination site, assuming that
both the coordination geometry and the factors hr2iAq

2 are
unchanged. Note also that, whilst these numerical factors can be
used to compare, for example, the expected pseudo-contact shifts
for a series of ions, they cannot be used to compare the sizes of
the contact shifts versus the pseudo-contact shifts as this compar-
ison also requires knowledge of the Fermi-contact and spin-dipolar
components of the hyperfine tensor. For instance we would expect
both Ce3+ and Pm3+ to give relatively small SAs, with the relative
factors being 6.4 and 7.2 respectively, whereas we would expect
the corresponding values for Dy3+ and Ho3+ to be approximately
16 times larger. We see a different trend for the sizes of the PCSs
with Ce3+ and Pm3+ giving values that differ more in magnitude
than their contact/SA contributions, and which are also of opposite
sign. In addition we expect Gd3+ and Tb3+ to give the largest contact
shifts, but Dy3+ to give the largest pseudo-contact shifts.

6.5.2. Contact shift contributions from excited states of different J
The theory presented above assumes that only the lowest-

energy J level, with J ¼ J0, contributes to the electronic properties
of the lanthanide, and therefore to the paramagnetic shift. If the

Table 6.4
Parameters pertaining to the size of the contact [61] and pseudo-contact [62] shifts,
and the SA of the different lanthanides. The contact shift is proportional to Ccon

J , the
pseudo-contact shift to Cpcs

J , and the SA is proportional to CSA
J . The contact-shift terms

are evaluated with c ¼ 1, and at 300 K.

Ion Configuration J gJ hJk2kJia CSA
J Ccon

J
b Cpcs

J
c

Ce3+ f 1 5=2 6=7 �0:0571 6.4 �0:98 �11:8

Pr3+ f 2 4 4=5 �0:0210 12.8 �2:9 �20:7

Nd3+
f 3 9=2 8=11 �0:00643 13.1 �4:4 �8:08

Pm3+
f 4 4 3=5 0.00771 7.2 – 4.28

Sm3+
f 5 5=2 2=7 0.0413 0.7 0.3 0.943

Eu3+
f 6 0 – – – – –

1 3=2 �0:200 4.5 1.0 �4:5
2 3=2 �0:0349 13.5 4.0 �9:9

Gd3+
f 7 7=2 2 0 63.0 31.5 0

Tb3+
f 8 6 3=2 �0:0101 94.5 31.9 �157:5

Dy3+ f 9 15=2 4=3 �0:00635 113.3 28.6 �181

Ho3+ f 10 8 5=4 �0:00222 112.5 22.6 �71:3

Er3+ f 11 15=2 6=5 0.00254 91.8 15.4 58.8

Tm3+
f 12 6 7=6 0.0101 57.2 8.2 95.3

Yb3+
f 13 7=2 8=7 0.0317 20.6 2.6 39.2

a Values taken from Abragam and Bleaney [185], and Bleaney [62].
b Values taken from Golding and Halton [61].
c Values taken from Bleaney [62].

Table 6.3
The terms present in the paramagnetic chemical shielding tensor in a lanthanide
system, expressed in terms of both the molecular/atomic-level parameters rJ , and the
bulk magnetic susceptibility tensor rv .

Type Term r J rv Rank

Contact 1 � lBgJ JðJþ1Þ
3�hckT Acon �vð1ÞCcon 0

2 lBgJ JðJþ1Þð2J�1Þð2Jþ3Þ
30�hcðkTÞ2 BAcon �vð2ÞCcon 2

Dipolar 3 � lBgJ JðJþ1Þ
3�hckT Adip �vð1ÞCdip 2

4 lBgJ JðJþ1Þð2J�1Þð2Jþ3Þ
30�hcðkTÞ2 B � Adip �vð2Þ � Cdip 0, 1, 2
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4f shell is less than half full the lowest excited state is J0 þ 1, whilst
for 4f shells that are more than half full it is J0 � 1. In general, in the
free ion, the lowest-lying excited J levels are 2000 cm�1 or more
above the ground level, and we do not need to consider them.
However there are two exceptions amongst the trivalent ions,

which are Sm3+ (4f 5; ground term 6H5/2), and Eu3+ (4f 6; ground
term 7F0). The lowest-lying excited level of Sm3+ is J ¼ 7=2 which
lies at 1000 cm�1 above the ground level, and for Eu3+ it is J ¼ 1
which lies at 400 cm�1 above the ground level. In order to describe
the paramagnetic chemical shielding due to these lanthanides we
must account for these low-lying ground states, and must include
them in the sum over states in the EPR formula in Eq. (4.103). The
states jnmi now contain information about the different J levels that
result from SO coupling as well as the crystal-field splitting of each
J level.

The effect of thermal population of the excited states on the
total isotropic contact shielding parameter Ccon can be calculated
from the following Boltzmann average over the excited J levels:

Ccon ¼
P

JC
con
J ð2J þ 1Þ expð�EJ=kTÞP
Jð2J þ 1Þ expð�EJ=kTÞ ; ð6:77Þ

where the energies EJ are due to the SO coupling, and are given by

EJ ¼ k
2

JðJ þ 1Þ � LðLþ 1Þ � SðSþ 1Þ½ �: ð6:78Þ

The values at 300 K, taken from Golding and Halton, are tabulated in
Table 6.5 [61]. If we compare the values of Ccon with those calcu-
lated from the ground level only in Table 6.4 we see the inclusion
of thermal population of the excited levels has a negligible effect
on the contact coupling, with the exception of Sm3+ and Eu3+. In
the former case the excited states reduce the magnitude of the
(already small) contact shielding by almost an order of magnitude.
However the most substantial effect is seen for Eu3+, where the
inclusion of the excited states increases the contact shielding from
zero to a substantially larger value.

6.5.3. Pseudo-contact shift contributions from excited states of
different J

The excited states also play an important role for the pseudo-
contact shift in the Bleaney formalism. Here we examine the cases
of Sm3+ and Eu3+, and also comment on Gd3+.

6.5.3.1. The Sm3+ ion: 4f 5, 6H5=2. To calculate the correction to the
PCS for all the trivalent lanthanide ions with the exception of

Eu3+, we need only consider the effects of mixing the excited states
into the ground state, which results in the PCS in Eq. (6.73) being
multiplied by the following correction factor [62]:

1þ a
kT
DE

� �
þ b

kT
DE

� �2

þ c
ðkTÞ2
DEDE0

 !
: ð6:79Þ

In Eq. (6.79) a, b, and c are coefficients, DE is the energy of the
lowest-lying excited state relative to the ground state, and DE0 is
the energy of the lowest-lying excited state resulting from different
values of S and L to those of the ground state. The coefficients a and
b and the ratio kT=DE have been calculated by Bleaney, and are
reproduced in Table 6.6 [62]. These correction terms are negligible
for all the ions apart from Sm3+, which has values

aðkT=DEÞ ¼ �2:25; b=ðkT=DEÞ2 ¼ �0:12, and also cðkTÞ2=ðDEDE0Þ ¼
þ0:14 at 300 K [62]. The overall multiplicative factor is then
�1:23, which results in a change in sign of the PCS predicted from
the ground state only. The lowest-lying excited J level J ¼ 7=2 is
sufficiently high for its thermal population to be negligibly small,
and we need only consider the effects of mixing of the excited states
into the ground state.

6.5.3.2. The Eu3+ ion: 4f 6, 7F0. For the Eu3+ ion the situation is more
complex. The ground level of J ¼ 0 is diamagnetic, but the mixing
of the excited states into the ground state gives rise to a
temperature-independent paramagnetic shift. In addition to the
J ¼ 1 excited level at 400 cm�1 above the ground level, we must
also consider the second excited level J ¼ 2 at 1200 cm�1, and pos-
sibly the third J ¼ 3. We may also see contributions to the param-
agnetic shift from the thermal population of these same excited
states, which gives temperature-dependent contributions to the
PCS [62]. The energies quoted here are those in the free ion and
so we must bear in mind that the excited levels may be lower-
lying in a bound ion [185].

6.5.3.3. The Gd3+ ion: 4f 7, 8S7=2. The Gd3+ ion represents a special
case amongst the trivalent lanthanides as it possesses a half-full
4f shell, and is therefore an S term. The SO coupling is effectively
zero, and so the ion exhibits behaviour more akin to a first-row
transition-metal ion with S ¼ 7=2 than to the other lanthanides.
One important property is that the reduced matrix element
hJk2kJi is zero, and so the PCS is zero. The zero PCS is a property
that Gd3+ shares with transition-metal ions with half-filled d shells,
such as high-spin Mn2+ and Fe3+. It should also be noted that,
because there is no SO coupling, there are no low-lying J-levels that
mix with the ground level J ¼ 7=2.

Table 6.5
The parameters Ccon dictating the sign and size of the contact shift for the full series of
trivalent lanthanide ions calculated by considering the excited SO coupling states; the
values given here are taken from Golding and Halton [61]. c ¼ 1, and the temperature
is 300 K.

Ion Configuration Ccon

Ce3+ f 1 �0:98

Pr3+ f 2 �3:0

Nd3+
f 3 �4:5

Pm3+
f 4 �4:0

Sm3+
f 5 0.063

Eu3+
f 6 10.7

Gd3+
f 7 31.5

Tb3+ f 8 31.8

Dy3+ f 9 28.5

Ho3+ f 10 22.6

Er3+ f 11 15.4

Tm3+
f 12 8.2

Yb3+ f 13 2.6

Table 6.6
The values of the coefficients a and b, and the factor kT=DE at 300 K used in the
correction factor for the pseudo-contact shift resulting from the mixing of excited
states into the ground state. Values for the trivalent lanthanides (excluding Eu3+ and
Gd3+) are taken from Bleaney [62].

Ion a b kT=DE at 300 K aðkT=DEÞ bðkT=DEÞ2

Ce3+ �0:555 �0:0833 0.09 �0:050 �0:00067
Pr3+ �0:497 �0:0535 0.095 �0:047 �0:00048
Nd3+ �0:673 �0:0678 0.105 �0:071 �0:00075
Pm3+ �1:426 �0:178 0.125 �0:18 �0:0028
Sm3+ �11:25 �3 0.20 �2:25 �0:12
Tb3+ �0:287 þ0:0139 0.10 �0:029 0.00014
Dy3+ �0:185 þ0:0081 0.07 �0:013 0.000040
Ho3+ �0:142 þ0:0062 0.05 �0:0071 0.000016
Er3+ �0:127 þ0:0061 0.03 �0:0038 0.0000055
Tm3+ �0:133 þ0:0081 0.025 �0:0033 0.0000051
Yb3+ �0:181 þ0:0188 0.02 �0:0036 0.0000075

A.J. Pell et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 111 (2019) 1–271 71



6.5.4. The shortcomings of the Bleaney theory
The Bleaney theory is currently the only theory of paramagnetic

shifts due to lanthanides that has been applied with any regularity
to the interpretation of the NMR data of systems containing rare
earths [69,75,67]. However the theory has a number of shortcom-
ings which mean that it is not generally applicable to all systems.
Some of these have already been mentioned in this chapter, and
these and other shortcomings have been enumerated in more
detail by Funk et al. [63]. There are two minor and two more
important points to be addressed, which are detailed and
expanded upon here.

Firstly Funk et al. point out that it is often assumed that the PAF
of the second-rank crystal-field splitting tensor is invariant when
comparing lanthanide ions in an isostructural series of materials.
This assumption does not hold in general, as the differences in
ion size and electronic properties can result in differences in the
coordination geometry for different ions. However, contrary to
the claim of Funk et al. this is not a deficiency in the Bleaney theory
per se, but is rather a cautionary note that the differences in the
PAF orientation must be accounted for when comparing the effects
of different lanthanide ions in isostructural systems. For example
Bertini et al. performed a study in which the full series of lan-
thanide ions, with the exceptions of Pm3+ and Gd3+, were incorpo-
rated into the C-terminal calcium binding site of the dicalcium
protein calbindin D9k [75]. The measured PCSs enabled the deter-
mination of the anisotropic components of the magnetic suscepti-
bility tensor and the orientation of the PAF for each lanthanide. The
axes of the largest anisotropy were found to vary by up to 20�
across the series.

Secondly the simplest implementation of the Bleaney theory
assumes a point-dipole model for the unpaired electron density
in the 4f orbitals. The justification for this is that the f-orbitals
are relatively contracted, and so the electron density is confined
to a relatively small space. In the study of Bertini et al. the observed
nuclei were separated from the lanthanide ion by more than 8 Å,
where the point-dipole model is a good approximation [75]. How-
ever the point-dipole approximation begins to break down when
the nucleus is closer to the metal ion, and the spread of electron
density must be taken into account. For first-row transition-
metal ions the cutoff separation below which the point-dipole
model begins to break down is approximately 4 Å, but this value
may be smaller for lanthanides due to the more contracted nature
of the 4f orbitals relative to the 3d orbitals, where the electron
density is delocalised to a greater extent onto the ligands. However
the lifting of the point-dipole restriction is relatively straightfor-
ward and, whilst the Bleaney formula itself is no longer valid, the
expressions given in Section 5.3.2.1 are still applicable.

This brings us to the more serious deficiencies in the Bleaney
theory. The third point is the central assumption that the crystal-
field splitting parameters Blm are much smaller in magnitude than
kT. This is generally not true, as B20 can take values up to
1500 cm�1 in some cases [228], compared to kT ¼ 205 cm�1 at
298 K. Since this assumption lies at the heart of the Bleaney theory,
there is no easy fix to this problem. A related issue is that the Blea-

ney formula is calculated from a series expansion up to 1=ðkTÞ2, to
which the higher-rank crystal-field terms do not contribute. How-
ever since the crystal-field splittings may be comparable to or
greater than kT the second-order term may not be sufficient to
account for the paramagnetic shielding, and the higher-rank
crystal-field terms may become important. The fourth shortcoming
is that it is assumed that the SO coupling is adequately described
by the Russell–Saunders coupling scheme, and that J is a good
quantum number. However this may not be the case for the heavy
lanthanide ions with larger SO coupling constants. Both of these
points are not easily fixed in the Bleaney formalism, and a different

approach is needed. In cases where the deficiencies in the Bleaney
theory are too important to be neglected it will be necessary to
adopt a more general EPR formalism, as summarised by the expres-
sion of the paramagnetic shielding tensor in Eq. (6.18). Neverthe-
less it should be pointed out that the Bleaney theory has been
remarkably successful in driving the field of paramagnetic NMR
of lanthanide ions forward.

6.6. The paramagnetic shielding due to actinides

A comparatively small number of paramagnetic NMR studies
have been performed on systems containing actinide ions, includ-
ing small molecules in solution [229–231] and solid oxides [13].
However only relatively recently have first-principles calculations
of the paramagnetic shifts been performed [213].

6.6.1. Electronic structure of actinide ions
The magnetic properties of the actinide ions are defined by the

5f electrons. Whilst one might expect these properties to mirror
those of the lanthanide ions, there are some important differences.
Firstly, in contrast to the lanthanide ions, actinides exhibit a
greater range of oxidation states. For example, uranium exhibits

oxidation states up to its diamagnetic (5f 0) state of þ6. Secondly
the SO coupling is not the dominant interaction. Rather, both the
crystal-field and SO interactions are large, and comparable in mag-
nitude. In addition we expect there to be greater deviation from
the Russell–Saunders coupling scheme than for lanthanide ions.
Thirdly, the partially-occupied 5f orbitals are more directly
involved in bonding interactions with the metal coordination site.

6.6.2. The EPR formalism for the paramagnetic shielding tensor
The paramagnetic shielding tensor due to an actinide ion is

given by the general formula of van den Heuvel and Soncini in
Eq. (6.18). When the electronic energy levels are parameterized
in terms of the EPR effective-spin parameters, we obtain separate
shielding tensors for each of the electronic levels, each of which
has the form of Eq. (6.22) if we neglect the ZFS. Otherwise, if we
include the ZFS we obtain a similar sum of terms, with each now
having the form of Eq. (6.24). We recall that each level has a dis-
tinct set of EPR parameters.

First-principles calculations of the paramagnetic shielding ten-
sor have recently been carried out by Gendron et al. where they

investigated the 5f 1 complexes UO2ðCO3Þ5�3 and NpO2ðCO3Þ4�3 ,

and the 5f 2 complexes PuO2ðCO3Þ4�3 and (C3H5)3UCH3 [92,93]. Here
they showed that the main contributions are due to the Fermi-
contact and spin-dipolar interactions, giving the contact shift and
PCS respectively, and a third term known as the paramagnetic
spin-orbital interaction (PSO), which is a coupling between the
nuclear spin and the electron orbital angular momentum.

Research in this area is still relatively new, but progressing
rapidly, and it is expected that both experiments and calculations
in actinide complexes, in addition to solid systems, will become
more widespread.

6.7. Key concepts

� In a free ion subject to spin-orbit coupling each electronic

energy level can be represented as an effective spin eS with mul-

tiplicity 2eS þ 1 that matches the actual degeneracy of the level.
� The immersion of a metal ion in a complex results in a
crystal- or ligand-field interaction which partially lifts the
degeneracy of the electron energy levels creating a number
of sub-levels to each of which is assigned an (different) effec-

tive spin eS.
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� Each sub-level is associated with a different set of EPR
parameters.

� The EPR Hamiltonian in a level with effective spin eS contains

terms with powers of Ŝ up to 2eS.
� Lanthanide ions form complexes with crystal-field interactions
that are much weaker than the SO coupling.

� Actinde ions form complexes in which the crystal-field interac-
tions and SO coupling are both large, and of comparable
magnitude.

� The paramagnetic shielding tensor can also be parameterised in
terms of the EPR parameters associated with all the thermally
accessible crystal-field energy levels (Eq. (6.24)).

� The magnetic properties of the free lanthanide ions are charac-
terised by the total angular momentum J.

� The paramagnetic shielding tensor due to lanthanide ions is
given by the general EPR expression in Eq. (6.18).

� A simplified form of the paramagnetic shielding tensor for lan-
thanides is given by the Bleaney formula in Eq. (6.68).

� The Bleaney theory is an approximate description of the shield-
ing tensor, and assumes that the lanthanide can be treated as a
free ion, subject to a crystal-field interaction that is sufficiently
small so that all the energy levels are equally populated at the
relevant temperature.

� The paramagnetic shielding tensor due to actinide ions can be
calculated from the general expression of van den Heuvel and
Soncini (Eq. (6.18)), which can, in turn, be expressed in terms
of the EPR parameters of each electronic level, giving a sum of
terms of the form of Eq. (6.22) (neglecting ZFS) or Eq. (6.24)
(including ZFS).

Chapter 7: The paramagnetic shift in multi-metal-ion systems,
and solid materials

Our discussion of the paramagnetic shift has so far only consid-
ered systems containing a single paramagnetic metal ion. This is
sufficient for describing monometallic complexes in solution, but
is obviously inadequate for molecular systems containing metal
clusters, crystallised molecular complexes, and solid materials. In
these systems we must account for the contributions to the para-
magnetic shift from multiple metal ions, and the effects of mag-
netic exchange interactions between the unpaired electrons of
different metal ions. In general these interactions can lead to either
ferromagnetic or antiferromagnetic alignment of the paramagnetic
centres at low temperature. In this review we are not interested in
this regime per se, but rather in the high-temperature paramag-
netic behaviour of these materials.

We begin by exploring how the exchange coupling interactions
influence the form of the paramagnetic shielding tensor due to
small clusters of metal ions. These principles can also be applied
to solid materials containing an extended network of coupled
metal ions. We also provide a simplified description of these solid
materials using a mean-field expression of the magnetic proper-
ties, leading to the Curie–Weiss model of the magnetic susceptibil-
ity [188] and the paramagnetic shielding tensor. The discussion in
this chapter focuses exclusively on the first-row d-transition-metal
ions.

7.1. The paramagnetic shift due to multiple non-interacting metal ions

Initially we consider the relatively simple case of the paramag-
netic shift of a nucleus that is hyperfine-coupled to multiple non-

interacting metal ions. The EPR Hamiltonian bHEPR can then be writ-

ten as a sum of Hamiltonians bHðAÞ
EPR, each containing the interactions

pertaining to an individual metal ion A:

bHEPR ¼ ��hcIB0 � 1� rorb
� � � Î þX

A

bHðAÞ
EPR: ð7:1Þ

The individual Hamiltonians bHðAÞ
EPR are given bybHðAÞ

EPR ¼ lBB0 � gðAÞ � bS ðAÞ þ bS ðAÞ � AðAÞ � Î þ bS ðAÞ � DðAÞ � bS ðAÞ; ð7:2Þ
where each symbol has its usual meaning, and the superscript ðAÞ
indicates that the relevant tensor or spin operator refers to the
metal ion A.

In such a system the paramagnetic chemical shielding tensor is
simply the sum of contributions from each metal ion, with the
expression for each contribution being given by Eq. (4.109):

rS ¼ � lB

�hcI

X
A

gðAÞ � ZðAÞ � AðAÞ
; ð7:3Þ

where the tensor ZðAÞ contains both the temperature dependence of
the shielding, and the information of the ZFS tensor of metal ion A.

The EPR formalism gives the following expression for ZðAÞ
kl :

ZðAÞ
kl ¼ 2

Q ðAÞ
0

X
n

expð�bEðAÞ
n Þ
X
m–n

X
m;l

hnmjŜðAÞk jmlihmljŜðAÞl jnmi
EðAÞ
m � EðAÞ

n

þ b

Q ðAÞ
0

X
n

expð�bEðAÞ
n Þ
X
m;m0

hnmjŜðAÞk jnm0ihnm0jŜðAÞl jnmi: ð7:4Þ

We note here that the expression for the shielding tensor does not
contain any ‘cross terms’ involving two or more metal ions. This is
because there are no interactions between the metal ions, with the
result that they are independent. This observation is no longer true
once we introduce the interactions between the spins, when the
cross terms become extremely important.

7.2. The Heisenberg exchange Hamiltonian

In this section we describe the simplest coupling interaction
between the unpaired electron clouds of two paramagnetic metal
ions, referred to as the Heisenberg exchange interaction. The

Hamiltonian bHex describing the interaction between two electronic

spins Sð1Þ and Sð2Þ is given by [188]bHex ¼ �2J ð12ÞbS ð1Þ � bS ð2Þ; ð7:5Þ
where J ð12Þ is the spatially-isotropic Heisenberg exchange coupling
constant, and the factor of two is present by convention. The
exchange constant J ð12Þ is a signed quantity, with the sign having
a profound effect on the behaviour of the spin system, as we will
see shortly. This Hamiltonian bears an obvious resemblance to the
Hamiltonian describing a homonuclear J-coupling interaction
between two nuclei [195], and much of the theory of nuclear spin
systems subject to J-couplings is applicable to exchange interac-
tions and vice versa.

7.2.1. The exchange interaction between two electronic spins 1=2
Many of the important properties of the exchange interaction

are illustrated by considering a metal dimer containing two elec-
tronic spins 1=2. An example of this in practice might be a system

containing two Cu2+ ions, each of which has a 3d9 electronic
configuration.

Each spin can be described using a basis comprising the func-
tions jai and jbi, which describe the spin states referred to as ‘spin
up’ and ‘spin down’ respectively, and we write down the spin 1 and
spin 2 bases as ja1i; jb1if g and ja2i; jb2if g. However these bases are
not sufficient for describing the interacting spin system, and we
need to construct a new basis by taking the direct product of the
two one-spin bases. The two-spin basis functions are therefore
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ja1i; jb1if g � ja2i; jb2if g ¼ ja1a2i; ja1b2i; jb1a2i; jb1b2if g ð7:6Þ
� jaai; jabi; jbai; jbbif g: ð7:7Þ

The exchange Hamiltonian has four eigenfunctions, denoted jSMSi,
which are linear combinations of the basis functions. The notation
jSMSi emphasises that each eigenstate represents the spin system
as an object with total spin S ¼ S1 þ S2, the spin quantum number
S of which is given by a value of the Clebsch–Gordan series
S1 þ S2; S1 þ S2 � 1; . . . ; jS1 � S2j. The corresponding total magnetic
quantum number MS takes values from þS to �S in integer steps
as usual. For S1 ¼ S2 ¼ 1=2 the allowed values of S are 1 and 0,
and so we can separate the four eigenstates into the S ¼ 1 triplet
and the S ¼ 0 singlet states. All the states with the same total spin
quantum number S are degenerate, and have energy ES. The ener-
gies and eigenstates are:

E1 ¼ �J ð12Þ=2; j1þ 1i ¼ jaai ð7:8Þ

j10i ¼
ffiffiffi
1
2

r
jabi þ baið Þ ð7:9Þ

j1� 1i ¼ jbbi; ð7:10Þ

E0 ¼ þ3J ð12Þ=2; j00i ¼
ffiffiffi
1
2

r
jabi � baið Þ: ð7:11Þ

The three triplet states j1MSi correspond to the two spins being
aligned co-parallel, which is referred to as ferromagnetic align-
ment. By contrast the singlet state j00i is formed by summing
the two spin angular momenta when they are aligned anti-
parallel to each other, which represents antiferromagnetic align-
ment. The question as to which level is the ground level, and there-
fore the nature of the alignment at low temperature when only this
level is occupied, depends on the sign of J ð12Þ. If J ð12Þ > 0, the tri-
plet is lowest in energy, and therefore the spins are aligned ferro-
magnetically at low temperature. On the other hand if J ð12Þ < 0 the
low-temperature alignment is antiferromagnetic. The energy levels
for the two cases are shown in Fig. 7.1(a) and (b). At high temper-
atures, such that all the states are substantially occupied, there is
no strong preference for either ferro- or antiferromagnetic align-
ment of the two spins i.e. the thermal fluctuations disrupt the ten-
dency for the spins to align, and the two spins begin to act as if they
are independent and exhibit paramagnetic behaviour. The temper-
ature at which we can expect to observe this ferro/antiferromag
netic-to-paramagnetic transition is a topic we will return to later.

7.2.2. The exchange interaction between two arbitrary electronic spins
We now turn our attention to the exchange interaction between

two arbitrary spins. The basis set of the two-spin system is formed
by the direct product of the two one-spin bases jS1M1i and jS2M2i,
and comprises ð2S1 þ 1Þð2S2 þ 1Þ functions jS1S2M1M2i. We can
take linear combinations of the direct-product basis functions to
give the eigenfunctions jS1S2SMSi of the exchange Hamiltonian,
which are characterised by S and MS. The eigenfunctions are given
by

jS1S2SMSi¼
X

M1 ;M2

jS1S2M1M2ihS1S2M1M2jSMSi ð7:12Þ

¼ ð�1ÞS1�S2þMS
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ1

p X
M1 ;M2

jS1S2M1M2i
S1 S2 S

M1 M2 �MS

� �
;

ð7:13Þ

where S ¼ S1 þ S2; S1 þ S2 � 1; . . . ; jS1 � S2j, and MS ¼ M1 þM2.
We can calculate the corresponding energies by rewriting the

exchange Hamiltonian in terms of the total spin. First we note thatbS2 ¼ bS1 þ bS2

� 	2
¼ bS2

1 þ bS2
2 þ 2bS1 � bS2, and therefore

bHex ¼ �2J ð12ÞbS ð1Þ � bS ð2Þ ð7:14Þ
¼ �J ð12Þ bS2 � bS2

1 � bS2
2

h i
ð7:15Þ

¼ �J ð12Þ SðSþ 1Þ � S1ðS1 þ 1Þ � S2ðS2 þ 1Þ½ �1̂: ð7:16Þ

The exchange Hamiltonian therefore depends only on J ð12Þ; S1; S2,
and S, and splits the ð2S1 þ 1Þð2S2 þ 1Þ states into a series of mani-
folds jS1S2SMSi, each of which is labelled with the total spin quan-
tum number S and is ð2Sþ 1Þ-fold degenerate. The energies
EðS; S1; S2Þ of the states within each manifold S are given by [48]

EðS; S1; S2Þ ¼ �J ð12Þ SðSþ 1Þ � S1ðS1 þ 1Þ � S2ðS2 þ 1Þ½ �: ð7:17Þ
As with the case of the two coupled spins 1=2 we see that a positive
exchange coupling constant results in the states with the maximum
S lying lowest in energy, and therefore favours ferromagnetic align-
ment at low temperature. In addition, a negative exchange coupling
constant results in the lowest-energy manifold having the mini-
mum value of S, which favours antiferromagnetic alignment at
low temperature. Levels that are adjacent in energy have values
of S that differ by one, e.g. S and S� 1. The energy separation
between such adjacent levels is given by an interval rule, and is
equal to 2jJ ð12ÞjS> where, S> is the larger of the two values of S.

Fig. 7.1. The energy levels resulting from the exchange coupling of two electronic spins 1=2. The energy levels, energies, and effective spins are shown for (a) ferromagnetic
coupling with a positive exchange coupling constant Jð12Þ , and (b) antiferromagnetic coupling with a negative exchange coupling constant Jð12Þ .
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7.3. The paramagnetic shift due to a coupled electronic spin system

The exchange-coupled electronic spin system induces a param-
agnetic contribution to the chemical shielding tensor in a similar
way to a single transition-metal ion. On the application of an exter-
nal magnetic field B0 each individual electronic manifold jS1S2SMSi
is split by the Zeeman interaction. The resulting total energies
E S; S1; S2;MSð Þ are
E S;S1;S2;MSð Þ¼ EðS;S1;S2ÞþlBgeB0MS ð7:18Þ

¼�J ð12Þ SðSþ1Þ�S1ðS1þ1Þ�S2ðS2þ1Þ½ �þlBgeB0MS;

ð7:19Þ
where we have ignored the spin-spin contribution to the ZFS tensor.
Examples of the ladders of the spin energy levels are shown in
Fig. 7.2 for both ferro- and antiferromagnetic coupling and in the
absence and presence of an external magnetic field B0. The example
spin systems are two coupled electronic spins 1=2 in (a) and (b), a
spin 1=2 coupled to a spin 1 in (c) and (d), and two coupled spins
1 in (e) and (f).

The average electronic magnetic moments are characterised

both by the individual Curie spins hbSizi, where i ¼ 1;2, and the total

Curie spin hbSzi of the coupled spin system. This latter quantity is
the Boltzmann average over the states with energies E S; S1; S2;MSð Þ:

hbSzi ¼
PS1þS2

S¼jS1�S2 j
PþS

MS¼�SMS exp �E S; S1; S2;MSð Þ=kTð ÞPS1þS2
S¼jS1�S2 j

PþS
MS¼�S exp �E S; S1; S2;MSð Þ=kTð Þ ; ð7:20Þ

where we have explicitly separated the sums over the Zeeman
states in each manifold S from the sum over the manifolds
themselves.

Initially we consider the case where only the groundmanifold is
occupied so that jJ ð12Þj � kT , and the spin system behaves as a sin-
gle electronic spin S. The Curie spin then takes exactly the same
value as we calculated for a single metal ion in Eq. (3.62):

hbSzi ¼
PþS

MS¼�SMS exp � EðS; S1; S2Þ þ lBgeB0MS
� �

=kT
� �PþS

MS¼�S exp � EðS; S1; S2Þ þ lBgeB0MS
� �

=kT
� � ð7:21Þ

¼
PþS

MS¼�SMS exp �lBgeB0MS=kT
� �PþS

MS¼�S exp �lBgeB0MS=kT
� � ; ð7:22Þ

The interpretation of this situation is that we have an ensemble of
spin pairs with no interactions between the pairs, and so we can
view the system as comprising an ensemble of paramagnetic ions
with spin S. We employ the high-temperature approximation for
the thermal populations of the Zeeman energy levels, and we obtain
the familiar expression for the spin-only Curie spin:

hbSzi ¼ �lBgeSðSþ 1ÞB0

3kT
: ð7:23Þ

The corresponding paramagnetic shielding tensor is

rS ¼ �lBgeSðSþ 1Þ
3�hcIkT

A; ð7:24Þ

where the hyperfine tensor is calculated from the total unpaired
electron density of the combined spin system. Now let us consider
the simplest example of a coupled spin system we introduced
above, namely with S1 ¼ S2 ¼ 1=2. If J ð12Þ is positive and the spins
are ferromagnetically aligned, the lowest-energy manifold is the tri-
plet with S ¼ 1, and both the EPR and NMR parameters we measure
reflect those of a fictitious ion with that spin. If, on the other hand,
J ð12Þ is negative it is the singlet S ¼ 0 that is lowest in energy. The
system is effectively diamagnetic and therefore exhibits no EPR sig-
nal. Therefore we observe no paramagnetic contribution to the

shielding tensor of the nuclei. More generally we can extend the
above discussion to include systems of more than two interacting
spins. For instance this has been done by Bertini et al. who consid-
ered the case of a cluster containing four iron ions in an iron-
sulphide protein [47].

Now we consider the other extreme situation where the ther-
mal energy dominates the exchange coupling, i.e. jJ ð12Þj � kT.
The exponential factors in Eq. (7.20) can now be expanded to first
order in J ð12Þ=kT , in addition to first order in lBgeB0MS=kT:

hbSzi �
PS1þS2

S¼jS1�S2 j
PþS

MS¼�SMS 1� EðS;S1 ;S2Þ
kT � lBgeB0MS

kT

� 	
PS1þS2

S¼jS1�S2 j
PþS

MS¼�S 1� EðS;S1 ;S2Þ
kT � lBgeB0MS

kT

� 	 ð7:25Þ

Fig. 7.2. Energy levels due to the ferro- and antiferromagnetic exchange coupling
between two electronic spins in the absence and presence of an external magnetic
field. The energy levels are shown for (a) and (b) two coupled electronic spins 1=2,
(c) and (d) a spin 1=2 coupled to a spin 1, and (e) and (f) two coupled spins 1. The
energy levels due to ferromagnetic coupling are shown in (a), (c), and (e), and those
due to antiferromagnetic coupling are shown in (b), (d), and (f).
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We now obtain a Curie spin that is simply the sum of the two inde-
pendent Curie spins:

hbSzi ¼ �lBge S1ðS1 þ 1Þ þ S2ðS2 þ 1Þ½ �B0

3kT
ð7:26Þ

¼ hbS1zi þ hbS2zi: ð7:27Þ
Since both electronic spins are independent, we can write the total
paramagnetic shielding tensor as the sum of two independent
contributions

rS ¼ �l0geS1ðS1 þ 1Þ
3�hcIkT

Að1Þ � l0geS2ðS2 þ 1Þ
3�hcIkT

Að2Þ
; ð7:28Þ

where AðAÞ is the hyperfine coupling tensor due to ion A. The two
metal ions are now effectively non-interacting, and the system is
reduced to the paramagnetic ensemble, which we have seen previ-
ously in Section 7.1.

In each individual regime the paramagnetic shielding tensor has
a Curie temperature dependence of 1=ðkTÞ. However we should
note that the dependence over the full range of temperatures is
more complicated, since the expression for the shielding changes
on moving from one regime to another via an intermediate regime
where jJ ð12Þj � kT that we have not explicitly examined. This is an
example of the exchange interactions introducing a deviation from
the Curie behaviour.

7.4. The general exchange Hamiltonian for transition metal ions
subject to spin-orbit coupling

The previous section described the behaviour of an electronic
spin system and the corresponding paramagnetic chemical shield-
ing tensor of two spin-only transition-metal ions that interact via
an isotropic exchange interaction in both the low-temperature
ordered and high-temperature paramagnetic regimes. The results
above can easily be generalised to a finite cluster of metal ions.
The case where the metal ions are subject to SO coupling is a little
more complex, as there are several other terms that must be
included in the exchange coupling Hamiltonian, which is where
we turn our attention now.

The general spin Hamiltonian Ĥ0 describing the exchange inter-
actions between the transition-metal ions is

Ĥ0 ¼ ĤNR
0 þ ĤSO

0 ; ð7:29Þ
where ĤNR

0 and ĤSO
0 are the NR and SO contributions respectively.

The NR contribution can be written as [232]

ĤNR
0 ¼ �2

X
A>B

J ðABÞbS ðAÞ � bS ðBÞ þ
X
A>B

bS ðAÞ � DðABÞ � bS ðBÞ; ð7:30Þ

where the sums are over pairs of coupled metal ions ðA;BÞ. The first
term is the isotropic Heisenberg exchange Hamiltonian with isotro-
pic exchange coupling constant J ðABÞ, and the second term is the
anisotropic dipolar coupling interaction and DðABÞ is the symmetric
dipolar coupling constant [233]. This latter interaction is weaker
than the former, but can be important in establishing either long-
range ferromagnetic or antiferromagnetic ordering in three dimen-
sions. The presence of SO coupling adds two important terms that
are contained in ĤSO

0 , which is given by [232]

ĤSO
0 ¼

X
A

bS ðAÞ � DðAÞ � bS ðAÞ þ
X
A>B

dðABÞ � bS ðAÞ 
 bS ðBÞ
� 	

: ð7:31Þ

The first term represents the ZFS interactions of the ions, with
which we are already familiar, and which are sometimes referred
to as the single-ion anisotropy interactions [234]. The symmetric
and traceless ZFS tensor for ion A is denoted DðAÞ. The second term
is referred to as the Dzyaloshinskii-Moriya (DM) interaction

[235,236,234]. The spatial dependence is encoded in the vector

dðABÞ, the three components of which can also be described by an
antisymmetric (i.e. rank-one) tensor, and so this interaction is
entirely anisotropic. The DM interaction depends on the vector pro-

duct between bS ðAÞ and bS ðBÞ, and is therefore zero if the two spins are
exactly collinear, which we have seen is the preferred alignment for
both ferro- and antiferromagnetic interactions. The effect of the DM
term is therefore to perturb the spin orientations away from the
perfect ferro- or antiferromagnetic collinear alignment, a process
which is referred to as spin canting. We have neglected any SO con-
tribution to the dipolar coupling interaction, which we absorb into
the NR dipolar coupling term.

For convenience we recast the Hamiltonians in Eqs. (7.29)–
(7.31) into the following form

Ĥ0 ¼
X
A

Xþ2

q¼�2

ð�1ÞqDðAÞ
2q
bSðAÞ
2�q þ

X
A>B

X2
k¼0

Xþk

q¼�k

ð�1ÞqJðABÞkq
bT ðABÞ
k�q ; ð7:32Þ

which is written in terms of irreducible spherical tensors. The first
sum represents the rank-two ZFS interactions experienced by all the
metal ions, the spatial and spin parts of which are given by the
usual expressions. The second sum contains all the two-spin inter-
action terms, including the isotropic Heisenberg exchange, dipolar

interaction, and DM parts. The spin tensor bT ðABÞ
k�q is a direct tensor

product of the rank-one spin operators:bT ðABÞ
k�q ¼

X
q1 ;q2

bSðAÞ
1q1
bSðBÞ
1q2

h11q1q2jk� qi ð7:33Þ

¼ ð�1Þq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 1

p X
q1 ;q2

bSðAÞ
1q1
bSðBÞ
1q2

1 1 k

q1 q2 q

� �
; ð7:34Þ

and the components of the spatial tensor JðABÞkq can be written down
with reference to Table 2.3. The rank-zero part of the interaction is
purely isotropic, and so represents the isotropic Heisenberg interac-

tion. The spatial component JðABÞ00 is therefore given by

JðABÞ00 ¼ 2
ffiffiffi
3

p
J ðABÞ: ð7:35Þ

The rank-one part is anisotropic and antisymmetric, and so repre-
sents the DM interaction. In terms of the Cartesian components of

the DM interaction vector dðABÞ the irreducible spherical tensor com-

ponents JðABÞ1q are:

JðABÞ10 ¼ �i
ffiffiffi
2

p
dðABÞ
z ; ð7:36Þ

JðABÞ1	1 ¼ � dðABÞ
y 	 idðABÞ

x

� 	
: ð7:37Þ

Finally we have the rank-two components of the two-ion interac-
tion, which are symmetric and therefore represent the ion-ion dipo-
lar coupling interaction. In terms of the Cartesian tensor DðABÞ the

irreducible spherical tensor components JðABÞkq are given by:

JðABÞ20 ¼
ffiffiffi
3
2

r
DðABÞ

zz ; ð7:38Þ

JðABÞ2	1 ¼ � DðABÞ
xz 	 iDðABÞ

yz

� 	
; ð7:39Þ

JðABÞ2	2 ¼ 1
2

DðABÞ
xx � DðABÞ

yy 	 2iDðABÞ
xy

� 	
: ð7:40Þ

From Eq. (7.34) the irreducible spherical spin components satisfy
the following identity when the ion labels A and B are swapped:bT ðABÞ

kq ¼ ð�1ÞkbT ðBAÞ
kq : ð7:41Þ

Hence, in order for the Hamiltonian to remain invariant under such
a label change, the irreducible spherical spatial components of the
exchange coupling tensor must also satisfy
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JðABÞkq ¼ ð�1ÞkJðBAÞkq : ð7:42Þ
This indicates that the isotropic coupling constant and dipolar-
coupling tensor do not change sign when the ions are coupled in
the opposite order, whereas the DM tensor undergoes a sign
change.

7.5. The paramagnetic shift due to a coupled electronic spin system
subject to spin-orbit coupling

7.5.1. The EPR formalism
In this section we calculate the form of the paramagnetic chem-

ical shielding tensor due to a cluster of coupled transition-metal
ions. We firstly consider the case where the exchange coupling
constants are sufficiently large that only the ground manifold is
thermally populated, and secondly spend more time deriving the
form of the shielding tensor in the high-temperature paramagnetic

regime to second order in 1=ðkTÞ2.
In the former case where only the ground manifold is thermally

populated, we can describe the metal cluster as a single effective
spin S, which possesses a single g-, hyperfine, and ZFS tensor. The
EPR Hamiltonian is therefore of the form that we have already seen
for a single metal ion in Eq. (4.36), and we can immediately write
down the paramagnetic chemical shielding tensor:

rS ¼ � lB

�hcI
g � Z � A: ð7:43Þ

This has the same form as the shielding due to a single transition-
metal ion.

We have seen that in the high-temperature paramagnetic
regime, where kT dominates the exchange coupling constants,
the metal ions are independent. One important consequence of this
is that we are able to assign to each ion its own g-, hyperfine, and
ZFS interaction tensor. The exchange Hamiltonian Ĥ0 introduced
above can be included in the EPR Hamiltonian ĤEPR with the elec-
tronic Zeeman and hyperfine interaction Hamiltonians. We con-
sider a system containing a single spin-1=2 nucleus I that is
coupled to several paramagnetic centres. The following Hamilto-
nian represents the starting point for our calculation of the param-
agnetic chemical shielding tensor:

ĤEPR ¼ lB

X
A

B0 � gðAÞ � bS ðAÞ þ
X
A

bS ðAÞ � AðAÞ � Î þ Ĥ0 ð7:44Þ

¼ lB

X
A

B0 � gðAÞ � bS ðAÞ þ
X
A

bS ðAÞ � AðAÞ � Î

þ
X
A

bS ðAÞ � DðAÞ � bS ðAÞ þ
X
A>B

bS ðAÞ � JðABÞ � bS ðBÞ: ð7:45Þ

The first and second terms represent the electronic Zeeman interac-
tions of all the metal ions, and the hyperfine couplings between
these ions and the single nucleus. As before these interactions are
the origin of the electronic magnetic moment and hyperfine field
operators m̂ and F̂ , the cross terms between which give us the
chemical shielding tensor according to the EPR formalism. The
terms contained in Ĥ0, namely the ZFS and two-spin exchange
interactions, are independent of both the external magnetic field
and the nuclear magnetic moment, so their eigenfunctions and
energies are used to calculate the Boltzmann average in the expres-
sions for the shielding tensor.

The details of the calculation of the paramagnetic shielding ten-
sor are somewhat complicated, and are contained in Appendix E,
with only the results given here. We can write the paramagnetic
shielding as the sum of three terms up to Oðb2Þ:
rS

ij ¼ rS;1
ij þ rS;2A

ij þ rS;2B
ij þOðb3Þ: ð7:46Þ

The first term rS;1
ij is of order 1=ðkTÞ, and there are two terms of

order 1=ðkTÞ2 which we have labelled rS;2A
ij and rS;2B

ij .
The first term is calculated to be

rS;1
ij ¼ � lB

3�hcIkT
X
A

hSðAÞkbSðAÞ
1 kSðAÞi2

X
q

ð�1ÞqgðAÞ
1q;iA

ðAÞ
1�q;j; ð7:47Þ

which is a sum of terms each of which has the same form as the
expression we have already encountered in Eq. (6.27). Substituting
in the expression for the reduced matrix element and simplifying
the sum over q as before, we obtain a familiar expression for the
first-order shielding:

rS;1 ¼ � lB

3�hcIkT
X
A

SðAÞ SðAÞ þ 1
� 	

gðAÞ � AðAÞ
: ð7:48Þ

We note that this contribution depends only on the g- and hyper-
fine tensors of the individual spins and is independent of the ZFS,
as before, and of the two-spin exchange tensors. Hence this term
is a simple sum of contributions from each paramagnetic centre,
as it contains no information on how the ions interact with each
other.

The second term, which is of order 1=ðkTÞ2, is also familiar to us,
being a sum of expressions which have the same form as Eq. (6.28):

rS;2A
ij ¼ lB

�hcIðkTÞ2
X
A

ð�1Þ2SðAÞ ð2SðAÞ þ 1Þ1=2hSðAÞkŜðAÞ1 kSðAÞi2hSðAÞkŜðAÞ2 kSðAÞi


 1 2 1
SðAÞ SðAÞ SðAÞ

� �X
qq0q00

gðAÞ
1q;iA

ðAÞ
1q0 ;jD

ðAÞ
2q00

1 2 1
�q0 �q00 �q

� �
:

ð7:49Þ

This term can also be simplified using the same method as before to
give

rS;2A ¼ lB

30�hcIðkTÞ2
X
A

SðAÞ SðAÞ þ 1
� 	

2SðAÞ � 1
� 	

2SðAÞ þ 3
� 	

gðAÞ � DðAÞ � AðAÞ
;

ð7:50Þ
which depends on the ZFS tensors in addition to the g- and hyper-
fine tensors. Once again it is a simple sum of contributions from
each paramagnetic ion, which is again a result of it containing no
information about the couplings between the paramagnetic centres.

The third term, also of order 1=ðkTÞ2 is given by

rS;2B
ij ¼ lB

9�hcIðkTÞ2
X
A;B–A

hSðAÞkbSðAÞ
1 kSðAÞi2hSðBÞkbSðBÞ

1 kSðBÞi2



X

k00qq0q00
gðAÞ
1q;iA

ðBÞ
1q0 ;jJ

ðABÞ
k00q00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k00 þ 1

p 1 1 k00

q q0 q00

 !
:

ð7:51Þ

This is an expression we have not encountered before, as it results
from the exchange couplings between the paramagnetic centres. On
simplifying we obtain the concise expression

rS;2B ¼ lB

9�hcIðkTÞ2
X
A;B–A

SðAÞ SðAÞ þ 1
� 	

SðBÞ SðBÞ þ 1
� 	

gðAÞ � JðABÞ � AðBÞ
;

ð7:52Þ

which is now a sum of contributions from pairs of metal ions that
have a non-zero coupling between them. Each contribution is a
cross term containing the g-tensor of one metal ion and the hyper-
fine tensor of another. Note that if the exchange coupling constant
between any two ions is zero, that pair of ions will not give a joint
contribution to the overall paramagnetic shielding tensor. To sum-
marise, the final expression for the paramagnetic chemical shield-
ing tensor is
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rS ¼ � lB

3�hcIkT
X
A

SðAÞ SðAÞ þ 1
� 	

gðAÞ � AðAÞ

þ lB

30�hcIðkTÞ2
X
A

SðAÞ SðAÞ þ 1
� 	

2SðAÞ � 1
� 	

2SðAÞ þ 3
� 	

gðAÞ � DðAÞ � AðAÞ

þ lB

9�hcIðkTÞ2
X
A;B–A

SðAÞ SðAÞ þ 1
� 	

SðBÞ SðBÞ þ 1
� 	

gðAÞ � JðABÞ � AðBÞ
:

ð7:53Þ

The third term adds both isotropic and anisotropic contributions to
both the contact and pseudo-contact shifts.

In this high-temperature regime, we may also write the param-
agnetic shielding tensor in terms of Z-tensors, as for non-
interacting ions. In the present case, however, the expression is
more complicated:

rS ¼ � lB

�hcI

X
A

gðAÞ � ZðAÞ � AðAÞ þ
X
B–A

ZðABÞ � AðBÞ
" #

: ð7:54Þ

The tensor ZðAÞ is the one-ion Z-tensor, and takes the form that
we have seen before:

ZðAÞ ¼
SðAÞ SðAÞ þ 1
� 	
3kT

1�
SðAÞ SðAÞ þ 1
� 	

2SðAÞ � 1
� 	

2SðAÞ þ 3
� 	

30ðkTÞ2
DðAÞ;

ð7:55Þ
which depends on the single-ion g- and ZFS tensors. The tensor ZðABÞ

is the two-ion Z-tensor, which is given by

ZðABÞ ¼ �
SðAÞ SðAÞ þ 1
� 	

SðBÞ SðBÞ þ 1
� 	

9ðkTÞ2
JðABÞ; ð7:56Þ

and contains all the information about the exchange coupling
tensors.

7.5.2. Example: two coupled electronic spins-1=2
We complete this section with the illustration of a practical

example of the paramagnetic shielding tensor due to a cluster of
coupled paramagnetic ions, with a particular emphasis on the tem-
perature dependence of the shielding. The example we choose is
that of electronic spins-1=2 A and B with different isotropic g-
factors gðAÞ and gðBÞ, which interact via an isotropic exchange inter-
action with coupling constant J ðABÞ. We focus on the paramagnetic
shielding of a nuclear spin I which interacts with both paramag-

netic centres via different Fermi-contact coupling constants AFC;ðAÞ

and AFC;ðBÞ. This choice of isotropic interaction parameters results
in a paramagnetic shielding that is also wholly isotropic. Since
we are mainly interested in the temperature dependence of the

shielding this choice is sufficient, but we note here that the exten-
sion to anisotropic spatial tensors is straightforward.

We begin by deriving the general paramagnetic shielding tensor
from the EPR formula in Eq. (4.103), where the energy levels En are
the eigenvalues of the singlet and triplet states of the exchange
Hamiltonian given in Eqs. (7.8)–(7.11), and the hyperfine and elec-
tronic magnetic moment operators are each the sum of the opera-
tors for each paramagnetic centre. The general shielding tensor is
isotropic and is given by

rS
gen ¼ lBDgDA� lB expð2bJ ðABÞÞ DgDAþ 2bRgRAJ ðABÞ
 �

4�hcIJ ðABÞ 1þ 3expð2bJ ðABÞÞ
 � ;

ð7:57Þ

where Dg ¼ gðAÞ � gðBÞ, DA ¼ AFC;ðAÞ � AFC;ðBÞ, Rg ¼ gðAÞ þ gðBÞ, and

RA ¼ AFC;ðAÞ þ AFC;ðBÞ are the sums and differences of the g-factors
and Fermi-contact coupling constants. For comparison we can also
calculate the shielding tensor to second-order in b rS

2nd using the
expressions in Eqs. (7.54)–(7.56) to give

rS
2nd ¼ � lB

4�hcIkT
gðAÞAFC;ðAÞ þ gðBÞAFC;ðBÞ
� 	

� lBJ ðABÞ

8�hcIðkTÞ2
gðAÞAFC;ðBÞ þ gðBÞAFC;ðAÞ
� 	

: ð7:58Þ

The general and second-order shielding tensors are plotted as a
function of temperature in Fig. 7.3 with both positive and negative
exchange coupling constants. In both plots the expressions are
simplified by assuming that gðAÞ ¼ gðBÞ � g and

AFC;ðAÞ ¼ AFC;ðBÞ � AFC. The temperature plot of the paramagnetic
shielding for a positive exchange coupling constant of
J ðABÞ ¼ þ100 cm�1 is shown in Fig. 7.3(a). Here ferromagnetic
alignment at low temperature results in a triplet electronic spin
ground state with S ¼ 1. The shielding decreases as the tempera-
ture increases from 0 K, due to two factors. At temperatures below
J ðABÞ=k = 144 K the decrease in the shielding is primarily due to the
thermal population of the excited Zeeman energy levels of the tri-
plet manifold, which reduces the Curie spin of this state; this tem-
perature variation can therefore be modelled with a Curie law with
S ¼ 1. As the temperature increases above 144 K the diamagnetic
singlet excited state with S ¼ 0 begins to be substantially popu-
lated. At still higher temperatures where kT dominates the
exchange coupling interaction the two spins-1=2 behave as inde-
pendent spins, each with its own separate contribution to the
shielding. The total shielding is then equal to the sum of the two
independent contributions, as given by the first-order term in Eq.
(7.58), which follows a Curie temperature law.

Fig. 7.3. Plots of the temperature dependence of the isotropic paramagnetic shielding due to two coupled electronic spins-1=2. The plot in (a) is for a positive exchange
coupling constant of J ðABÞ ¼ þ100 cm�1, and the plot in (b) corresponds to a negative exchange constant of J ðABÞ ¼ �100 cm�1. In both cases the temperature curves
calculated from both the general EPR expression and the high-temperature second-order approximation are included.
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In Fig. 7.3(b) is shown the corresponding temperature plot of
the shielding with a negative exchange coupling of
J ðABÞ ¼ �100 cm�1. This interaction gives a diamagnetic singlet
ground state with S ¼ 0. The temperature dependence is markedly
different from the ferromagnetic case as the shielding first
increases with increasing temperature, before reaching a maxi-
mum at jJ ðABÞj=k = 144 K and then decreasing. Initially, at temper-
atures below 40 K, only the singlet state is thermally occupied, and
so there is no contribution to the paramagnetic shielding tensor.
The increase in the shielding above 40 K is due to the increasing
thermal population of the triplet state. This trend persists up to
144 K, above which both the singlet and triplet states are substan-
tially populated and the two spins-1=2 start to behave as indepen-
dent Curie spins. The subsequent decrease in the shielding with
increasing temperature is then due to each Curie spin following a
Curie law.

One interesting aspect of these plots is that they suggest that
NMR can be used to determine the exchange coupling constants
of a cluster of coupled electronic spins by measuring the paramag-
netic shielding tensors at multiple temperatures.

7.6. Ferromagnetic and antiferromagnetic interactions in solid
insulators: the Curie–Weiss law

We now extend the previous discussion on magnetic exchange
coupling interactions to solid insulator materials containing an
ensemble of metal ions which possess unpaired electrons. The
interactions between the unpaired electrons result in ferromag-
netic or antiferromagnetic ordering of the bulk material, and we
will see how this ordering affects the magnetic susceptibility and
the paramagnetic shielding tensor of the nuclei. Whereas in iso-
lated metal-ion clusters the electronic energy levels form a discrete
ladder, the case of solid materials is considerably more compli-
cated as the extremely large number of interactions results in a
continuum of energy levels. This means that whilst for isolated
clusters we are able to define EPR parameters, such as the g-
tensor, which are properties of the entire coupled spin system with
total spin S, it becomes much less clear how to define such param-
eters for an infinite lattice of coupled electronic spins. Therefore we
use the simplest successful model for extended systems of coupled
electronic spins, namely mean-field theory and the Weiss model,
which we apply to spin-only transition-metal ions.

7.6.1. The Weiss model of ferromagnetism
We describe the material with the simplest Hamiltonian that

can be used to describe magnetic ordering, which contains the
electronic Zeeman and isotropic Heisenberg exchange terms:

bH ¼ lBge

X
A

B0 � bS ðAÞ � 2
X
A>B

J ðABÞbS ðAÞ � bS ðBÞ; ð7:59Þ

where the sum is over the metal ions A and B. We assume that the
ions are spin only, and therefore exhibit no SO coupling. As is the
case for the two-spin system of Section 7.2, the exchange coupling
constants J ðABÞ between the nearest neighbours are positive for fer-
romagnetic alignment, and negative for antiferromagnetic
alignment.

In the Weiss model we approximate the above Hamiltonian
with a mean field term which describes the interaction of spin A
with a mean molecular field Bmf that is due to the other spins. Fur-
thermore we restrict our discussion to an ensemble of metal ions of
the same type, and consider only nearest-neighbour interactions.
The molecular magnetic field experienced by ion A is given by

Bmf ¼ � 1
lBge

X
B–A

J ðABÞbS ðBÞ; ð7:60Þ

and is assumed to be the same for all the metal ions in the solid.
Here the factor of 2 has been removed from the prefactor to prevent
double counting. The total effective mean-field Hamiltonian, which
replaces Eq. (7.59), is thenbH ¼ lBge

X
A

B0 þ Bmfð Þ � bS ðAÞ: ð7:61Þ

This expression has the form of the Hamiltonian of an ensemble of
spin-only paramagnetic ions in a magnetic field B0 þ Bmf . The mean
molecular field is responsible for the ordering of the system at low
temperature, and so we assume that it is proportional to the bulk
magnetization of the system:

Bmf ¼ KM; ð7:62Þ
where K is the constant of proportionality that characterises the
strength of the molecular field as a function of the magnetization.
We find it useful to employ an alternative expression for the mean
molecular field in terms of the Curie spin:

Bmf ¼ �khbSi; ð7:63Þ
where the minus sign is present because M and hŜi have opposite
sign. Note that we have dropped the superscript ðAÞ from the Curie
spin, as a result of the assumption that all ions experience the same
molecular field. With these conventions, both K and k are positive
for a ferromagnet.

The form of the Hamiltonian in Eq. (7.61) implies that magnetic
ordering of the electronic spins can be achieved with the mean
molecular field, even in the absence of an external field. At low
temperatures this leads to the formation of a spontaneous
magnetization in a ferromagnet. As the temperature is raised, the
higher-energy states become occupied, and the magnetic ordering
is disrupted, with all order being destroyed above a transition
temperature. At temperatures above the transition temperature,
the material behaves as a paramagnet. This is the Weiss model of
ferromagnetism.

In order to elucidate the magnetic behaviour of a ferromagnetic
material, and to derive the expression for the transition tempera-
ture above which we observe paramagnetic behaviour, we apply
a modified form of the general expression for the Curie spin in
Eq. (3.58):

hbSzi
hbSzisat

¼ BSðyÞ; ð7:64Þ

where the Brillouin function BSðyÞ is given in Eq. (3.59). The quan-
tity y has a similar expression to that in Eq. (3.59), but we have

added the term �khbSzi to account for the mean molecular field:

y ¼
lBgeS B0 � khbSzi

� 	
kT

: ð7:65Þ

Note that we assume that B0, the Curie spin, and therefore the mean
molecular field are all along z. We obtain the conditions for sponta-
neous ferromagnetic alignment of the spins in the absence of an
external field as follows. We set B0 ¼ 0, and rearrange Eq. (7.65)

in terms of hbSzi=hbSzisat (where hbSzisat ¼ �S). In combination with
Eq. (7.64) we now have two simultaneous equations that we must
solve to obtain the alignment conditions:

hbSzi
hbSzisat

¼ BSðyÞ; ð7:66Þ

hbSzi
hbSzisat

¼ kTy

lBgeS
2k

: ð7:67Þ

The second equation depends on the temperature, and so the solu-
tions can be found by identifying the temperature, referred to as the
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Curie temperature TC, below which we obtain solutions consistent
with spontaneous ferromagnetism. The solutions are illustrated
graphically in Fig. 7.4(a), which shows as a function of y a plot of
both the Brillouin function, and the linear relation

hbSzi=hbSzisat ¼ kTy=ðlBgeS
2kÞ, at three different temperatures. When

the temperature is higher than TC there is only one solution to

the two simultaneous equations, hbSzi=hbSzisat ¼ y ¼ 0, indicating that
there is no spontaneous magnetization in the absence of the exter-
nal field. At temperatures below TC we see that there are two solu-
tions in addition to the one at y ¼ 0. These two further solutions,

with non-zero values of hbSzi=hbSzisat, with equal magnitudes and
opposite signs, indicate the presence of a spontaneous magnetiza-
tion, and therefore ferromagnetic behaviour. The transition
between the paramagnetic and ferromagnetic behaviour occurs at
T ¼ TC, which is the temperature at which the gradient of the linear
relation in Eq. (7.67) is exactly equal to the gradient of the Brillouin
function at y ¼ 0. Equating the two gradients, we obtain an expres-
sion for the Curie temperature in terms of the mean-field
parameter:

Sþ 1
3S

¼ kTC

lBgeS
2k

ð7:68Þ

TC ¼ lBgeSðSþ 1Þk
3k

: ð7:69Þ

The application of an external magnetic field B0 results in a non-
zero magnetization at all temperatures. This can be deduced from
Eqs. (7.64) and (7.65), by rearranging the latter as before, but this
time retaining a non-zero B0. The result is the following pair of
simultaneous equations:

hbSzi
hbSzisat

¼ BSðyÞ; ð7:70Þ

hbSzi
hbSzisat

¼ �B0

kS
þ kTy

lBgeS
2k

: ð7:71Þ

Eq. (7.71) differs from Eq. (7.67) by the additive factor �B0=ðkSÞ. The
effect of this factor is to shift the straight line parallel to the y-axis

so that it crosses hbSzi=hbSzisat ¼ 0 at y ¼ lBgeSB0=kT, rather than
y ¼ 0, with the result that the line always intersects the Brillouin
function at a non-zero value of the Curie spin for all temperatures.
Hence, for all temperatures above and below the Curie temperature,
there is a non-zero net magnetization, as shown in Fig. 7.4(b). The

implication is that there is always an energetic advantage for the
magnetic moments of a ferromagnet to line up with the external
field. We return to this topic in Section 7.6.3, when we discuss
the magnetic susceptibility of magnetically ordered systems.

7.6.2. The Weiss model of antiferromagnetism
In the Weiss model of antiferromagnetism we apply the same

basic assumptions as for ferromagnetism, namely that the ions
are of the same species, that we only consider nearest-neighbour
interactions, and that we can replace the terms in the exchange
Hamiltonian with a mean molecular field term. However we have
to modify the phenomenological form of the molecular field in Eq.
(7.63) in the following way. The negative exchange coupling con-
stants result in the magnetic moments of the nearest-neighbour
ions lying antiparallel to one another. Hence, from a conceptual
point of view, we can divide the ions into two interpenetrating
sub-lattices, where within each sub-lattice the magnetic moments
at low temperature are aligned the same way. In one sub-lattice all
the magnetic moments point ‘up’, and in the other they point
‘down’. In the simple cubic oxides MO, such as NiO and MnO,
which adopt the rock-salt structure, all the nearest neighbours of
a particular M2+ ion on one sub-lattice must belong entirely to
the other sub-lattice. In addition the simplest implementation of
mean-field theory assumes that the exchange interactions only
occur between nearest neighbours, so that a particular spin inter-
acts only with spins on the other sub-lattice. The result is that
the mean molecular field on the former must be proportional to
the magnetization of the latter. Whilst this represents a clear sim-
plification of the physics of antiferromagnetism, it is nevertheless
sufficient to introduce most of the important features of the mag-
netic ordering. However we note that in real materials next-
nearest-neighbour interactions are not negligible. This situation
requires a modification of the model discussed here, which is pre-
sented in Section 7.6.4.

Therefore, according to the Weiss model, the molecular fields
on the ‘up’ and ‘down’ sub-lattices Bþ

mf and B�
mf are given by

Bþ
mf ¼ �khbSi� ð7:72Þ

B�
mf ¼ �khbSiþ; ð7:73Þ

where hŜi	 are the Curie spins of the two sub-lattices, which we
label + and �, and the mean-field constant k is negative for antifer-
romagnetic ordering. The Curie spin of each sub-lattice, and there-
fore the conditions for spontaneous magnetization in each of the

Fig. 7.4. Plot illustrating the conditions for spontaneous ferromagnetism in the absence of an external field, and the effect of a subsequently applied field. In (a) are shown
plots of Eq. (7.66) (in red) and Eq. (7.67) (black), with the second equation plotted at three different temperatures. Simultaneous solutions are found at the points where the
two curves intersect, and indicate the conditions under which the sample is spontaneously magnetised. These plots indicate that the sample must be below a certain critical
temperature TC for spontaneous ferromagnetism to occur. The graph in (b) shows plots of Eqs. (7.70) and (7.71), which illustrate the conditions for non-zero magnetisation in
a ferromagnet in an externally applied magnetic field. The effect of the field is to magnetise the sample irrespective of the temperature.
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two sub-lattices can be found in a similar way as for the ferromag-
netic systems in the previous section. In the absence of an external

field, the hŜi	 are given by

hbSzi	
hbSzisat

¼ BSðy	Þ; ð7:74Þ

where

y	 ¼ �lBgeSkhbSzi�
kT

; ð7:75Þ

and we have assumed that the Curie spins are aligned along 	z.
The two sub-lattices are equivalent, and differ only in the oppo-
site directions of their spontaneous magnetization vectors.
Therefore

hbSziþ ¼ �hbSzi� ¼ hbSzi; ð7:76Þ

where hbSzi is the magnitude of the Curie spin of each sub-lattice,
which is now given by

hbSzi
hbSzisat

¼ BSðyÞ; ð7:77Þ

y ¼ lBgeSkhbSzi
kT

: ð7:78Þ

The situation is now exactly the same as for the ferromagnetic sys-
tem in Section 7.6.1. We rearrange Eq. (7.78) to obtain a pair of
simultaneous equations that can be solved in the same way:

hbSzi
hbSzisat

¼ BSðyÞ; ð7:79Þ

hbSzi
hbSzisat

¼ � kTy

lBgeS
2k

: ð7:80Þ

These two equations can be solved using Fig. 7.4 as an aid, which
shows that for temperatures below a certain transition temperature
we obtain a spontaneous magnetization in each sub-lattice, which
disappears above the transition temperature. This transition tem-
perature is referred to as the Néel temperature TN, and can be shown
to have an expression in terms of the mean-field parameter that is
similar to the Curie temperature:

TN ¼ �lBgeSðSþ 1Þk
3k

: ð7:81Þ

We note that there is an additional sign compared to the expression
for TC. This is because for antiferromagnetic alignment k is negative,
and the minus sign ensures that TN is positive.

At this point we also note that, although each sub-lattice exhi-
bits spontaneous magnetization below TN, the magnetization vec-
tors of the two sub-lattices are equal in magnitude and opposite in
direction. This means that the material as a whole has zero magne-
tization in the absence of an external magnetic field. This magnetic
transition may also be accompanied by a change in structure. For
example MnO undergoes a rhombohedral distortion from the
high-temperature cubic structure on cooling below the Néel
temperature.

7.6.3. The magnetic susceptibility
We have derived expressions for the Curie and Néel tempera-

tures, below which a solid material shows ferromagnetic and anti-
ferromagnetic behaviour respectively in the absence of an external
magnetic field. Now we must move further and consider the effect
of an external magnetic field when applied to these materials, as it
is under these conditions we observe the NMR spectrum. At this
point we assume that, under the experimental conditions, we are
operating in a temperature regime where T > TC or T > TN, and

the material behaves as a paramagnet. Before we calculate the
magnetic susceptibility we note that, so far, we have treated the
ferromagnetic and antiferromagnetic systems differently in order
to acknowledge the differences between the two models. However,
since we have now shown that both systems behave in the same
way above their respective transition temperatures we can unify
the descriptions. In doing so, we note that the expressions for TC

and TN differ only in their signs. Therefore we can define a single
parameter, called the Weiss constant H, which is given by

H ¼ lBgeSðSþ 1Þk
3k

: ð7:82Þ

When we are referring to a ferromagnetic material the mean-field
parameter k is positive, and soH is positive and is equal to the Curie
temperature, H ¼ TC within the mean-field approach. On the other
hand antiferromagnetic materials have negative k, and so H is neg-
ative and given by H ¼ �TN.

In the presence of an external magnetic field B0 of the strength
used in high-resolution NMR we can truncate the Brillouin func-
tion at the first-order term in y. For a ferromagnetic material we
take the expressions for the Curie spin and the quantity y in Eqs.
(7.64) and (7.65) and obtain:

hbSzi ¼ �SBSðyÞ ð7:83Þ

� � Sþ 1
3

y ð7:84Þ

¼ �lBgeSðSþ 1Þ
3k

B0 � khbSzi
T

 !
ð7:85Þ

¼ �H
k

B0 � khbSzi
T

 !
: ð7:86Þ

For an antiferromagnetic material the treatment is similar with an
additional step. We take the expressions for the Curie spins of the
two sub-lattices in Eq. (7.74) and the quantities y	 in Eq. (7.78),
and modify the latter to include B0. The effect of the external field
is to make both Curie spins more negative, so that they are no
longer equal and opposite. We average them to obtain the total

Curie spin hbSzi ¼ hbSziþ þ hbSzi�
� 	.

2, for which we obtain the same

expression as for the ferromagnetic case in Eq. (7.86). Henceforth
we can treat both cases using this same expression for the Curie
spin, which rearranges to give

hbSzi ¼ � HB0

kðT �HÞ : ð7:87Þ

The z component of the average electronic magnetic moment oper-
ator is then

hl̂zi ¼ �lBgehbSzi ð7:88Þ

¼ lBgeHB0

kðT �HÞ : ð7:89Þ

Finally, substituting this last expression in Eq. (3.89) gives the mag-
netic susceptibility

v ¼ l0l2
Bg

2
e SðSþ 1Þ

3kðT �HÞ : ð7:90Þ

This expression has the same form as the susceptibility of an
ensemble of non-interacting paramagnetic spins, with the excep-
tion that the 1=T Curie temperature dependence has been replaced
by a 1=ðT �HÞ dependence. The temperature dependence of the
susceptibility in Eq. (7.90) is an example of the Curie–Weiss law.
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7.6.4. The Néel temperature and Weiss constant in antiferromagnetic
materials

The mean-field theory of antiferromagnetism that we have pre-
sented so far indicates that the Néel temperature and the Weiss
constant have the same value within a sign, i.e. H ¼ �TN. However
we should bear in mind that the two quantities are physically dis-
tinct, with the Néel temperature being the temperature below
which we observe antiferromagnetic ordering, and the Weiss con-
stant being a parameter that characterises the magnetic suscepti-
bility in the paramagnetic regime. The two parameters are
therefore measured in different temperature regimes, and may in
fact take very different values for some antiferromagnetic materi-
als. For example in materials such as MnO, FeO, and CoO the mea-
sured Weiss constants have greater magnitude than the Néel
temperature, jHj > TN; in the case of MnO TN and H are 116 K
and �510 K respectively [188]. The discrepancy can be explained
when we note that in the mean-field theory of Section 7.6.2 it
was assumed that exchange interactions occur only between near-
est neighbouring spins on different sub-lattices, so that the mean
field experienced by one sub-lattice is due entirely to the other
sub-lattice. However this is generally not true, and we may have
to account for next-nearest-neighbour interactions between spins
on the same sub-lattice, which introduces an additional mean-
field term.

We can write down the two mean fields experienced by the +
and � sub-lattices, Bþ

mf and B�
mf , as

Bþ
mf ¼ nhbSiþ � khbSi� ð7:91Þ

B�
mf ¼ nhbSi� � khbSiþ; ð7:92Þ

where the quantity n parameterises the strength of the mean field
from the same sub-lattice. If we now repeat the derivation of the
Néel temperature in Section 7.6.2, we now obtain the following
expression:

TN ¼ �lBgeSðSþ 1Þðkþ nÞ
3k

: ð7:93Þ

If the field parameter n is positive the Néel temperature is lower
than predicted by the previous expression in Eq. (7.81). If the recal-
culate the magnetic susceptibility in the paramagnetic regime
according to Section 7.6.3, we obtain the Curie–Weiss expression
in Eq. (7.90), but with a different expression for the Weiss constant:

H ¼ lBgeSðSþ 1Þðk� nÞ
3k

; ð7:94Þ

which for positive n has a lower value that than predicted by Eq.
(7.82). Therefore this formulation of the mean-field theory predicts
that jHj P TN, with the equality only being observed when n ¼ 0.

We emphasize again that the Néel temperature and Weiss con-
stant are distinct quantities that measure fundamentally different
aspects of the bulk magnetic properties of the material. The former
is measured from the experimental magnetic susceptibility data at
temperatures in the vicinity of which we observe the onset of mag-
netic ordering. Therefore TN is the temperature below which we
see antiferromagnetic behaviour, and above which we are in the
paramagnetic regime. On the other land theWeiss constant param-
eterizes the magnetic susceptibility in the paramagnetic regime at
temperatures above TN, and so in principle is independent of the
lower-temperature regime where we observe magnetic ordering.
As we will see in Section 7.7, the paramagnetic shielding tensor
is also parameterized by the Weiss constant.

In materials such as the metal oxides where jHj P TN the tem-
perature at which we acquire NMR data may be larger than the
Néel temperature, but lower than the magnitude of the Weiss con-
stant, i.e. TN < T < jHj. For example this is the case for FeO where

TN ¼ 116 K and H ¼ �610 K, and thus considerable residual (anti-
ferromagnetic) interactions persist at typical operating tempera-
tures of around 300 K [188]. In this case the material is in the
paramagnetic regime as we are above the Néel temperature and
there is no magnetic ordering. A classic example where
jHj � TN occurs is in frustrated magnets. In the conceptually sim-
plest example of these materials, the triangular lattice, three sub-
lattices are coupled antiferromagnetically, and thus no simple
ordering scheme exists. The extent of residual magnetic couplings
at room temperature is determined by the strength of the antifer-
romagnetic couplings, but long range magnetic ordering may not
occur until temperatures much below jHj, if at all in the case of
spin-glasses.

For completeness, we note that ferrimagnets are materials with
two or more magnetic sublattices that are coupled antiferromag-
netically (i.e., H is negative) but because the magnetic moments
of the two sublattices are not equal, ferromagnetism is observed
below TN.

7.6.5. The magnetic susceptibility in terms of the isotropic exchange
coupling

So far we have examined the magnetic properties of paramag-
netic solid insulator materials by employing a phenomenological
approach using mean-field theory. We now round off this section
by linking this model to the explicit exchange interactions between
the magnetic ions and deriving the expression linking the Weiss
constant to the exchange coupling constants for transition-metal
ions. We focus on the isotropic exchange interactions as these
dominate the effects of anisotropic exchange in determining the
magnetic properties of these materials.

We start by writing the total Hamiltonian bH in Eq. (7.59) with
the isotropic exchange interaction terms written with irreducible
spherical tensors:

bH ¼ lBge

X
A

B0 � bS ðAÞ þ
X
A>B

JðABÞ00 ð11ÞbT ðABÞ
00 ð11Þ: ð7:95Þ

The second term describes all the exchange interactions, and com-
prises a sum of terms, each of which is the product of an electronic

spin part bT ðABÞ
00 ð11Þ and a spatial part JðABÞ00 ð11Þ. The former is the

direct-product irreducible spherical tensor operator of two one-

spin operators bSðAÞ
1q1

and bSðBÞ
1q2

, and is written as

bT ðABÞ
00 ð11Þ ¼ �

ffiffiffi
1
3

r bS ðAÞ � bS ðBÞ: ð7:96Þ

The rank-zero spatial tensor of the exchange interaction is written
in terms of the isotropic exchange coupling constant �2J ðABÞ as
follows

JðABÞ00 ð11Þ ¼ 2
ffiffiffi
3

p
J ðABÞ; ð7:97Þ

where we have retained the factor of two as before. Note that we
are restricting the discussion to the isotropic exchange interaction.
A central assumption of mean-field theory is that each ion experi-
ences exactly the same mean molecular magnetic field. The same
assumption is made here, and is equivalent to assuming that all
the ions are of the same species, and that the network of exchange
interactions experienced by a particular ion A is the same for all the
other ions in the lattice (or sub-lattice in the case of antiferromag-
netic materials). Therefore the magnetic susceptibility tensor calcu-
lated for ion A, vij, corresponds to the total susceptibility tensor per
metal ion for the whole material.

The magnetic susceptibility tensor per ion can be calculated to
second order in 1=ðkTÞ from the EPR formalism. Following a similar
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calculation in Appendix E, and after much algebraic manipulation,
the expression is

vij ¼ l0l
2
B

b
x
X
B

X
qq0

ð�1Þqþq0gðAÞ
1q;ig

ðBÞ
1q0 ;j

"


 TrS ŜðAÞ1�qŜ
ðBÞ
1�q0

� 	
� b2

x
X
B

X
C>D

X
qq0

ð�1Þqþq0gðAÞ
1q;ig

ðBÞ
1q0 ;j J

ðCDÞ
00 ð11Þ


TrS ŜðAÞ1�qŜ
ðBÞ
1�q0 T̂

ðCDÞ
00 ð11Þ

� 	#
; ð7:98Þ

where we have only retained the Zeeman terms with a rank one
spin operator, we have written the g-tensor components of ion A

gðAÞ
1q;i in their most general form, and x is the total number of elec-

tronic spin states. The trace TrS is a sum over all the states of the
entire extended spin system. This expression can be simplified after
the tedious task of computing the two traces, following the calcula-
tions presented in Appendix E. The first-order term in the suscepti-

bility vð1Þ
ij is given by:

vð1Þ
ij ¼ l0l2

B

kT
1
x
X
B

X
qq0

ð�1Þqþq0gðAÞ
1q;ig

ðBÞ
1q0 ;jTrS

bSðAÞ
1�q
bSðBÞ
1�q0

� 	
ð7:99Þ

¼ l0l2
B

3kT

X
B

X
qq0

ð�1Þq0gðAÞ
1q;ig

ðBÞ
1q0 ;jhSðAÞkbSðAÞ

1 kSðAÞi2dq�q0dAB ð7:100Þ

¼ l0l2
B

3kT

X
q

ð�1ÞqgðAÞ
1q;ig

ðAÞ
1�q;jhSðAÞkbSðAÞ

1 kSðAÞi2; ð7:101Þ

where the reduced matrix element of bSðAÞ
1 is evaluated in the basis

functions of ion A. As a result of the mean-field approximation, all
the ions are of the same type and therefore have the same spin S,
and all the reduced matrix elements are equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þp

. The

second-order susceptibility term vð2Þ
ij is more complicated, and is

equal to

vð2Þ
ij ¼�l0l2

B

ðkTÞ2
1
x
X
B

X
C>D

X
qq0

ð�1Þqþq0gðAÞ
1q;ig

ðBÞ
1q0 ;jJ

ðCDÞ
00 ð11Þ


TrS bSðAÞ
1�q
bSðBÞ
1�q0
bT ðCDÞ
00 ð11Þ

� 	
ð7:102Þ

¼� l0l2
B

9ðkTÞ2
X
B–A

X
C>D

X
qq0

gðAÞ
1q;ig

ðBÞ
1q0 ;jJ

ðCDÞ
00 ð11Þ


 hSðAÞjjbSðAÞ
1 jjSðAÞi2hSðBÞjjbSðBÞ

1 jjSðBÞi2 
 1 1 0
q q0 0

� �
dCAdDB ð7:103Þ

¼� l0l2
B

9ðkTÞ2
X
B–A

X
qq0

gðAÞ
1q;ig

ðBÞ
1q0 ;jJ

ðABÞ
00 ð11Þ


 hSðAÞjjbSðAÞ
1 jjSðAÞi2hSðBÞjjbSðBÞ

1 jjSðBÞi2 
ð�1Þ1�qdq�q0ffiffiffi
3

p ð7:104Þ

¼ l0l2
B

9
ffiffiffi
3

p
ðkTÞ2

hSðAÞjjbSðAÞ
1 jjSðAÞi2

X
B–A

hSðBÞjjbSðBÞ
1 jjSðBÞi2JðABÞ00 ð11Þ



X
q

ð�1ÞqgðAÞ
1q;ig

ðBÞ
1�q;j: ð7:105Þ

We now acknowledge that we are assuming that the transition-
metal ions have a spin-only ground state, and write the g-factors

for each ion gðAÞ
1q;i in terms of ge:

gðAÞ
1	1 ¼ �

ffiffiffi
1
2

r
ge

1
	i
0

0B@
1CA; gðAÞ

10 ¼ ge

0
0
1

0B@
1CA: ð7:106Þ

The sum of the product of g-factors that occurs in the expressions
for both the first- and second-order susceptibility tensors then
takes the simple form:

X
q

ð�1ÞqgðAÞ
1q;ig

ðBÞ
1�q;j ¼ g2

edij: ð7:107Þ

We note that, as a consequence of both the Zeeman and exchange
interactions being spatially isotropic, the susceptibility v is also iso-
tropic. The final expression is

v ¼ vð1Þ þ vð2Þ ð7:108Þ

¼ l0l2
Bg

2
e SðSþ 1Þ
3kT

þ 2l0l2
Bg

2
e S

2ðSþ 1Þ2
9ðkTÞ2

X
B–A

J ðABÞ: ð7:109Þ

The first-order term is independent of the exchange coupling con-
stants, and is equal to the expression we derived previously for a
system of non-interacting transition-metal ions. The exchange
interactions only contribute to the susceptibility to second order,
with this term being proportional to the sum of the exchange cou-
pling constants describing the couplings to a particular ion [185].
For ferromagnetic ordering all the coupling constants are positive,
and the second-order susceptibility is positive. On the other hand,
if we assume that the nearest-neighbour exchange couplings are
dominant, then antiferromagnetic ordering results in a sum of cou-
pling constants that is negative, and the second-order susceptibility
is also negative. If there are no exchange couplings this term is zero,
as we have also seen previously for non-interacting metal ions.

Now we need to establish the connection between Eq. (7.109)
and the susceptibility from the mean-field model in Eq. (7.90).
The former is written as a Taylor series in 1=ðkTÞ, so to facilitate
the comparison we also expand the latter as a Taylor series giving

v ¼ l0l2
Bg

2
e SðSþ 1Þ
3kT

þ l0l2
Bg

2
e SðSþ 1Þ
3kT2 H: ð7:110Þ

The first term in Eq. (7.110) is equal to the susceptibility from an
ensemble of non-interacting metal ions, as for Eq. (7.109). The sec-
ond term depends on the Weiss constant, which contains all the
information about the exchange interactions, in the same way that
only the second term of Eq. (7.109) depends on the exchange cou-
pling constants. If we equate the two we obtain an expression for
the Weiss constant in terms of the sum of exchange coupling con-
stants [185]:

H ¼ 2SðSþ 1Þ
3k

X
B–A

J ðÞ: ð7:111Þ

Considering only the nearest-neighbour interactions, we can make a
similar observation to before: ferromagnetic order is characterised
by positive nearest-neighbour exchange constants, and therefore a
positive Weiss constant, whilst antiferromagnetic ordering is char-
acterised by negative exchange coupling constants, and therefore a
negative Weiss constant.

7.7. The paramagnetic shielding tensor in solid insulator materials

Eq. (7.53) is a general expression for the paramagnetic shielding
tensor in either a system containing a cluster of transition-metal
ions, or a solid insulator, and includes the effects of anisotropic
exchange, g-anisotropy, and the ZFS interaction. Many solid sys-
tems, such as battery materials, can be approximated by a simpler
formula which neglects SO coupling, and in which the dependence
on the isotropic exchange coupling constants is replaced by a
Curie–Weiss temperature dependence [5,54,55]. The link between
this model and Eq. (7.53) is now examined in detail. As for the
magnetic susceptibility the isotropic exchange interactions, rather
than anisotropic exchange, dominate the form of the paramagnetic
shielding tensor, and so we focus exclusively on the former
interactions.
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7.7.1. The Curie–Weiss expression for the paramagnetic shielding
tensor

In the spin-only limit we replace the g-tensor with the free-
electron g-factor, and remove both any SO coupling contributions
to the ZFS tensor, and the DM part of the exchange coupling con-
stants. In addition we will also ignore the NR parts of the ZFS
and the anisotropic exchange interaction, which are due to dipolar
couplings between the electrons and are expected to be small. The
paramagnetic shielding tensor in a solid insulator containing only
spin-only transition-metal ions of the same species is now given
by a simplified form of Eq. (7.53):

rS ¼ �lBgeSðSþ 1Þ
3�hcIkT

X
A

AðAÞ

� 2lBgeS
2ðSþ 1Þ2

9�hcIðkTÞ2
X
A

X
B–A

J ðABÞAðBÞ
: ð7:112Þ

So far we have made no assumptions about the exchange coupling
constants. However in order to make the link with the Curie–Weiss
law we need to introduce a mean-field approximation. As we have
already seen this equates to stating that the network of exchange
couplings experienced by any one metal ion is the same as for all
metal ions. This means that in the second term of Eq. (7.112), the
sum over the exchange coupling constants is independent of one
of the indices, and we can partition the double sum as follows:X
A

X
B–A

J ðABÞAðBÞ ¼
X
B–A

J ðABÞX
C

AðCÞ
; ð7:113Þ

where we have labelled the index in the sum of the hyperfine cou-
pling constants as C to emphasise the separation from the sum over
B. We can also simplify the sum over the hyperfine coupling tensors
further. We have already seen that for each metal ion the hyperfine

coupling tensor AðAÞ that we include in the expression for the para-
magnetic shielding as derived from the EPR formalism represents
the coupling per electron. This is because the different electrons
reside in different orbitals, each of which may couple differently
to the nuclear spin. However, at this point, it proves convenient
to write the shielding tensor in terms of the total hyperfine coupling
constant A, due to all the electrons in all the metal ions that couple
to the nucleus:

A ¼ 2S
X
A

AðAÞ
: ð7:114Þ

With these two simplifications the paramagnetic shielding tensor is
now

rS ¼ �lBgeðSþ 1Þ
6�hcIkT

A � lBgeSðSþ 1Þ2
9�hcIðkTÞ2

X
B–A

J ðABÞA: ð7:115Þ

We can also write down a phenomenological form of the shield-
ing tensor. We have seen that the magnetic susceptibility per metal
ion of an ensemble of spin-only transition-metal ions, as given in
Eq. (7.90), has a Curie–Weiss temperature dependence, and since
the shielding is proportional to the susceptibility, we expect the
shielding tensor to have the form

rS ¼ � lBgeSðSþ 1Þ
3�hcIkðT �HÞ

X
A

AðAÞ ð7:116Þ

¼ � lBgeðSþ 1Þ
6�hcIkðT �HÞA: ð7:117Þ

Expanding Eq. (7.117) as a Taylor series in 1=ðkTÞ, and equating

terms of order 1=ðkTÞ2 as we did for the magnetic susceptibility,
we obtain the same expression for the Weiss constant as we calcu-
lated in Eq. (7.111). This establishes the Curie–Weiss temperature

dependence of the paramagnetic shift at temperatures above jHj
that is often assumed in the calculation and interpretation of the
paramagnetic shifts of solid insulating materials [54,237].

7.7.2. The scaling factor
In Section 3.4 we introduced the idea of Kim et al. [54] that the

paramagnetic shielding tensor can be thought of as a quantity that
is calculated with all the effective electronic spins aligned with fer-
romagnetic ordering, and then scaled down into the paramagnetic
regime by a factor that accounts for the thermal occupation of the
excited electronic spin states. The quantity that is averaged is

� A

2�hcIB0
; ð7:118Þ

whereA is the total hyperfine coupling tensor calculated in the fer-
romagnetic regime from the electron density of all the unpaired
electrons from all the paramagnetic centres coupled to the nucleus.
This expression is the same as the one quoted in Section 3.4 for non-
interacting metal ions, and we again note that the ferromagnetic
phase of the material in which the calculation of A is performed
need not necessarily represent the ground state.

The factor which scales this quantity to give the paramagnetic
shielding tensor is the ratio of the Curie spins in the paramagnetic
and saturated (i.e. spin-aligned) regimes. The saturated Curie spin

hbSzisat is simply �S, as before, and the paramagnetic Curie spin is
given by Eq. (7.87), and contains the Curie–Weiss temperature
dependence. The scaling factor is therefore

hbSzipara
hbSzisat

¼ HB0

SkðT �HÞ ð7:119Þ

¼ lBgeðSþ 1ÞB0

3kðT �HÞ ð7:120Þ

¼ vB0

l0lBgeS
; ð7:121Þ

and has been written in terms of both the local parameters, and the
bulk magnetic susceptibility. To go to the second line we have used
the expression for the Weiss constant in terms of the mean-field
parameter k as given in Eq. (7.82). The scaled paramagnetic shield-
ing tensor is therefore

rS ¼ � A

2�hcIB0

hbSzipara
hbSzisat

ð7:122Þ

¼ � v
2l0lBge�hcIS

A ð7:123Þ

¼ � lBgeðSþ 1Þ
6�hcIkðT �HÞA: ð7:124Þ

These expressions open up two possibilities for calculating param-
agnetic shifts in the solid state. In both cases the hyperfine coupling
tensor can be calculated using either quantum chemistry or DFT
methods [238,211,54]. The scaling factor can then be calculated
either from (1) the experimental magnetic susceptibility or the
experimental Weiss constant [54], which have been determined
independently from the NMR measurement, or (2) the computed
values of the exchange couplings from which a Weiss constant
can be calculated.

If SO coupling effects need to be considered, we can employ an
alternative form of the scaling factor, as shown in the absence of
magnetic ordering in Section 4.4. Here the scaling factor is given
by the ratio of the paramagnetic and saturation electronic magnetic
moments, in terms of an empirical effective magnetic moment leff :

hm̂zipara
hm̂zisat

¼ l2
effB0

3lBgeSkðT �HÞ : ð7:125Þ
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The paramagnetic shielding tensor is then:

rS ¼ � l2
eff

3lBge�hcIkðT �HÞA: ð7:126Þ

This is the same as Eq. (4.201), except with the inclusion of the
Weiss constant. As discussed in Section 4.4 this form of the shield-
ing tensor is approximate, as it neglects SO coupling effects in the
hyperfine tensor and does not account for magnetic anisotropy,
which gives rise to the PCS. However it has been successfully used
to calculate contact shifts due to first-row d-block ions for a range of
solid battery electrode materials [31,54–57].

7.7.3. A word of caution
In the light of the discussion in Section 7.7.2, and the Curie–

Weiss temperature dependence of the paramagnetic chemical
shielding tensor, there is the very attractive prospect of determin-
ing the Weiss constant experimentally from the measured temper-
ature dependence of either the isotropic shift or the SA. For
example, at temperatures above jHj, the isotropic paramagnetic
shift dSiso has the dependence

dSiso ¼ j
T �H

; ð7:127Þ

where the constant j is equal to

j ¼ lBgeðSþ 1Þ
6�hcIk

AFC; ð7:128Þ

and AFC is the total Fermi-contact coupling constant. Eq. (7.127) can
be rearranged to give

1
dSiso

¼ T
j
�H
j
; ð7:129Þ

from which one would plot 1=dSiso versus T to obtain H from the y-
intercept, and then relate this to the exchange coupling constants.
However there are a number of problems with this approach. The
first is that the temperature range over which NMR data can be
acquired is generally limited either by the available hardware, or
the nature of the material, which may undergo a structural phase
transition above or below a certain temperature, or decompose. In
such cases there will be a significant error introduced when extrap-
olating the line in Eq. (7.129) back to T ¼ 0 K to obtain the intercept,
and in some cases the errors will be sufficiently large that even the
sign of H cannot be obtained. This problem is exacerbated for large
Weiss constants when we note that Eq. (7.129) is only valid at tem-
peratures above jHj. In practice, this problem can be overcome by
taking the susceptibility measured at the temperature of the NMR
experiment and using this to calculate the scaling factor.

The second, and more fundamental, problem is that Eq. (7.127)
is only valid for spin-only transition-metal ions. For metal ions
with SO coupling, the resulting g-anisotropy and ZFS splitting ten-

sor combine to give a contribution that varies as 1=ðkTÞ2 in addi-
tion to the contribution from the exchange couplings, as seen in
Eq. (7.53). The measuredWeiss constant is then a function not only
of the exchange coupling constants, but also of the g- and ZFS ten-
sors, and the different contributions cannot be separated without
further experimental or computational data.

7.7.4. The magnetic susceptibility and paramagnetic shielding tensors
in solid materials with more than one species of paramagnetic metal
ion

The previous discussion in Sections 7.6.3 and 7.7.1–7.7.3
focussed on solid materials with only one species of transition-
metal ion, and neglected the effects of SO coupling. We remove

the first assumption here, and delay the discussion of SO coupling
effects to Section 7.10.

The presence of only one species of transition-metal ion in the
material allows us to relate the bulk magnetic properties, such as
the magnetic susceptibility andWeiss constant, to the local param-
agnetic shielding in a straightforward manner. This is because each
metal ion has the same local magnetic properties, which are equal
to the average of those of the ensemble. If the material contains
more than one species of transition-metal ion this assertion is no
longer true, as the average of the bulk properties fails to distin-
guish the differences between the ions. It therefore appears that
we can no longer use the bulk magnetic properties to calculate
the shielding tensor. However we show here that a simple modifi-
cation of the discussion of the scaling factor does indeed allow us
to do this with no significant difficulty.

The trick is to break the material up into interpenetrating sub-
lattices, each one of which contains a single species of metal ion.
For example a material containing two species of metal ion 1 and
2 can be separated into two sub-lattices, which contain exclusively
ions of type 1 and type 2 respectively. We note that this treatment
is analogous to that used in the Weiss model of antiferromag-
netism, where the two sub-lattices contained metal ions with
spin-up and spin-down electron spins. In the present case we can
associate a magnetic susceptibility per ion vðAÞ with the sub-
lattice with metal ions A. The sum of these sub-lattice susceptibil-
ities gives the total magnetic susceptibility per ion v:

v ¼ 1
N

X
A

vðAÞ; ð7:130Þ

where N is the number of distinct species of metal ion in the mate-

rial. Each metal ion species has electronic spin SðAÞ, and can also be

associated with its own Weiss constant HðAÞ, which describes the
exchange interactions associated with ion A, which are assumed
to be the same as for all ions of species A. In the spin-only approx-
imation this allows us to write vðAÞ as

vðAÞ ¼ l0l2
Bg

2
e S

ðAÞðSðAÞ þ 1Þ
3kðT �HðAÞÞ

; ð7:131Þ

where the corresponding Weiss constant is

HðAÞ ¼
2SðAÞ SðAÞ þ 1

� 	
3k

X
B–A

J ðABÞ: ð7:132Þ

The exchange coupling constants in the expression for the Weiss
constant of ion A in Eq. (7.132) describe both the couplings within
the sub-lattice A, and also between each ion A and the metal ions
in the other sub-lattices.

The total paramagnetic shielding tensor of a particular nuclear
spin rS can be written as the sum of the contributions rS;ðAÞ from
the metal ions from all the sub-lattices:

rS ¼
X
A

rS;ðAÞ: ð7:133Þ

In general each contribution rS;ðAÞ from a sub-lattice A contains the
hyperfine interactions from all the ions in that sub-lattice. We now
see that relating the bulk magnetic properties to the shielding
tensor is actually straightforward. We simply scale the hyperfine

tensors AðAÞ from each sub-lattice separately according to either
Eq. (7.120) or 7.121, using the susceptibility and Weiss constants
pertaining to the relevant sub-lattice. The sub-lattice contributions
to the shielding tensor rS;ðAÞ are then given by:
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rS;ðAÞ ¼ � AðAÞ

2�hcIB0

hbSðAÞ
z ipara

hbSðAÞ
z isat

ð7:134Þ

¼ � vðAÞ

2l0lBge�hcIS
ðAÞ A

ðAÞ ð7:135Þ

¼ � lBgeðSðAÞ þ 1Þ
6�hcIkðT �HðAÞÞ

AðAÞ: ð7:136Þ

This process is of particular importance for studying mixed
transition-metal ion materials, or materials containing metal ions
of mixed valency.

7.8. Types of isotropic exchange interaction

In the discussion of the magnetic exchange interactions and
their effect on the susceptibility and paramagnetic shielding ten-
sors we have hitherto avoided a detailed discussion of the physical
nature of the interactions. We turn to this topic now.

7.8.1. Direct exchange
The first mechanism involves the direct interaction between

unpaired electrons of neighbouring metal ions, and is known as
direct exchange. The interaction is due to the overlap of the atomic
orbitals of the two ions, an example of which is shown in Fig. 7.5
(a). Here the two metal ions M1 and M2 each possess a half-
occupied orbital of eg symmetry, which overlap to form molecular
orbitals of r symmetry. The resulting alignment of the two
unpaired electrons at low temperature, i.e. below the magnetic
ordering temperature TC or TN, can be understood by employing
the linear combination of atomic orbitals (LCAO) model. This is
the foundation of the Goodenough–Kanamori rules, which allow
the prediction of the sign of the exchange coupling constant
[239–241]. In this case the LCAO model predicts the formation of
two molecular orbitals, which are the 1r bonding and 2r anti-
bonding orbitals. As shown in Fig. 7.5(b) the energy of the 1r lies
below that of the two eg atomic orbitals, while the energy of the
2r lies above. Therefore the two unpaired electrons both occupy
the lower-energy 1r orbital, with configuration 1r2, and must do
so with paired spins to satisfy the Pauli principle. This results in
the S ¼ 0 spin state having the lower energy, and the electrons
are aligned antiferromagnetically. We note that the S ¼ 1 spin state
can only be reached with the higher-energy electronic configura-
tion of 1r12r1, where occupancy of the anti-bonding orbital causes
no net bonding.

Although the direct interaction is the most obvious exchange
mechanism, it is not the most prevalent, due to the difficulty of
obtaining sufficient overlap between the metal orbitals. For exam-
ple direct exchange is unlikely to be effective between lanthanide
ions, since the contracted nature of the 4f orbitals means that there

is negligible overlap over typical atomic spacings. For d-transition
metals the d-orbitals extend further from the nucleus, and so direct
overlap is more common particularly for the less radially-
contracted 3d ions on the left-hand side of the 3d series, and the
larger 4d and 5d ions. However other exchange mechanisms are
generally more important in determining the magnetic properties
of d-transition-metal materials.

7.8.2. Superexchange
Many ionic solid materials, such as metal oxides, exhibit mag-

netic ordering at low temperatures even though there is no direct
overlap between the metal-ion orbitals. In these cases the
exchange interaction is indirect, and occurs via an intermediate
bridging anion, such as O2�. This mechanism, which is clearly
longer range than direct exchange, is referred to as superexchange.
The superexchange mechanism is dominated by the overlap of the
two metal orbitals with the orbitals of the bridging anion, and may
be ferro- or antiferromagnetic depending on the exact nature of the
overlap. An example of each is shown in Fig. 7.6. In Fig. 7.6(a) is
shown the orbital overlap that occurs when the metal ions M1

and M2 and O2� ion are arranged as M1AOAM2 with a bridging
angle of 180�. The two half-filled metal eg orbitals both overlap
with the filled oxygen 2pr orbital to give three molecular orbitals
of r symmetry, labelled 1r, 2r, and 3r, as shown in Fig. 7.6(b).
The four electrons fill the 1r and 2r orbitals as two pairs, giving
a configuration of 1r22r2 with S ¼ 0. This superexchange interac-
tion is therefore antiferromagnetic.

A different result arises in the situation shown in Fig. 7.6(c)
where the M1AOAM2 bridging angle is 90�. In this case an unfilled
t2g orbital of each metal ions overlaps with a different filled oxygen
2pp orbital. Therefore the orbitals formed by M1AO overlap are
orthogonal to those formed by M2AO overlap. The resulting molec-
ular orbitals are shown in Fig. 7.6(d), and comprise a doubly-
degenerate 1p bonding level, and a doubly-degenerate 2p anti-
bonding level. The low-temperature electronic configuration of
the six electrons is 1p42p2, i.e. the two 1p orbitals are filled with
two pairs of electrons, with the remaining two electrons in the 2p
orbitals. The lowest-energy arrangement of these latter two elec-
trons is that they occupy different 2p orbitals with parallel spins,
according to Hund’s first rule. The lowest-energy spin state is there-
fore S ¼ 1 and the alignment is ferromagnetic. It is generally
observed that the ferromagnetic superexchange interaction is
weaker than antiferromagnetic superexchange. It is also worth not-
ing that, in the second example in Fig. 7.6(c) and (d), direct overlap
between the two metal t2g orbitals may occur if the distance is suf-
ficiently short, resulting in an antiferromagnetic direct exchange
interaction in addition to the ferromagnetic superexchange interac-
tion. This has been suggested to happen in Li2MnO3, with direct
exchange between the two Mn4+ ions proving to be the dominant
interaction, resulting in antiferromagnetic alignment [242].

7.8.3. Double exchange
Some metal oxide materials contain metal ions which are pre-

sent in more than one oxidation state and exhibit a ferromagnetic
exchange interaction. This is due to the double exchange mecha-
nism, which is illustrated in Fig. 7.7 for an interaction between
Mn3+ and Mn4+, which have free-ion electronic configurations of

3d4 and 3d3. In an octahedral ligand field the electronic configura-
tions are t32ge

1
g and t32g , and have effective spins of S ¼ 2 and S ¼ 3=2

due to Hund’s first rule. In the double-exchange mechanism the eg
electron of the Mn3+ ion can hop into a vacant eg orbital of the Mn4+

ion on a neighbouring site. This hopping electron does not undergo
a change in spin polarization, and so this process is only energeti-
cally favourable if the polarization of this electron matches that of
the t2g electrons in the destination ion. This means that the Mn4+

Fig. 7.5. Illustration of the direct isotropic exchange interaction between two
paramagnetic metal ions at low temperature. One example is given, which shows
the exchange that results from r-overlap between two eg orbitals of metal ions M1

and M2, each one of which contains an unpaired electron, as is shown in (a). The
overlap between both atomic orbitals gives a bonding molecular orbital 1r, and an
anti-bonding molecular orbital 2r, as shown in (b). It can be seen that the two
electrons are paired in the 1r orbital, leaving the 2r vacant. The electron pairing
results in an overall spin of S ¼ 0, and hence antiferromagnetic alignment.
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t2g electrons must have the same polarization as the Mn3+ t2g elec-
trons, which in turn requires ferromagnetic alignment of the two
metal ions.

Double exchange is also an important exchange mechanism in

iron materials of mixed valency, i.e. containing Fe2+ (3d6) and

Fe3+ (3d5).

7.8.4. Ruderman–Kittel–Kasuya–Yosida exchange
The final mechanism we consider here is Ruderman–Kittel–Ka

suya–Yosida (RKKY) exchange, which is observed in metals. The
interaction occurs between two localized effective electronic spins
via the conduction electrons, hence it is an indirect exchange
mechanism and may occur over long distances. It can be shown
that the exchange constant varies with distance r as

J ðABÞ / cosð2kFrÞ
r3

; ð7:137Þ

(where kF is defined in Section 2.3.3) i.e. the sign oscillates with dis-
tance, and so the interaction may be either ferro- or antiferromag-
netic [188].

7.9. Predicting the Fermi-contact shift with the Goodenough–
Kanamori rules

In solid-oxide materials the isotropic paramagnetic shift is usu-
ally dominated by electron transfer processes, and is therefore
given by the Fermi-contact shift. Therefore we now examine the
problem of interpreting and rationalizing the Fermi-contact shifts
obtained in such materials. It turns out that we can use the Good-
enough–Kanamori rules [239–241] to make simple predictions
about the Fermi-contact shift which have proved to represent a

practical and intuitive method with which to interpret the NMR
spectra of, for example, a series of paramagnetic battery materials
[5]. The concepts introduced in this section are therefore closely
related to those for predicting the sign of the isotropic exchange
coupling constants introduced in Section 7.8.

The isotropic Fermi-contact shift can be determined from Eq.
(7.124) to be

dFCiso ¼
lBgeðSþ 1Þ
6�hcIkðT �HÞA

FC; ð7:138Þ

where we have focussed on a single sub-lattice containing a single
species of metal ion. However the ideas discussed here are easily
generalized to materials containing more than one metal-ion spe-
cies, and also to systems with no magnetic ordering, such as para-
magnetic molecules in solution. The Fermi-contact shift is
proportional to the Fermi-contact coupling constant, which is given
by Eq. (2.171) and reproduced below for convenience:

AFC ¼ 2l0lBge�hcI
3

qa�bð0Þ: ð7:139Þ

Thus the Fermi-contact shift is proportional to, and has the same
sign as, the unpaired electron density qa�bð0Þ that is within the s-
orbital of the nucleus. In general accurate values of qa�bð0Þ require
either quantum-chemical or DFT calculations. However it may be
possible to determine and/or rationalise the sign of qa�bð0Þ, and
hence the sign of the Fermi-contact shift, more simply by using
the Goodenough–Kanamori rules [239–241]. The rules stem from
the fact that, on the formation of a bonding interaction between
two atoms, the atomic orbitals of compatible symmetry of the
two atoms combine to form a molecule orbital, or ‘bond’. The elec-
trons present in both atomic orbitals are now shared between the

Fig. 7.6. Illustration of the indirect isotropic superexchange interaction between two paramagnetic metal ions via a bridging anion at low temperature. Two examples are
given which show the superexchange that results from the overlap between the atomic orbitals of two metal ions M1 and M2, each one of which contains an unpaired
electron, and the filled 2p orbitals of a bridging O2� anion. In the first example, shown in (a) two metal eg orbitals interact with one filled oxygen 2pr orbital with a 180�

bridging angle to give molecular orbitals of r symmetry. Three such orbitals are formed, labelled 1r;2r, and 3r, as shown in (b). The four electrons occupy the bonding 1r
and 2r orbitals in pairs, leaving the anti-bonding 3r orbital vacant. The total spin is S ¼ 0, and hence the interaction is antiferromagnetic. A different example is shown in (c)
and (d), in which the bridging angle is 90� , and involving two orthogonal atomic orbitals of the bridging oxygen. The t2g orbitals of M1 and M2 each overlap with a different
oxygen 2pp orbital, resulting in two separate p interactions as shown in (c). The energy levels are shown in (d), from which can be seen that a pair of degenerate 1p bonding
orbitals and a pair of degenerate 2p anti-bonding orbitals are formed. Four of the six electrons fill the two 1p as two pairs, with the remaining two occupying the 2p orbitals.
According to Hund’s first rule these latter two electrons occupy different 2p orbitals with parallel spins, thus giving ferromagnetic alignment with S ¼ 1.
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two atoms. In particular any unpaired electrons present on one
atom become delocalised, or partially transferred, into the atomic
orbitals of the second, and if the second orbital is an s-orbital this
delocalisation mechanism results in a Fermi-contact shift. Alterna-
tively the s-orbital may form a bond with an unoccupied metal orbi-
tal. If this metal orbital receives electron density as a result this
density must be spin-aligned to any other unpaired electrons in
other metal orbitals. This results in unpaired electron density with
a well-defined polarization being transferred to the s-orbital. This
polarization mechanism also results in a Fermi-contact shift. The
essence of the Goodenough–Kanamori rules is that this electronic
spin transfer occurs so that the total electronic spin angular
momentum of the system is conserved.

An illustration of the use of the Goodenough–Kanamori rules to
predict the sign of the Fermi-contact shift is given by three exam-
ples in Fig. 7.8. Part (a) shows the simplest case, where a half-filled
atomic orbital of a metal ion M overlaps with a vacant s-orbital on
the atom X with the NMR-active nucleus. The single unpaired spin-
up electron on M is shared between the two atoms with a certain
proportion being delocalised into the vacant orbital of X. The trans-
ferred electron density must have the same spin polarisation as the
original electron, and so is also spin up. The result is that the net
spin density qa�bð0Þ is positive, and hence the Fermi-contact shift
is also positive. The second example, shown in (b), is the case
where the half-filled M-orbital overlaps with the vacant s-orbital
on X via a filled atomic orbital of a bridging atom, say oxygen O.
In this case the delocalisation is a transfer of two electrons from
the O atom, one to each of the other two atoms M and X. Since
the unpaired electron already present on M is spin up, any addi-
tional electronic spin partially transferred from O must be of the
opposite polarisation so as to satisfy the Pauli exclusion principle.
The remaining spin-up electron on O is then partially transferred
into the s-orbital of X, thus giving a net positive spin density at
the nucleus and a positive Fermi-contact shift. In the final example
(c) the M-orbital involved in the overlap with O and X is vacant,
and the only electrons present in the molecular orbitals are the pair
on O. The M-orbital that contains the spin-up unpaired electron,
shown as having lower energy in (c), does not have compatible
symmetry with either the O- or X-orbitals, and so does not partic-
ipate directly in any covalent bonding. The unpaired electron den-
sity that is now transferred from O to the vacant M-orbital must
have the same polarisation as the unpaired electron in the second
M-orbital, i.e. spin-up, so as to satisfy the requirements of Hund’s
first rule, and therefore the electronic spin density transferred from
O to X is spin down. This polarization mechanism results in a net
negative spin density at the X nucleus, and therefore a negative
Fermi-contact shift.

Fig. 7.9 shows how the Goodenough–Kanamori rules are applied
in practice using the solid lithium manganates as examples [5]. In

these materials M = Mn4+ has a 3d3 electronic configuration, which
becomes t32g in octahedral coordination sites, i.e. the t2g orbitals are
each half filled, and the eg are vacant. The O atom forms the bridge
via the filled 2p orbitals, andX is the Li+ ionwhich possesses a vacant
2s orbital into which the unpaired electron density is transferred.
The metal–lithium interactions are formed by sets of Mn4+AO2�-
ALi+ bonds, which are characterised by the angle subtended at the
O atom. The signs of the Fermi-contact shifts can be rationalised
easily in two special cases of bond geometry, namelywhen the bond
angle is either close to, or equal to, 90� or 180�. Fig. 7.9(a) shows the
overlap of the orbitals for a 90� bond angle. A half-filled t2g orbital of
Mn4+ is of the correct symmetry to overlapwith one of the filled 2pp
orbitals of O to give ap-bond,which in turn overlapswith the vacant
Li+ 2s orbital. As discussed above and shown in Fig. 7.8(b), this form
of overlap gives a positive Fermi-contact shift for both 6Li and 7Li. In
addition, direct overlap between the t2g and 2s orbitals is possible,
which also results in a positive shift as shown in Fig. 7.8(a). In this
bonding geometry the vacant eg orbitals make no contribution as
their symmetry properties result in there being no net overlap
between them and the Li+ 2s, either directly or through any bridging
O 2p orbital. By contrast a 180� bonding angle gives the overlap of
orbitals shown in Fig. 7.9(b). In this case the t2g–2pp p-bond has
symmetry that is incompatible with that of the Li+ 2s orbital, and

Fig. 7.7. Illustration of the indirect isotropic double-exchange interaction between
two paramagnetic metal ions of different valency. The two interacting ions are the
Mn3+ and Mn4+ cations in octahedral coordination environments, and with
electronic configurations of t32ge

1
g and t32g respectively. The single eg electron on

the Mn3+ ion undergoes hopping to a vacant eg orbital of Mn4+ as shown by the red
arrow. This hopping occurs without a change in electron polarization, and so is
energetically most favourable when the electrons of Mn3+ are spin-aligned so they
are parallel to those of Mn4+, according to Hund’s first rule. The double-exchange
interaction is therefore ferromagnetic.

Fig. 7.8. Schematic illustrating the transfer of unpaired-electron spin density
between the orbitals of a transition-metal ion M and the vacant s-orbital of the
NMR-active nucleus X, possibly via the filled orbital of a bridging atom O. The
unpaired electrons formally present in each orbital are illustrated with black
arrows. The transfer of polarisation is indicated with a curved red arrow, and the
transferred spin is shown with a small red arrow. In (a) is shown the direct
delocalisation of an unpaired electron on M to the vacant orbital on X. Both the
unpaired electron and the transferred polarisation have the same ‘up’ polarisation,
giving a positive spin density qa�bð0Þ at X, and therefore a positive Fermi-contact
shift. In (b) is shown the spin transfer that occurs when the M orbital, which
contains a single spin-up electron, interacts with a vacant X-orbital via the filled
orbital of the bridging atom O. Transferred polarisation from the O-orbital of both
the ‘up’ and ‘down’ electrons occurs, with the latter being transferred to the M-
orbital to satisfy the Pauli principle, and the former being transferred to X to give
both a positive spin density and Fermi-contact shift. The situation in (c) is similar
with the exception that the M-orbital that interacts with the filled O-orbital is
unoccupied. The result is that the ‘up’ electron is transferred to the vacant M-orbital
so as to satisfy Hund’s first rule and be spin-aligned with the unpaired electron in
the lower-energy half-filled M-orbital. The ‘down’ electron is therefore transferred
to X, giving a negative spin density at X, which results in a negative Fermi-contact
shift. The situations in (a) and (b) are examples of unpaired-electron delocalization,
and the situation in (c) is an example of unpaired-electron polarization.
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so does not contribute directly. However the r-overlap between a
vacant eg orbital and a filled O 2pr gives a r-bond which does have
a net overlap with the Li+ 2s orbital. The electronic spin transferred
to the eg must be spin up, so as to be alignedwith the unpaired elec-
trons in the t2g orbitalwhich, as shown in Fig. 7.8(c), results in both a
negative electronic spin density transferred to the Li+ 2s, and a neg-
ative Fermi-contact shift for 6Li and 7Li.

7.10. The magnetic susceptibility and paramagnetic shielding tensors
in solid materials due to metal ions with SO coupling

We now extend the Curie–Weiss description of the paramag-
netic shielding tensor in solid insulator materials by including
the effects of SO coupling. In particular we once again provide a
link between the bulk magnetic properties, namely the magnetic
susceptibility tensor and the Weiss constant, and the local param-
agnetic shielding tensor. Whilst we include the effects of SO cou-
pling on the g- and ZFS tensors, we continue to neglect the SO
contributions to the exchange interactions, namely the DM interac-
tion, as well as the NR dipolar coupling. The justification for this is
that isotropic exchange is the most important contribution to the
interactions between the metal ions.

In the following discussion we assume for simplicity that only
one species of transition-metal ion is present. However we note
that the extension to more than one species is easily made by using
the sub-lattice model of Section 7.7.4. The assumption of one spe-
cies of metal ion is not as trivial a point as it first appears. The rea-
son is that it restricts all the metal ions to have the same g- and ZFS
tensors. Importantly this means that not only must, for example,
the g-tensors have the same principal components, but they must

also have PAFs with the same orientation. Even if the unit cell con-
tains only one metal ion, the solid may not satisfy the single-
species condition. For example consider the battery cathode mate-
rial LiFePO4, the unit cell of which contains one Fe2+ site. However
closer inspection reveals that there are actually four Fe2+ sites that
are related to each other by rotational symmetry operations. This
means that, whilst the four Fe2+ ions have the same principal val-
ues for the g- and ZFS tensors, their PAFs have different orienta-
tions which are related to each other by the same rotational
symmetry operations. Therefore in order to describe this system
we would require four separate sub-lattices.

7.10.0.1. The magnetic susceptibility tensor
Assuming only one species of transition-metal ion we can write

down the magnetic susceptibility tensor per metal ion vij to second
order in 1=ðkTÞ as an extension of Eq. (7.98):

vij¼l0l
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where we have included the second-order contribution from the
ZFS tensor. As for Eq. (7.98), and with reference to Appendix E, we
simplify the expressions for the traces to obtain:

v ¼ l0l2
BSðSþ 1Þ
3kT

g � gT � l0l2
BSðSþ 1Þð2S� 1Þð2Sþ 3Þ

30ðkTÞ2
g � D � gT

þ 2l0l2
BS

2ðSþ 1Þ2
9ðkTÞ2

g � gT
X
B–A

J ðABÞ: ð7:141Þ

We have seen the first two terms before, which are simply the first-
and second-order contributions that also occur in systems with no
magnetic ordering, and which depend on the matrix products g � gT

and g � D � gT respectively. The third term, which depends on the
exchange coupling constants, is analogous to the second term in
Eq. (7.109), with the factor g2

e replaced with g � gT . Note that the
form of this susceptibility tensor requires the metal ions to have
the same g-tensor g and ZFS tensor D.

In order to link the susceptibility Eq. (7.141) Weiss constant we
require a phenomenological expression for v that depends on H.
For this we propose the following modified version of Eq. (7.90),
into which we have introduced the g- and ZFS tensors:

v ¼ l0l2
BSðSþ 1Þ

3kðT �HÞ g � gT � l0l2
BSðSþ 1Þð2S� 1Þð2Sþ 3Þ

30k2ðT �HÞ2
g � D � gT :

ð7:142Þ

In order to link this expression to Eq. (7.141) we expand the former
as a Taylor series in 1=ðkTÞ to second order, which gives us

v � l0l2
BSðSþ 1Þ
3kT

g � gT � l0l2
BSðSþ 1Þð2S� 1Þð2Sþ 3Þ

30ðkTÞ2
g � D � gT

þ l0l2
BSðSþ 1Þ
3kT2 g � gTH: ð7:143Þ

On comparing terms in this expression and Eq. (7.141) with the
same temperature dependence we obtain the same expression for
the Weiss constant as calculated previously in Eq. (7.111).

Fig. 7.9. Illustration of the orbital overlap and electron spin transfer in an Mn4+-
AOALi arrangement of ions in the solid lithium manganates, for 90� and 180�

angles subtended at O [5]. The unpaired electrons formally present in each orbital
are illustrated with black arrows. The transfer of polarisation is indicated with a
curved red arrow, and the transferred spin is shown with a small red arrow. In (a) is
shown the orbital overlap that occurs in a Mn4+AOALi link with a 90� angle. Both
direct overlap between the M t2g and the Li+ 2s orbitals, indicated by the dashed
line, and overlap via the filled bridging O 2p orbitals are possible, both of which
result in a positive Fermi-contact shift via electron delocalization as shown in
Fig. 7.8(a) and (b). In (b) is shown the orbital overlap that occurs with a 180� bond
angle, which results in a negative electronic spin density being transferred to the 2s
orbital via polarization, and hence a negative Fermi-contact shift as shown in
Fig. 7.8(c).
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7.10.0.2. The paramagnetic shielding tensor
We now calculate the SO coupling expression for the paramag-

netic shielding tensor, where we include the SO coupling contribu-
tions to the g-, ZFS, and hyperfine tensors, but only consider the
isotropic exchange coupling constants. From the discussion in
Appendix E we obtain the following expression for the shielding
tensor:

rS
ij ¼ � lB
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ðCÞ
2�q00

� 	
� b2

x
X
A;B

X
C>D

X
qq0

ð�1Þqþq0gðAÞ
1q;iA

ðBÞ
1q0 ;j J

ðCDÞ
00 ð11ÞTrS ŜðAÞ1�qŜ
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Following the calculation of the expressions for the traces we obtain
the following expression:

rS ¼ �lBSðSþ 1Þ
3�hcIkT

g �
X
A

AðAÞ

þ lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
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� 2lBgeS
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9�hcIðkTÞ2
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X
A

X
B–A

J ðABÞAðBÞ
; ð7:145Þ

where the first term is the first-order contribution that depends
only on the g-tensor, the second term is a second-order contribution
that depends on the g- and ZFS tensors, and the third term contains
all the information about the exchange couplings. The first step in
linking this expression with the Weiss constant is to write the

many-electron hyperfine tensors AðAÞ in terms of the total hyperfine
tensors A using Eqs. (7.113) and (7.114):

rS ¼ �lBðSþ 1Þ
6�hcIkT

g �A þ lBðSþ 1Þð2S� 1Þð2Sþ 3Þ
60ðkTÞ2

g � D �A

� lBSðSþ 1Þ2
9�hcIðkTÞ2

X
B–A

J ðABÞg �A: ð7:146Þ

The phenomenological expression for the paramagnetic shielding
tensor is given by an expression that is analogous to the magnetic
susceptibiity tensor in Eq. (7.142):

rS ¼ � lBðSþ 1Þ
6�hcIkðT �HÞ g �A þ lBðSþ 1Þð2S� 1Þð2Sþ 3Þ

60k2ðT �HÞ2
g � D �A

ð7:147Þ
Expanding this as a Taylor series in 1=ðkTÞ and comparing the second-
order terms, we once again obtain the expression for the Weiss con-
stant in Eq. (7.111). Eq. (7.147) is therefore a practical expression for
the paramagnetic shielding tensor in a solid exhibiting magnetic
ordering. If the solid contains more than one species of metal ion,
we may repeat the analysis of Section 7.7.4, and treat Eq. (7.147) as
the contribution to the shielding tensor from a single sub-lattice
containing one species ofmetal ion. For the example of LiFePO4 intro-
duced above, thiswould require the specification of four sub-lattices,
each corresponding to a Fe2+ ion with a different PAF orientation.

7.11. Exchange interactions between transition-metal ions and
lanthanides

Throughout this chapter we have focussed exclusively on the
exchange interactions between transition-metal ions, and the
consequences for the paramagnetic shift. Before we leave this topic
we very briefly note the additional effects that we may expect from

an exchange interaction between a transition-metal ion and a lan-
thanide ion. For such a spin system it has been shown that the
exchange Hamiltonian is given by the expressions in Eqs. (7.29)–
(7.31) to which have been added terms of higher degree in the
electronic spin operators [232]. The most important of these is
the biquadratic exchange, which takes the form [243]X
A>B

KðABÞ bS ðAÞ � bS ðBÞ
� 	2

; ð7:148Þ

where the sum is restricted to only include interactions between
one transition-metal ion and one lanthanide ion, and KðABÞ is the
biquadratic exchange coupling constant. These terms can be
included in the irreducible spherical tensor form of the Hamiltonian
in Eq. (7.32) by adding terms of spatial and spin ranks greater than
two to give a new Hamiltonian of the form

Ĥ0 ¼
X
A

X
kq

ð�1ÞqDðAÞ
kq
bSðAÞ
k�q

þ
X
A>B

X
kq

ð�1ÞqJðABÞkq ðk1k2ÞbT ðABÞ
k�q ðk1k2Þ: ð7:149Þ

This Hamiltonian can be used in conjunction with the EPR formal-
ism to derive a general form of the paramagnetic chemical shielding
tensor, using the method in Appendix E.

7.12. The paramagnetic shift in metals

We now turn to the final topic of this chapter, which is the para-
magnetic shift in metals. This shift was first described by Townes
and Knight, and is referred to as the Knight shift [244]. It is interest-
ing to compare the form of the Knight shift in metals with the
corresponding paramagnetic shifts in insulators. We will see that
there are striking similarities, as well as important differences.
The latter are due to the differences in the paramagnetism in the
two materials. We have seen that in insulators, the unpaired elec-
trons are largely localized on the paramagnetic centres, which act
as effective electronic spins S. In the paramagnetic regime, above
the ordering temperature, these effective spins act independently
of each other, which can result in large magnetic susceptibilities
and induced magnetic moments. On the other hand, in metals at
zero temperature the electrons occupy orbitals that are delocalized
across the entire lattice with energies up to the Fermi energy. The
electrons are paired, and so thematerial is diamagnetic. On increas-
ing the temperature the orbitals just above the Fermi level are par-
tially populated at the expense of those just below and the material
exhibits paramagnetism. The key difference to insulators is that in
metals only the electrons close to the Fermi level contribute to the
paramagnetism, and these are delocalized across the entire lattice.
The resulting magnetic susceptibilities are therefore much smaller
than in insulators and, as will be discussed later, essentially temper-
ature independent above 0 K. We should note that the form of the
Knight shift is also valid for the paramagnetic shifts of semiconduc-
tors [245].We derive the form of the Knight shift here, following the
protocols of Slichter [246] and Abragam [184].

7.12.1. The Knight shift
Like all paramagnetic shifts, the Knight shift of a nuclear spin is

due to the hyperfine interaction with the unpaired electrons. For
metals the correct form of the hyperfine interaction Hamiltonian
is given in Eq. (2.191). We note that, as for other paramagnetic
systems, the electronic relaxation dynamics are several orders of
magnitude faster than the nuclear spin dynamics. This means that,
in effect, the nuclear spins actually interact with the average
electronic magnetic moments. We account for this by modifying
the hyperfine coupling Hamiltonian in Eq. (2.191) by computing
its expectation value with the wavefunction that is the product
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of the spatial ground state of Eq. (2.26), and a spin wavefunction
which is the correctly symmetrized product of the one-electron
functions jmi. We make the assumption that the metal has cubic
symmetry, and that therefore we only need to consider the contact
interaction, and furthermore we do not consider SO coupling
effects. The resulting Knight shift is therefore purely spatially iso-
tropic, and takes the form of a Fermi-contact shift. The role of
the spin-dipolar interaction and the susceptibility anisotropy
would be to introduce an SA, which for metals is generally smaller
than the isotropic shift [184].

Following these assertions and assumptions the Hamiltonian bH
describing the nuclear spin interaction with the average electronic
magnetic moments is given by the contact part of Eq. (2.191) fol-
lowing the calculation of the expectation value in the many-
electron space-spin wavefunction. Since dðrlÞ and ŝl are one-
electron space and spin operators and the one-electron wavefunc-
tions are orthogonal, the only terms of the wavefunction in Eq.
(2.26) that contribute are those with no permutations of the elec-
tron labels. The Hamiltonian is therefore

bH ¼ 2
3
l0lBge�hcI

X
l

h/kl ðrlÞjdðrlÞj/kl ðrlÞihmljŝljmli � Î; ð7:150Þ

where we have placed the nucleus at the origin r ¼ 0. Whilst the
sum is over all the electrons l in the metal, we note that only those
electrons present in partially filled orbitals actually make a net con-

tribution to both the hyperfine interaction and bH. As discussed
before these electrons occupy states that lie close to the Fermi level.
To simply this Hamiltonian we replace the sum over l with a double
sum over the wavevectors k in the partially occupied band, as the
other filled bands make no net contribution, and the electronic spin
statesm. We also note that, as the external magnetic field is applied
along z, the nuclear spin system is quantised along z and we retain

only the component bIz in the scalar product. The result is

bH ¼ 2
3
l0lBge�hcIbIzX

k;m

j/kð0Þj2mfmðkÞ ð7:151Þ

¼ 2
3
l0lBge�hcIbIzX

k;m

1
V
jukð0Þj2mfmðkÞ; ð7:152Þ

where we have included the Fermi–Dirac distribution function
f mðkÞ for electrons in spin statem. This function provides the neces-
sary weighting to the state populations as a result of the non-zero
temperature, and replaces the Boltzmann distribution function used
for insulators.

At this point we are able to make the connection between this
interaction and the bulk magnetic properties of the metal. When
an external magnetic field is applied to the metal, the electrons
with wavevector k are partially aligned with the field, and can be
described by an average magnetic moment per electron hl̂k;zi. This
is given by

hl̂k;zi ¼ �lBge

X
m

mfmðkÞ ð7:153Þ

¼ �1
2
lBge f aðkÞ � f bðkÞ


 �
; ð7:154Þ

which is proportional to the difference in populations of electrons
with different polarizations in the state k. Written in terms of the
average electronic magnetic moments the Hamiltonian becomes

bH ¼ �2
3
l0�hcIbIzX

k

j/kð0Þj2hl̂k;zi: ð7:155Þ

This form of the expression emphasises that electrons far from the
Fermi level, for which f aðkÞ � f bðkÞ, have zero net magnetic
moment as indicated by Eq. (7.154), and do not contribute. In com-

plete analogy with paramagnetic molecules in solution, or param-
agnetic insulators, the average electronic magnetic moment due
to wavevector k is proportional to B0:

hl̂k;zi ¼ 1
l0

vkB0; ð7:156Þ

where the vk is the magnetic susceptibility per electron with
wavevector k. The sum of these susceptibilities divided by the vol-
ume of the system is the total magnetic susceptibility per unit vol-
ume, which for metals is called the Pauli susceptibility vP:

vP ¼ 1
V

X
k

vk: ð7:157Þ

In terms of the individual magnetic susceptibilities the Hamiltonian
is

bH ¼ �2
3
�hcIB0

bIzX
k

j/kð0Þj2vk: ð7:158Þ

This clearly has the form of a chemical shielding Hamiltonian:bH ¼ �hcIr
K
isoB0

bIz; ð7:159Þ
with an isotropic shielding rK

iso. In the shift convention we write the
Knight shift K ¼ �rK

iso as

K ¼ 2
3

X
k

j/kð0Þj2vk: ð7:160Þ

We can see that this form of the Knight shift is a sum of terms due
to each electron, with each term proportional to the product of the

density of that electron at the nucleus j/kð0Þj2, and its isotropic
magnetic susceptibility vk. Therefore each term is equivalent in
form to a Fermi-contact shift from one electron, but with two differ-
ences. Firstly the magnetic susceptibility per electron has a different
form to that for independent electrons, as discussed in Section
7.12.2. Secondly we note that the Knight shift is written as a sum
over electronic spatial states that appear to be independent,
whereas for a paramagnetic centre in an insulator we combine
the electrons into a single effective spin with a total unpaired spin
density. This appears to be a significant difference, but we now
show that we can rewrite the expression for the Knight shift in
terms of a single contribution that has a form closer to that of the
Fermi-contact shift.

We can simplify the sum over k by recalling that as the volume
of the system becomes infinitely large, the spacing between the
allowed values of k decreases until the wavevector space becomes
a continuum, and we can replace the sum with an integral over
energy as in Eq. (2.30):

lim
V!1

1
V

X
k

j/kð0Þj2vk ¼
Z

hj/kð0Þj2iEkvðEkÞgðEkÞdEk: ð7:161Þ

Here we have acknowledged that the magnetic susceptibilities vk

only depend on k via the energies Ek, and so the susceptibilities

are written as vðEkÞ. However the electron spin densities j/kð0Þj2
have a more complicated dependence on k, and so must be aver-
aged over all values of k that have the same energy Ek before we
compute the integral. We recall that the only electrons that con-
tribute to the Knight shift are those that are close to, i.e. within a
range kT of, the Fermi level. We also assume that the variation of

the average of the spin density hj/kð0Þj2iEk over this range of ener-
gies is small, and so we can replace the average at energy Ek with
the average over the Fermi energy. This allows us to bring the factor

of hj/kð0Þj2iEF outside the integral to give
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lim
V!1

1
V

X
k

j/kð0Þj2vk ¼ hj/kð0Þj2iEF
Z
vðEkÞgðEkÞdEk ð7:162Þ

¼ hj/kð0Þj2iEFvP; ð7:163Þ

where to go to the last line we have written the total Pauli suscep-
tibility as the integral

vP ¼
Z
vðEkÞgðEkÞdEk: ð7:164Þ

The Knight shift now takes the simple form

K ¼ 2
3
hj/kð0Þj2iEFvPV : ð7:165Þ

This expression is a contact shift proportional to the total suscepti-
bility of the metal vPV , and the average one-electron spin density at

the Fermi level hj/kð0Þj2iEF . To further investigate the form of the
Knight shift, we need an expression for the Pauli susceptibility.

7.12.2. The Pauli magnetic susceptibility
The origin of the paramagnetic magnetic moment in a metal

induced by an external magnetic field B0 can be understood from
Fig. 7.10. In the absence of the external field the electrons are
divided into two bands with spin polarization a and b, referred
to as the spin-up and spin-down bands respectively. Both bands
have the same density of states at all energies, given by Eq.
(2.33), and both bands are equally populated as shown in
Fig. 7.10(a). When we apply the magnetic field the electrons
acquire an additional Zeeman energy term lBgeB0m, where m is
the magnetic-quantum number for a single electron. Hence the
spin-up band is shifted up in energy by lBgeB0=2, and the spin-
down band is shifted down by the same amount, as shown in
Fig. 7.10(b). In order to maintain the lowest-energy electronic con-
figuration, electrons move from the spin-up band to the spin-down
band, resulting in a greater population of the latter and hence a net
non-zero electronic magnetic moment. The expressions for the
density of states for the two bands gaðEÞ and gbðEÞ are modified
from those in Eq. (2.33) to account for the field, and are given by:

gaðEÞ ¼
1
2
g E� 1

2
lBgeB0

� �
; ð7:166Þ

gbðEÞ ¼
1
2
g Eþ 1

2
lBgeB0

� �
: ð7:167Þ

The numbers of electrons per unit volume in the spin-up and spin-
down bands na and nb are then given by the integral expressions:

na ¼ 1
2

Z 1

0
g E� 1

2
lBgeB0

� �
f ðEÞdE; ð7:168Þ

nb ¼ 1
2

Z 1

0
g Eþ 1

2
lBgeB0

� �
f ðEÞdE: ð7:169Þ

We recall that the Zeeman energy is much smaller than the thermal
energy lBgeB0 � kT, and so we can expand the expressions for the
density of states as Taylor series,

g E	 1
2
lBgeB0

� �
¼ gðEÞ 	 1

2
lBgeB0g0ðEÞ

þ O 1
2
lBgeB0

� �2
 !

; ð7:170Þ

from which we can clearly see that the spin-down band has a
greater population than the spin-up band.

The magnetization, i.e. the net magnetic moment per unit vol-
ume, is proportional to the difference in spin populations:

M ¼ 1
2
lBge nb � na

� �
: ð7:171Þ

Expanding the density of states functions as Taylor series we
obtain the following expression for M:

M ¼ 1
4
l2

Bg
2
eB0

Z 1

0
g0ðEÞf ðEÞdE ð7:172Þ

¼ 1
4
l2

Bg
2
eB0 gðEÞf ðEÞ½ �10 �

Z 1

0
gðEÞf 0ðEÞdE

� �
ð7:173Þ

¼ �1
4
l2

Bg
2
eB0

Z 1

0
gðEÞf 0ðEÞdE; ð7:174Þ

Fig. 7.10. Illustration of the effect of an external magnetic field on the band structure of a metal. In the absence of the field the spin-up (a) and spin-down (b) electrons have
the same band structure and are equally populated, as shown by the left- and right-hand density-of-states plots in (a). When the field is applied the spin-up band is shifted to
higher energy by an amount lBgeB0=2, and the spin-down band is shifted down by the same amount, as shown in (b). The populations of the levels change so as to maintain
the same average Fermi level, with the result that electrons transfer from the spin-up band to the spin-down band.
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where to go to the second line we have employed integration by
parts, and to go to the last line we have removed the first term by
noting that gð0Þ ¼ 0 and f ðEÞ ! 0 as E ! 1. To proceed we need
to evaluate the derivative for the Fermi–Dirac distribution function
with respect to energy. We recall that, at zero temperature, f ðEÞ is
proportional to the Heaviside step function with the discontinuity
at E ¼ EF, and that at higher temperatures the discontinuity is
smoothed out. Nevertheless at practicable experimental tempera-
tures the Fermi–Dirac function is still well-approximated by the
Heaviside step function, and so we can write its derivative as [190]

f 0ðEÞ ¼ �dðE� EFÞ: ð7:175Þ
Substituting this into Eq. (7.174) we obtain the final expression for
the magnetization:

M ¼ 1
4
l2

Bg
2
eB0gðEFÞ: ð7:176Þ

The Pauli susceptibility per unit volume is therefore

vP ¼ l0M
B0

ð7:177Þ

¼ 1
4
l0l

2
Bg

2
e gðEFÞ: ð7:178Þ

We see that the Pauli susceptibility is proportional to the density of
states at the Fermi level. This is because the Zeeman interaction is
very small, and so the unpaired electrons resulting from the applica-
tion of the field are located in the vicinity of the Fermi level. A greater
number of states in this range of energies, which is given by gðEFÞ,
results in a greater number of unpaired electrons, and hence a
greater magnetization and susceptibility. It is notable that the Pauli
susceptibility, in contrast to the Curie expression for isolated elec-
trons, is temperature independent. This is because in this derivation
we have assumed the zero-temperature form of the Fermi–Dirac
function, and hence we have ignored the effects of thermal popula-
tion. Nevertheless the inclusion of temperature results in only a
small correction, because the electron populations follow the
Fermi–Dirac distribution rather than the Boltzmann distribution.

7.12.3. Comparison between the paramagnetic shifts in metals and
insulators

We are now in a position to compare the Knight shift of a metal
with the Fermi-contact shift obtained from an insulator. In order to
make a fair comparison we compare two solids with the same
number of electrons in the same volume. In the case of the metal
these N electrons occupy the delocalized orbitals with energies
determined by the density of states and populations by the
Fermi–Dirac distribution, whilst in the insulator the N electrons
are each localized to N paramagnetic centres of spin S ¼ 1=2. The
expression for the Knight shift is taken from Eq. (7.165), and the
Fermi-contact shift for the insulator is adapted from Eq. (3.108).
These expressions are reproduced here for convenience:

K ¼ 2
3
hj/kð0Þj2iEFvPV ð7:179Þ

dFC ¼ 2
3
qa�bð0ÞvVV

NA

N
; ð7:180Þ

whereNA is the number of equivalent paramagnetic centres that con-
tribute to the Fermi-contact shift of the insulator. We note that we
have written the Fermi-contact shift in terms of the volume suscep-
tibility,which is related to the susceptibility per paramagnetic centre
by vV ¼ vðN=VÞ. The two expressions are similar except for the addi-
tional factor ofNA=N in the latter. This reflects the fundamental differ-
ences in the two cases between the small number of electrons that
contribute to the shift. For a simple metal (with s- or p-conduction
bands) all N electrons are delocalized over the entire lattice, and
hence they all contribute spin density to the s-orbital of the observed

nucleus. In more complicated metallic systems, such as alloys, there
may be very different contributions from different electrons, and in
transition-metal or lanthanide oxides, there may be both localized
anddelocalized spins. The fact that only the fractionat the Fermi level
makeanet contribution is addressedby thePauli susceptibility.How-
ever for the insulator the N electrons are localized at their paramag-
netic centres and only a small number NA, which are located in the
bonding environment of the nucleus, actually contribute to the shift.
The other electrons are not delocalized at all into the s-orbital.

In both cases the shift is proportional to the size of the average
unpaired electron density per electron that is present in the

s-orbital of the nucleus. For the metal this is given by hj/kð0Þj2iEF ,
which is the average of the one-electron spin density over the elec-
trons located at the Fermi level. For the insulator the one-electron
density in the expression for the Fermi-contact shift is qa�bð0Þ, and
is due to the single electron on the paramagnetic ion. We have seen
that qa�bð0Þ, and therefore the Fermi-contact shift, can either be
positive or negative depending whether the electron transfer
occurs via a delocalization or polarization mechanism. The same

principles also apply to hj/kð0Þj2iEF , and so the Knight shift may
also be positive or negative depending on the nature of the electron
transfer. Furthermore if the effective spin of the paramagnetic cen-
tres is greater than S ¼ 1=2, this electron density is divided by 2S to
give the unpaired electron density per unpaired electron.

In order to compare the sizes of the two shifts we compare the
two magnetic susceptibilities. For the insulator we take the expres-
sion from Eq. (3.92), set S ¼ 1=2, andmultiply by n to obtain the vol-
ume susceptibility vV. For the metal the comparison with the Pauli
susceptibility vP is difficult unless we specify the form of the den-
sity of states. Therefore we apply the simplified free-electron
model, for which the density of states at the Fermi level is given
by Eq. (2.48). The two volume susceptibilities are given below:

vP ¼ 3l0l2
Bg

2
en

8kTF
ð7:181Þ

vV ¼ l0l2
Bg

2
en

4kT
: ð7:182Þ

The two expressions appear to be remarkably similar, but with one
crucial difference. The expression for the insulator has a Curie tem-
perature difference, and therefore vV and the Fermi-contact shift
increase with decreasing temperature. The Pauli susceptibility,
however, is temperature independent. The temperature that does
appear in the denominator of vP is the constant Fermi temperature

TF. For metals TF generally takes values from 104 to 105 K, and so the
Pauli susceptibility is between two and three orders of magnitude
lower than the corresponding Curie susceptibility at all practicable
temperatures. Therefore Fermi-contact shifts are generally much
larger than Knight shifts.

7.13. Key concepts

� The paramagnetic shielding tensor due to multiple non-
interacting metal ions is simply the sum of the individual inde-
pendent contributions from each ion.

� Neighbouring metal ions often interact with each other via an
exchange coupling, which gives either ferromagnetic or antifer-
romagnetic alignment of the effective spins.

� The exchange interaction comprises an isotropic exchange term,
antisymmetric Dzyaloshinskii–Moriya term, and a symmetric
dipolar term.

� In the high-temperature regime the paramagnetic shielding
tensor due to clusters of interacting metal ions is modified by
the exchange coupling, which gives an additional term in

1=ðkTÞ2 (Eq. (7.53)).
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� The magnetic properties of extended networks of interacting
metal ions in solid insulator materials can be approximated
by mean-field theory.

� The magnetic susceptibility (Eq. (7.90)) and paramagnetic
shielding tensor (Eq. (7.117)) of solid insulator materials gener-
ally exhibit a Curie–Weiss temperature dependence.

� In systems either with large Weiss constants, or with magnetic
ordering temperatures close to room temperature, it is not
appropriate, even in the paramagnetic state, to use the spin-
only values to estimate the magnetic susceptibility.

� Under certain circumstances the signs of both the isotropic
exchange coupling constants and the Fermi-contact shift can
be predicted using the Goodenough–Kanamori rules. This
approach often provides a relatively simple and intuitive
method for understanding and predicting shifts, particularly
in materials that adopt undistorted/simple structures, such as
those derived from rocksalt (NaCl).

� The paramagnetic shift in a metal or semiconductor is referred
to as the Knight shift (Eq. (7.165)), and depends on the Pauli
susceptibility of the material (Eq. (7.178)).

� Both the Pauli susceptibility and Knight shift are 100–1000
smaller than their equivalents in solid insulators, and are essen-
tially temperature-independent above 0 K.

Chapter 8: Relaxation in paramagnetic systems under fast-
motional and high-field conditions

We now turn our attention to a feature of paramagnetic NMR
that we have rather neglected up until now, but which is neverthe-
less extremely important, and that is the relaxation behaviour of
paramagnetic systems. The relaxation rates of the nuclear spins
contain contributions from effects that are present in both diamag-
netic and paramagnetic systems, such as nuclear–nuclear dipolar
couplings and the quadrupole interaction, and effects that are pre-
sent only in paramagnetic systems, namely the hyperfine couplings
to unpaired electrons. For many systems the paramagnetic effects
dominate the relaxation properties, with very large contributions
to the rate constants that are often referred to as paramagnetic relax-
ation enhancements (PREs). Here we provide a basic description of
the PRE under the high-field conditions of high-resolution NMR,
and the conditions of fast electron dynamics. A more complete
treatment for arbitrary field and electron dynamics is deferred until
Chapter 9.

Webeginwith abrief accountof theRedfield theoryof relaxation,
and then document the applications to the calculation of electronic
relaxation rates and the PRE of the nuclei. We discuss the main
mechanisms responsible for electron relaxation in both complexes
in solution, and solid insulators. The relaxation properties of the
unpaired electrons are directly responsible for the PRE. However
electronic relaxation is more complicated than nuclear relaxation
as Redfield theory does not usually provide a valid description
[96]. Therefore for the remainder of this chapterwemodel the effect
of the electronic relaxation on the PRE phenomenologically.

Wethendescribe thePREusingsemi-classicalRedfield theory [247],
which in this specific case is known as the Solomon–Bloembergen–
Morgan theory. The treatment of relaxation given here is valid for sys-
tems with fast motional dynamics, such as those encountered in the
rotational diffusion of small and largemolecules in solution, and under
high-field conditions, which are defined as those where the electronic
Zeeman interaction dominates the ZFS interaction.

We derive the expressions for the contributions to the relax-
ation rate constants originating from the different parts of the
hyperfine interaction, and in different motional regimes including
small complexes in solution, large biomolecules in solution, and
solid insulators with no rotational dynamics. The discussion in this
chapter is limited to the non-relativistic description of the hyper-

fine interaction, and we ignore SO coupling effects on the PRE,
although we acknowledge that SO coupling is important for elec-
tronic relaxation, via the ZFS and the g-anisotropy.

Further reading on the subject of relaxation in solution can be
found in the contributions from Kowalewski and Mäler [96], Ber-
tini et al. [248,15], and Kruk [249,250]. The specific topic of param-
agnetic relaxation in solution has recently been reviewed by
Kowalewski and Kruk [251].

8.1. Overview of the models of electronic and nuclear relaxation

Both this chapter and the next present the different models of
electronic and nuclear relaxation in paramagnetic systems, for dif-
ferent experimental conditions and within different approxima-
tions. Whilst this plethora of different models and approaches may
initially seem confusing, they are in fact related to each other in a
straightforward way, as shown by the two flow charts in Figs. 8.1
and 8.2.

Fig. 8.1 shows how the models of electronic relaxation at differ-
ent levels of theory (quantum vs semi-classical treatment of the lat-
tice), timescales of motion (fast vs slow), size of the external
magnetic field (high vs low), and the electronic spin (S ¼ 1=2,
S ¼ 1, S > 1) are related to each other. Fig. 8.2 presents the same
relationship for nuclear relaxation, this time for different levels of
theory (quantum vs semi-classical treatment of the lattice), time-
scales of motion (fast vs slow), size of the external magnetic field
(high vs low), and timescale of rotation (fast vs slow). Full defini-
tions of these terms are provided at later points in Chapters 8 and 9.

These flow charts are intended to act as visual aids to help place
the various relaxation models in their proper context. In particular,
there are anumberof cases inChapter 9where amore advanced the-
ory of relaxation is subjected to a set of assumptions that result in a
description that is equivalent to one obtainedwith a simpler theory.
Figs. 8.1 and 8.2 will help to illuminate these cases more clearly.

The expressions for the relaxation rate constants derived in
these two chapters were verified using SpinDynamica, which is a
set of packages for spin dynamics calculations in Mathematica.
Details about numerical implementations of relaxation calcula-
tions are given in Belorizky et al. [252].

8.2. The Redfield theory of relaxation

In this section we summarize the main features of semi-
classical Redfield theory, and establish the conventions and nota-
tion that we continue to use later. Readers interested in complete
and accessible descriptions of Redfield theory are referred to the
contributions by Redfield [247], Goldman [253,254], and
Kowalewski and Mäler [96].

8.2.1. The equation of motion
We separate the system into two parts: the combined elec-

tronic–nuclear spin system, and the lattice which comprises every-
thing else, such as the molecular framework. In the semi-classical
formulation of Redfield theory we treat the combined electronic–
nuclear spin system using quantum mechanics, and model the lat-
tice classically. We therefore describe the time-evolution of the

spin system with the Hamiltonian bHðtÞ, which is the sum of a dom-

inant part bH0, containing coherent terms such as the Zeeman inter-

actions, and a perturbation bH1ðtÞ with a random time dependence
and zero time-average, which describes incoherent effects such as
relaxation and chemical exchange:bHðtÞ ¼ bH0 þ bH1ðtÞ: ð8:1Þ

The dominant part bH0 essentially describes both the experimental
conditions we impose upon the spin system, for example the size
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of the external magnetic field via the Zeeman interaction, or else the
effects of radiofrequency (RF) irradiation during the pulse sequence,
in addition to any coherent internal spin interactions. We therefore

note that bH0 may also be time-dependent if it includes, for example,
terms describing a time-dependent radiofrequency (RF) irradiation,
or the periodic modulation of spatially anisotropic interactions due
to sample spinning. However when describing the spin-lattice and

spin-spin relaxation of molecules in solution bH0 generally contains
only isotropic interactions. We also add RF terms when describing
relaxation during extended spin-lock pulses or pulse sequences,
which may be time-dependent. However, here we mainly consider

the case of relaxation in solution with no RF irradiation where bH0 is
time-independent, as written here. However we should note that,
since introducing RF irradiation or sample rotation changes the

form of bH0, we expect these effects to also change the measured
relaxation properties. The behaviour of the ensemble of spin sys-

tems in the sample under the action of bHðtÞ is determined by calcu-
lating the time evolution of the density operator q̂ðtÞ with the
Liouville–von Neumann equation:

dq̂ðtÞ
dt

¼ � i
�h
bH0 þ bH1ðtÞ; q̂ðtÞ
h i

: ð8:2Þ

The random time dependence of the part bH1ðtÞ; q̂ðtÞ
h i

makes the

equation in this form insoluble. However we are able to proceed
by factoring out the ‘motion’ of the density operator due to the sta-

tic Hamiltonian bH0, which we do by transforming both bH1ðtÞ and

q̂ðtÞ into the interaction representation of bH0. The reference frame
of the interaction representation changes orientation so that it fol-

lows the time evolution due to bH0 in the laboratory frame. Both the
random Hamiltonian and density operator in the interaction repre-

sentation of bH0 can be calculated from their laboratory frame coun-
terparts at any time t using the following expressions:

bHT
1ðtÞ ¼ exp ibH0t=�h

� 	bH1ðtÞ exp �ibH0t=�h
� 	

; ð8:3Þ

q̂TðtÞ ¼ exp ibH0t=�h
� 	

q̂ðtÞ exp �ibH0t=�h
� 	

; ð8:4Þ

where the superscript T denotes an operator in the interaction
representation.

The evolution of q̂TðtÞ under the action of bHT
1ðtÞ can be solved to

second order in a perturbation expansion to give the Redfield mas-
ter equation

dq̂TðtÞ
dt

¼ � 1

�h2

Z 1

0

bHT
1ðtÞ; bHT

1ðt � sÞ; q̂TðtÞ � q̂0

h ih i
ds; ð8:5Þ

where the overbar denotes an average over the spin systems in the
ensemble, and q̂0 is the equilibrium density operator, which com-

mutes with bH0 and is therefore unchanged by the transformation
into the interaction representation. Eq. (8.5) depends on a series
of approximations. Firstly we assume that the motions of the lattice
are characterised by a correlation time sc which is sufficiently short
that its product with the r.m.s. sizeX of the interaction represented

by bH1ðtÞ, in frequency units, is much less than unity:

Fig. 8.1. Flow chart showing the relationship between the different models describing electronic relaxation. The chart differentiates between the full-quantum and semi-
classical treatment of the lattice, fast (Redfield) and slow (non-Redfield) motions and, within Redfield theory, between high and low field, and between different electronic
spins. Definitions: fast motion Xsc � 1, slow motion Xsc � 1, high field jDj � lBgeB0, low field jDj � lBgeB0. X is the strength of the fluctuating spin interaction, sc is the
correlation time, D is the axial ZFS anisotropy, B0 is the applied magnetic field.
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Xsc � 1; ð8:6Þ

where �hX ¼ jbH1ðtÞ2j1=2. This is the motional narrowing regime, in

which the fluctuations of the interactions in bH1ðtÞ due to stochastic
motion lead to a narrowing of the spectroscopic peak in comparison
to the lineshape that would be obtained due to the spread of fre-
quencies if the spin systems were static. Secondly, in order to be
able to stop the perturbation expansion at second order, we assume
that the time t during which we observe the system satisfies the
inequalities

sc � t � 1
X
: ð8:7Þ

The upper-bound inequality, t � X�1, is potentially problematic as
the inverse frequency X�1 is often much shorter than typical NMR
observation times of between milliseconds and seconds. For exam-
ple an interaction frequency of X=ð2pÞ ¼ 100 kHz would give an
inverse frequency of 1.6 ls, which is much shorter than our NMR
acquisition time! However this problem can be circumvented by
noting that we can divide our observation time t into discrete
chunks, each one of which satisfies Eq. (8.7), and which we can
safely assume is independent of the others due to the random nat-

ure of the perturbation. This leaves the lower-bound inequality of
Eq. (8.7), which amounts to the relaxation times always being
longer than the correlation time.

The next step is to write the random perturbation HamiltonianbH1ðtÞ in terms of the irreducible spherical tensor operators as
follows:

bH1ðtÞ ¼
X
K

X
l

Xþl

m¼�l

ð�1ÞmKðKÞ
lm ðtÞbT ðKÞ

l�mðtÞ ð8:8Þ

¼
X
K

X
l

Xþl

m¼�l

ð�1ÞmKðKÞ
lm ðtÞbT ðKÞ

l�mðtÞy: ð8:9Þ

We have written the total perturbation as a sum of terms from dif-
ferent interactions K, with each interaction having a distinct set of

spatial tensors KðKÞ
lm ðtÞ and spin tensors bT ðKÞ

l�mðtÞ. This form of the
Hamiltonian separates the lattice variables and the spin variables
into the spatial tensors and spin tensors respectively. We have

included the time-dependence explicitly in both the KðKÞ
lm ðtÞ, and

the bT ðKÞ
l�mðtÞ to account for all the possible causes of the random

fluctuations in bH1ðtÞ, a subject we return to in more detail later.
In the following discussion we consider the effect of just a single

nuclear
relaxation

theorysemi-classical

motion motionnon-Redfield

solids

viscous liquids

Redfield

non-Redfield

Redfield

field

rotation fast/slow

low-field (NMRD)
theories (Florence)

solids with fast
electron relaxation

Korringa relaxation
in metals

Curie relaxation

Solomon-
Bloembergen-
Morgan relaxation

quantum

fast fast

slow slow

high

fast

slow
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Fig. 8.2. Flow chart showing the relationship between the different models describing nuclear relaxation in paramagnetic systems. The chart differentiates between the full-
quantum and semi-classical treatment of the lattice, fast (Redfield) and slow (non-Redfield) motions and, within Redfield theory, between high and low field, and between
fast and slow rotations. Definitions: fast motion Xsc � 1, slow motion Xsc � 1, high field jxQ j � jx0j, low field jxQ j � jx0j, fast rotation sr � T1e; T2e , slow rotation
sr � T1e; T2e . X is the strength of the fluctuating spin interaction, sc is the correlation time, sr is the rotational correlation time, T1e and T2e are the electronic spin-lattice and
spin-spin relaxation times, xQ is the quadrupolar splitting, x0 is the nuclear Larmor frequency.
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interaction (which for nuclear relaxation we will later take to be the
hyperfine interaction, and for electronic relaxation the ZFS) and so
we drop both the sum over K and the superscript. We return to
the case of the combined effects of more than one interaction on
nuclear relaxation in Chapter 8.8. We can write the spatial tensors
in terms of their components in the PAF as follows

KlmðtÞ ¼
Xþl

l¼�l

DðlÞ
lm alðtÞ; blðtÞ; clðtÞð ÞeK llðtÞ; ð8:10Þ

where we have acknowledged that the random lattice fluctuations

can result in a fluctuation of either the PAF components eK llðtÞ, or
the orientation of the PAF in the laboratory frame, due to changes
in the Euler angles alðtÞ;blðtÞ; clðtÞð Þ. These Euler angles describe a
pair of rotations, the first of which gives the orientation of the
PAF in a frame fixed relative to the molecular geometry, and the
second of which gives the orientation of this molecular frame in
the laboratory frame. Each interaction clearly has a different set
of Euler angles. However for a single interaction, each part of differ-
ent rank may have also have a different set of Euler angles, since the
PAFs may not be coincident. For example we generally expect the
rank-one and rank-two parts of the hyperfine tensor to have differ-
ent PAFs. This is why we have written the Euler angles as having a
dependence on l.

Before inserting the operator expression into the master equa-
tion, we first need to transform the spin tensors into the interac-

tion representation of bH0. At this point we assume high-field

conditions such that bH0 is dominated by the electronic and nuclear
Zeeman interactions, and that the electronic g-tensor is isotropic
and equal to ge. Therefore the transformation into the interaction
representation is a rotation about the z-axes of the I- and S-spin
operators. We recall, from the rotation properties of irreducible
spherical tensor operators, that rotations about z depend only on

the order m of the operators bT lm and not on the rank l, and that
the effect of such a rotation is to impart a phase factor that depends

only on m. Therefore bT T
l�mðtÞ is equal to

bT T
l�mðtÞ ¼ exp ibH0t=�h

� 	bT l�mðtÞ exp �ibH0t=�h
� 	

ð8:11Þ
¼
X
n

bT ðnÞ
l�mðtÞ exp ixðnÞ

�mt
� �

; ð8:12Þ

where we have split each spin tensor operator bT l�mðtÞ into a sum of

operators bT ðnÞ
l�mðtÞ, labelled by a superscript ðnÞ, each of which

evolves at frequencyxðnÞ
�m in the interaction representation. We note

that the inclusion of this superscript is necessary when the two
spins have different Larmor frequencies, as is the case for a system
comprising a nuclear spin I coupled to an electronic spin S. The Her-

mitian conjugate of bT T
l�mðtÞ is simply given by

bT T
l�mðtÞy ¼

X
n

bT ðnÞ
l�mðtÞy exp �ixðnÞ

�mt
� �

: ð8:13Þ

Inserting the operator expression into the master equation in Eq.
(8.5), we now obtain the Redfield operator equation:

dq̂TðtÞ
dt

¼ � 1

�h2

X
ll0

X
mm0

X
nn0

ð�1Þmþm0
exp i xðnÞ

�m �xðn0 Þ
�m0

� 	
t

h i


Z 1

0

bT ðnÞ
l�mðtÞ; bT ðn0 Þ

l0�m0 ðt � sÞy; q̂TðtÞ � q̂0

h ih i
KlmðtÞKl0m0 ðt � sÞ exp ixðn0 Þ

�m0s
� 	

ds:

ð8:14Þ
We have included the simultaneous ensemble average over all

the spatial and spin-dependent parts of the expression, which is
a formal requirement. However we can simplify things by assum-
ing that the different stochastic processes are independent to each

other, which enables us to perform the ensemble averages for each
process independently. This is the decomposition approximation,
in which we can write:

bT ðnÞ
l�mðtÞ; bT ðn0 Þ

l0�m0 ðt � sÞy; q̂TðtÞ � q̂0

h ih i
KlmðtÞKl0m0 ðt � sÞ

¼ bT ðnÞ
l�mðtÞ; bT ðn0Þ

l0�m0 ðt � sÞy; q̂TðtÞ � q̂0

h ih i


X
ll0

DðlÞ
lm alðtÞ;blðtÞ; clðtÞð ÞDðl0 Þ

l0m0 al0 ðt � sÞ;bl0 ðt � sÞ; cl0 ðt � sÞð Þ


 eK llðtÞeK l0l0 ðt � sÞ:
ð8:15Þ

In situations where the two spins relax on timescales that differ by
several orders of magnitude, the faster-relaxing spin acts as a
source of a rapidly fluctuating magnetic field that influences the
slower-relaxing spin via the coupling between them. This effect is
accounted for by the ensemble average over the double commuta-
tor of spin operators. For example electronic relaxation occurs on
a timescale, typically between 0.1 ps and 10 ns for metal ions, that
is generally several orders of magnitude shorter than the timescale
of nuclear relaxation, which is typically between 1 ms and several
hours or longer. Therefore this factor describes the effect of the
rapid electronic relaxation on the PRE of the nucleus. On the other
hand, when describing electronic relaxation this part of the ensem-
ble average can be dispensed with. The ensemble average over the
product of Wigner matrix elements accounts for the fluctuations
due to random spatial reorientation of the anisotropic interaction
tensor, a process known as rotational diffusion. It only affects ele-
ments of tensor rank l > 0. The final factor is the ensemble average
of the product of the PAF tensor components, and accounts for the
instantaneous changes that may occur in these components either
through distortion of the molecular geometry of the system, or
chemical exchange of the nucleus or electron between different
sites. We now examine these three mechanisms in detail.

8.2.2. Relaxation by spatial reorientation of the interaction tensor
We begin by examining the effect of the random rotational dif-

fusion of the spatial tensor. Specifically we consider the case of
paramagnetic molecules in solution that experience unrestricted
isotropic tumbling. The local magnetic field experienced by the
spin fluctuates in both size and direction as a result of the random
time dependence. The ensemble average of the product of the spa-
tial tensor components can be written in the decomposition
approximation as

KlmðtÞKl0m0 ðt � sÞ

¼
X
ll0

DðlÞ
lm alðtÞ;blðtÞ; clðtÞð ÞDðl0 Þ

l0m0 al0 ðt � sÞ;bl0 ðt � sÞ; cl0 ðt � sÞð Þ


 eK llðtÞeK l0l0 ðt � sÞ: ð8:16Þ

Our first step is to assume that the random fluctuations that mod-
ulate the different interactions are uncorrelated. For the PRE, this
means that the fluctuations of the Fermi-contact interaction are
independent of those of the spin-dipolar interaction, and that both
fluctuate independently of any other relevant interactions that
cause relaxation. For electronic relaxation we assume that the fluc-
tuations of the ZFS, Zeeman, and hyperfine interactions are all inde-
pendent of each other. In practice the result is that we consider only
those terms in the double-commutator where the two Hamiltoni-
ans are of the same interaction, e.g. both Fermi contact, or both spin
dipolar, and neglect the cross-terms due to cross correlation
between different interactions (to which we will return later).
Hence we set l ¼ l0.
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The average product KlmðtÞKlm0 ðt � sÞ depends only on the dif-
ference s between the times at which we evaluate each element
in the product, and not on t itself. We can therefore simplify the
average of the product of the Wigner rotation matrix elements as
follows:

DðlÞ
lm alðtÞ;blðtÞ;clðtÞð ÞDðlÞ

l0m0 alðt�sÞ;blðt�sÞ;clðt�sÞð Þ

¼ 1
8p2

Z 2p

0
dal

Z p

0
sin blð Þdbl

Z 2p

0
dclD

ðlÞ
lm al;bl;clð ÞDðlÞ

l0m0 al;bl;clð Þ
� 

gR
l ðsÞ ð8:17Þ

¼ 1
2lþ1

dmm0dll0gR
l ðsÞ; ð8:18Þ

where to go to the second line we have factored out the s-
dependence into a function gR

l ðsÞ which is the reduced rotational
correlation function describing the random reorientation of the spa-
tial tensors, we have used the fact that, for isotropic tumbling, the
average product of the Wigner matrix elements at s ¼ 0 is given
by the integral over all the Euler angles, and we have assumed that
all orientations are equally probable at s ¼ 0. To go to the last line
we have used the well-known orthogonality relations of the Wigner
elements [191].

We do not specify the form of the reduced correlation function
at this point other than to say that, by definition, gR

l ð0Þ ¼ 1, and
that at times longer than the associated correlation time gR

l ðsÞ
decays to zero. The reduced correlation function also, in principle,
depends on the spatial rank l, which allows us to differentiate
between second-rank interactions, which are affected by spatial
reorientation, and zeroth-rank interactions which are invariant.

The average product KlmðtÞKl0m0 ðt � sÞ can now be written in the
following simplified form:

KlmðtÞKl0m0 ðt � sÞ ¼ 1
2lþ 1

dll0dmm0gR
l ðsÞ

X
l

eK llðtÞeK llðt � sÞ:

ð8:19Þ
The next step is to evaluate the sum over l.

8.2.3. Relaxation by fast chemical exchange
The sizes of the tensor components in the PAF are modulated by

fast chemical exchange, or distortions in the molecular geometry
surrounding the site of the spin. A simple example is a nuclear spin,
fixed in a chemical site, that is coupled to a second spin which
undergoes rapid exchange. The size of the coupling interaction
fluctuates in both sign and magnitude when the second spin is
exchanged for another with a different magnetic quantum number
mS, and thus acts as a relaxation mechanism for the first spin. This
mechanism is responsible for the time dependence and ensemble
average contained in the sum over l in Eq. (8.19). The s-
dependence can be factored out of this sum to giveX
l

eK llðtÞeK llðt � sÞ ¼
X
l
jeK llj2gM

l ðsÞ; ð8:20Þ

where gM
l ðsÞ is the reduced exchange correlation function. In con-

trast to rotational diffusion this mechanism is also active for scalar
interactions, as chemical exchange modulates the size of the inter-
action. If the interaction under consideration is indeed of rank zero,
then the chemical exchange mechanism described here is an exam-
ple of scalar relaxation of the first kind [184].

8.2.4. The spin-dependent part
The final source of relaxation we consider here is a rapidly-

fluctuating local magnetic field experienced by one spin due to
the rapid relaxation of a second spin to which the former is cou-
pled. This situation is very important in paramagnetic systems,
as the unpaired electrons relax on a timescale that is orders of
magnitude shorter than typical nuclear relaxation times. The

rapidly-relaxing unpaired electrons induce a fluctuating local field
at the nucleus via both the isotropic and anisotropic hyperfine
interactions. We can therefore rewrite the ensemble average of
the double commutator of spin operators as follows.

For computing electronic relaxation, we note that the relaxation
of the nucleus has no effect on the relaxation of the electrons, and
so we rewrite the double commutator by removing both the time

dependence from bT ðnÞ
l�m, and the ensemble average to give:

bT ðnÞ
l�mðtÞ; bT ðn0 Þ

l�mðt � sÞy; q̂TðtÞ � q̂0

h ih i
¼ bT ðnÞ

l�m;
bT ðn0 Þ
l�m

� 	y
; q̂TðtÞ � q̂0

� � 
: ð8:21Þ

Electronic relaxation is discussed in Section 8.4. The situation for
nuclear relaxation is more complicated. Here both the s-
dependence and ensemble average are factored out into the
reduced electronic relaxation correlation function gS

l�mnn0 ðsÞ, and
the double commutator is rewritten as

bT ðnÞ
l�mðtÞ; bT ðn0 Þ

l�mðt � sÞy; q̂TðtÞ � q̂0

h ih i
¼ bT ðnÞ

l�m;
bT ðn0 Þ
l�m

� 	y
; q̂TðtÞ � q̂0

� � 
gS
l�mnn0 ðsÞ: ð8:22Þ

We have acknowledged that gS
l�mnn0 ðsÞ, in general, depends on the

rank l, order �m, and the indices n and n0, as the associated elec-
tronic spin operators relax at different rates depending on whether

they represent coherences (bS	 or equivalently bS1	1), or populations

(bSz or equivalently bS10). This in turn affects the correlation function.
As is the case for chemical exchange, electronic relaxation is able to
induce nuclear relaxation via the isotropic hyperfine interaction as
well as the anisotropic interaction. Relaxation via the isotropic part
is referred to as scalar relaxation of the second kind [184].

8.2.5. The nuclear relaxation superoperator
Now that we have defined the reduced correlation functions

above we can write the Redfield differential equation for the
nuclear PRE from Eq. (8.14) as

dq̂TðtÞ
dt

¼ � bbC q̂TðtÞ � q̂0
� �

; ð8:23Þ

where ^̂C is the relaxation superoperator which takes the form

bbC bO ¼ 1

�h2

X
lmnn0

1
2lþ 1


 exp i xðnÞ
�m �xðn0 Þ

�m

� �
t


 � bT ðnÞ
l�m;

bT ðn0Þ
l�m

� 	y
; bO� � 



Z 1

0
gM
l ðsÞgR

l ðsÞgS
l�mnn0 ðsÞ exp ixðn0Þ

�ms
� �

ds
X
l
jeK llj2: ð8:24Þ

This expression emphasizes that the relaxation superoperator acts

on an operator bO to produce a new operator bbC bO. The integral over
s contains only the product of the reduced correlation functions as
only these are functions of s. The integral is complex, but is domi-
nated by the real and even part which contributes to the relaxation
rate. The smaller imaginary and odd part is responsible for a
relaxation-induced shift in the resonance frequency [96], which is
not considered further here. We therefore change the lower limit
of integration from 0 to �1 and introduce a factor of 1=2.

Eq. (8.24) contains a number of terms that oscillate during t at

frequency xðnÞ
�m �xðn0 Þ

�m. The terms where this frequency is non-zero
are non-secular and are expected to not contribute significantly to
the relaxation rate if the oscillation is on a timescale that is much
shorter than the relaxation times, as the net contribution averages
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to zero. We therefore choose to retain only the secular terms, for

which xðnÞ
�m ¼ xðn0 Þ

�m. For spin systems in which all the spins have
widely separated Larmor frequencies, such as an effective elec-
tronic spin coupled to a single nucleus, the secular approximation
is made by setting n0 ¼ n. The secular relaxation superoperator is
therefore

bbC bO ¼ 1

2�h2

X
lmn

1
2lþ 1

bT ðnÞ
l�m;

bT ðnÞ
l�m

� 	y
; bO� � 

jl�mn �xðnÞ
�m

� �X
l
jeK llj2:

ð8:25Þ
In Eq. (8.25) we have defined the reduced spectral density jl�mnðxÞ
as

jl�mnðxÞ ¼
Z 1

�1
gl�mnðsÞ exp �ixsð Þds; ð8:26Þ

i.e. the Fourier transform of the overall reduced correlation function
gl�mnðsÞ which is the product of the three reduced correlation func-
tions defined above:

gl�mnðsÞ ¼ gM
l ðsÞgR

l ðsÞgS
l�mnðsÞ: ð8:27Þ

We note that both gl�mnðsÞ and jl�mnðxÞ depend on l;m, and n for the
reasons given above, and that we have dropped the dependence on
n0 following the application of the secular approximation.

8.3. The correlation function and spectral density

We are now in a position to calculate nuclear relaxation rates
using the superoperator in Eq. (8.25), which is the final result of
the Redfield theory. Once we have decided on the mechanism,
and the associated Hamiltonian, that we wish to study all that
remains is to decide on the form of the reduced correlation
function, which contains all the information about the dynamics,
chemical exchange, and electronic relaxation properties. There
are a number of correlation functions gðsc; sÞ that can be applied
depending on the details of the dynamics of the system [96]. How-
ever we use the simplest, which is an exponential decay

gðsc; sÞ ¼ exp �jsj=scð Þ; ð8:28Þ
where sc is the correlation time. This form of the reduced correla-
tion function can be rationalised for unrestricted rotational motion
of the system by using the principles of rotational diffusion as
described by Fick’s law [96], and has been used to describe the
relaxation due to overall tumbling of small- to large-sized mole-
cules in an isotropic solution. We also assume that the correlation
functions describing the effects of chemical exchange and electron

relaxation have the form of an exponential decay, but with different
correlation times.

The reduced spectral density jðsc;xÞ is the Fourier transform of
gðsc; sÞ:

jðsc;xÞ ¼
Z 1

�1
gðsc; sÞ exp �ixsð Þds ð8:29Þ

¼ 2sc
1þx2s2c

: ð8:30Þ

This is a Lorentzian function, examples of which are plotted as a
function of the correlation time, and for particular frequencies, in
Fig. 8.3(a). The spectral density, and hence its contribution to the
relaxation rate, is at a maximum when jxscj ¼ 1, where jðsc;xÞ
takes the value j1=xj.

One regime of particular interest is the extreme-narrowing limit
where the correlation time is sufficiently short that jxscj � 1. This
situation is encountered, for example, in the unrestricted tumbling
of small molecules in solution. In this limit the spectral density is
equal to

jðsc;xÞ � 2sc; ð8:31Þ
and is independent of the frequency x. This is shown in Fig. 8.3(b),
where the reduced spectral density is plotted against frequency for
five particular correlation times. For correlation times up to 10 ps
we are in the extreme-narrowing limit, and so we see no variation
of the reduced spectral density with frequencies of up to 1 GHz, as
expected.

Another regime of interest is the spin-diffusion limit in which the
correlation time is sufficiently long so that jxscj � 1. In this limit
the spectral density has the approximate expression

jðsc;xÞ � 2
x2sc

; ð8:32Þ

which decreases to zero at longer correlation times and larger fre-
quencies. This is shown in Fig. 8.3(b) for correlation times of 1 ns
and above, where we see a decrease in the reduced spectral density
with increasing frequency.

8.3.1. A note on terminology for motional regimes
We have hitherto encountered three different regimes within

which we have defined the timescale of dynamic processes as cor-
responding to either ‘‘fast” or ‘‘slow” dynamics. Before we continue
further, it is worth taking the time to properly define what these
terms actually mean. Of course, the terms ‘‘fast” and ‘‘slow” are
only meaningful if they are quoted relative to something, usually
the size of an interaction, or another timescale.

Fig. 8.3. Plots of reduced spectral densities jðsc;xÞ as a function of (a) the correlation time sc, and (b) the frequencyx. The expression for the reduced spectral density is given
by Eq. (8.30). In (a) three plots are shown for the frequencies of 200, 300, and 400 MHz. In each case the maximum value of jðsc;xÞ occurs when jxscj ¼ 1 and is equal to
j1=xj. In (b) the plots are for the five values of sc of 10�12, 10�11, 10�10, 10�9, and 10�8 s.
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The first use of these terms we encountered was in the discus-
sion on the validity of the Redfield theory. Here we defined the
motional narrowing limit in Eq. (8.6), where Xsc � 1. This limit
is also known as the fast-motion limit, where ‘‘fast” means that
the correlation time must be much shorter than the inverse of
the strength of the fluctuating interaction. If this condition is
met, the Redfield theory is valid. The other regime Xsc � 1 is
known as the slow-motion limit, which is explored in more detail
in Chapter 9. The electronic spin interactions are usually much lar-
ger than nuclear spin interactions, and so the absolute timescales
associated with ‘‘fast” and ‘‘slow” motions are different for elec-
tronic and nuclear relaxation, with the motional-narrowing limit
usually violated at shorter correlation times for electronic relax-
ation than for nuclear relaxation.

The second use of ‘‘fast” and ‘‘slow” pertains only to nuclear
relaxation, as it refers to the timescale of the rotational diffusion
processes that modulate the spin-dipolar hyperfine interaction
compared to the electronic relaxation time constants. Here we
define the fast-rotation limit as sr � T1e, T2e, where rotational diffu-
sion is faster than electronic relaxation, and the slow-rotation limit
where sr � T1e, T2e. Both cases correspond to situations where
nuclear relaxation is described within the Redfield limit. This dis-
tinction is important as, under high-field conditions, it defines
which description of nuclear relaxation is appropriate. We will
see that, in the fast-rotation limit, the correct description is that
in Section 8.6, leading to the Solomon–Bloembergen–Morgan
equations. In the slow-rotation limit, however, we need to employ
the Curie mechanism in Section 8.7.

The final classification of motional regimes is described earlier
in this section, and refers to the size of the correlation time com-
pared to the inverse of the frequencyx that appears in the spectral
density. The extreme-narrowing limit is defined as jxjsc � 1, where
the correlation time is much shorter than the period of Larmor pre-
cession. By contrast, the spin-diffusion limit is defined for longer
correlation times such that jxjsc � 1. This distinction is important
as it allows us to simplify the spectral densities in these regimes.
We note that the frequency x describes the size of the dominant

coherent term bH0 in the total Hamiltonian, and so is much larger
than the frequency describing the strength of the perturbing inter-

action bH1ðtÞ, i.e. jxj � jXj. This implies that the extreme-
narrowing limit always falls in the motional-narrowing regime,
and that the spin-diffusion limit may do too.

8.4. Electronic relaxation

We now discuss electronic relaxation very briefly. One point
that must be made very clear at the outset is that Redfield theory
does not provide an adequate description of the relaxation of elec-
trons in the majority of systems due to the larger magnitude of the
interactions involved compared to nuclear relaxation, which
means that the motional-narrowing condition in Eq. (8.6) is vio-
lated at shorter correlation times [96]. Nevertheless there are some
systems for which Redfield theory is applicable, such as highly-
symmetric metal environments in which the anisotropic interac-
tions are somewhat smaller. We therefore describe how Redfield
theory may be applied in these cases.

The Hamiltonian bH1ðtÞ that gives rise to electron relaxation may
be written asbH1ðtÞ ¼ lBB0 � gðtÞ � bS þ bS � AðtÞ � Î þ bS � DðtÞ � bS ; ð8:33Þ
which we recognise as a standard EPR Hamiltonian in which the
time dependence has been explicitly indicated in the g-tensor
gðtÞ, hyperfine tensor AðtÞ, and ZFS tensor DðtÞ. The time depen-
dence is due to stochastic changes in the orientations of the tensors,
in addition to changes in the sizes of the PAF components due to

chemical exchange and other random processes. The dominant
relaxation source for metal ions with S ¼ 1=2 in high external fields
is the g-tensor, with an important example being the Cu2+ ion. The
majority of ions are of spin S > 1=2, and for these relaxation is pre-
dominantly due to the ZFS interaction, which is the case we focus

on here. From Eq. (8.25) the Redfield relaxation superoperator bbC S

is equal tobbC S
bO ¼ 1

10�h2

X
mn

bSðnÞ
2�m;

bSðnÞ
2�m

� 	y
; bO� � 

j �xðnÞ
�m

� �X
l
jeD2lj2; ð8:34Þ

for which the relevant spin operators bSðnÞ
2m and frequencies xðnÞ

m are
given in Table 8.1. The spectral density function jðxÞ is independent
of m.

It was shown by Bloembergen and Morgan [99] that, for
hydrated first-row transition-metal ions with S ¼ 1 at high mag-
netic field, the Redfield master equation for longitudinal (spin–lat-
tice) relaxation can be written in the following form:

dSzðtÞ
dt

¼ � 1
T1e

SzðtÞ � Sz;0ð Þ; ð8:35Þ

where SzðtÞ is the ensemble average of the expectation value of bSz at
time t (note the lack of the ‘hat’ in the former), Sz;0 is the corre-
sponding equilibrium value, and T1e is the electron longitudinal
(spin–lattice) relaxation time constant. This equation can be solved
to give a mono-exponential expression for SzðtÞ:
SzðtÞ ¼ Szð0Þ � Sz;0ð Þ expð�t=T1eÞ þ Sz;0; ð8:36Þ

where T1e is calculated from the expectation value of bbC S in the state

jbSz) of Liouville space:

1
T1e

¼
bSzj bbC SjbSz

� �
bSzjbSz

� 	 ð8:37Þ

¼
TrS bSz

bbC S
bSz

� �
TrS bS2

z

� 	 : ð8:38Þ

The notation Âj bbCSjB̂
� �

represents the inner product in Liouville

space, which takes the explicit form TrS Ây bbCSB̂
� �

, where TrS refers

to a trace taken over the states of the S-spin manifold.
The transverse (spin–spin) relaxation time constant T2e of the

electron can be calculated in a similar way. The ensemble average

of the expectation value of the operators bS	, which represent
coherences, denoted S	ðtÞ, satisfy the following differential
equations:

dS	ðtÞ
dt

¼ � 1
T2e

S	ðtÞ; ð8:39Þ

which have solutions

S	ðtÞ ¼ S	ð0Þ expð�t=T2eÞ: ð8:40Þ

Table 8.1
The spin operators bSðnÞ

2m and frequencies xðnÞ
m for the ZFS interaction used in the

calculation of the electron relaxation rates.

bSðnÞ2m xðnÞ
m

m n ¼ 1 n ¼ 1

0
ffiffi
1
6

q
3Ŝ2z � SðSþ 1Þ1̂
� 	 0

	1 � 1
2
bSzbS	 þ bS	bSz� 	 	xS

	2 1
2
bS2	 	2xS
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The time constant T2e is given by the following expectation value ofbbCS:

1
T2e

¼
Ŝþj bbC SjŜþ
� �

ŜþjŜþ
� 	 ð8:41Þ

¼
TrS bS�

bbC S
bSþ

� �
TrS bS�bSþ
� 	 : ð8:42Þ

Aswell as referring to the relaxation time constants Tie, it is also com-
mon to refer to the relaxation rates Rie which are simply the recipro-
cals of the former. Hence the electronic longitudinal and transverse
rate constants are R1e ¼ 1=T1e and R2e ¼ 1=T2e respectively.

The relaxation by the ZFS interaction can be divided into two
separate mechanisms. The first concerns metal ions in a cubic coor-
dination environment, for which the ZFS tensor is zero by symme-
try. However, random, time-dependent distortions of the
coordination sphere can lead to instantaneous deviations from
cubic symmetry, which in turn give rise to a transient ZFS. The sec-
ond mechanism applies to metal ions in environments of symme-
try lower than cubic for which there is a permanent, non-zero static
ZFS tensor. These are considered in turn.

8.4.1. Relaxation due to the transient ZFS

The transient ZFS is characterised by quantity D2
t , which is the

trace of the mean square of the interaction tensor

D2
t ¼ eD2

xx þ eD2
yy þ eD2

zz ð8:43Þ

¼ 2
3
D2 þ 2E2; ð8:44Þ

where D and E are the axial and rhombic anisotropies of the tran-
sient ZFS. This expression is also equal to the sum of the square
moduli of the PAF components in the expression for the Redfield
superoperatorXþ2

l¼�2

jeD2lj2 ¼ D2
t : ð8:45Þ

The process by which the coordination shell is distorted is respon-
sible for the modulation of the transient ZFS. We can model this
process as a rapid reorientation of the PAF of the transient ZFS ten-
sor relative to a frame fixed relative to the molecule, with the mag-
nitudes of the anisotropies D and E remaining constant. This is the
pseudo-rotation model proposed by Rubinstein et al. [116]. This
stochastic process is therefore characterised by a reduced correla-
tion function g2ðsÞwhich is analogous to that which describes unre-
stricted rotational motion gR

2ðsÞ:
g2ðsÞ ¼ gR

2ðsÞ ð8:46Þ
¼ exp �jsj=svð Þ; ð8:47Þ

where sv is the distortional, or pseudo-rotational, correlation time.
The analogy between this stochastic distortion and the stochastic
rotation of the system is the origin of the term ‘pseudo-rotation’.
It has been shown that this model generates correlation times sv
of the order of 1–10 ps [110,124,124], which are values consistent
with efficient electronic relaxation: at 11.74 T the electronic Larmor
frequency is 329 GHz, which corresponds to an optimum correla-
tion time of 1=jxSj of 0.5 ps.

Combining these expressions with the double commutators cal-
culated from the operators in Table 8.1 we obtain the following
expressions for T1e and T2e:

1
T1e

¼ D2
t

1
10

jRðxSÞ þ 2
5
jRð2xSÞ

� 
ð8:48Þ

¼ D2
t

5
sv

1þx2
Ss2v

þ 4sv
1þ 4x2

Ss2v

� 
; ð8:49Þ

1
T2e

¼ D2
t

3
20

jRð0Þ þ 1
4
jRðxSÞ þ 1

10
jRð2xSÞ

� 
ð8:50Þ

¼ D2
t

10
3sv þ 5sv

1þx2
Ss2v

þ 2sv
1þ 4x2

Ss2v

� 
; ð8:51Þ

where jRðxÞ is the spectral density at frequency x that describes
the distortion process.

It must be remembered that Eqs. (8.48)–(8.51) are valid only for
an electronic spin S ¼ 1 in the motional-narrowing limit Dtsv � 1.
For hydrated transition-metal complexes in solution sv is of the
order of 10�12 s, and so we are within the motional-narrowing limit
for values of Dt to up approximately 0.5 cm�1.

We note that T1e and T2e are not necessarily the same, which is
an observation of electron relaxation that holds in more general
cases. In the present case the two time constants only take the
same value when we are in the extreme-narrowing limit
jxSsv j � 1, where the expressions for T1e and T2e reduce to:

1
T1e

¼ 1
T2e

¼ D2
t sv : ð8:52Þ

In this regime both T1e and T2e are independent of field, and
decrease with increasing sv , i.e. the relaxation rates increase as
the timescale of distortion becomes longer.

8.4.2. Relaxation due to the static ZFS
The Redfield expressions for the relaxation time constants due

to the static ZFS interaction are analogous to those calculated in
Eqs. (8.48)–(8.51) for the transient ZFS, with two important
differences. Firstly we replace Dt with the trace of the square of
the permanent ZFS interaction tensor Ds, which has the form

D2
s ¼ 2

3
D2 þ 2E2: ð8:53Þ

Secondly we ascribe the modulation of the static ZFS to actual ran-
dom reorientation of the tensor, a process which is described by the
correlation function gR

2ðsÞ, so that g2ðsÞ is given by

g2ðsÞ ¼ gR
2ðsÞ ð8:54Þ

¼ exp �jsj=sRð Þ; ð8:55Þ
and sR is the corresponding dynamic correlation time. The time
constants T1e and T2e are now

1
T1e

¼ D2
s

1
10

jRðxSÞ þ 2
5
jRð2xSÞ

� 
ð8:56Þ

¼ D2
s

5
sR

1þx2
Ss2R

þ 4sR
1þ 4x2

Ss2R

� 
; ð8:57Þ

1
T2e

¼ D2
s

3
20

jRð0Þ þ 1
4
jRðxSÞ þ 1

10
jRð2xSÞ

� 
ð8:58Þ

¼ D2
s

10
3sR þ 5sR

1þx2
Ss2R

þ 2sR
1þ 4x2

Ss2R

� 
: ð8:59Þ

Once again Eqs. (8.56)–(8.59) are only valid in the motional-
narrowing limit. However this condition is much more difficult
to fulfil than for the transient ZFS, as the dynamic correlation time
is usually orders of magnitude longer than 10�12 s, and so the the-
ory is only valid for metal ions such as Mn2+, which has a symmet-

rical electron configuration of 3d5 and therefore a small ZFS.
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8.4.3. Beyond the simple Redfield approximation
The theory of Bloembergen and Morgan for describing electron

relaxation has two important shortcomings, which are that the
resulting relaxation time constants are valid only for S ¼ 1 and in
the Redfield limit. The first limitation is important because, as
shown by Rubinstein et al., electronic relaxation is multi-
exponential for spins S P 3=2 even within the Redfield limit, pro-
vided we are not inside the extreme-narrowing regime [116]. In
such cases the multi-exponential form of the relaxation curves
must be accounted for when considering both electronic relaxation
and the form of the correlation function when calculating the PRE.
However, for the latter, we may be able to approximate the corre-
lation function with a mono-exponential decay containing a corre-
lation time sS that represents the best fit to the true multi-
exponential electronic relaxation curve. The regime outside which
Redfield theory does not apply is referred to as the slow-motion
regime. An improved model of electronic relaxation for S P 1,
comprising the effects of slow and fast motion, and higher-order
ZFS effects has been proposed by Rast et al. and applied to Gd3+

complexes in solution [117]. Some of these features are discussed
in more detail in Chapter 9.

8.4.4. Other electronic relaxation mechanisms involving spin-orbit
coupling

The preceding discussion has focussed both on the motional
modulation of the anisotropic electronic spin interactions, such
as the g-anisotropy and particularly the static ZFS, and the colli-
sional distortion of the coordination geometry, leading to the tran-
sient ZFS. Both the ZFS and g-anisotropy are dominated by SO
coupling effects, with the result that both interactions increase in
size with the strength of SO coupling. Therefore we would expect
both of the electronic relaxation mechanisms to become more effi-
cient with increasing size of the SO interaction. This is borne out in
the observation that, for first-row transition metal ions subject to a
small SO coupling interaction, typical T1e values are of the order
10�12–10�8 s, whilst lanthanide ions with significantly larger SO
coupling experience shorter T1e values of 10

�14–10�12 s, the excep-
tion being Gd3+ which has a spatially non-degenerate electronic
state.

In the solid state, where the system lattice experiences little, or
possibly no, rotational motion, we need another mechanism to
account for electronic relaxation. One mechanism that has been

proposed is the transition between vibrational energy levels, often
referred to as phonons. Phonons occur on timescales that are
orders of magnitude shorter than rotational diffusion, and which
are too short to contribute directly to nuclear relaxation in an effi-
cient manner [255]. However they are more efficient at inducing
electronic relaxation [120], where the relaxation rates are highest
when the correlation time is of the order of j1=xSj.

For metal ions with non-zero orbital angular momentum, there
is an interaction between the orbital angular momentum and the
lattice which is modulated by the phonons. This requires phonons
with energies that match the transition energies between the elec-
tronic spin levels, and can occur via three principal mechanisms
[15]. The first is the direct transition between electronic spin states
of the ground electronic manifold [256], and occurs only when the
phonon energy matches the electronic Zeeman energy, as shown in
Fig. 8.4(a). It is the least important mechanism at high tempera-
ture, where the phonon energies are generally too large for the
required electronic spin transition, and this process only becomes
significant at temperatures of the order of 10 K. The second process
is due to the Raman effect [256,257], where two phonons simulta-
neously interact with the spin system, both of which are of energy
that is too large for the spin transition. However their energy dif-
ference is equal to the spin transition energy, thus allowing the
spin transition to take place. This is shown in Fig. 8.4(b). The final
mechanism is due to the Orbach process where the electronic spin
has low-lying excited states [257]. This process allows the coupling
of the electronic spin to a higher-energy phonon, which causes a
transition from an electronic state in the ground manifold to a state
in a higher-energy manifold, as shown in Fig. 8.4(c). This is usually
the fastest mechanism for electronic transitions in the high-
temperature limit.

8.5. Nuclear relaxation

Having outlined some of the difficulties associated with elec-
tronic relaxation, we nowmove onto the main topic of this chapter,
which is the Redfield description of the PRE. The source of the PRE
is the hyperfine interaction with the unpaired electrons, and so we

can write down the incoherent time-dependent Hamiltonian bH1ðtÞ
as

bH1ðtÞ ¼ bSðtÞ � AðtÞ � Î; ð8:60Þ

Fig. 8.4. The mechanisms of electronic spin transitions induced by energy exchange between the spin and the lattice vibrational states. The direct process is illustrated in (a)
in which the transition from the lower energy spin state to a higher spin state in the ground electronic manifold n ¼ 0 occurs with absorption of energy that is emitted from
an excited lattice vibrational state m ¼ 1 to a lower state, here the ground state m ¼ 0. The separation of this phonon must equal the electronic spin transition energy. The
Raman process is shown in (b). Here two lattice phonons simultaneously interact with the electronic spin. The difference in the energies of these phonons is exactly equal to
the energy required for the electronic spin transition. In (c) is illustrated the Orbach process. The excited electronic manifold n ¼ 1 is relatively low-lying, so that the
transition energy between the lattice states m ¼ 0 and m ¼ 1 is equal to the separation between the spin state MS ¼ �1=2 in the ground manifold n ¼ 0, and the spin state
MS ¼ þ1=2 in the low-lying excited manifold n ¼ 1. The latter transition is therefore caused by interaction with the corresponding lattice phonon. The energy parameter D is
the separation between the ground n ¼ 0 and first-excited n ¼ 1 spin manifolds, and the lattice vibrational states are labelled with the vibrational quantum number m.
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where we have acknowledged that the time dependence is due to
both modulation of the hyperfine coupling tensor AðtÞ and the vari-

ation of the electronic spin operator ŜðtÞ due to electronic relax-

ation. The spin operators bT l�m used to describe the interaction are
formed by the direct product of the I-spin and S-spin operators
and are given by

bT l�m ¼
X
q1 ;q2

h11q1q2jl�mibI1q1bS1q2 ; ð8:61Þ

where each term is only non-zero if q1 þ q2 ¼ �m. The expression
for the Redfield relaxation superoperator partitions these basis

operators into operators bT ðnÞ
l�m that are labelled with an index n,

and which evolve under different frequencies on transformation

into the interaction representation of bH0. In terms of the direct pro-
duct notation, for each orderm the index n refers to a unique pair of
one-spin orders q1 and q2, i.e. n � nðq1; q2Þ, and so we are able to

write bT ðnÞ
l�m as

bT ðnÞ
l�m ¼ h11q1q2jl�mibI1q1bS1q2 : ð8:62Þ

The Hermitian conjugate of bT ðnÞ
l�m is given by

bT ðnÞ
l�m

� 	y
¼ h11q1q2jl�mibIy1q1bSy

1q2
ð8:63Þ

¼ ð�1Þmh11q1q2jl�mibI1�q1
bS1�q2 : ð8:64Þ

We consider only the non-relativistic spin-dipolar and Fermi-

contact interactions, the operators bT ðnÞ
lm corresponding to which are

given in Tables 8.2 and 8.3. Also given are the characteristic evolu-
tion frequencies in the interaction representation, and the electron
correlation times used in the electron correlation functions.

Using Eqs. (8.62) and (8.63) we can write the double commuta-
tor in the Redfield superoperator as

bT ðnÞ
l�mðtÞ; bT ðnÞ

l�mðt�sÞy;q̂TðtÞ� q̂0

h ih i
¼ð�1Þmh11q1q2jl�mi2


 bI1q1bS1q2 ðtÞ; bI1�q1
bS1�q2 ðt�sÞ;q̂TðtÞ� q̂0

h ih i
ð8:65Þ

¼ð�1Þmh11q1q2jl�mi2 bI1q1 bI1�q1 ;q̂
TðtÞ� q̂0

h i bS1q2 ðtÞ;bS1�q2 ðt�sÞ
h i�

þ bI1q1 ; bI1�q1 ;q̂
TðtÞ� q̂0

h ih ibS1�q2 ðt�sÞbS1q2 ðtÞ
o
; ð8:66Þ

where to go to the last line we have used the fact that the rapid
electronic relaxation means that only the electronic spin operators
are time-dependent on the timescale we are interested in, and so

the ensemble average is only over these operators. As before, we
can factor out the s-dependence and rewrite the ensemble averages
of the products of the electronic spin operators as

bS1	1ðtÞbS1�1ðt � sÞ ¼ bS1	1ðt � sÞbS1�1ðtÞ ¼ bS1	1
bS1�1gS

	1ðsÞ ð8:67Þ

¼ �1
2
bS	bS�gS

	1ðsÞ; ð8:68Þ
bS10ðtÞbS10ðt � sÞ ¼ bS2

10g
S
0ðsÞ ð8:69Þ

¼ bS2
z g

S
0ðsÞ: ð8:70Þ

Here we have used the fact that operators representing electronic

coherences such as bS1	1, or equivalently bS	, relax according to the
electronic transverse relaxation time constant, and that this is rep-
resented by a reduced electronic correlation function gS

	1ðsÞ. Like-
wise the longitudinal electronic spin operator bS10, or equivalentlybSz, relaxes according to the electronic longitudinal relaxation time
constant, and we represent this by a reduced electronic correlation
function gS

0ðsÞ. The double commutator is therefore

bT ðnÞ
l�mðtÞ; bT ðnÞ

l�mðt � sÞy; q̂TðtÞ � q̂0

h ih i
¼ ð�1Þmh11q1q2jl�mi2 bI1q1 bI1�q1 ; q̂

TðtÞ � q̂0

h i bS1q2 ;
bS1�q2

h in
þ bI1q1 ; bI1�q1 ; q̂

TðtÞ � q̂0

h ih ibS1�q2
bS1q2

o
gS
q2
ðsÞ; ð8:71Þ

where we have labelled the reduced electronic correlation function
with the index q2 which indicates the order of the rank-one S-spin
spherical tensor operator.

The overall reduced correlation function glq2
ðsÞ, which combi-

nes all the sources of fluctuating fields experienced by the nucleus,
is labelled by two indices l and q, and is given by the product of
three correlation functions:

glqðsÞ ¼ gMðsÞgR
l ðsÞgS

qðsÞ: ð8:72Þ
The first function gMðsÞ in the product is the reduced correlation
function that encodes the effects of chemical exchange, and takes
the simple exponential form:

gMðsÞ ¼ exp �jsj=sMð Þ; ð8:73Þ
where sM is the chemical exchange correlation time. The second
factor gR

l ðsÞ is the reduced dynamic, or rotational, correlation func-
tion. It depends on the spatial rank of the interaction tensor l and
takes the following form:

Table 8.2
The spin operators bT ðnÞ

2m , frequencies x
ðnÞ
m , and electron correlation times sS for the spin-dipolar interaction used in the calculation of the PRE.

bT ðnÞ
2m xðnÞ

m
sS

m n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 1 n ¼ 2 n ¼ 3

0
ffiffi
2
3

q bIzbSz � 1
2

ffiffi
1
6

q bIþbS� � 1
2

ffiffi
1
6

q bI�bSþ 0 xI �xS �xI þxS T1e T2e T2e

	1 � 1
2
bI	bSz � 1

2
bIzbS	 – 	xI 	xS – T1e T2e –

	2 1
2
bI	bS	 – – 	ðxI þxSÞ – – T2e – –

Table 8.3
The spin operators bT ðnÞ

00 , frequencies x
ðnÞ
0 , and electron correlation times sS for the Fermi-contact interaction used in the calculation of the PRE.

bT ðnÞ
00 xðnÞ

0
sS

m n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 1 n ¼ 2 n ¼ 3

0 �
ffiffi
1
3

q bIzbSz � 1
2

ffiffi
1
3

q bIþbS� � 1
2

ffiffi
1
3

q bI�bSþ 0 xI �xS �xI þxS T1e T2e T2e
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gR
l ðsÞ ¼

exp �jsj=sRð Þ; l ¼ 2;
1; l ¼ 0:

�
ð8:74Þ

For spatial ranks l ¼ 2 the correlation function is a simple exponen-
tial decay with rotational correlation time sR. By contrast spatially
isotropic interactions with l ¼ 0 are invariant to rotational diffusion,
and so the corresponding correlation function is simply unity. The
third factor in the overall reduced correlation function gS

qðsÞ is
due to electronic relaxation. The index q takes values of 0 or 	1
in order to distinguish between the longitudinal and transverse
relaxation of the unpaired electrons respectively, with the correla-
tion functions being given by:

gS
0ðsÞ ¼ exp �jsj=T1eð Þ; ð8:75Þ

gS
	1ðsÞ ¼ exp �jsj=T2eð Þ: ð8:76Þ

We see that gS
0ðsÞ decays according to T1e, and gS

	1ðsÞ decays accord-
ing to T2e.

The overall reduced correlation function glqðsÞ and spectral den-
sity jlqðxÞ take two distinct forms depending on whether the inter-
action in question is spatially isotropic or not. For spatially
isotropic interactions, these are

g0qðsÞ ¼ exp �jsj=sE;q
� �

; ð8:77Þ

j0qðxÞ ¼ 2sE;q
1þx2s2E;q

; ð8:78Þ

where the effective correlation times sE;q are equal to

s�1
E;q ¼ s�1

M þ T�1
qe ; q ¼ 1;2 ð8:79Þ

and the index q distinguishes between electronic longitudinal and
electronic transverse relaxation. We note that both the chemical
exchange and electronic relaxation time constants contribute to
sE;q, but that the rotational correlation time does not. By contrast
interactions that are spatially anisotropic with spatial rank l ¼ 2
have the following reduced correlation time and reduced spectral
density:

g2qðsÞ ¼ exp �jsj=sc;q
� �

; ð8:80Þ

j2qðxÞ ¼ 2sc;q
1þx2s2c;q

: ð8:81Þ

The correlation times sc;q are still labelled by q, but now also contain
contributions from sR as the interaction tensors are modulated by
rotations of the system:

s�1
c;q ¼ s�1

M þ s�1
R þ T�1

qe ; q ¼ 1;2: ð8:82Þ

Typical ranges of the correlation times Tqe, sR, and sM are shown in
Fig. 8.5. There is significant overlap of the timescales of the three
processes, especially when we have both fast rotational diffusion
and chemical exchange, but the mean values of the ranges can be
ordered as Tqe < sR < sM [15].

The nuclear longitudinal relaxation time constant T1 is given by
the following expectation value of the relaxation superoperator in
Liouville space:

1
T1

¼
bIzj bbC jbIz� �
bIzjbIz� 	 ð8:83Þ

¼
TrIS bIz bbCbIz� �

TrI bI2z� 	
TrS 1̂S

� 	 ð8:84Þ

¼
TrIS bIz bbCbIz� �

TrI bI2z� 	
ð2Sþ 1Þ

; ð8:85Þ

where TrI and TrS indicate traces taken over the manifold of states
of the I-spin and S-spin respectively, and TrIS is a trace taken over
the entire direct-product manifold of states of the combined I–S
spin system. On moving from Eq. (8.83) to Eq. (8.84) we see that

the trace of the S-spin identity operator 1̂S appears in the denomi-
nator. This is because the inner products appearing in the former
equation are defined as sums over the direct-product manifold of
states of the combined spin system. However when the operator
in the inner product is a simple direct product of an I-spin operator
with an S-spin operator, the trace of the product is equal to the pro-
duct of the traces of the two individual operators over the two sep-

arate manifolds of I-spin and S-spin states. Since here bI2z impliesbI2z � 1̂S, the S-spin trace is over the identity, and is equal to

TrS 1̂S

� 	
¼ 2Sþ 1. Similarly the nuclear transverse relaxation time

constant T2 is given by

1
T2

¼
Îþj bbC ĵIþ
� �

ÎþĵIþ
� 	 ð8:86Þ

¼
TrIS bI� bbCbIþ� �

TrI bI�bIþ� 	
ð2Sþ 1Þ

: ð8:87Þ

As for electronic relaxation we can also define rate constants for
longitudinal and transverse nuclear relaxation, which are equal to
R1 ¼ 1=T1 and R2 ¼ 1=T2 respectively.

The traces in the numerators of Eqs. (8.85) and (8.87) are calcu-
lated from the trace of the operator in Eq. (8.71), which is given by

TrIS bT ðnÞ
l�mðtÞ; bT ðnÞ

l�mðt�sÞy;bIah ih i� �
¼ð�1Þmh11q1q2jl�mi2TrI bI1q1 ; bI1�q1 ;

bIah ih in o
TrS bS1�q2

bS1q2

n o
gS
q2
ðsÞ;

ð8:88Þ
where a ¼ z or ±. We have used the fact that TrS bS1q2 ;

bS1�q2

h i
is

always zero for any value of q2. We can therefore proceed with
the calculation by using the following expressions for the traces
of the products of the S-spin operators:

TrS bS2
10

n o
=ð2Sþ 1Þ ¼ SðSþ 1Þ=3; ð8:89Þ

TrS bS1	1
bS1�1

n o
=ð2Sþ 1Þ ¼ �SðSþ 1Þ=3: ð8:90Þ

We now examine some specific models for the PRE.

8.6. The Solomon–Bloembergen–Morgan theory of paramagnetic
nuclear relaxation

The simplest and most commonly-used model for the PRE is
Solomon–Bloembergen–Morgan theory. It is a non-relativistic

Fig. 8.5. Typical timescales of the electronic relaxation times Tqe (q ¼ 1;2), the
rotational correlation time sR , and the chemical exchange correlation time sM. Note
that sM can extend to longer values than are shown on the scale, which are not
considered here.
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theory, meaning that the parts of the hyperfine tensor we use in
the calculation of the relaxation time constants are limited to the
first-order Fermi-contact and spin-dipolar parts. In calculating
the Solomon–Bloembergen–Morgan equations for T1 and T2 we
consider the two parts of the hyperfine tensor separately, firstly
focusing on the spin-dipolar part for both localised and delocalised
electrons, and then on the Fermi-contact part.

8.6.1. Relaxation due to the spin-dipolar interaction with delocalized
electrons

For a metal ion possessing unpaired electrons that are spatially
delocalised we must calculate the sum of the squares of the PAF
tensor components using the expressions in Eq. (2.172). Thus the

tensor can be expressed in terms of the principal component eASD
zz ,

which contains an integral over all space of the electron density,
and an asymmetry parameter gSD that is, in general, non-zero.
The sum of the squares of the tensor parameters in the PAF is
thereforeXþ2

l¼�2

jeASD
2lj2 ¼ 1

2
3þ gSD� �2� 	 eASD

zz

� 	2
: ð8:91Þ

Evaluating the expression for the Redfield relaxation superoperator,
and substituting it into Eq. (8.85) gives us the expression for T1:

1
T1

¼ SðSþ 1Þ 3þ gSD
� �2� 	 eASD

zz

�h

 !2


 1
60

j21ðxIÞ þ 1
30

j22ðxS þxIÞ þ 1
180

j22ðxS �xIÞ
� 

ð8:92Þ

¼
SðSþ 1Þ 3þ gSD

� �2� 	
90

eASD
zz

�h

 !2


 3sc;1
1þx2

I s2c;1
þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

" #
;

ð8:93Þ
where to go to the second line, we have substituted in the explicit
expressions for the reduced spectral densities. In addition we can
calculate the PRE contribution to T2, which is

1
T2

¼ SðSþ 1Þ 3þ gSD
� �2� 	 eASD

zz

�h

 !2


 1
90

j21ð0Þ þ
1
60

j22ðxSÞ þ 1
120

j21ðxIÞ þ 1
60

j22ðxS þxIÞ þ 1
360

j22ðxS �xIÞ
� 

ð8:94Þ

¼
SðSþ 1Þ 3þ gSD

� �2� 	
180

eASD
zz

�h

 !2


 4sc;1 þ 6sc;2
1þx2

Ss2c;2
þ 3sc;1
1þx2

I s2c;1
þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

" #
: ð8:95Þ

8.6.2. Relaxation due to the spin-dipolar interaction with localised
electrons (the Solomon mechanism)

When the nucleus is sufficiently far from the paramagnetic cen-
tre, typically at distances of more than 4 Å, we can safely approxi-
mate the unpaired electrons as being localised at the paramagnetic
ion, and therefore treat them as point dipole moments of spin S.
The dipolar coupling interaction then simplifies to the interaction
between an electronic point dipole and a nuclear point dipole,
allowing us to write the spin-dipolar tensor parameters aseASD

zz ¼ 2bSI; ð8:96Þ
gSD ¼ 0; ð8:97Þ
where bSI is the dipolar coupling constant for the interaction
between the two point dipoles, which is given by Eq. (2.175). The
T1 and T2 time constants are then calculated by substituting these

values into Eqs. (8.93) and (8.95). This results in the familiar expres-
sion for T1

1
T1

¼ SðSþ 1Þ bSI

�h

� �2 1
5
j21ðxIÞ þ 2

5
j22ðxS þxIÞ þ 1

15
j22ðxS �xIÞ

� 
ð8:98Þ

¼ 2
15

SðSþ 1Þ bSI

�h

� �2


 3sc;1
1þx2

I s2c;1
þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

" #
; ð8:99Þ

and for T2:

1
T2

¼ SðSþ 1Þ bSI

�h

� �2 2
15

j21ð0Þ þ
1
5
j22ðxSÞ þ 1

10
j21ðxIÞ

�
þ1
5
j22ðxS þxIÞ þ 1

30
j22ðxS �xIÞ


ð8:100Þ

¼ 1
15

SðSþ 1Þ bSI

�h

� �2

4sc;1 þ 6sc;2
1þx2

Ss2c;2
þ 3sc;1
1þx2

I s2c;1

"

þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

#
: ð8:101Þ

These expressions were first calculated by Solomon, and so
relaxation by the point-dipole part of the hyperfine interaction is
sometimes referred to as the Solomon mechanism [97]. It is of
interest to note that, once we have set S ¼ 1=2 and replaced all
the correlation times with the same time sc, these expressions
are identical to those for the relaxation time constants due to the
stochastic fluctuation of the dipolar coupling tensor between two
nuclei in a diamagnetic molecule in solution experiencing unre-
stricted rotation [184,258,259,253,96].

8.6.3. Relaxation due to the Fermi-contact interaction (the
Bloembergen mechanism)

The second mechanism for paramagnetic nuclear relaxation in
the Solomon–Bloembergen–Morgan theory is via the isotropic
Fermi-contact interaction, as first described by Bloembergen [98].
As we have seen the fluctuating local field at the nucleus can be
induced by chemical exchange and electronic relaxation, so the
Bloembergen mechanism comprises scalar relaxation of both the
first and second kinds [184].

The calculation of the contributions to T1 and T2 proceeds as fol-
lows. The sum of the square modulus of the PAF tensor compo-
nents reduces to a single term, which is

jAFC
00j2 ¼ 3 AFC

� 	2
; ð8:102Þ

where AFC is the Fermi-contact coupling constant in Eq. (2.171). The
double commutators can now be computed in the same way as for
the Solomon mechanism, which gives the following simple expres-
sion for T1:

1
T1

¼ 1
3
SðSþ 1Þ AFC

�h

 !2

j02ðxS �xIÞ ð8:103Þ

¼ 2
3
SðSþ 1Þ AFC

�h

 !2
sE;2

1þ ðxS �xIÞ2s2E;2
; ð8:104Þ

and likewise the following expression for T2:

1
T2

¼ 1
6
SðSþ 1Þ AFC

�h

 !2

j01ð0Þ þ j02ðxS �xIÞ½ � ð8:105Þ

¼ 1
3
SðSþ 1Þ AFC

�h

 !2

sE;1 þ sE;2
1þ ðxS �xIÞ2s2E;2

" #
: ð8:106Þ
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8.6.4. The Solomon–Bloembergen–Morgan equations
The final step in the Solomon–Bloembergen–Morgan theory is

to note that the contributions from the relaxation rate constants
Ri from the different mechanisms are additive, which is the result
of neglecting cross-correlation between the Fermi-contact and
spin-dipolar interactions. Hence we can write down the overall
Solomon–Bloembergen–Morgan equation for T1 by summing the
Solomon and Bloembergen contributions, which gives [96]

1
T1

¼ 2
3
SðSþ 1Þ AFC

�h

 !2
sE;2

1þ ðxS �xIÞ2s2E;2
þ 2
15

SðSþ 1Þ bSI

�h

� �2


 3sc;1
1þx2

I s2c;1
þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

" #
:

ð8:107Þ

Similarly the corresponding expression for T2 is [96]

1
T2

¼ 1
3
SðSþ 1Þ AFC

�h

 !2

sE;1 þ sE;2
1þ ðxS �xIÞ2s2E;2

" #
þ 1
15

SðSþ 1Þ bSI

�h

� �2


 4sc;1 þ 6sc;2
1þx2

Ss2c;2
þ 3sc;1
1þx2

I s2c;1
þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

" #
:

ð8:108Þ

These equations provide a description of the PRE in systems
experiencing rapid rotational diffusion such that sR is not much
longer than the electronic relaxation times T1e and T2e. The theory
therefore applies to small complexes in solution. In situations
where the dynamics are slowed so that sR; sM � T1e; T2e, the cor-
relation times sc;q and sE;q are approximately equal to Tqe, so the
relaxation properties of the nucleus are dominated by the elec-
tron relaxation and are essentially independent of any molecular
dynamics. However this is not observed experimentally for sys-
tems undergoing sluggish rotational dynamics, such as large bio-
molecules in solution, a subject we return to in Section 8.7. A
special case of slow dynamics occurs in rigid solids, where sR
essentially becomes infinite. This represents a violation of the
Redfield theory as the observation time is no longer much greater
than sR, and so care needs to be taken when writing down the
relaxation rate constants under such conditions. This is the sub-
ject of Section 8.9.

8.6.5. Shortcomings of the Solomon–Bloembergen–Morgan theory
The Solomon–Bloembergen–Morgan model presented here is

the simplest possible theory of the PRE and so, inevitably, contains
a number of approximations that may not be valid in all situations.
The use of the point-dipole model for the unpaired electrons is
questionable for distances from the paramagnetic centre of less
than 4 Å [260], and deviations have been reported even for dis-
tances beyond 10 Å [261]. However, as we have seen, this simplifi-
cation can be addressed relatively simply by using a more complex
form of the spin-dipolar coupling tensor [262].

Additional approximations that have been made are that the
reduced correlation functions are all assumed to have the form of
a simple exponential decay. For the rotational correlation function,
this is only true for small- to medium-sized molecules in solution.
However for larger molecules, such as proteins, more sophisticated
dynamic correlation functions are needed that account for simulta-
neous restricted rotation and internal motions, such as are used in
the Lipari–Szarbo model [263]. A related problem is the assump-
tion of mono-exponential electronic relaxation, which we have
seen is generally not valid even in the Redfield limit if S > 1.
Multi-exponential electronic relaxation, and the resulting effect
on the PRE, has been treated by Westlund in the Redfield limit,
and under conditions of high field so that the Zeeman interactions

dominate bH0 [264]. The resulting model is referred to as the gener-
alised Solomon–Bloembergen–Morgan theory.

A more serious problem concerns the approximation that the
processes of chemical exchange, rotational diffusion, and elec-
tronic relaxation are uncorrelated, which allows us to write the
overall correlation function as the product of three separate func-
tions, each of which corresponds to one of these processes. This
assumption probably holds when the three processes occur on very
different timescales, but this is often not the case and this defi-
ciency is not easy to repair. Nevertheless work has been performed
in this area by Bertini et al. [109] and Kruk et al. [110].

8.7. Curie-spin relaxation

The Solomon–Bloembergen–Morgan theory does not provide a
correct description of large paramagnetic molecules with sluggish
rotational diffusion where electron relaxation is the fastest
stochastic process described by the correlation function. The rea-
son for this is that we have ignored the effect of the differences
in the populations of the electronic spin energy levels due to the
relatively large electronic magnetic moment. It is this which is
responsible for the measurable Curie spin in Eq. (3.62). It was
shown by Gueron [100], and Vega and Fiat [101] that in situations
where electronic relaxation occurs on a much shorter timescale
than the rotational processes, the primary role of the former is to
generate a thermal average of the electronic spin, equal to the
Curie spin, and the role of the latter is to cause a random spatial
fluctuation in the hyperfine interaction to the Curie spin on a
longer timescale. Given that the Curie spin is proportional to B0

we would expect the relaxation effects due to the Curie spin to
become more important at high field.

For an ensemble of spin-only transition-metal ions, the Curie
spin is parallel to the external magnetic field, conventionally the
z-direction. We must therefore modify the expression for the

longitudinal electronic spin operator bS10ðtÞ, which we write as
the sum of a time-independent Curie-spin term, and a fluctuating
remainder ŝ10ðtÞ with zero time average:bS10ðtÞ ¼ hbS10i1̂S þ bs10ðtÞ: ð8:109Þ

This expression indicates that the electronic spin operator bS10ðtÞ
fluctuates about its average value of hbS10i1̂S. This decomposition

changes the expression of the ensemble average bS10ðtÞbS10ðt � sÞ
compared to that used in the Solomon–Bloembergen–Morgan the-
ory. The new expression is

bS10ðtÞbS10ðt � sÞ ¼ hbS10i21̂S þ bs10ðtÞhbS10i þ hbS10ibs10ðt � sÞ
þ bs10ðtÞbs10ðt � sÞ ð8:110Þ

¼ hbS10i21̂S þ bs10ðtÞbs10ðt � sÞ ð8:111Þ
¼ hbS10i21̂S þ bS2

10 � hbS10i21̂S

h i
gS
0ðsÞ; ð8:112Þ

where to go to the second line we have used the fact that bs10ðtÞ ¼ 0,
and to go to the last line we have interpreted bs210 as the difference

between the squares of bS10 and the Curie term hbS10i1̂S. We see that
the expression comprises two terms. The first is the Curie term

hbS10i21̂S which, as the absence of any s-dependence suggests, is
independent of the electronic relaxation processes. This is because
the effects of electronic relaxation have already been accounted
for in the calculation of the Curie spin. The second term is a remain-
der that is affected by longitudinal electronic relaxation through the
electronic correlation function gS

0ðsÞ. This part is similar to that in
the corresponding Solomon–Bloembergen–Morgan expression,

with the difference that it is reduced in size by hbS10i21̂S.
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The operators representing the coherences bS1	1ðtÞ are
unchanged, as the transverse components of the Curie spin are

zero. Therefore the ensemble average bS1	1ðtÞbS1�1ðt � sÞ has the
same expression as in the Solomon–Bloembergen–Morgan theory:

bS1	1ðtÞbS1�1ðt � sÞ ¼ bS1	1ðt � sÞbS1�1ðtÞ ¼ bS1	1
bS1�1gS

	1ðsÞ ð8:113Þ

¼ �1
2
bS	bS�gS

	1ðsÞ: ð8:114Þ

We now have two new interactions to include in our calculation
of the relaxation time constants in addition to those considered in
the Solomon–Bloembergen–Morgan theory: the Fermi-contact and
spin-dipolar interactions between the nuclear spin and the Curie
spin. We therefore need two additional reduced correlation func-
tions to describe the stochastic time dependence of these interac-
tions, and two corresponding reduced spectral densities which we

label gC
l ðsÞ and jCl ðxÞ, with l ¼ 0, 2, respectively. The Fermi-contact

interaction to the Curie spin has the following reduced correlation
function and spectral density with l ¼ 0:

gC
0ðsÞ ¼ exp �jsj=sMð Þ; ð8:115Þ

jC0ðxÞ ¼ 2sM
1þx2s2M

: ð8:116Þ

The interaction is spatially isotropic, and so the overall correlation
time is simply the chemical exchange correlation time sM. The
relaxation mechanism is therefore an example of scalar relaxation
of the first kind. For the spin-dipolar interaction the reduced corre-
lation function and spectral density, with l ¼ 2, are given by

gC
2ðsÞ ¼ exp �jsj=sDð Þ; ð8:117Þ

jC2ðxÞ ¼ 2sD
1þx2s2D

: ð8:118Þ

The interaction is spatially anisotropic, and so the correlation time
sD is now a combination of the correlation times for the chemical
exchange and the rotational diffusion of the system:

s�1
D ¼ s�1

M þ s�1
R : ð8:119Þ

We recall that these interactions are not modulated by electronic
relaxation, as this is already accounted for in the calculation of
the Curie spin.

8.7.1. Relaxation due to the spin-dipolar interaction with delocalized
electrons

We can now derive the expressions for the Curie relaxation time
constants via the spin-dipolar interaction with a source of delocal-
ized electrons. The calculation can be summarised as follows. We
take the Solomon–Bloembergen–Morgan equation, and replace
any term that depends on T1e with two similar terms. The first term
isaCurie termthat isweightedbyS2C (whereSC denotes theCurie spin

hbS10i) and in which sc;1 is replaced with sD, and the second is

weighted by SðSþ 1Þ=3� S2C and otherwise unchanged. In addition,
any terms that depend on T2e are unchanged. The new expression
for T1 is:

1
T1

¼ 3þ gSD
� �2� 	 eASD

zz

�h

 !2

S2C
1
20

jC2ðxIÞ þ 1
3
SðSþ 1Þ � S2C

� �
1
20

j21ðxIÞ
�

þSðSþ 1Þ 1
30

j22ðxS þxIÞ þ 1
180

j22ðxS �xIÞ
� �

ð8:120Þ

¼ 1
90

3þ gSD� �2� 	 eASD
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�h

 !2

S2C
9sD

1þx2
I s2D

þ 1
3
SðSþ 1Þ � S2C

� �
9sc;1

1þx2
I sc;1

�

þSðSþ 1Þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

 !#
: ð8:121Þ

We can write this expression as the sum of two separate terms

T�1
1 ¼ TC

1

� 	�1
þ TSBM

1

� 	�1
; ð8:122Þ

where we define TC
1 as the Curie contribution and TSBM

1 as a
modified Solomon–Bloembergen–Morgan contribution to the
overall T1:

1
TC
1

¼ 3þ gSD� �2� 	 eASD
zz

�h

 !2

S2C
1
20

jC2ðxIÞ
� 

; ð8:123Þ

1
TSBM
1

¼ 3þ gSD� �2� 	 eASD
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�h
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1
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30
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j22ðxS �xIÞ
� �

: ð8:124Þ

In exactly the same way we can write down an overall
expression for the T2 time constant, which is

1
T2

¼ 3þ gSD
� �2� 	 eASD
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�h
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: ð8:126Þ

This expression can also be decomposed into the constituent
Curie TC

2 and modified Solomon–Bloembergen–Morgan TSBM
2

parts

T�1
2 ¼ TC

2

� 	�1
þ TSBM

2

� 	�1
; ð8:127Þ

where

1
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2

¼ 3þ gSD
� �2� 	 eASD
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�h

 !2

S2C
1
30
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40

jC2ðxIÞ
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; ð8:128Þ

1
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¼ 3þ gSD
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: ð8:129Þ

We note that both Curie terms depend only on spectral densities of

the form jC2ðxÞ, and the correlation time sD.

8.7.2. Relaxation due to the spin-dipolar interaction with localised
electrons

If we can approximate the unpaired electron density at the
paramagnetic centre as a localised electronic spin S, we can use
the point-dipole form of the spin-dipolar interaction and seteASD

zz ¼ 2bSI and gSD ¼ 0. The T1 time constant is now
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1
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j22ðxS �xIÞ

� �
ð8:130Þ

¼ 2
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bSI
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9sD
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I s2D
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and T2 becomes
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The Curie contributions to both time constants now have the simple
forms

1
TC
1

¼ bSI

�h

� �2

S2C
3
5
jC2ðxIÞ; ð8:134Þ

1
TC
2

¼ bSI

�h

� �2

S2C
2
5
jC2ð0Þ þ

3
10

jC2ðxIÞ
� �

: ð8:135Þ

8.7.3. Relaxation due to the Fermi-contact interaction
Finally we consider the effect of the Curie spin on the Fermi-

contact relaxation mechanism. Since the Fermi-contact term is
spatially isotropic, we expect that any Curie contribution to the
relaxation rates is due to modulation only by chemical exchange,
and so only contains terms that depend on the reduced spectral

density jC0ð0Þ. As before we take each term in the Solomon–Bloem
bergen–Morgan expression and replace any term that depends
on T1e with a Curie term and a modified Solomon–Bloembergen–
Morgan term, and leave unchanged any terms that depend on
T2e. The Fermi-contact contribution to the nuclear T1 depends only
on T2e, and so is unchanged by the effect of the Curie spin:

1
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¼ 1
3
SðSþ 1Þ AFC

�h

 !2

j02ðxS �xIÞ ð8:136Þ
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sE;2

1þ ðxS �xIÞ2s2E;2
: ð8:137Þ

By contrast the expression for T2 acquires a Curie term with

reduced spectral density jC0ð0Þ:
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As before we can write each total rate constant as the sum of a Curie
term and a modified Solomon–Bloembergen–Morgan term. The
former are given by

1
TC
1

¼ 0; ð8:140Þ

1
TC
2

¼ AFC

�h

 !2
1
2
S2C j

C
0ð0Þ: ð8:141Þ

Again we note that the Curie relaxation only affects the transverse
PRE.

8.7.4. Comparison of the Curie terms with the relaxation rate constants
due to stochastic fluctuation of the paramagnetic chemical shielding
interaction

Having introduced the relaxation rate constants resulting from
the Curie interaction, we now explore how we may interpret these
contributions. Following the introduction of the Curie spin in
Section 3.2, we showed how the parameters of the induced param-
agnetic shielding could be related to the Curie spin. As a reminder
we reproduce the relevant expressions for the isotropic shielding,
shielding anisotropy, and asymmetry parameter below:

riso ¼ SCA
FC

�hcIB0
; ð8:142Þ

Dr ¼ SCeASD
zz

�hcIB0
; ð8:143Þ

g ¼ gSD: ð8:144Þ
If the electrons are localised at the paramagnetic centre, the ani-

sotropy and asymmetry become

Dr ¼ 2SCbSI

�hcIB0
; ð8:145Þ

g ¼ 0: ð8:146Þ
Since the Curie spin induces a shielding tensor at the nucleus via the
hyperfine interaction, we can interpret the Curie relaxation mecha-
nism as resulting from the stochastic modulation of this shielding
tensor due to fast chemical exchange, and rotational diffusion.
The random Hamiltonian that we use is

Ĥ1ðtÞ ¼ �hcIB0 � rðtÞ � Î; ð8:147Þ
where the time dependence is encoded entirely in the shielding ten-
sor through changes in the orientation of the PAF, with the associ-
ated correlation time sR, and changes in the PAF components
themselves, with the associated correlation time sM. We consider
relaxation due both to the isotropic parts of the shielding, which
depend on the Fermi-contact coupling constant, and to the aniso-
tropic part, which depends on the spin-dipolar coupling parame-
ters. The relevant irreducible spherical tensor operators are given
in Table 8.4, and the sums of the squares of the PAF parameters are:X
l
jeK llj2 ¼ 3�h2c2I r2

iso; l ¼ 0
1
2 �h

2c2I Dr2 3þ g2
� �

; l ¼ 2:

(
ð8:148Þ

Incorporating these expressions into the Redfield superoperator in
Eq. (8.25), and computing the expectation values of the longitudinal
and coherence I-spin operators, gives us the following expressions
for the Curie longitudinal and transverse relaxation time constants:
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It is easily verified that these expressions are the same as those cal-
culated previously by substituting in the expressions for the shield-
ing tensor parameters in Eqs. (8.142)–(8.146). In particular we note
that the isotropic shielding interaction contributes only to TC

2, and

not to TC
1, as it does not correspond to a transition between nuclear

energy levels, as shown by the dependence on jC0ð0Þ. In addition this
term only contributes in the presence of fast chemical exchange.
The anisotropic shielding contributes both to TC

1 and TC
2 relaxation

due to modulation by both fast chemical exchange and rotational
diffusion.

8.7.5. The importance of the Curie term
Following the discussion of Curie relaxation, the obvious practi-

cal question is under what circumstances does the Curie contribu-
tion become an important contribution to the overall PRE? We
recall that under the typical conditions of high-resolution NMR,

namely high magnetic field and high temperature, we can approx-
imate the expression of the Curie spin in the high-temperature
limit, with the result that jSCj � 1. Therefore we might expect
the contribution to the PRE to be insignificant since it is propor-
tional to S2C, whereas the corresponding factors in the modified

Solomon–Bloembergen–Morgan contribution are SðSþ 1Þ=3� S2C
and SðSþ 1Þ. For example, an ensemble of electronic spins S ¼ 1
immersed in a magnetic field of 11.74 T at a temperature of
298 K induces a Curie spin of �0:035, and the corresponding Curie
term is weighted by S2C ¼ 0:001.

Nevertheless the Curie term can become the dominant factor in
T2 relaxation under conditions of fast electronic relaxation and
long rotational correlation times, so that T1e; T2e � sR, as is
observed for proteins in solution. Additionally we can expect the
Curie term to become more important at high field, since S2C / B2

0,
in complete analogy to the increase in the importance of CSA-
induced relaxation at high field in diamagnetic systems. This is
illustrated in Fig. 8.6, which shows the Curie and modified
Solomon–Bloembergen–Morgan contributions to the spin-dipolar
R1 and R2 rates of a 1H nucleus plotted as functions of sR, for two
different electronic relaxation times (T1e is assumed to be equal
to T2e) of 0.1 and 1.0 ps, using the parameters for the Curie spin
given in the previous paragraph, and assuming there is no chemical
exchange. For electronic relaxation times of 1.0 ps, the longitudinal
relaxation rate is dominated by the Solomon–Bloembergen–Mor
gan contribution, as shown in (a). The Curie term varies according

to the spectral density jC2ðxIÞ, which reaches a maximum value at
sR ¼ 0:3 ns. By contrast the Solomon–Bloembergen–Morgan con-
tribution is independent of sR in the slow-rotation limit as the

Table 8.4
The spin operators bT ðnÞ

lm , and frequencies xðnÞ
m for the chemical shielding interaction

used in the calculation of the PRE.

bT ðnÞ
lm xðnÞ

m

l m n ¼ 1 n ¼ 1

0 0 �
ffiffi
1
3

q
B0
bIz 0

2 0
ffiffi
2
3

q
B0
bIz 0

	1 � 1
2B0
bI	 	xI

	2 0 	2xI

Fig. 8.6. Comparison of the size of the Curie and Solomon–Bloembergen–Morgan terms in the spin-dipolar relaxation rate constants under the influence of slow rotational
diffusion. The plots in (a) and (b) show the longitudinal and transverse rate constants T�1

1 and T�1
2 as a function of sR, which takes relatively long values of up to 10 ns, and

constant electron relaxation time constants T1e ¼ T2e ¼ 1 ps. The corresponding plots in (c) and (d) show the longitudinal and transverse rate constants T�1
1 and T�1

2 as a
function of sR with shorter electronic relaxation time constants of T1e ¼ T2e ¼ 0:1 ps. The relaxation curves correspond to a 1H nucleus coupled to an electronic spin S ¼ 1 at
11.74 T. The Curie spin is calculated at 298 K, and takes the value SC ¼ �3:5
 10�2. The constant C ¼ 3þ ðgSDÞ2

� 	
ðA
~
SD
zz =—hÞ

2

=12, or ðbSI=—hÞ2.
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overall correlation time is dominated by the rapid electron relax-
ation, i.e. sc;q � Tqe. The transverse relaxation rate, shown in (b),
shows very different behaviour with the Curie contribution becom-
ing larger than the Solomon–Bloembergen–Morgan contribution
when sR is longer than approximately 1 ns. At longer sR, the Curie

term dominates completely due to the dependence jC2ð0Þ, which is
larger than j21ð0Þ as sR � sc;q � Tqe. If we reduce the electronic
relaxation times to 0.1 ps, the Solomon–Bloembergen–Morgan
contributions to both the longitudinal and transverse relaxation
rates, shown in (c) and (d), are reduced, with the result that the
Curie term is a larger relative contribution still to the overall relax-
ation rates. We note here that for large paramagnetic systems with
slow rotational dynamics, the transverse relaxation rate is com-
pletely dominated by Curie relaxation, whereas the longitudinal
relaxation rate is dominated by Solomon–Bloembergen–Morgan
relaxation. For systems with rotational dynamics that are interme-
diate between those of small molecules in solution and large sys-
tems, with correlation times of approximately 1 ns, both the
Curie and Solomon–Bloembergen–Morgan mechanisms are impor-
tant for both longitudinal and transverse relaxation.

8.8. Cross-correlation between the paramagnetic and diamagnetic
relaxation mechanisms in solution

We now turn our attention to an interesting feature of relax-
ation in paramagnetic systems that is observed in large biomole-
cules, which is the interference between the relaxation
mechanisms resulting in the PRE and the relaxation mechanisms
due to non-paramagnetic interactions. So far we have assumed
that the random modulations of different interactions that act as
local fields for relaxation vary independently of each other, so that
the relaxation rates are purely additive. However in some cases the
fluctuations are not independent, but are strongly correlated. One
example that is commonly encountered is that of the dynamic pro-
cesses in a protein that cause fluctuations in both the 15N CSA and
1H–15N dipolar coupling interactions. Here is it clear that the same
source of fluctuations causes random modulations of both the
interactions, which are then obviously not mutually independent.
This phenomenon is referred to as cross-correlated relaxation
(CCR), and results in an additional relaxation rate constant that is
added to the others.

Here we investigate the effect of cross correlation observed in
a spin system comprising two spin-1=2 nuclei I1 and I2, coupled
together by a dipolar coupling interaction with constant b12, both
of which experience a spin-dipolar interaction with an electronic
spin S with constants bS1 and bS2. The spin system and nuclear-
spin energy levels are illustrated in Fig. 8.7(a) and (b). In this spin
system we have defined the Larmor frequency of I1, x0;1, to be
negative and the Larmor frequency of I1, x0;2, to be positive.
Therefore we may interpret Fig. 8.7 as representing the spins in
an H–N amide group in a paramagnetic protein, with I1 = 1H
and I2 = 15N. To simplify the discussion we neglect chemical
exchange, and assume that the only sources of the stochastic
fluctuations are unrestricted rotational diffusion and electronic
relaxation.

8.8.1. Nuclear–nuclear dipolar-coupling relaxation and cross-
correlation with the Curie mechanism

We proceed to calculate the full form of the relaxation superop-
erator corresponding to the spin system in Fig. 8.7(a). The Hamilto-

nian bH1ðtÞ that contains all the time-dependent random
interactions is given bybH1ðtÞ ¼ bHð1Þ

C ðtÞ þ bHð2Þ
C ðtÞ þ bHðS1Þ

SBMðtÞ þ bHðS2Þ
SBMðtÞ þ bHð12Þ

DD ðtÞ: ð8:153Þ

The first two terms bHð1Þ
C ðtÞ and bHð2Þ

C ðtÞ represent the interactions of
nuclear spins I1 and I2 with the Curie spin of the paramagnetic cen-
tre. As discussed in Section 8.7.4, both interactions can be repre-
sented by the corresponding SA subject to rotational diffusion,
and so they also include the orbital contributions to the SA that

are present in diamagnetic systems. The spin operators are bT C1;2m

and bT C2;2m, which take the expressions in Table 8.4. Both of these
terms are responsible for the Curie PREs, and the CSA-
contributions to relaxation in diamagnetic systems. The third and

fourth terms in the Hamiltonian are bHðS1Þ
SBMðtÞ and bHðS2Þ

SBMðtÞ, which rep-
resent the time-dependent spin-dipolar interactions between I1 and
S, and I2 and S respectively that are modulated by rotational diffu-
sion and electronic relaxation. The spin operators are given in
Table 8.2. Both terms are responsible for the modified Solomon con-

tribution to the PREs. The final term in the Hamiltonian is bHð12Þ
DD ðtÞ,

which represents the nuclear–nuclear dipolar coupling interaction
that is modulated by rotational diffusion. The spin operatorsbT ðnÞ

DD;2m are given in Table 8.2 with the substitutions I ! I1 and
S ! I2.

We can nowwrite the total relaxation superoperator ^̂C as a sum
of terms:bbC ¼ bbC ð1Þ

PRE þ
bbC ð2Þ

PRE þ
bbC ð12Þ

DD þ bbC ð1Þ
CCR þ

bbC ð2Þ
CCR: ð8:154Þ

The terms bbC ð1Þ
PRE and bbC ð2Þ

PRE are responsible for the total PRE experi-
enced by spins I1 and I2 due to both the Solomon and Curie relax-
ation mechanisms. Both superoperators and the corresponding
relaxation rates as the same as calculated previously. The relaxation
contribution from the nuclear–nuclear dipolar interaction is due to

the term bbC ð12Þ
DD , which takes the expression

bbC ð12Þ
DD
bO ¼ 3b2

12

5�h2

X
mn

bT ðnÞ
DD;2�m;

bT ðnÞ
DD;2�m

� 	y
; bO� � 

jR �xðnÞ
�m

� �
: ð8:155Þ

The spectral density function jRðxÞ ¼ 2sR= 1þx2s2R
� �

represents
unrestricted rotational diffusion. Finally the relaxation contribu-
tions due to CCR for I1 and I2 are represented by the superoperator

terms bbC ð1Þ
CCR and bbC ð2Þ

CCR. We only consider the cross correlation
between the Curie and nuclear–nuclear dipolar interactions.
Assuming the SAs of both nuclear spins are axially symmetric
(which is the case for a single point-spin-dipolar hyperfine interac-
tion), with anisotropies DrS

2 and DrS
2 respectively, the two CCR

superoperators have the expressions:

Fig. 8.7. Illustration of a combined nuclear–electronic spin system in which we
observe cross-correlated relaxation between the nuclear–nuclear dipolar coupling
and Curie mechanisms. The spin system is shown in (a). The Larmor frequencies of
the two nuclear spins I1 and I2, denoted x0;1 and x0;2 are assumed to be negative
and positive respectively, so that the system represents a 1H–15N spin system in a
protein. The dipolar coupling between the two nuclei is b12. The electronic spin S
has Larmor frequency xS and interacts with the two nuclei via point-dipolar-
coupling interactions with constants bS1 and bS2. The nuclear energy levels and
transition frequencies are shown in (b).
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where c1 and c2 are the two nuclear gyromagnetic ratios. The angle
#1 is the angle between the PAF of the SA tensor of I1 and the I1–I2
internuclear vector; and likewise for #2.

Using these expressions we compute the relaxation rates for
both longitudinal and transverse relaxation in turn.

8.8.2. Longitudinal relaxation
8.8.2.1. The Solomon equations. When we apply the total relaxation
superoperator in Eq. (8.154) to the total nuclear-spin density oper-
ator, we obtain a set of differential equations that link the relax-
ation behaviour of the expectation values of the operators that

represent the total I1 longitudinal magnetization bI1z, the total I2
longitudinal magnetizationbI2z, and the longitudinal two-spin order

2bI1zbI2z. These equations are referred to as the Solomon equations
for two nuclear spins, and are given by

dI1z
dt

¼ �Rð1Þ
1 I1z � Ið0Þ1z

� 	
� r12 I2z � Ið0Þ2z

� 	
� Dð1Þ

1 2I1zI2z; ð8:158Þ
dI2z
dt

¼ �r12 I1z � Ið0Þ1z

� 	
� Rð2Þ

1 I2z � Ið0Þ2z

� 	
� Dð2Þ

1 2I1zI2z; ð8:159Þ
d2I1zI2z

dt
¼ �Dð1Þ

1 I1z � Ið0Þ1z

� 	
� Dð2Þ

1 I2z � Ið0Þ2z

� 	
� Rð1;2Þ

1 2I1zI2z; ð8:160Þ

where I1z and I2z are the expectation values of bI1z and bI2z; Ið0Þ1z and Ið0Þ2z

are the corresponding expectation values at equilibrium, and 2I1zI2z
is the expectation value of 2bI1zbI2z (which has an equilibrium value

of zero). The rate constants Rð1Þ
1 , Rð2Þ

1 , and Rð1;2Þ
1 are the self-

relaxation rate constants for I1z, I2z, and 2I1zI2z and describe their
return to their equilibrium values. The cross-relaxation rate con-
stant r12 describes the process by which I1z and I2z are intercon-
verted, and is responsible for the nuclear Overhauser effect which
is used to establish the close spatial proximity of nuclei in mole-

cules. The last two cross-relaxation rate constants Dð1Þ
1 and Dð2Þ

1

describe the interconversion between I1z and 2I1zI2z, and I2z and
2I1zI2z respectively.

8.8.2.2. Longitudinal self-relaxation. The three longitudinal self-
relaxation rate constants are given by:

Rð1Þ
1 ¼ RPRE;ð1Þ

1 þ b12
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; ð8:161Þ
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1 ¼ RPRE;ð1Þ

1 þ RPRE;ð2Þ
1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
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Each rate constant is the sum of a PRE term and a contribution from
the nuclear–nuclear dipolar coupling relaxation mechanism. For
example the self-relaxation rate constant for spin I1 is the sum of

the longitudinal PRE RPRE;ð1Þ
1 , which is given by Eq. (8.131), and the

longitudinal nuclear–nuclear dipolar coupling rate constant RDD;ð1Þ
1 .

The corresponding expression for spin I2 takes a similar expression.

The rate constant for the longitudinal two-spin order is the sum of a

PRE term RPRE;ð1;2Þ
1 , which is the sum of the two one-spin longitudinal

PREs RPRE;ð1Þ
1 and RPRE;ð2Þ

1 , and a longitudinal nuclear–nuclear dipolar

coupling rate constant RDD;ð1;2Þ
1 . We note that the three rate con-

stants do not have a term due to the CCR.

8.8.2.3. Longitudinal cross-relaxation. The cross-relaxation rate con-
stant r12 is given by the expression

r12 ¼ b12

�h

� �2 3
10

jRðx0;1 þx0;2Þ � 1
20

jRðx0;1 �x0;2Þ
� 

: ð8:164Þ

This rate constant is due only to the nuclear–nuclear dipolar cou-
pling interaction, as this is the only term in the Hamiltonian that
connects the two nuclear spins. Therefore we expect no paramag-
netic relaxation contribution to the conventional NOE. However
the situation is different for cross relaxation between each longitu-
dinal magnetization term and the longitudinal two-spin order term.

Here the two cross-relaxation rate constants Dð1Þ
1 and Dð2Þ

1 are only
non-zero because of the CCR between the nuclear–nuclear dipolar
coupling and the Curie mechanism. They are given by

Dð1Þ
1 ¼ 3

10
b12

�h

� �
c1B0DrS

1d
ð2Þ
00 ð#1ÞjRðx0;1Þ; ð8:165Þ

Dð2Þ
1 ¼ 3

10
b12

�h

� �
c2B0DrS

2d
ð2Þ
00 ð#2ÞjRðx0;2Þ: ð8:166Þ

This is also observed for cross correlation between a dipolar cou-
pling and a CSA in diamagnetic systems [255]. In the absence of
CCR both relaxation rate constants are zero. Hence the detection

of polarization transfer, such as bI1z ! 2bI1zbI2z, may indicate the pres-
ence of CCR.

8.8.3. Transverse relaxation
8.8.3.1. The Solomon equations. We now examine transverse relax-
ation processes that affect coherences. The observable single-
quantum coherences for a spin system comprising two nuclei have
a more complicated form than for a simple one-spin system. For a
system of two nuclear spins-1=2 there are four such coherences,
which are indicated on energy levels in Fig. 8.7(b). Two of the
coherences involve a spin-state flip of spin I1, with the second spin
I2 in an unchanged spin state of either a or b. These two coherences

form a doublet, and are represented by the product operatorsbI1þbI2a
andbI1þbI2b, wherebIiþ is the raising operator for spin Ii, and bIia andbIib
are the two projection operators for spin Ii in the two spin states.
Likewise there are two coherences representing a spin flip of I2,

which are represented by the product operators bI1abI2þ and bI1bbI2þ.
The two spin-I1 coherences bI1þbI2a and bI1þbI2b may have different

phases. Therefore we may represent their superposition as a combi-

nation of an in-phase coherence operator bI1þ, in which both bI1þbI2a
and bI1þbI2b have the same phase, and an anti-phase coherence oper-

ator 2bI1þbI2z, in which both bI1þbI2a and bI1þbI2b have phases that differ

by p. Likewise we can also define the in-phase bI2þ and anti-phase

2bI1zbI2þ coherence operators for I2. The four operators are given by:bI1þ ¼ bI1þbI2a þbI1þbI2b; ð8:167Þ
2bI1þbI2z ¼ bI1þbI2a �bI1þbI2b; ð8:168ÞbI2þ ¼ bI1abI2þ þbI1bbI2þ; ð8:169Þ
2bI1zbI2þ ¼ bI1abI2þ �bI1bbI2þ: ð8:170Þ
The relaxation behaviour of the magnetization terms representing
the in-phase and anti-phase coherence of spin I1 is described by a
pair of connected differential equations that are given by
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dI1þ
dt

¼ �Rð1Þ
2 I1þ � Dð1Þ

2 2I1þI2z; ð8:171Þ
d2I1þI2z

dt
¼ �Dð1Þ

2 I1þ � Rð1;2Þ
2 2I1þI2z: ð8:172Þ

The in-phase and anti-phase magnetization terms both relax

according to the transverse self-relaxation rate constants Rð1Þ
2 and

Rð1;2Þ
2 , and cross relax with rate constant Dð1Þ

2 . Likewise the in-
phase and anti-phase magnetization terms of spin I2 are connected
by the following pair of differential equations:

dI2þ
dt

¼ �Rð2Þ
2 I2þ � Dð2Þ

2 2I1zI2þ; ð8:173Þ
d2I1zI2þ

dt
¼ �Dð2Þ

2 I2þ � Rð2;1Þ
2 2I1zI2þ: ð8:174Þ

The in-phase and anti-phase self-relaxation rate constants are Rð2Þ
2

and Rð2;1Þ
2 , and the cross-relaxation rate constant is Dð2Þ

2 .

8.8.3.2. Transverse self-relaxation. The four self-relaxation rate con-
stants are given by:

The two rate constants for in-phase relaxation RðiÞ
2 are each the

sum of a transverse PRE term, given by Eq. (8.133), and a dia-
magnetic term due to the nuclear–nuclear dipolar coupling

RDD;ðiÞ
2 . The two anti-phase self-relaxation rate constants are

more complicated. For example the PRE contribution to the rate

constant for 2I1þI2z;R
ð1;2Þ
2 , is the sum of the one-spin PRE terms

for transverse relaxation of I1 RPRE;ð1Þ
2 and longitudinal relaxation

of I2 RPRE;ð2Þ
1 . The remaining contribution RDD;ð1;2Þ

2 is due to the
nuclear–nuclear dipolar coupling. We note that none of the
self-relaxation rate constants has a contribution from CCR. How-
ever this is not the full story; the relaxation rate constants
above give only the average relaxation rate of the two coher-
ences represented by each in-phase or anti-phase operator. As
we will see each component of the doublet relaxes at a differ-
ent rate.

8.8.3.3. Relaxation-induced coherence transfer. The cross-relaxation
between the in-phase and anti-phase coherence terms is very
interesting. The two cross-relaxation rate constants are only
non-zero in the presence of CCR between the nuclear–nuclear
dipolar coupling and Curie relaxation mechanisms. They are
given by:

Dð1Þ
2 ¼ b12

�h

� �
c1B0DrS

1d
ð2Þ
00 ð#1Þ 1

5
jRð0Þ þ 3

20
jRðx0;1Þ

� 
; ð8:179Þ

Dð2Þ
2 ¼ b12

�h

� �
c2B0DrS

2d
ð2Þ
00 ð#2Þ 1

5
jRð0Þ þ 3

20
jRðx0;2Þ

� 
: ð8:180Þ

This is intriguing because it implies that during a delay an in-phase
coherence on I1 can evolve into an anti-phase coherence, also on I1,

via a relaxation-induced transformation of the form bI1þ ! 2bI1þbI2z. A
subsequent pulse or combination of pulses can then transform this
anti-phase term into an anti-phase term on the second spin I2. This
is an example of relaxation-allowed coherence transfer [265].

In solution NMR in the absence of CCR the only way in which
such a coherence transfer can occur is if the isotropic J-coupling
J12 between the two spins is non-zero. In this case the transforma-
tion from the in-phase to anti-phase coherences is

bI1þ ! bI1þ cos pJ12tð Þ � i2bI1þbI2z sin pJ12tð Þ: ð8:181Þ
The anti-phase term can then be transferred to a coherence on

I2. Therefore in the absence of CCR, as for small molecules, the
observation of such a coherence transfer indicates that the two

spins are coupled by a J-coupling interaction. This is used exten-
sively in correlation spectroscopy to identify the bonding networks
within molecules. However for large macromolecules in solution
which exhibit measurable CCR we may observe relaxation-
induced coherence transfer, which complicates the interpretation
of the spectrum. This is particularly important to bear in mind
for homonuclear correlation spectroscopy (COSY) of paramagnetic
proteins [266].

8.8.3.4. Differential line broadening due to cross-correlation between
the nuclear–nuclear dipolar and Curie relaxation mechanisms. The
self-relaxation rate constants given in Eqs. (8.175)–(8.178) are
the average rate constants for the in- and anti-phase coherences
of the two spins. However, as we have already pointed out, this
does not provide a complete picture of the transverse self-
relaxation of the system, for which we need to consider the relax-
ation properties of the expectation values I1þI2a, I1þI2b, I1aI2þ, and
I1bI2þ which represent the four individual coherences. In large
paramagnetic macromolecules experiencing slow rotational diffu-
sion, CCR between the nuclear–nuclear dipolar coupling and Curie
mechanisms results in different transverse relaxation rates for the
two coherences I1þI2a and I1þI2b, and therefore different linewidths
in the spectrum. We calculate this effect here in the spin-diffusion

Rð1Þ
2 ¼ RPRE;ð1Þ

2 þ b12

�h
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jRð0Þ þ 3
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jRðx0;2Þ þ 3
40
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40
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� 
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limit where jx0;1sRj � 1, where we can approximate the spectral

density functions as jRð0Þ ¼ 2sR, and jRðx0;1Þ � jRðx0;2Þ �
jRðx0;1 þx0;2Þ � jRðx0;1 �x0;2Þ � 0. Under this condition the two
expectation values I1þI2a and I1þI2b relax independently with differ-

ent self-relaxation rate constants Rð1;aÞ
2 and Rð1;bÞ

2 that are given by:

Rð1;aÞ
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Both rate constants have the same contribution from the dipolar
(DD) and Curie relaxation mechanisms, and the difference arises
only from the different sign of the CCR contribution. The conclusion
is that the effect of CCR is to reduce the relaxation rate of one coher-
ence in the doublet, and to increase the relaxation rate of the sec-
ond. Which rate is increased and which is reduced depends on
the overall sign of the CCR contribution, which depends in turn

on the signs of b12; c1;Dr
S
1, and dð2Þ

00 ð#1Þ. This effect is also utilized
for large proteins in solution in a method called Transverse
Relaxation-Optimized SpectroscopY (TROSY), where the CCR
between the diamagnetic CSA and DD relaxation mechanisms is
used to maximise the resolution at high magnetic fields [267].

If, as predicted by the relaxation differential equations, the
decay due to transverse relaxation is exponential, the linewidths
of the two peaks (defined as the full-width at half-maximum) are

equal to 2Rð1;aÞ
2 and 2Rð1;bÞ

2 . This means that the CCR manifests itself
in the spectrum by the two components of the doublet having dif-
ferent linewidths, with one peak being narrowed and the other
broadened. Fig. 8.8 illustrates the form of the in-phase and anti-
phase doublets that are obtained with and without CCR for differ-
ent values of the J-coupling constant. The average linewidth is set
to 100 Hz, with the CCR contribution equal to 	50 Hz. Spectra with
values of J12 ranging from 200 Hz down to 0 Hz are depicted. In the
absence of CCR both components of the doublet have the same
linewidth. In the absence of CCR the effect of reducing J12 on the
in-phase doublet is to reduce the separation between the two com-
ponents of the doublet, until the splitting is no longer resolved.
Finally, at J12 ¼ 0, the two components are at the same frequency
and we see a singlet. For the anti-phase doublet, reducing J12
causes increased cancellation between the intensities of the peaks.
At zero coupling the intensities cancel exactly resulting in zero
spectral intensity. Thus, in the absence of CCR effects, anti-phase
coherences can only be generated and observed if the two spins
interact via a non-zero J-coupling.

However if we introduce the CCR effect the result is different.
The two components of the doublet have different linewidths with
one being narrowed (here the high-frequency component) and the
other broadened. This superposition of different linewidths is still
seen with zero J-coupling as it results from the incoherent effect
of the dipolar coupling between the spins and of their paramag-
netic SAs. The most notable effect at zero J-coupling is seen in
the anti-phase doublet in which the intensities do not cancel
because of the different linewidths; the result is that this anti-
phase doublet can still be observed, in complete contrast to the sit-
uation without CCR. Hence in the presence of CCR it is possible
both to generate anti-phase coherences via cross-relaxation-
allowed coherence transfer, and to observe the resulting anti-

Fig. 8.8. Simulated in-phase and anti-phase doublets with and without cross-correlation between the dipolar-coupling and Curie relaxation mechanisms for different J-
coupling constants. In the absence of CCR the linewidth of both components is 100 Hz. The CCR contribution to the linewidth is 50 Hz, with the high-frequency line being
narrowed and the low-frequency line broadened. The coupling constants J12 are as indicated.
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phase doublet [265]. As noted earlier this means that the interpre-
tation of NMR spectra that correlate between pairs of spins via the
J-coupling need to be interpreted with care, since cross-relaxation-
allowed coherence transfer results in correlations even with zero J-
coupling [266].

8.9. Paramagnetic relaxation enhancements in non-dynamic solid
insulators

We now turn to a different motional regime to those considered
so far, in which chemical exchange and random reorientation of
the interaction tensor, on a timescale that is conducive to efficient
relaxation, are completely absent. This situation is regularly
encountered in rigid solids, including materials and crystalline
phases of small molecules in a rigid lattice with no flexible parts,
so there is neither overall tumbling nor internal motional dynam-
ics on the relevant timescale. The only motions that are present are
due to vibrations, which are not an efficient source of nuclear
relaxation, and so such diamagnetic systems often exhibit very
long T1 relaxation times, of the order of minutes or hours. On the
other hand, paramagnetic systems still exhibit short relaxation
times as the vibrational motion still causes efficient electronic
relaxation [120], and the relaxing electrons act to relax the nuclei.

When deciding on the model to use for the PRE in these sys-
tems, it is tempting to use the Curie model of Gueron [100], and
Vega and Fiat [101], and extend sR and sM to infinity. However this
is not valid as the extension of the correlation times in this way
would cause a violation of one of the basic assumptions of Redfield
theory, which is that the observation time must be longer than the
correlation times. We therefore begin instead from the Solomon–
Bloembergen–Morgan model and ignore chemical exchange and
stochastic reorientation from the beginning, so that the overall

correlation times are simply equal to the electronic longitudinal
and transverse relaxation time constants:

sE;q ¼ sc;q ¼ Tqe; q ¼ 1;2: ð8:184Þ
We then take the Solomon–Bloembergen–Morgan equations and
make the substitution of the correlation times directly, resulting
in the following nuclear T1 relaxation time constant
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and the following nuclear T2 relaxation time constant
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These expressions assume a point-dipole model for the electrons.
However the correction for delocalisation effects is relatively
straightforward, as we have seen.

Fig. 8.9 shows a general comparison of the Solomon and
Bloembergen longitudinal and transverse relaxation rates for a
1H nucleus in a field of 11.74 T, for a range of electronic relax-
ation times, with the assumption that T1e ¼ T2e � sS. In (a) and
(b) are shown the Solomon and Bloembergen contributions to
the longitudinal relaxation rates plotted against sS. We see that,
for dipolar and Fermi-contact couplings that are equal, the Solo-
mon contribution is always the larger of the two, and completely
dominates for all electronic relaxation times, apart for times

Fig. 8.9. Comparison of the sizes of the longitudinal and transverse relaxation rates due to the Solomon and Bloembergen mechanisms in a non-dynamic solid as a function of
the electron relaxation time. It is assumed that T1e ¼ T2e � sS . The variation of the longitudinal rates is shown in (a), and the transverse rates in (c), both up to a sS of 10 ns. In
(b) and (d) are shown expansions of the plots in (a) and (b), up to a sS of 2 ps. The nuclear spins are 1H in an external field of 11.74 T. The constant
C ¼ SðSþ 1Þ 3þ ðgSDÞ2

� 	
ðA
~
SD
zz =—hÞ

2

=12, i.e. SðSþ 1ÞðbSI=—hÞ2 for the Solomon mechanism, and SðSþ 1ÞðAFC
=—hÞ2 for the Bloembergen mechanism.
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below approximately 1.0 ps where the Bloembergen contribution
is still smaller, but nevertheless significant. Both the Solomon
and overall relaxation rate are dominated by the reduced spectral
density j21ðxIÞ which, for an external field of 11.74 T, reaches a
maximum at T1e ¼ 0:32 ns. Shorter electronic relaxation times,
such as those of the order of 0.1–1.0 ps that are observed for lan-
thanides, therefore lead to longer values of T1. We see a different
variation for the transverse relaxation rates in (c) and (d). Here
the Solomon and Bloembergen terms are comparable, and are
dominated by the reduced spectral densities j21ð0Þ and j01ð0Þ
respectively, both of which depend on T1e. Both contributions
to the relaxation rate therefore simplify increase with T1e.

The trends shown in Fig. 8.9 indicate a general property of the
relaxation properties of paramagnetic systems, which is that, in
the absence of dynamic or motional effects, the enhancements in
both R1 and R2 are dominated by electronic longitudinal relaxation
via the time constant T1e. Slower electronic longitudinal relaxation
rapidly increases the rate of the transverse PRE, and rapidly
increases the longitudinal PRE to a maximum at T1e ¼ 1=jxIj, after
which it slowly drops off.

8.10. Paramagnetic relaxation enhancements due to lanthanide ions

We next provide a very brief review of the expressions for
the relaxation rate constants that could be applied to lanthanide
systems. As we saw in Chapter 6, the EPR interaction and para-
magnetic shift tensors due to lanthanide ions can be extremely
complicated, as a result of the need to consider the effects of
strong SO coupling and the low-lying excited states due to the
crystal-field interaction and higher-energy SO coupling levels.
However we also saw that we can simplify matters by assuming
that kT is sufficiently large that the crystal-field energy levels are
all significantly populated, and treating the lanthanide ions as
free metal ions [62]. To a reasonable approximation, we can then
take the expressions for the relaxation rate constants derived
earlier, and replace S with J, and ge with gJ to obtain the correct
expressions.

In the Solomon–Bloembergen–Morgan relaxation model, we

take the Fermi-contact coupling constant AFC and spin-dipolar cou-
pling constant to be:

AFC ¼ l0lBgJ�hcI
3S

qa�bð0Þ; ð8:187Þ

bJI ¼
l0lBgJ�hcI

4pR3 : ð8:188Þ

Then replacing S with J we obtain the following expression for
T1:
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Likewise the T2 time constant is

1
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For relaxation due to slow molecular motions we can use the
Curie model, in which the ‘‘Curie spin” is now defined as the ther-
mal average of the z component of the total angular momentum

operator bJz:
JC � hbJzi ð8:191Þ

¼ �lBgJ JðJ þ 1ÞB0

3kT
: ð8:192Þ

The expressions for the total T1 and T2 relaxation time constants
including both the Fermi-contact and spin-dipolar contributions, are
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and
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For lanthanide ions the Fermi-contact coupling interaction is
relatively small compared to the spin-dipolar interaction, due to
the contracted nature of the 4f orbitals and the corresponding
reduced electronic-spin transfer. Therefore we expect the Solomon
mechanism to dominate the Bloembergen mechanism in the over-
all relaxation behaviour. Furthermore electronic relaxation for lan-
thanide ions is considerably faster than for 3d ions, as we will see
in the following section, and so for typical ranges of rotational and
chemical-exchange correlation times we are able to approximate
the overall correlation times as sc;q � sE;q � Tqe, with the result that
electronic relaxation is the stochastic process that dominates the
PRE in the Solomon–Bloembergen–Morgan model. For slower rota-
tional dynamics, Curie relaxation is very important.

8.11. Relaxation properties of specific paramagnetic metal ions

Following the examination of the theory of the PRE we now
quantify the PREs of different paramagnetic metal ions in different
motional regimes, and due to the Solomon, Bloembergen, and Curie
mechanisms. To compare the PREs due to different metal ions on a
particular nucleus in a particular system requires a quantification
of the values of T1e and T2e of that particular metal ion in that par-
ticular system. Electronic relaxation times have been measured
extensively for complexes and metalloproteins in solution and
glasses, and these values have been used to estimate the PREs of
nuclei in similar complexes by Bertini et al. [15]. Table 8.5 gives
the ranges of electronic relaxation times for a selection of first-,
second-, and third-row d-block transition-metal ions, and also
the calculated longitudinal PREs R1 and R2, and Table 8.6 gives
the equivalent values for the lanthanide ions. The tables include
calculations for a 1H nucleus in a small complex in solution with
a rotational correlation time of sR ¼ 10�10 s, and a large biomole-
cule in solution with sR ¼ 10�8 s assuming spin-dipolar Solomon
and Curie mechanisms respectively at 298 K and a nucleus–ion
separation of 5 Å, and at a 1H Larmor frequency of �800 MHz. Also
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Table 8.5
Summary of the relaxation properties of, and PREs due to, a selection of transition-metal ions. For each ion is given the range of T1e and T2e electronic relaxation times, taken from Bertini, Luchinat, and Parigi [15] and the additional
references indicated, and grouped together as a relaxation time sS . The corresponding ranges of PRE rates R1 and R2 for a 1H experiencing a hyperfine coupling to the unpaired electrons are also given for the Bloembergen mechanism, and
the dipolar-interaction mechanism in the fast- (sR ¼ 10�10 s) and slow-rotation (sR ¼ 10�8 s) limits. The equations used are indicated. The Bloembergen relaxation rates are calculated assuming a one-electron Fermi-contact coupling
constant of 4.47 MHz. The dipolar relaxation rates are calculated assuming the point-dipole model with a separation between nucleus and paramagnetic centre of 5 Å. In all cases it is assumed there is no chemical exchange. The
magnetic field is 18.78 T, and the temperature used in the Curie-spin is 298 K. HS refers to ‘high-spin’ and LS to ‘low-spin’.

Ion Configuration S sS/sa Bloembergen relaxation rates/s�1 Dipolar relaxation rates/s�1 Refs.

Rigid solids Small molecules

(sR ¼ 10�10 s)

Large molecules

(sR ¼ 10�8 s)

R1
b R2

c R1
d R2

e R1
f R2

g R1
h R2

i

Ti3+ 3d1 1=2 10�10–10�11 0.4–4 1977–19,757 47–378 55–505 43–223 50–269 47–375 112–557 [267,269]

VO2+
3d1 1=2 10�8 0.004 1,975,720 19 31,595 376 501 37 15,840 [269–272]

V3+
3d2 1 10�11 2 1318 126 147 115 134 126 551 [272,274]

V2+
3d3 3=2 10�9 0.02 109,762 902 16,244 1782 2327 977 16,137 [275]

Cr3+ 3d3 3=2 5
 10�9–5
 10�10 0.004–0.04 54,881–548,811 187–1620 8706–79,058 1680–1869 2156–2483 279–1663 9705–53,729 [275,116,277]

Cr2+ 3d4 2 10�11–10�12 2–16 107–989 45–379 51–442 45–345 51–402 46–375 3687–4072 [278]

Mn3+
3d4 2 10�10–10�11 0.2–2 989–9879 379–3026 442–4040 345–1783 402–2155 375–2967 4072–7585 [272,277,279]

Mn2+
3d5 5=2 10�8 0.002 922,002 219 368,611 4387 5842 433 188,333 [115,280]

Fe3+ HS 3d5 5=2 10�9–10�11 0.02–2 923–92,200 553–2106 645–37,903 503–4158 587–5429 545–2254 8366–41,657 [276,281,282]

Fe3+ LS 3d5 1=2 10�11–10�13 4–36 38–1978 1–47 1–55 1–43 1–50 2–47 58–112 [282,284]

Fe2+ HS 3d6, 5–6 coord. 2 10�12–10�13 16–18 19–107 12–45 12–51 12–45 12–51 13–46 3648–3687 [284,286]

3d6, 4 coord. 2 10�11 2 989 379 442 345 402 375 4072 [287]

Co2+ HS 3d7, 5–6 coord. 3=2 5
 10�12–10�13 4–20 21–551 7–119 7–139 7–114 7–133 8–119 1428–1558 [287,289]

3d7, 4 coord. 3=2 10�11 2 1099 237 277 215 252 235 1694 [290]

Co2+ LS 3d7 1=2 10�9–10�10 0.04–0.4 19,757–197,572 180–378 505–3249 223–356 269–465 197–375 557–3021 –

Ni2+ 3d8, 5–6 coord. 1 10�10 0.2 13,172 1009 1347 594 718 998 1733 [291]

3d8, 4 coord. 1 10�12 22 143 15 17 15 17 15 421 [291,293]

Cu2+
3d9 1=2 5
 10�9–10�9 0.007–0.04 197,572–987,860 37–180 3249–15,812 356–374 456–497 56–197 3021–10,594 –

Ru3+
4d5 1=2 10�11–10�12 4–33 214–1978 6–47 6–55 6–43 6–50 6–47 63–112 [272,294]

Re3+ 5d4 1 10�12–10�13 22–24 25–143 4–15 4–17 4–15 4–17 4–15 408–421 [295]

a Quoted as a range of values for T1e and T2e .
b Eq. (8.104).
c Eq. (8.106).
d Eq. (8.185).
e Eq. (8.186).
f Eq. (8.99).
g Eq. (8.101).
h Eq. (8.131).
i Eq. (8.133).
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Table 8.6
Summary of the relaxation properties of, and PREs due to, the lanthanide ions. For each ion is given the range of T1e and T2e electronic relaxation times, taken from Bertini, Luchinat, and Parigi [15] and the additional references indicated,
and grouped together as a relaxation time sS . The corresponding ranges of PRE rates R1 and R2 for a 1H experiencing a hyperfine coupling to the unpaired electrons are also given for the Bloembergen mechanism, and the dipolar-
interaction mechanism in the fast- (sR ¼ 10�10 s) and slow-rotation (sR ¼ 10�8 s) limits. The equations used are indicated with J used in lieu of S. The Bloembergen relaxation rates are calculated assuming a one-electron Fermi-contact
coupling constant of 2.23 MHz. The dipolar relaxation rates are calculated assuming the point-dipole model with a separation between nucleus and paramagnetic centre of 5 Å. In all cases it is assumed there is no chemical exchange. The
magnetic field is 18.78 T, and the temperature used in the Curie-spin is 298 K.

Ion Configuration J sS/sa Bloembergen relaxation rates/
s�1

Dipolar relaxation rates/s�1 Refs.

Rigid solids Small molecules

(sR ¼ 10�10 s)
Large molecules (sR ¼ 10�8 s)

R1
b R2

c R1
d R2

e R1
f R2

g R1
h R2

i

Ce3+ f 1 5=2 4
 10�13–10�13 76–123 80–230 3–7 3–8 3–7 3–8 3–7 263–267 –

Pr3+ f 2 4 3
 10�13–6
 10�14 24–63 25–95 4–13 4–14 4–13 4–14 4–13 1033–1043 [295,297]

Nd3+
f 3 9=2 8
 10�13–2
 10�13 19–27 32–86 11–21 11–24 11–21 11–24 11–21 1088–1100 [296]

Sm3+
f 5 5=2 2
 10�13–5
 10�14 0.2–0.5 0.2–0.6 0.2–0.6 0.2–1 0.2–0.6 0.2–1 0.2–0.5 3–4 [295,297]

Eu2+
f 7 7=2 5
 10�14–10�14 2–8 2–8 3–16 3–16 3–16 3–16 18–29 24,948–24,960 [296]

Gd3+
f 7 7=2 10�8–10�9 0.002–0.02 84,479–844,793 393–3782 68,069–661,976 7466–7879 9750–10,492 770–3986 84,825–343,744 [297–303]

Tb3+ f 8 6 8
 10�13–2
 10�13 34–48 58–155 78–154 80–171 78–153 80–170 103–176 56,200–56,287 [296]

Dy3+ f 9 15=2 10�12–4
 10�13 50–86 162–323 132–214 140–241 132–212 139–239 167–244 80,856–80,951 [295,297]

Ho3+ f 10 8 8
 10�13–2
 10�13 92–128 157–416 93–183 95–204 93–182 95–203 130–215 79,632–79,733 [295,297]

Er3+ f 11 15=2 8
 10�13–3
 10�13 134–202 302–603 94–150 98–166 94–149 98–165 116–170 53,056–53,121 [295,297]

Tm3+
f 12 6 2
 10�12–5
 10�13 84–251 595–1920 73–190 79–219 73–186 78–215 80–194 20,614–20,750 [296]

Yb3+ f 13 7=2 5
 10�13–2
 10�13 361–376 458–856 17–26 17–28 17–26 17–28 17–26 2676–2687 [299,304,296,297]

a Quoted as a range of values for T1e and T2e.
b Eq. (8.104).
c Eq. (8.106).
d Eq. (8.185).
e Eq. (8.186).
f Eq. (8.99).
g Eq. (8.101).
h Eq. (8.131).
i Eq. (8.133).
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included are calculations for the Bloembergen mechanism for a
one-electron Fermi-contact coupling constant of 4.47 MHz.

The nuclear relaxation of molecules in solution is very well
understood [247,253,254,96], and the predominant difficulty in
calculating PREs is the incorporation of the details relating to the
electronic relaxation processes [96]. On the other hand, in solids
both nuclear and electronic relaxation are poorly understood by
comparison. Tables 8.5 and 8.6 also include estimates of the PREs
obtained in solid materials assuming that the range of electronic
relaxation times matches that in solution.

8.11.1. The d-block transition-metal ions
The electronic relaxation times in Table 8.5 have been grouped

together into a generic electronic correlation time sS. There is a
very wide range of such times, which lie between 10�8 and 10�13

s. The electronic relaxation of d-block transition-metal ions is
due to the stochastic modulation of both the permanent anisotro-
pic EPR tensors, and any transient changes in their values due to
distortions of the coordination sphere. Of the EPR tensors the ZFS
provides the dominant effect, followed by the g-anisotropy. Both
are due to SO coupling effects, and their sizes depend on the size
of the many-electron SO coupling parameter k. Therefore there is
a general trend for a larger SO coupling energy to result in faster
electronic relaxation.

High-spin metal ions with half-full d-shells essentially have
zero SO coupling energy, and therefore the ZFS and g-anisotropy
are very small. This is the reason for the relatively long sS of 10�8

s for Mn2+. Transition-metal ions of other configurations relax
more quickly due to the presence of SO coupling. However ions
with S ¼ 1=2 have no ZFS, and so the electronic relaxation is due
principally to the g-anisotropy. The result is that the relaxation
for such ions may also be comparatively slow, as can be seen for
VO2+ and Cu2+, which have sS values between 10�8 and 10�9 s.

The expression for the longitudinal PRE R1 is dominated by the
spectral density jðxIÞ, which is a maximum when sc ¼ 1=jxIj
which, for the examples given here, is 2:0
 10�10 s. Therefore for
electronic relaxation times below this value, increasing T1e and
T2e increases R1, whereas increasing T1e and T2e above
2:0
 10�10 s has the effect of reducing R1. The transverse PRE R2

is dominated by the spectral density jð0Þ at longer correlation
times, which increases linearly with the correlation time. By con-
trast, in the extreme-narrowing limit, such that sc � 1=jxIj, the
Solomon longitudinal and transverse PREs are equal.

This explains why the overall longitudinal PRE is dominated by
the Solomon mechanism, rather than the Bloembergen mecha-
nism, as only the former depends on the spectral density jðxIÞ,
and the latter depends only on jðxS 	xIÞ, which is much smaller
in these motional regimes. The Bloembergen mechanism, however,
makes a more important contribution to the transverse PRE due to
the dependence on jð0Þ. Transition-metal ions with electronic
relaxation times in the range 10�11–10�13 s, such as low-spin
Fe3+, high-spin 5- and 6-coordinate Co2+, Ru3+, and Re3+, have Solo-
mon relaxation rates for rigid solids and small complexes that are
approximately equal. On the other hand metal ions with slowly
relaxing electrons, with time constants in the range 10�8–10�9 s
such as Mn2+ and Cu2+, exhibit transverse Solomon PREs that are
significantly larger than their longitudinal counterparts. In the
slow-rotation regime, such that Curie-spin relaxation becomes
important, we see that the most significant effects are seen on
the transverse PREs, which increase substantially due to the
increasing sR.

Superimposed upon the dependence on the electronic relax-
ation times is the observation that metal ions with higher spins S
give larger PREs due to the dependence on SðSþ 1Þ.

8.11.2. The lanthanide ions
For molecules in solution the electronic relaxation times T1e and

T2e of the lanthanide ions generally take values from 0.01 to 0.1 ps,
and so are shorter than those of the first-row transition-metal ions.
This is due to the larger SO coupling of the former. The smaller
electronic relaxation times of the lanthanides tend to result in
lower PREs, particularly for transverse relaxation, than for the 3d
metal ions. Table 8.6 summarises the range of electronic relaxation
times, grouped together as ‘electronic correlation times’ sS, and the
resulting calculated PREs. For the non-dynamic solid and small
molecule T1 � T2, and so the relaxation properties are in the
extreme-narrowing limit. We leave this regime as sR increases,
as for large biomolecules dominated by slow rotational diffusion.
These systems are then subject to Curie relaxation, and the trans-
verse relaxation rates are several orders of magnitude larger than
the longitudinal rates.

8.11.2.1. The Gd3+ ion: 4f 7, 8S7=2. An important exception to the gen-
eral relaxation behaviour of the trivalent lanthanides is Gd3+,
which possesses a half-full 4f shell and therefore effectively has
an SO coupling interaction of zero. The Gd3+ ion exhibits electronic
relaxation times of the order of 1 to 10 ns, which are up to six
orders of magnitude greater than for the other lanthanides. These
longer electronic correlations result in larger PREs for all relaxation
mechanisms with the exception of longitudinal relaxation due to
the Bloembergen mechanism, which is negligible compared to
the other lanthanides. In particular the larger sS values have the
effect of increasing the rate of transverse relaxation, which is
now dominated by the term proportional to sS, in all cases so that
it is orders of magnitude faster than for the other ions. The large
relaxation effects result in Gd3+ complexes exerting long-range
PREs, which make these systems good contrast agents for MRI
[128,130]. However it is difficult to study the paramagnetic NMR
effects within these complexes as the large short-range PRE tends
to render the nuclei unobservable.

8.12. Key concepts

� Under conditions of fast stochastic dynamics, such that the
timescale of motion is much shorter than the reciprocal of the
relevant interaction, electronic and nuclear relaxation can be
described using Redfield theory.

� Redfield theory is usually valid for nuclear relaxation in solu-
tion, and in solids containing rapidly fluctuating electrons.

� Redfield theory does not usually provide a good description of
electronic relaxation, and is only valid in highly-symmetric
complexes.

� The principal mechanisms of electronic relaxation are modula-
tion of the transient and/or static zero-field splitting, and
phonons.

� Under high-field and fast-motional conditions, nuclear relaxation
is described by the Solomon–Bloembergen–Morgan equations.

� The principal mechanisms of nuclear relaxation are the spin-
dipolar hyperfine interaction (the Solomon mechanism), and
the Fermi-contact interaction (Bloembergen mechanism).

� In systems where the rotational dynamics are slow compared to
the rates of electronic relaxation the nuclear transverse relax-
ation is dominated by the Curie mechanism.

� In paramagnetic biomolecules with slow rotational diffusion in
solution there is cross correlation between the nuclear–nuclear
dipolar coupling to a second nuclear spin and paramagnetic SA,
which results in the two components of the doublet having dif-
ferent linewidths. Relaxation-allowed coherence transfer can
therefore occur between the two nuclei even in the absence of
a J-coupling between them.
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� In solids with no rotational dynamics, Curie relaxation is absent.

� Metal ions with S ¼ 1=2 and half-full d5 configurations have rel-
atively long electronic relaxation times due to the absence of
the ZFS.

� Electronic relaxation times tend to decrease down a d-block
triad due to the increasing spin-orbit coupling.

� The paramagnetic relaxation enhancement due to lanthanide
ions is typically smaller than that for first-row d-block
transition-metal ions, due to the faster electronic relaxation.

Chapter 9: Relaxation in paramagnetic systems under general
conditions

In Chapter 8 a treatment of nuclear relaxation was presented,
valid for (1) high-field conditions, (2) fast motional dynamics, (3)
a non-relativistic description of the electron spin, and (4) incorpo-
rating a phenomenological description of the electronic relaxation.
In this chapter we expand on the previous description, by adopting
a full quantum-mechanical treatment of the relaxation processes.
This enables us to derive expressions for the PRE where the elec-
tronic relaxation is outside the Redfield limit, and including rela-
tivistic effects such as SO coupling. The electronic relaxation is
therefore treated properly, and the resulting expressions for the
PRE are valid at all fields.

We begin by deriving a general expression for the PRE under
general conditions, employing a version of Redfield theory in
which we treat both the spin system and lattice using quantum
mechanics. Whilst this expression is correct and general, it resem-
bles a ‘black box’ in that it is not always obvious how to use it to
obtain usable expressions that are easily understood. We therefore
illustrate the scope of the formalism by deriving the expressions
for the PRE in a number of special cases, including low external
field, fast rotational motion in solution, and including the effects
of vibrations on electronic relaxation. In all cases the treatments
are valid for arbitrary electronic spin S. Finally we examine the case
of relaxation in metallic solids.

Further reading on the general theory of paramagnetic relax-
ation can be found in the reviews of Kowalewski et al. [95,94].

9.1. Introduction to the slow-motion theory of relaxation

9.1.1. The different approaches for slow relaxation dynamics
In the description of the PRE in Chapter 8 we modelled the

problem as a quantum mechanical spin system, comprising both
the nuclear and electronic spins, coupled to a lattice that is treated
classically, and which comprises the remaining parts of the system
such as the molecular framework. The random time variation of
the classical degrees of freedom of the lattice is the cause of the
relaxation of the spin system. This time dependence is included

in the Hamiltonian describing the spin–lattice coupling bH1ðtÞ,
which is characterised by a strength parameter which is xIL in
angular units. The validity of the entire semi-classical Redfield
description is restricted to the motional-narrowing, or Redfield,
limit which we quoted as jxILjsc � 1, where sc is the correlation
time we defined earlier. If the spin–lattice coupling strength is suf-
ficiently large, or else the correlation time is sufficiently long so
that the Redfield limit is violated, we must formulate the problem
in another way. This problem is frequently encountered when the
spin system contains electronic spins, as they are frequently sub-
ject to very large anisotropic interactions, such as the ZFS. In fact
the electron–lattice coupling parameters are typically so large that
we find ourselves in the slow-motion limit jxILjsc � 1.

Three practical approaches to resolving this problem can be
found in the literature. The first is the Swedish slow-motion theory,
which introduces the concept of a nuclear spin interacting with a

composite lattice, comprising both the quantized electronic degrees
of freedom, and the classical degrees of freedom due to rotational
diffusion, distortions, chemical exchange, etc. [103,94,106,107].
The second approach is the Grenoble method, which models the
rotational diffusion and collision dynamics using a large number
of random configurations of the spin system, with each given a ran-
dom trajectory of the relevant parameters describing the fluctua-
tions of the spin-dipolar coupling vector, and static and transient
ZFS parameters [111,112]. The third approach is the Ann Arbor
method, in which the electronic dynamics are treated using elec-
tronic wavefunctions rather than in Liouville space [112–115].
Although these three methods represent, at first sight, very differ-
ent formulations of electronic relaxation and the PRE, it has been
shown by Belorizky et al. that they predict very similar results
under certain conditions, implying that the underlying physics is
the same in each case [252].

Fig. 9.1 shows comparisons of the NMRD PREs simulated using
the Swedish slow-motion, Grenoble, and Ann Arbor models for two
different metal ions, and two different rotational correlation times
[252]. In all cases the simulations were performed under the fol-
lowing conditions:

� Two values of the electronic spin quantum number were cho-
sen, S ¼ 7=2 corresponding to Gd3+, and S ¼ 1 corresponding
to high-spin Ni2+. The nucleus was 1H.

� The ZFS Hamiltonian comprises both a static and transient part,
which were chosen to be axially symmetric, with magnitudes
given by Ds and Dt respectively. These interactions were the
sources of electronic relaxation.

� The source of the nuclear relaxation was the spin-dipolar inter-
action. The PAF of this interaction did not coincide with that of
the static ZFS, but they were assumed to be separated from each
other by the polar angle h, which was assumed fixed.

� Both the spin-dipolar and ZFS interactions were modulated by
rotational diffusion with correlation times sr.

� The transient ZFS was modulated by distortions of the metal
coordination geometry due to solvent collisions with correla-
tion time sv .

The simulations for S ¼ 7=2 were performed with static and
transient ZFS parameters of Ds ¼ 0:01 cm�1 and Dt ¼ 0:05 cm�1, a
spin-dipolar coupling constant of 16.7 MHz, and h angles of 0�
and 90�. These ZFS parameters are typical values for Gd3+, and
the coupling constant corresponds to a dipolar interaction with
1H at a distance of 310 pm from the metal ion. The distortional cor-
relation time was sv ¼ 5 ps. The 1H PRE profiles are shown in
Fig. 9.1(a) and (b) for rotational correlation times of sr ¼ 100 ps
and 1 ls respectively. In both cases modulation of the transient
ZFS is within the Redfield approximation. However the rotational
modulation of the ZFS and spin-dipolar interaction only satisfy
the Redfield condition for the shorter rotational correlation time
in (a). We also see that all three slow-motion theories predict
essentially the same behaviour, being indistinguishable above
fields of 0.1 T, and with only a small deviation of the Ann Arbor
method from the others at lower fields.

The simulations for S ¼ 1 were performed for larger static and
transient ZFS parameters of Ds ¼ 1 cm�1 and Dt ¼ 10 cm�1, typical
for high-spin Ni2+, with all other parameters the same as for
S ¼ 7=2. The results, for the rotational correlation times of
sr ¼ 100 ps and 1 ls, are shown in Fig. 9.1(c) and (d). Here the sta-
tic and transient ZFS dynamics are outside the Redfield limit in
both cases, and the spin-dipolar interaction dynamics are only
within the Redfield limit for the shorter rotational correlation time
in (c). This proved to be a difficult problem that was beyond the
Ann Arbor method, for which the results deviated considerably
(data not shown) [252]. However it is striking that both the
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Swedish slow-motion and Grenoble methods predict the same
behaviour at all fields.

In the light of the similarities between the Swedish and Greno-
ble approaches, we choose a single method when describing the
formalism of electronic and nuclear relaxation in paramagnetic
systems, namely the Swedish slow-motion theory.

9.1.2. The Swedish slow-motion theory
We often encounter the situation where the interactions

between the nuclei and their surroundings are sufficiently weak
to satisfy the Redfield condition, and so can be treated using Red-
field theory, even when the interactions between the electrons and
their surroundings are not. This situation has been treated
separately by Hwang et al. [305,306], and a number of groups in

Sweden [103–105,108]. The idea is to sidestep the problem of
the strong coupling between the electrons and their surroundings
by treating the electrons as part of the lattice. Therefore the lattice
is now a composite comprising both the classical degrees of free-
dom, such as the rotational dynamics, and the quantised degrees
of freedom of the electronic interactions. The spin system now
comprises only the nuclear spin, the coupling of which to the
lattice can be treated properly using Redfield theory.

Clearly this description can only be realised by treating the lat-
tice as a quantum object, requiring the full quantum formulation of
the Redfield theory [184,254,94], which we give in the following
section using the stochastic Liouville formalism. In addition to
catering for the slow-motion dynamics of the unpaired electrons,
the stochastic Liouville formalism also has the advantage of being

Fig. 9.1. Simulated proton PRE NMRD profiles, calculated using the three slow-motion models for two different metal ions. The profiles in (a) and (b) are calculated for an
electronic spin quantum number S ¼ 7=2, and rotational correlation times of (a) sr ¼ 100 ps and (b) 1 ls. The static and transient ZFS parameters are Ds ¼ 0:01 cm�1 and
Dt ¼ 0:05 cm�1. The profiles in (c) and (d) are calculated for S ¼ 1, rotational correlation times of (c) sr ¼ 100 ps and (d) 1 ls, and static and transient ZFS parameters of
Ds ¼ 1 cm�1 and Dt ¼ 10 cm�1. Note that no Ann Arbor data are shown for (c) and (d) as the results diverge. In all cases the spin-dipolar coupling constant is bSI ¼ 16:7 MHz,
and the distortional correlation time is sv ¼ 5 ps. N the Ann Arbor method; � the Swedish slow-motion method; j the Grenoble method. Adapted from [252], with the
permission of AIP Publishing.

120 A.J. Pell et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 111 (2019) 1–271



able to treat the electronic relaxation of spins S > 1 properly,
rather than phenomenologically as in the Solomon–Bloember
gen–Morgan theory. The Solomon–Bloembergen–Morgan theory
also assumes that the only electronic interaction is the spatially
isotropic Zeeman interaction, meaning that the resulting equations
are only valid at external magnetic fields that are sufficiently high
that the ZFS can be neglected. This restriction is lifted in the
stochastic Liouville formalism and all relevant electronic spin
interactions, including SO coupling effects such as the g-
anisotropy and the ZFS, are included.

9.2. The stochastic Liouville formalism

We now introduce the stochastic Liouville formalism, and
derive the form of the relaxation superoperator.

9.2.1. The Hamiltonian and Liouvillian

The Hamiltonian bH describing the entire system, including the
nuclear spin system and the composite lattice comprising both
the classical degrees of freedom of motion and the quantized elec-
tronic degrees of freedom, isbH ¼ bHI þ bHL þ bHIL: ð9:1Þ
The Hamiltonian is divided into three parts describing the nuclear

spin system (bHI), the lattice (bHL), and the coupling between the

two ðbHILÞ. Note that, unlike in the semi-classical formulation of
the Redfield theory, all the terms are time-independent. In the
Liouville formalism the total Hamiltonian is associated with a total

Liouvillian bbL . The Liouvillian is a commutation superoperator

which is defined so that is acts on an operator bO to produce a
new operator according to the following transformation [258]:

bbL bO ¼ bH; bOh i
: ð9:2Þ

The total Liouvillian is the sum of the three Liouvillians describing

the spin system bbL I , lattice
bbL L, and spin–lattice coupling bbL IL:bbL ¼ bbL I þ bbL L þ bbL IL: ð9:3Þ

Each Liouvillian is defined by a relation analogous to that in Eq.
(9.2).

9.2.1.1. The nuclear spin system. The Hamiltonian and Liouvillian
describing the nuclear spin system contain in principle all the
terms associated with the nuclear spin interactions, such as the
Zeeman interaction, chemical and paramagnetic shielding, nuclear
quadrupolar interaction, and dipolar and J-couplings. As in Chapter
8 we restrict the discussion to a single nuclear spin 1=2 and neglect
the effects of the chemical shielding. Therefore the spin
Hamiltonian is simply the nuclear Zeeman interactionbHI ¼ �hxI

bIz; ð9:4Þ
as before.

9.2.1.2. The spin–lattice coupling. In this formulation of the Redfield
theory, the spin–lattice coupling Hamiltonian is simply the hyper-
fine coupling Hamiltonian. However there is an important differ-
ence in the exact form of the Hamiltonian in this formalism
compared to the semi-classical Redfield theory. Before, we wrote
down the (spin–lattice) hyperfine interaction Hamiltonian in the
irreducible spherical tensor basis as

bHIL ¼
X2
l¼0

Xþl

m¼�l

ð�1ÞmAlm
bT l�m; ð9:5Þ

where the operators bT lm contain both nuclear and electronic spin
operators. This form is appropriate in the semi-classical Redfield
formalism as we have separated the nuclear–electronic spin system

(in bT lm) from the classical degrees of freedom of the lattice (in Alm).
However this form is not appropriate in the present formalism as
the electronic spins are now part of the lattice. We therefore rewrite
Eq. (9.5) as follows:

bHIL ¼
X2
l¼0

Xþl

m¼�l

ð�1ÞmAlm

Xþ1

m0¼�1

h11;�m0;�mþm0 jl�mibI1�m0bS1;�mþm0 ð9:6Þ

¼
Xþ1

m0¼�1

bI1�m0
X2
l¼0

Xþl

m¼�l

ð�1Þmh11;�m0;�mþm0jl�mibS1;�mþm0Alm: ð9:7Þ

The nuclear spin properties are now contained in the rank-one

operators bI1m, and the composite lattice properties are encoded in

the products bS1;�mþm0Alm. To complete the formulation of the hyper-
fine interaction Hamiltonian we define the rank-one lattice opera-

tors bL1m as

bL1m ¼
X2
l¼0

Xþl

m0¼�l

ð�1Þmþm0 h11;�m;�m0 þmjl�m0ibS1;�m0þmAlm0 ;

ð9:8Þ
and write the hyperfine interaction Hamiltonian as the scalar con-

traction of bI1m and bL1m:

bHIL ¼
Xþ1

m¼�1

ð�1ÞmbI1�m
bL1m: ð9:9Þ

For completeness we simplify the expression for the lattice operator
in Eq. (9.8) by introducing the index q ¼ m�m0 to give

bL1m ¼
X2
l¼0

Xþ1

q¼�1

ð�1Þqh11;�m; qjl; q�mibS1qAlm�q ð9:10Þ

¼ ð�1Þm
X2
l¼0

ð�1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p Xþ1

q¼�1

l 1 1
m� q q �m

� �bS1qAlm�q: ð9:11Þ

In the following discussion on the expressions for the PRE rate con-

stants it proves convenient to write the lattice operator bL1m as a
sum of contributions of different ranks l:

bL1m ¼ ð�1Þm
X2
l¼0

bLðlÞ1m; ð9:12Þ

where the term bLðlÞ1m is given by

bLðlÞ1m ¼ ð�1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p Xþ1

q¼�1

l 1 1
m� q q �m

� �bS1qAlm�q: ð9:13Þ

Hence bLð0Þ1m describes the contact contributions to the spin–lattice

coupling, bLð1Þ
1m gives the contribution due to antisymmetric part of

the hyperfine interaction, and bLð2Þ1m describes the spin-dipolar
contribution.

9.2.1.3. The lattice. The electronic-spin part of the lattice is

described by a Hamiltonian bHS which comprises the electronic

Zeeman interaction bHZ , the static ZFS bHZFS;S, and the transient ZFSbHZFS;T:bHS ¼ bHZ þ bHZFS;S þ bHZFS;T: ð9:14Þ
With each contribution and with the sum is associated a Liouvillian.

The total electronic spin Liouvillian bbLS is the sum of the electronic

Zeeman bbLZ , static ZFS bbLZFS;S, and transient ZFS bbLZFS;T Liouvillians:
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bbL S ¼ bbLZ þ bbLZFS;S þ bbLZFS;T: ð9:15Þ
As discussed in Chapter 8 the static part of the ZFS is the time aver-
age of the ZFS interaction during the rapid distortions of the coordi-
nation geometry due to vibrations and collisions, and the transient
ZFS is the deviation from the average.

The total lattice Liouvillian is obtained by adding the elec-
tronic spin Liouvillian to other Liouvillians that describe the
stochastic motion within the relevant degrees of freedom, which
for example include stochastic rotational diffusion, stochastic
distortions, stochastic translational motion, chemical exchange,
and vibrations. The total lattice Liouvillian is therefore written
asbbL L ¼ bbL S þ bbLR þ bbLD þ bbLT þ bbLM þ bbLV : ð9:16Þ

The stochastic rotational diffusion Liouvillian is bbLR ¼ �i bbCR, wherebbCR is the stationary Markov operator that describes the conditional
probability distributions of orientations via the differential equation

d
dt

PðXjX0Þ ¼ � bbCRPðXjX0Þ; ð9:17Þ

where PðXjX0Þ is the probability that at time t the orientation is
given by the Euler angles X if the orientation was X0 at t ¼ 0. The

Liouvillian bbLD describing the stochastic distortions of the lattice
geometry due to collisions can similarly be written in terms of

the stationary Markov operator bbCD as bbLD ¼ �i bbCD. The stochastic

translational motion is described by bbLT , and chemical exchange is

represented by bbLM . The quantum vibrational motion of the lattice

is represented by the Liouvillian bbLV .

9.2.2. The density operator
The quantum states of the system jNi are written as the direct

product of the nuclear spin states jIMIi with the lattice states jLi:
jNi ¼ jIMIi � jLi: ð9:18Þ

In addition the entire system is described by a density operator bXðtÞ,
which is the direct product of the density operators that represent

the nuclear spin system q̂ðtÞ and the lattice bPðtÞ:bXðtÞ ¼ q̂ðtÞ � bPðtÞ: ð9:19Þ
The lattice is a much larger entity than the spin system, and so
we can assume that it remains in thermal equilibrium at a tem-
perature TL that is unchanged by exchanges of energy with the
spin system. The lattice density operator is therefore time-
independent and equal to the equilibrium lattice density opera-

tor bP0,

bP0 ¼
exp �bL

bHL

� 	
TrL exp �bL

bHL

� 	h i ; ð9:20Þ

where TrL is the trace taken over all the lattice states jLi, and
bL ¼ 1=ðkTLÞ. From the definition in Eq. (9.20), it is easy to see that

the trace of bP0 over the lattice states is unity:

TrL bP0

� 	
¼ 1: ð9:21Þ

Combining this property with Eq. (9.19) we see that

TrL bXðtÞ� 	
¼ q̂ðtÞTrL bP0

� 	
ð9:22Þ

¼ q̂ðtÞ; ð9:23Þ

i.e. that the nuclear spin density operator is equal to the total den-
sity operator after taking the trace over the lattice states. This prop-
erty is important in the derivation of the nuclear spin relaxation
superoperator in the following section.

9.3. Derivation of the stochastic Liouville equation

In this section we derive the equation of motion for nuclear
relaxation, the form of the relaxation superoperator, and the longi-
tudinal and transverse relaxation rate constants using the stochas-
tic Liouville formalism.

9.3.1. The relaxation superoperator
The starting point is the Redfield master equation for the

evolution of the density operator of the combined nuclear spin
system and lattice, which takes a similar form to the corre-
sponding expression in the semi-classical Redfield theory in
Eq. (8.5):

dbXTðtÞ
dt

¼ � 1

�h2

Z 1

0

bHT
ILðtÞ; bHT

ILðt � sÞ; bXTðtÞ
h ih i

ds: ð9:24Þ

As for the semi-classical theory described in the previous chapter,
the application of Eq. (9.24) is subject to two key approximations
concerning the strength of the coupling between the spin system
and the lattice, and the correlation time. Firstly the strength of
the coupling must be sufficiently small compared to the inverse
of the correlation time that it satisfies the motional-narrowing con-
dition in Eq. (8.6), which is adapted here:

jxILjsc � 1: ð9:25Þ

Secondly, in order to truncate the perturbation expansion to second
order and extend the upper time limit in the integral to infinity, we
assume that the spin system is only observed at times satisfying the
inequalities in Eq. (8.7):

sc � t � 1
xIL

���� ����: ð9:26Þ

Eqs. (8.5) and (9.24) are therefore subject to the same set of
approximations in Redfield theory. However there are two key
differences between them. Firstly Eq. (9.24) is not averaged over
an ensemble of systems. We will see that this average is replaced
by the sum over all lattice states in the full quantum-mechanical
treatment of the lattice. Secondly the double commutator in Eq.

(9.24) contains the density operator bXTðtÞ rather than the differ-

ence between bXTðtÞ and the equilibrium density operator bX0.
The inclusion of the equilibrium density operator in the semi-
classical master Eq. (8.5) was phenomenological, and was
required because otherwise the semi-classical theory would pre-
dict that q̂ðtÞ ! 0 rather than q̂0 as t ! 1, i.e. it predicts a steady
state corresponding to an infinite temperature. This anomaly
arises because of the failure to treat the lattice ‘properly’ as a
quantum object. However, as the lattice is modelled as a quantum
object here, this phenomenological correction is not needed. The
superscript ‘T’ of the spin–lattice coupling Hamiltonian and den-
sity operator indicates that these operators are in the interaction
representation of the spin and lattice Hamiltonians, which is
defined as

bHT
ILðtÞ ¼ exp i bHI þ bHL

� 	
t=�h

h ibHIL exp �i bHI þ bHL

� 	
t=�h

h i
; ð9:27Þ

bXTðtÞ ¼ exp i bHI þ bHL

� 	
t=�h

h ibXðtÞ exp �i bHI þ bHL

� 	
t=�h

h i
; ð9:28Þ
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using the conventional notation of operator transformations. In
terms of the corresponding Liouvillians the transformations have
the form

bHT
ILðtÞ ¼ exp i bbL I þ bbL L

� �
t=�h

� bHIL; ð9:29Þ

bXTðtÞ ¼ exp i bbL I þ bbL L

� �
t=�h

� bXðtÞ: ð9:30Þ

We are interested in the relaxation behaviour of the nuclear
spin system, rather than the combined spin system and lattice,
and so we require an equation of motion of the nuclear-spin-
system density operator q̂ðtÞ. This is derived from Eq. (9.24) by tak-
ing the trace over all lattice states, and using Eq. (9.23) to obtain:

dq̂TðtÞ
dt

¼ d
dt

TrL bXTðtÞ
� 	

ð9:31Þ

¼ � 1
�h2

Z 1

0
TrL bHT

ILðtÞ; bHT
ILðt � sÞ; q̂TðtÞbP0

h ih in o
ds; ð9:32Þ

where for reasons of compactness, we have omitted the direct pro-

duct symbol in the product q̂TðtÞbP0 both here and in the subsequent
equations. Eq. (9.32) is valid for any coupling interaction between
the nuclear spin system and lattice. However we are interested in
the particular case of a hyperfine interaction as described by the
Hamiltonian in Eq. (9.9). When transformed into the interaction
representation this Hamiltonian has the form

ĤT
ILðtÞ ¼

Xþ1

m¼�1

ð�1Þm ÎT1�mðtÞL̂T1mðtÞ ð9:33Þ

¼
Xþ1

m¼�1

ð�1Þm exp i bbL It=�h
� �bI1�m

� 
exp i bbL Lt=�h

� �bL1m� 
; ð9:34Þ

where bIT1�mðtÞ and bLT1mðtÞ are the forms of the nuclear-spin and lat-
tice operators in the spin and lattice interaction representations,

which are defined respectively by the Liouvillians bbL I and
bbLL. The

form of the lattice operators in the lattice interaction representation
depends on which terms we include in the lattice Liouvillian, which
we do not specify at this stage. By contrast the nuclear-spin Liouvil-
lian simply contains the nuclear Zeeman interaction, and so the

spin-operators bIT1�mðtÞ and their adjoints have a very simple form:bIT1�mðtÞ ¼ bI1�m expðix�mtÞ; ð9:35ÞbIT1�mðtÞy¼ bIy1�m expð�ix�mtÞ: ð9:36Þ

The rank-one operators bI1m and their characteristic frequencies xm

are specified in Table 9.1.
Onsubstituting thehyperfineHamiltonian intoEq. (9.32)weobtain

dq̂TðtÞ
dt

¼ � 1

�h2

X
m;m0

ð�1Þmþm0
exp i x�m0 �x�mð Þt½ �



Z 1

0
TrL bI1�m0bLT1m0 ðtÞ; bIy1�m

bLT1mðt � sÞy; q̂TðtÞbP0

h ih in o
exp ix�msð Þds:

ð9:37Þ
The double commutator is simplified by using the identitybAbB; bC bDh i

¼ bAbC bB; bDh i
þ bA bB; bCh ibD þ bC bA; bDh ibB þ bA; bCh ibDbB:

ð9:38Þ

Noting that all nuclear-spin operators commute with all lattice
operators, and that the trace of a commutator is zero, we obtain,
after some effort, the following expression for the trace of the dou-
ble commutator:

TrL bI1�m0bLT1m0 ðtÞ; bIy1�m
bLT1mðt � sÞy; q̂TðtÞbP0

h ih in o
¼ bI1�m0 ;bIy1�m q̂

TðtÞ
h i

TrL bLT1mðt � sÞy; bP0

h ibLT1m0 ðtÞ
n o

þ bI1�m0 ; bIy1�m; q̂
TðtÞ

h ih i
TrL bP0

bLT1mðt � sÞybLT1m0 ðtÞ
n o

: ð9:39Þ

The equation of motion of the nuclear-spin density operator is now

dq̂TðtÞ
dt

¼ � 1

�h2

X
m;m0

ð�1Þmþm0
exp i x�m0 �x�mð Þt½ �



Z 1

0

bI1�m0 ; bIy1�m; q̂
TðtÞ

h ih i
TrL bP0

bLT1mðt � sÞybLT1m0 ðtÞ
n oh

� bI1�m0 ;bIy1�m q̂
TðtÞ

h i
TrL bP0; bLT1mðt � sÞy

h ibLT1m0 ðtÞ
n oi


 exp ix�msð Þds: ð9:40Þ
Although at first sight this equation has a rather complicated form,
the second term in the integrand can be simplified (see Appendix F)
to give [254]

bI1�m0 ;bIy1�m q̂
TðtÞ

h i
TrL bP0; bLT1mðt � sÞy

h ibLT1m0 ðtÞ
n o

¼ bI1�m0 ; bIy1�m; q̂0

h ih i
TrL bP0

bLT1mðt � sÞybLT1m0 ðtÞ
n o

; ð9:41Þ

from which the equation of motion can now be written as

dq̂TðtÞ
dt

¼ � 1

�h2

X
m;m0

ð�1Þmþm0


 exp i x�m0 �x�mð Þt½ � bI1�m0 ; bIy1�m; q̂
TðtÞ � q̂0

h ih i


Z 1

0
TrL bP0

bLT1mðt � sÞybLT1m0 ðtÞ
n o

exp ix�msð Þds: ð9:42Þ

The equilibrium nuclear-spin density operator is present in the dou-
ble commutator as a direct consequence of the fact that we are now
treating the lattice as a quantum-mechanical object. It is no longer a
phenomenological correction, as it is in the semi-classical theory.

In the equation of motion 9.42 we see that the individual terms
have been factored into a part that depends only on the nuclear
spin, and a factor that depends only on the composite lattice. We
associate the latter with the correlation function and spectral den-
sity. Hence we define the correlation function Gmm0 ðsÞ as

Gmm0 ðsÞ ¼ TrL bP0
bLT1mðt � sÞybLT1m0 ðtÞ

h i
¼ TrL bP0 exp ibHLðt � sÞ

� 	bLy1m exp �ibHLðt � sÞ
� 	h


 exp ibHLt
� 	bL1m0 exp �ibHLt

� 	i
¼ TrL bLy1m exp �ibHLðt � sÞ

� 	
exp ibHLt

� 	bL1m0 exp �ibHLt
� 	h


 exp ibHLðt � sÞ
� 	bP0

i
¼ TrL bLy1m exp ibHLs

� 	bL1m0 exp �ibHLs
� 	bP0

h i
¼ TrL bLy1m exp i bbL Ls

� �bL1m0

� �bP0

� 
; ð9:43Þ

where to go to the third line, we have noted that bP0 commutes withbHL by definition, and that the trace of a product of operators is
invariant to a cyclic permutation of those operators. We see that
in this definition of the correlation function, the ensemble average
in the semi-classical theory has been replaced by the trace over
the lattice functions. We now define the spectral density at fre-

Table 9.1
The rank-one nuclear-spin operators bI1m , and frequencies xm used for the calculation
of the PRE in the stochastic Liouville formalism.

m bI1m xm

0 bIz 0

	1 �
ffiffi
1
2

q bI	 	xI
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quency x;Kmm0 ðxÞ, as the Fourier–Laplace transform of the correla-
tion function:

Kmm0 ðxÞ ¼
Z 1

0
Gmm0 ðsÞ expð�ixsÞds: ð9:44Þ

Substituting these expressions into Eq. (9.42) we obtain

dq̂TðtÞ
dt

¼ � 1
�h2

X
m;m0

ð�1Þmþm0
exp i x�m0 �x�mð Þt½ �


 bI1�m0 ; bIy1�m; q̂
TðtÞ � q̂0

h ih i
Re Kmm0 ð�x�mÞð Þ: ð9:45Þ

Note that the imaginary part of the spectral density has a negligible
effect on the relaxation behaviour of the nuclear spins, and so we
retain only the real part [96]. In the semi-classical Redfield theory
we implemented the same assumption by extending the lower limit
of the Fourier transform from 0 to �1.

The final part of the derivation concerns the oscillating phase
factor exp i x�m0 �x�mð Þt½ � that is present in each of the terms
of the double sum. The frequency difference x�m0 �x�m takes
values that are equal to 0, 	xI , or 	2xI depending on the indices
m and m0. As noted in the derivation of the semi-classical Redfield
equation of motion, the terms associated with a non-zero fre-
quency difference oscillate too rapidly (on the order of the
nuclear Larmor frequency) to contribute to the relaxation process,
which occurs on a much longer timescale. Therefore the only
terms that contribute significantly to the relaxation behaviour
of the nuclear spins are the secular terms with m0 ¼ m. Following
the retention of only the secular terms the equation of motion
simplifies to

dq̂TðtÞ
dt

¼ � 1

�h2

X
m

bI1�m; bIy1�m; q̂
TðtÞ � q̂0

h ih i
Re Kmmð�x�mÞð Þ:

ð9:46Þ
We can now write this equation in terms of the relaxation superop-

erator ^̂C as

dq̂TðtÞ
dt

¼ � ^̂C q̂TðtÞ � q̂0
� �

; ð9:47Þ
^̂CÔ ¼ 1

�h2

X
m

Î1�m; Îy1�m; Ô
h ih i

Re Kmmð�x�mÞð Þ: ð9:48Þ

As we have seen in Chapter 8 it is the relaxation superoperator that
is the key to calculating and understanding the relaxation proper-
ties of the spin system.

9.3.2. The longitudinal and transverse relaxation times
The longitudinal and transverse nuclear relaxation times due to

the PRE can be calculated from the relaxation superoperator using
expressions that are analogous to those in Eqs. (8.83) and (8.86).
The expression for T1 is

1
T1

¼
bIzj ^̂CjbIz� 	
bIzjbIz� 	 ð9:49Þ

¼
TrI bIz ^̂CbIz� 	
TrI bI2z� 	 : ð9:50Þ

This bears a clear resemblance to Eq. (8.83), with the important dif-
ference that the trace is now taken only over the nuclear spin states,
rather than over the nuclear and the electronic spin states. We
recall that the latter are now accounted for in the trace over the lat-
tice states in the expression for the time-correlation function. The
corresponding expression for T2 is

1
T2

¼
Îþj ^̂CĵIþ
� 	

ÎþĵIþ
� 	 ð9:51Þ

¼
TrI bI� ^̂CbIþ� 	
TrI bI�bIþ� 	 : ð9:52Þ

Applying the relaxation superoperator in Eq. (9.48) we obtain the
following expressions for T1 and T2 in terms of the spectral
densities:

1
T1

¼ 1

�h2 Re K�1�1ð�xIÞ þ K11ðxIÞð Þ; ð9:53Þ
1
T2

¼ 1

�h2 Re K00ð0Þ þ K�1�1ð�xIÞð Þ: ð9:54Þ

It is shown in Appendix F that, to a very good approximation, we
can write

Re K�1�1ð�xIÞð Þ ¼ Re K11ðxIÞð Þ; ð9:55Þ
from which we obtain the following simplified expressions for the
relaxation time constants:

1
T1

¼ 2

�h2 Re K11ðxIÞð Þ; ð9:56Þ
1
T2

¼ 1

�h2 Re K00ð0Þ þ K11ðxIÞð Þ: ð9:57Þ

The expressions in Eqs. (9.56) and (9.57) are completely general,
and also somewhat deceptively simple. However we must remem-
ber that there is considerable complexity hidden in the form of the
time-correlation function and spectral density, in Eqs. (9.43) and
(9.44) respectively. We can gain some insight into the PRE expres-
sions by writing the lattice operators as sums of terms of different
ranks l, as in Eq. (9.12). From Eq. (9.43), the time-correlation func-
tions then have the form

GmmðsÞ ¼
X
l;l0

Gðll0 Þ
mmðsÞ; ð9:58Þ

where the Gðll0 Þ
mmðsÞ are equal to

Gðll0Þ
mmðsÞ ¼ TrL bLðlÞ1m� 	y

exp i bbL Ls
� �bLðl0Þ1m

� �bP0

� 
: ð9:59Þ

The Fourier–Laplace transform is linear, and so the spectral density
can also be written as a sum of terms that depend on the double
index ll0:

KmmðxÞ ¼
X
l;l0

Kðll0 Þ
mmðxÞ; ð9:60Þ

Kðll0 Þ
mmðxÞ ¼

Z 1

0
Gðll0 Þ

mmðsÞ expð�ixsÞds; ð9:61Þ

where we have used Eq. (9.44). It can be shown (cf. Appendix F) that

the spectral densities Kðll0 Þ
mmðxÞ satisfy the following relation

Re Kðl0 lÞ
�m�mð�xmÞ

� 	
� Re Kðll0Þ

mmð�x�mÞ
� 	

: ð9:62Þ

The expressions for T1 and T2 can now be written as a sum of terms,
as follows:

1
T1

¼ 2

�h2

X
l;l0

Re Kðll0 Þ
11 ðxIÞ

� 	
; ð9:63Þ

1
T2

¼ 1

�h2

X
l;l0

Re Kðll0 Þ
00 ð0Þ þ Kðll0 Þ

11 ðxIÞ
� 	

: ð9:64Þ

In both expressions the ‘self’ terms with l ¼ l0 ¼ 0 are those in which
both lattice operators that appear in the expression for the spectral
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density depend on the rank-zero component of the hyperfine ten-
sor, and therefore depend only on the contact interaction terms.
They therefore correspond to the part of the PRE that is a generali-
sation of the Bloembergen mechanism discussed Chapter 8. The self
terms with l ¼ l0 ¼ 2 depend only on the spin-dipolar terms, and
therefore represent a generalisation of the part of the PRE that is
due to the Solomon mechanism. Both of these contributions are
present in their NR forms in the Solomon–Bloembergen–Morgan
theory. There are additional contributions, not seen in the
Solomon–Bloembergen–Morgan formalism, that arise from terms
with l ¼ 0 and l0 ¼ 2, and l ¼ 2 and l0 ¼ 0, which represent cross-
correlations between the contact and spin-dipolar interactions
[94]. There are also self- and cross-correlation terms involving the
antisymmetric hyperfine terms, but these are usually neglected.

9.3.3. Summary of the formalism
We have outlined the stochastic Liouville formalism of nuclear

relaxation in a paramagnetic system. Unlike the previous treat-
ment in Chapter 8, the present formalism has the advantage that
it can be applied under conditions of arbitrary external magnetic
field, slow motional dynamics, incorporating relevant SO coupling
effects describing the electronic spin, and treating electronic relax-
ation explicitly rather than phenomenologically. However, unlike
the Solomon–Bloembergen–Morgan and Curie formalisms, the
stochastic Liouville treatment has a disadvantage in that it is some-
thing of a ‘black box’ and does not permit easy interpretation of the
forms of the relaxation time constants without detailed calcula-
tions. The expressions for T1 and T2 in Eqs. (9.56) and (9.57) are
deceptive in their apparent simplicity, with the spectral density
hiding a considerable amount of complexity.

Following a discussion of electronic relaxation in the Redfield
limit in Section 9.4, we devote the remainder of this chapter to
reestablishing some of the insight lost in the increased complexity
of the relaxation model by examining some very specific applica-
tions of the theory. Firstly we revisit the Solomon–Bloembergen–
Morgan theory and establish the connection between it and the
present formalism in Section 9.5. Then we examine the PRE prop-
erties of low-symmetry complexes with S P 1 in solution at low
field in Section 9.6 [139,140], complexes with S P 1 in solution
under fast-rotational dynamics [307] in Section 9.7, and the effects
of vibrations on the PRE in solution [120] in Section 9.8. This final
section includes a perspective for calculating the PRE in solids
[308,309].

9.4. Electronic relaxation in the Redfield limit

We have seen that in many cases electronic relaxation cannot
be described by the Redfield theory, especially when the coupling
of the electronic spin to the rest of the lattice is large, and the time-
scale of modulation is sufficiently long. This is why, when describ-
ing nuclear relaxation, we include the electronic spin in the
composite lattice, so that the effects of electronic relaxation can
still be accounted for whilst treating the coupling of the nuclear
spin to the composite lattice in the Redfield limit. However there
are cases when the electronic relaxation processes are within the
Redfield limit, and under such circumstances we may want to
describe this relaxation explicitly. This is also done with the
stochastic Liouville formalism, as we now outline.

9.4.1. The spin system, lattice, and spin–lattice coupling

As for nuclear relaxation we can write the Hamiltonian bH as a

sum of terms due to the spin system bHS, the lattice bHF , and the cou-

pling between them bHSF:bH ¼ bHS þ bHF þ bHSF : ð9:65Þ

The way in which we partition the various interactions between the
spin system, lattice, and spin–lattice coupling is a rather delicate
matter, and depends on the dynamics of the system we are study-
ing. For example under conditions of fast rotational diffusion, the
rotational motion modulates the spatially anisotropic interactions,
such as the static ZFS and anisotropic Zeeman interactions. The

electronic spin system Liouvillian bbL fast
S then contains the unmodu-

lated isotropic Zeeman interaction bbLZ;iso:bbL fast
S ¼ bbLZ;iso: ð9:66Þ

The spin-lattice coupling Liouvillian bbL fast
SF then contains the

rotationally-modulated static ZFS bbLZFS;S and anisotropic ZeemanbbLZ;aniso interactions, as well as the transient ZFS bbLZFS;T, which is
modulated by distortions of the metal-ion coordination site:bbL fast

SF ¼ bbLZ;aniso þ bbLZFS;S þ bbLZFS;T: ð9:67Þ

The lattice Liouvillian bbL fast
F contains the terms that lead to modula-

tion of the spin-lattice coupling interactions due to rotational diffu-

sion bbLR, distortions due to solvent collisions bbLD, and vibrational

motions bbLð0Þ
V � i bbCV :bbL fast

F ¼ bbLR þ bbLD þ bbLð0Þ
V � i bbCV : ð9:68Þ

The rotational diffusion term is responsible for motional modula-
tion of the static ZFS and g-anisotropy, whilst the collisions and
vibrations modulate the transient ZFS.

In the other limit of slow rotational diffusion, the rotational
motion is unable to completely average out the static ZFS and ani-
sotropic Zeeman interactions. These interactions are effectively
stationary, and are therefore removed from the spin–lattice cou-
pling Liouvillian and included in the electronic spin LiouvillianbbL slow

S , which is given bybbL slow
S ¼ bbLZ þ bbLZFS;S; ð9:69Þ

where bbLZ is the sum of the isotropic and anisotropic Zeeman inter-
actions. The modulation of the transient ZFS by collisions and vibra-
tions still occurs on a sufficiently fast timescale, and so the spin–

lattice coupling Liouvillian bbL slow
SF still contains this interaction:bbL slow

SF ¼ bbLZFS;T: ð9:70Þ

Finally the lattice Liouvillian bbL slow
F is given by the fast-motional

expression, but with the rotational diffusion term removed:bbL slow
F ¼ bbLD þ bbLð0Þ

V � i bbCV : ð9:71Þ
We now discuss the form of the spin–lattice coupling Hamilto-

nian, which for S P 1 always contains the transient ZFS, and may
also contain the anisotropic Zeeman, and static ZFS interactions.
However we can usually neglect the Zeeman term and consider
only the ZFS terms, which dominate the electronic relaxation prop-
erties. The Hamiltonians of both the static and transient ZFS contri-
butions have the same operator form, namely

bHSF ¼
Xþ2

m¼�2

ð�1ÞmbF 2m
bS2�m; ð9:72Þ

where bF2m are the lattice operators that describe the size and spatial
properties of the interaction. If we consider only classical (non-
quantized) degrees of freedom of the lattice, such as rotational dif-
fusion of the static ZFS or distortional motion of the transient ZFS in

the pseudo-rotation model, the lattice operators bF 2m can be
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replaced by functions describing the spatial variation. As before we
transform this Hamiltonian into the interaction representation of

the spin system and the lattice to give the new operator bHT
SFðtÞ:

bHT
SFðtÞ ¼ exp i bbL St

� �
exp i bbL F t

� �bHSF ð9:73Þ

¼
Xþ2

m¼�2

ð�1ÞmbF T
2mðtÞbST

2�mðtÞ: ð9:74Þ

The interaction-representation spin and lattice operators bST
2mðtÞ andbFT

2mðtÞ are given by

bST
2mðtÞ ¼ exp i bbL St

� �bS2m; ð9:75Þ

bF T
2mðtÞ ¼ exp i bbL Ft

� �bF 2m: ð9:76Þ

As we have seen before it is usual to write the spin operator bS2m as

the sum of terms bSðnÞ
2m, each of which evolves at a characteristic fre-

quency xðnÞ
m under the action of the electronic spin Liouvillian:

exp i bbL St
� �bS2m ¼

X
n

bSðnÞ
2m exp ixðnÞ

m t
� �

: ð9:77Þ

The exact form of this partitioning, and indeed whether it needs to

be done at all, depends on the form of bbL S, and whether or not, in the
slow-motion limit, it includes the static ZFS.

9.4.2. The electronic spin relaxation superoperator
In the Redfield limit we can describe the relaxation of the elec-

tronic density operator q̂SðtÞ with the following equation of
motion:

dq̂T
SðtÞ
dt

¼ � 1

�h2

X
m;m0

X
n;n0

ð�1Þmþm0
exp i xðn0 Þ

�m0 �xðnÞ
�m

� 	
t

h i

 bSðn0 Þ

2�m0 ; ŜðnÞ2�m

� 	y
; q̂T

SðtÞ � q̂S;0

� � 
Jmm0 �xðnÞ

�m

� �
: ð9:78Þ

where q̂T
SðtÞ is the electronic density operator in the interaction rep-

resentation and q̂S;0 is the equilibrium electronic density operator.
As for nuclear relaxation the electronic relaxation behaviour is
defined by a time-correlation function, which we denote

hbF2mð0ÞbF2m0 ð�sÞi, and which is given by

hbF2mð0ÞybF 2m0 ð�sÞi ¼ TrF bF y
2m exp i bbL Fs

� �bF2m0

� �bP0

� 
: ð9:79Þ

The trace is taken over the lattice states, and bP0 is the equilibrium
lattice density operator. The spectral density functions Jmm0 ðxÞ in
Eq. (9.78) are then defined as the real part of the Fourier–Laplace
transform of the time-correlation functions:

Jmm0 ðxÞ ¼ Re
Z 1

0
hbF2mð0ÞybF 2m0 ð�sÞi expð�ixsÞds

� 
: ð9:80Þ

Ifwe remove the oscillating non-secular termswithm –m0 and n– n0

from the equation of motion, we obtain the following expression

dq̂T
SðtÞ
dt

¼ � bbC e q̂T
SðtÞ � q̂S;0

� �
; ð9:81Þ

where bbC e is the electronic relaxation superoperator, which is given
by

bbC eÔ ¼ 1
�h2

X
m

X
n

bSðnÞ
2�m; ŜðnÞ2�m

� 	y
; Ô

� � 
Jmm �xðnÞ

�m

� �
: ð9:82Þ

However we note that the secular approximation must be applied
with care. As we will see, non-secular terms can sometimes make

an important contribution to the relaxation properties of the elec-
tronic spin.

9.5. The Solomon–Bloembergen–Morgan theory revisited

In this section we briefly revisit the Solomon–Bloembergen–M
organ theory originally examined in Section 8.6 using the semi-
classical Redfield theory. We will once again obtain the
Solomon–Bloembergen–Morgan equations, showing that the the-
ory of relaxation derived using the stochastic Liouville formalism
is exactly equivalent to the semi-classical theory when subject to
the same set of restrictions, namely high-field conditions, and a
classical description of chemical exchange and rotational diffusion.

9.5.1. The lattice
The lattice comprises the quantised electronic states, the classi-

cal rotational degrees of freedom, and the degrees of freedom asso-
ciated with chemical exchange. The corresponding Liouvillian
must account for all these parts of the lattice, and is therefore writ-
ten as follows:bbL L ¼ bbLZ þ bbL e þ bbLR þ bbLM: ð9:83Þ

The Liouvillian superoperators bbLR and bbLM account for the stochas-
tic rotational diffusion and exchange processes. The former super-
operator changes the spatial orientation of the system by acting
on the classical Wigner rotation matrix elements as follows:

DðlÞ
mm0 XPLðtÞð Þ ¼ exp �i bbLRt

� �
DðlÞ

mm0 XPLð0Þð Þ; ð9:84Þ

i.e. the orientation of the PAF is changed from XPLð0Þ at time t ¼ 0,
to XPLðtÞ at time t.

Chemical exchange has the effect of shuttling the nuclear spin
between different sites in which the hyperfine interaction tensor
components are different. This can be described by the action ofbbLM on the PAF components of the hyperfine tensor eAllðtÞ as follows:

eAllðtÞ ¼ exp �i bbLMt
� �eAllð0Þ: ð9:85Þ

Once again we have assumed that the chemical exchange and rota-
tional diffusion processes occur on sufficiently different timescales
to be independent of each other.

As we have seen previously with the Solomon–Bloembergen–
Morgan theory the only coherent electronic interaction that we
consider is the electronic Zeeman interaction, with LiouvillianbbLZ . The electronic Zeeman Liouvillian transforms the electronic

spin operators bS1q as follows:

exp �i bbLZt
� �bS1q ¼ bS1q exp �iqxStð Þ; ð9:86Þ

i.e. the operator evolves at frequency �qxS. We also need a mecha-
nism for electronic relaxation, which is accounted for here bybbLe ¼ �i bbC e, where bbC e is the electronic relaxation superoperator. We
recall that in the Solomon–Bloembergen–Morgan theory the relax-
ation processes are not accounted for explicitly, but are modelled
phenomenologically by the effective electronic longitudinal and
transverse relaxation times T1e and T2e. The transformations are:

exp �i bbL et
� �bS10 ¼ bS10 exp �t=T1eð Þ; ð9:87Þ

exp �i bbL et
� �bS1	1 ¼ bS1	1 exp �t=T2eð Þ; ð9:88Þ

where bbL e ¼ �i bbC e is the Liouvillian that describes electronic relax-

ation via the Markov superoperator bbC e.
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9.5.2. The spectral densities
The nuclear relaxation times are calculated from Eqs. (9.63) and

(9.64). The Solomon–Bloembergen–Morgan theory ignores the
effects of cross-correlation between the hyperfine coupling inter-
actions of different spatial ranks, and only considers the NR
Fermi-contact and spin-dipolar contributions. Hence the relaxation
times have the following simplified expressions

1
T1

¼ 2

�h2 Re KFC
11ðxIÞ þ KSD

11ðxIÞ
� 	

; ð9:89Þ
1
T2

¼ 1
�h2 Re KFC

00ð0Þ þ KFC
11ðxIÞ þ KSD

00 ð0Þ þ KSD
11ðxIÞ

� 	
; ð9:90Þ

where we have replaced the superscripts ð00Þ and ð22Þwith ‘FC’ and
‘SD’ respectively. Hence the spectral densities KFC

mmðxÞ contribute to

the Bloembergen mechanism, and the spectral densities KSD
mmðxÞ

contribute to the Solomon mechanism.
To proceedwewrite down the form of the time-correlation func-

tionGðllÞ
mmðsÞ by combining Eq. (9.13) for the lattice operator of spatial

rank l with Eq. (9.59), and write the components of the hyperfine
tensor in the PAF of the spin-dipolar interaction tensor. The result is

GðllÞ
mmðsÞ ¼ ð2lþ 1Þ

Xþ1

q;q0¼�1

l 1 1
m� q q �m

� �
l 1 1

m� q0 q0 �m

� �



Xþl

l;l0¼�l

TrL eAllð0ÞDðlÞ
l;m�q XPLð0Þð ÞbSy

1q

h

 exp i bbL Ls

� �eAll0 ð0ÞDðlÞ
l0 ;m�q0 XPLð0Þð ÞbS1q0

� �bP0


: ð9:91Þ

We factorize the trace into three parts, comprising the product of
the PAF hyperfine tensor components, an orientational part com-
prising the Wigner rotation matrix elements, and a trace over the
electronic spin states:

GðllÞ
mmðsÞ¼ ð2lþ1Þ

Xþ1

q;q0¼�1

l 1 1

m�q q �m

 !
l 1 1

m�q0 q0 �m

 !



Xþl

l;l0¼�l

eAllð0Þ exp i bbLMs
� �eAll0 ð0Þ

� �� ��
DðlÞ
l;m�q XPLð0Þð Þ


 exp i bbLRs
� �

DðlÞ
l0 ;m�q0 XPLð0Þð Þ

� ��

TrS bSy

1q exp i bbLZ þ bbL e

� �
s

� �bS1q0

� �bP0;S

� 
ð9:92Þ

¼ ð2lþ1Þ
Xþ1

q;q0¼�1

l 1 1

m�q q �m

 !
l 1 1

m�q0 q0 �m

 !



Xþl

l;l0¼�l

�eAllð0ÞeAll0 ð�sÞ
��

DðlÞ
l;m�q

�
XPLð0Þ

�
DðlÞ
l0 ;m�q0

�
XPLð�sÞ

��


TrS bSy
1q exp i bbLZ þ bbL e

� �
s

� �bS1q0

� �bP0;S

� 
; ð9:93Þ

where bP0;S is the equilibrium density operator of the electronic spin.
Eq. (9.93) now contains three independent correlation functions.
The rotational correlation function, which correlates the Wigner
rotation matrix elements, can be written as an integral over all Euler
angles XPL as follows:*
DðlÞ
l;m�q XPLð0Þð ÞDðlÞ

l0 ;m�q0 XPLð�sÞð Þ
+

¼ 1
8p2

Z
X
DðlÞ
l;m�q XPLð ÞDðlÞ

l0 ;m�q0 XPLð ÞdXPL

� 
gR
l ðsÞ ð9:94Þ

¼ 1
2lþ 1

dll0dqq0gR
l ðsÞ; ð9:95Þ

where gR
l ðsÞ is the reduced rotational correlation function used in

the Solomon–Bloembergen theory, as defined in Chapter 8, and
we have assumed isotropic tumbling. The chemical exchange corre-
lation function can be simplified by setting l ¼ l0:*eAllð0ÞeAllð�sÞ

+
¼ jeAllj2gMðsÞ; ð9:96Þ

where gMðsÞ is the chemical exchange reduced correlation function.
We note that we have encountered both of these results before, in
Chapter 8. The remaining correlation function is the electronic cor-
relation function, which has the form of the trace of a product of
electronic spin operators over the spin states. In the high-
temperature limit the equilibrium density operator can be approx-

imated by bP0;S ¼ 1̂S=ð2Sþ 1Þ, with only a small deviation of order bL.
This allows us to simplify the electronic correlation function as
follows

TrS bSy
1q exp i bbLZ þ bbL e

� �
s

� �bS1q

� �bP0;S

� 
¼ 1

2Sþ 1
TrS bSy

1q
bS1q

h i
exp iqxSsð ÞgS

qðsÞ; ð9:97Þ

where we have set q ¼ q0 as required by the form of the rotational
correlation function, and gS

qðsÞ is the reduced electronic correlation
function we defined in Chapter 8. The trace can be simplified to give

1
2Sþ 1

TrS bSy
1q
bS1q

h i
¼ 1

2Sþ 1
ð�1ÞqTrS bS1�q

bS1q

h i
ð9:98Þ

¼ 1
2Sþ 1

ð�1Þ2q 2Sþ 1
3

hSkbS1kSi2 ð9:99Þ

¼ 1
3
SðSþ 1Þ: ð9:100Þ

Combining Eqs. (9.93)–(9.100) we obtain the final expression for
the time-correlation function:

GðllÞ
mmðsÞ ¼

1
3
SðSþ 1Þ

X
l
jeAllj2

" #X
q

l 1 1
m� q q �m

� �2


 exp iqxSsð ÞglqðsÞ;
ð9:101Þ

where glqðsÞ is the total correlation function. Taking the Fourier–
Laplace transform of the correlation function finally gives us the
spectral density

KðllÞ
mmðxÞ ¼ 1

6
SðSþ 1Þ

X
l
jeAllj2

" #X
q

l 1 1
m� q q �m

� �2

jl;jqjþ1ðx� qxSÞ;

ð9:102Þ
where jlqðxÞ is the total reduced spectral density in the Solomon–
Bloembergen–Morgan theory.

9.5.3. The Solomon–Morgan–Bloembergen equations
9.5.3.1. The Solomon mechanism. Focussing on the spin-dipolar part
of the hyperfine interaction we remember that

Xþ2

l¼�2

jeA2lj2 ¼ 1
2

3þ gSD� �2� 	 eASD
zz

� 	2
; ð9:103Þ

and obtain the following expression for the spectral density:

KSD
mmðxÞ ¼ 1

12
SðSþ 1Þ 3þ gSD� �2� 	 eASD

zz

� 	2


Xþ1

q¼�1

2 1 1
m� q q �m

� �2

j2;jqjþ1ðx� qxSÞ:
ð9:104Þ

The important spectral densities for calculating the relaxation times
are KSD

11ðxIÞ and KSD
00 ð0Þ, which are calculated to be:
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KSD
11ðxIÞ ¼ 1

2
SðSþ 1Þ 3þ gSD� �2� 	 eASD

zz

� 	2

 1

60
j21ðxIÞ þ 1

30
j22ðxS þxIÞ þ 1

180
j22ðxS �xIÞ

� 
;

KSD
00 ð0Þ ¼ SðSþ 1Þ 3þ gSD� �2� 	 eASD

zz

� 	2 1
90

j21ð0Þ þ
1
60

j22ðxSÞ
� 

:

When the unpaired electronic spin behaves as a point dipole

moment, eASD
zz ¼ 2bSI , gSD ¼ 0, and the spectral densities become:

KSD
11ðxIÞ ¼ 1

2
SðSþ1Þb2

SI
1
5
j21ðxIÞþ2

5
j22ðxS þxIÞþ 1

15
j22ðxS �xIÞ

� 
;

KSD
00 ð0Þ ¼ SðSþ1Þb2

SI
2
15

j21ð0Þþ
1
5
j22ðxSÞ

� 
:

9.5.3.2. The Bloembergen mechanism. We now turn our attention to
the Bloembergen mechanism, where the PRE is due to the Fermi-
contact interaction. Noting that

jA00j2 ¼ 3 AFC
� 	2

; ð9:105Þ

we obtain the following spectral density function:

KFC
mmðxÞ ¼ 1

2
SðSþ1Þ AFC

� 	2Xþ1

q¼�1

0 1 1
m�q q �m

� �2

j0;jqjþ1ðx�qxSÞ:

ð9:106Þ
The two spectral density functions that determine the PRE

KFC
11ðxIÞ and KFC

00ð0Þ are therefore:

KFC
11ðxIÞ ¼ 1

2
SðSþ 1Þ AFC

� 	2 0 1 1
0 1 �1

� �2

j02ðxS �xIÞ ð9:107Þ

¼ 1
6
SðSþ 1Þ AFC

� 	2
j02ðxS �xIÞ; ð9:108Þ

KFC
00ð0Þ ¼

1
2
SðSþ 1Þ AFC

� 	2 0 1 1
0 0 0

� �2

j01ð0Þ ð9:109Þ

¼ 1
6
SðSþ 1Þ AFC

� 	2
j01ð0Þ: ð9:110Þ

9.5.3.3. The PRE. On substituting the expressions for the spectral
densities into Eqs. (9.89) and (9.90) we obtain the Solomon–Bloem
bergen–Morgan equations for the PRE. The expression for T1 is

1
T1

¼ 2
3
SðSþ 1Þ AFC

�h

 !2
sE;2

1þ ðxS �xIÞ2s2E;2

þ 2
15

SðSþ 1Þ bSI

�h

� �2 3sc;1
1þx2

I s2c;1

"

þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

#
; ð9:111Þ

and the corresponding expression for T2 is

1
T2

¼ 1
3
SðSþ 1Þ AFC

�h

 !2

sE;1 þ sE;2
1þ ðxS �xIÞ2s2E;2

" #

þ 1
15

SðSþ 1Þ bSI

�h

� �2

4sc;1 þ 6sc;2
1þx2

Ss2c;2
þ 3sc;1
1þx2

I s2c;1

"

þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

#
; ð9:112Þ

where we have used the explicit Lorentzian expressions for the
reduced spectral densities. We note that these are exactly the same
expressions given in Eqs. (8.107) and (8.108) in Chapter 8.

9.6. Low-field theory of the PRE in low-symmetry complexes in
solution

9.6.1. Introduction
The Solomon–Bloembergen–Morgan equations describe the

PRE under high-field conditions, where the Zeeman interaction is
the dominant electronic spin interaction. However the theory is
not applicable under conditions of low magnetic field where the
ZFS dominates the electronic energy level structure. This low-
field limit is of interest when studying the field-dependent beha-
viour of relaxation rates in NMR dispersion (NMRD) experiments,
for which it is important to have corresponding expressions for
the PRE [96]. Here we summarise the low-field theory of the PRE
in paramagnetic complexes in solution as described by Westlund
[138], Bertini et al. [109], and Nilsson and Kowalewski [139,140],
derive the PRE due to an electronic spin S ¼ 1 subject to an axially
symmetric static ZFS, and highlight the differences from the high-
field Solomon–Bloembergen–Morgan approach. Finally we sum-
marize the work done in deriving expressions for an S ¼ 1 and
3/2 subject to a rhombic static ZFS, and electronic spins S ¼ 2,
5/2, 3, and 7/2.

The low-field theory is subject to the following assumptions:

1. We are in the limit of low magnetic field, which we define as
the regime where the axial ZFS anisotropy D is much greater
than the electronic Zeeman splitting, jDj � lBgeB0.

2. The electronic relaxation can be described in the Redfield limit,
which requires that the electronic relaxation processes occur on
a sufficiently fast timescale.

3. Rotational diffusion is much slower than the electronic spin
dynamics, so that we can apply the decomposition approxima-
tion. Hence this is also an example of the slow-rotation limit.

4. The relevant electronic spin interactions, namely the static ZFS
and Zeeman interactions, are not fully averaged by molecular
reorientation, and so do not contribute to electronic relaxation.
This is a consequence of Assumption 3.

5. For S > 3=2, quartic and higher-order ZFS terms are neglected.
6. The spin-dipolar hyperfine interaction and static ZFS tensor

share a common PAF.

As in the previous section we now define the lattice and the cor-
responding Liouvillian, and derive the spectral densities for an
arbitrary electronic spin S. We then restrict the discussion to
S ¼ 1 and derive the electronic relaxation rates, and incorporate
these into the calculation and discussion of the PRE.

9.6.2. The lattice
The paramagnetic complex is assumed to be of low symmetry,

so that the electronic spin is subject to a static ZFS in addition to
the Zeeman interaction. The combined lattice is a composite of
the electronic and rotational degrees of freedom, and is repre-
sented by a Liouvillian that is given by the sum of the electronic
and rotational diffusion Liouvillians:

bbL L ¼ bbL S þ bbLR; ð9:113Þ
where

bbL S ¼ bbLZFS;S þ bbLZ þ bbL e: ð9:114Þ
The electronic Zeeman Liouvillian can be neglected at low magnetic
fields such that jDj � lBgeB0, as outlined in Assumption 1 above.

The superoperator bbL e describes the electronic relaxation due to
the transient ZFS, which can be modelled by the pseudo-rotation
model of Rubinstein et al. [116]. The overall lattice equilibrium den-

sity operator bP0 is the direct product of the equilibrium density
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operators of the electron spin bP0;S and rotational degrees of freedombP0;L:bP0 ¼ bP0;S � bP0;L: ð9:115Þ
As in the Solomon–Bloembergen–Morgan theory, the electronic
equilibrium density operator in the high-temperature limit is sim-

ply 1̂S=ð2Sþ 1Þ.

9.6.3. The spectral densities
As we have seen before the PRE is due to the hyperfine interac-

tion, which couples the nuclear spin to the unpaired electrons in
the lattice. Here we consider only the spin-dipolar interaction,

which is represented by the following Hamiltonian bHSD and lattice

operator bLSD1m:
bHSD ¼

Xþ2

m¼�2

ð�1ÞmbI1�m
bLSD1m; ð9:116Þ

bLSD1m ¼ ð�1Þm
ffiffiffiffiffiffi
30

p
bSI

Xþ1

q¼�1

2 1 1
m� q q �m

� �bS1qD
ð2Þ
0;m�q XPLð Þ; ð9:117Þ

where XPL is the set of Euler angles that gives the orientation of the
common PAF of the spin-dipolar and static ZFS tensors in the labo-
ratory frame, and we have assumed that the electronic spin can be
modelled as a point dipole moment. The spectral density functions
KSD

mmðxÞ are therefore given by

KSD
mmðxÞ¼30b2

SI

X
q;q0

2 1 1
m�q q �m

� �
2 1 1

m�q0 q0 �m

� �


Z 1

0
TrL bSy

1qD
ð2Þ
0;m�q XPLð0Þð Þ exp i bbL Ls

� �bS1q0D
ð2Þ
0;m�q0 XPLð0Þð Þ

� �bP0

� 

expð�ixsÞds:

ð9:118Þ
The expression in Eq. (9.118) is identical to that used in the

slow-motion theory. However to proceed into the low-field regime
we need further steps. Firstly, because the electron spin dynamics
are dominated by the static ZFS, we need to express the electronic

spin operators bS1q in terms of the spin operators in the PAF eS1q,
through the following relation:

bS1q ¼
X
p

eS1pD
ð1Þ
pq XPLð Þ: ð9:119Þ

Secondly we apply the following contraction law for the products of
Wigner rotation matrix elements [191]:

Dð2Þ
0;m�q XPLð ÞDð1Þ

pq XPLð Þ ¼
X3
C¼1

ð2C þ 1Þ 2 1 C

0 p �p

� �

 2 1 C

m� q q �m

� �
DðCÞ

�p;�m XPLð Þ: ð9:120Þ

Applying Eqs. (9.119) and (9.120) to Eq. (9.118) we obtain

KSD
mmðxÞ¼30b2

SI

X
q;q0

X
p;n

ð�1Þpþn 2 1 1
m�q q �m

� �2 2 1 1
m�q0 q0 �m

� �2


9 2 1 1
0 p �p

� �
2 1 1
0 n �n

� �


Z 1

0
TrL eSy

1nD
ð1Þ
nm XPLð0Þð Þ exp ibbL Ls

� �eS1pD
ð1Þ
pm XPLð0Þð Þ

� �bP0

� 

expð�ixsÞds;

ð9:121Þ
where we have retained only those contacted Wigner rotation
matrix elements with rank C ¼ 1 [139].

We now invoke Assumption 3, and apply the decomposition
approximation to separate the rotational diffusion dynamics from
the electronic spin dynamics. The lattice trace is therefore given by

TrL eSy
1nD

ð1Þ
nm XPLð0Þð Þ exp i bbL Ls

� �eS1pD
ð1Þ
pm XPLð0Þð Þ

� �bP0

� 
¼ hDð1Þ

nm XPLð0Þð ÞDð1Þ
pm XPLð�sÞð ÞiTrS eSy

1n exp i bbL Ss
� �eS1p

� �bP0;S

� 
:

ð9:122Þ
As the molecule is tumbling isotropically the spatially-

dependent factor simplifies to

hDð1Þ
nm XPLð0Þð ÞDð1Þ

pm XPLð�sÞð Þi ¼ 1
3
dpn exp �s=ð3sRÞð Þ: ð9:123Þ

The rotational correlation time sR above corresponds to a rank-
two tensor. However since we are describing the reorientational
motion of a rank-one tensor, we require a factor of 1=3 in the expo-
nent. We now simply the spectral density to

KSD
mmðxÞ ¼ 90b2

SI

X
q

2 1 1

m� q q �m

 !2X
q0

2 1 1

m� q0 q0 �m

 !2
24 35



X
p

2 1 1

0 p �p

 !2


 1
2Sþ 1

Z 1

0
TrS eSy

1p exp i bbL Ss
� �eS1p

� �� 

 exp �ðixþ 1=ð3sRÞÞs½ �ds: ð9:124Þ

The Wigner 3j symbols can be written in terms of their numerical
values [191]:

X
q

2 1 1

m� q q �m

 !2

¼ 1
3
; ð9:125Þ

2 1 1

0 p �p

 !2

¼
1
30 ; p ¼ 	1;
2
15 ; p ¼ 0;

(
ð9:126Þ

to give the final expression for the spectral density:

KSD
mmðxÞ ¼ b2

SISðSþ 1Þ
9

sSD�1�1ðxÞ þ 4sSD00 ðxÞ þ sSD11ðxÞ
 �
; ð9:127Þ

which we note is independent of m. The functions sSDpp ðxÞ are the
electronic spin spectral density functions defined in the common
PAF as

sSDpp ðxÞ ¼ 3
SðSþ 1Þð2Sþ 1Þ



Z 1

0
TrS eSy

1p exp i bbL Ss
� �eS1p

� �� 
exp �ðixþ 1=ð3sRÞÞs½ �ds:

ð9:128Þ
The functions sSDpp ðxÞ contain all the information pertaining to the

electron spin dynamics. In particular sSD00 ðxÞ describes the spin
dynamics of longitudinal relaxation, and sSD	1	1ðxÞ describes trans-
verse relaxation in the common PAF of the spin-dipolar and ZFS
tensors.

The nuclear relaxation rates can now be written down in terms
of the sSDpp ðxÞ as follows. The longitudinal PRE is given by

1
T1

¼ 2b2
SISðSþ 1Þ
9�h2 Re sSD�1�1ðxIÞ þ 4sSD00 ðxIÞ þ sSD11ðxIÞ


 �
; ð9:129Þ

and the transverse PRE is

1
T2

¼ b2
SISðSþ 1Þ

9�h2 Re sSD�1�1ð0Þ þ 4sSD00 ð0Þ þ sSD11ð0Þ þ sSD�1�1ðxIÞ



þ 4sSD00 ðxIÞ þ sSD11ðxIÞ
�
: ð9:130Þ
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So far these expressions are general for any electronic spin S, subject
to a static ZFS of any symmetry, under the Assumptions 1–6 above.
We have not yet specified explicitly the form of the electronic relax-
ation, which is our next step.

9.6.4. Electronic relaxation
The relaxation of the unpaired electronic spin is due to the tran-

sient ZFS interaction, the Hamiltonian of which is written in the
PAF of the static ZFS as

bHZFS;T ¼
Xþ2

m¼�2

ð�1ÞmF2m
eS2�m; ð9:131Þ

where F2m are the spatial functions in the irreducible spherical ten-

sor basis. The electronic relaxation superoperator is bbLdel ¼ �i bbCZFS;T,

where bbCZFS;T is the superoperator representing the stochastic mod-
ulation of the transient ZFS. This modulation is described by the
pseudo-rotation model of Rubinstein et al., which assumes that
the transient ZFS has a constant amplitude and a direction that
changes with time according to a rotational diffusion equation
[116]. Therefore, as we have seen before, the transient ZFS is
described by two parameters: the magnitude Dt and correlation
time sv . As before the magnitude is defined as follows:

D2
t ¼

Xþ2

m¼�2

jeF2mj2 ð9:132Þ

¼ 2
3
D2

t þ 2E2
t ; ð9:133Þ

where the eF 2m are the transient ZFS spatial functions in their (time-
dependent) PAF, and Dt and Et are the axial and rhombic anisotro-
pies that are assumed to be constant in the pseudo-rotation model.

We assume that the electronic relaxation is in the Redfield limit
(Assumption 2), and so can be described by the equation of motion
in Eq. (9.78):

dq̂T
SðtÞ
dt

¼ � 1

�h2

X
m;m0

X
n;n0

ð�1Þmþm0
exp i xðn0Þ

�m0 �xðnÞ
�m

� 	
t

h i

 eSðn0Þ

2�m0 ; eSðnÞ
2�m

� 	y
; q̂T

SðtÞ � q̂S;0

� � 
Jmm0 �xðnÞ

�m

� �
: ð9:134Þ

The relaxation rates are defined in terms of the spectral density
functions Jmm0 ðxÞ, which are given in terms of the correlation func-
tions hF2mð0ÞF2m0 ð�sÞi by Eq. (9.80):

Jmm0 ðxÞ ¼ Re
Z 1

0
hF2mð0ÞF2m0 ð�sÞi expð�ixsÞds

� 
: ð9:135Þ

In the pseudo-rotation model the correlation functions
hF2mð0ÞF2m0 ð�sÞi are
hF2mð0ÞF2m0 ð�sÞi ¼

X
l;l0

eF 
2l
eF 2l0 hDð2Þ

lm XFPð0Þð ÞDð2Þ
l0m0 XFPð�sÞð Þi ð9:136Þ

¼
X
l;l0

eF 
2l
eF2l0

1
5
dll0dmm0 expð�s=sv Þ ð9:137Þ

¼ 1
5
dmm0 expð�s=sv Þ

X
l
jeF2lj2 ð9:138Þ

¼ 1
5
dmm0D2

t expð�s=sv Þ; ð9:139Þ

where XFPðtÞ are the time-dependent Euler angles that describe the
constantly-changing orientation of the PAF of the transient ZFS in
the PAF of the static ZFS. The spectral density functions are
therefore

Jmm0 ðxÞ ¼ D2
t

5
sv

1þx2s2v
dmm0 ; ð9:140Þ

which we note are non-zero only for m ¼ m0. The equation of
motion now simplifies to

dq̂T
SðtÞ
dt

¼ � 1

�h2

X
m

X
n;n0

exp i xðn0Þ
�m �xðnÞ

�m

� �
t


 �

 eSðn0 Þ

2�m;
eSðnÞ
2�m

� 	y
; q̂T

SðtÞ � q̂S;0

� � 
Jmm �xðnÞ

�m

� �
: ð9:141Þ

If we remove the non-secular terms with n– n0 from the equation
of motion, we obtain the following expression:

dq̂T
SðtÞ
dt

¼ � 1
�h2

X
m

X
n

eSðnÞ
2�m;

eSðnÞ
2�m

� 	y
; q̂T

SðtÞ � q̂S;0

� � 
Jmm �xðnÞ

�m

� �
:

ð9:142Þ
As in Section 9.4.2, we note that non-secular terms can sometimes
make an important contribution.

9.6.4.1. Electronic relaxation of S ¼ 1 in an axially-symmetric envi-
ronment. We now illustrate the theory of electronic relaxation in
low-field conditions with the calculation of the relaxation time
constants of the simplest spin system that is subject to a ZFS inter-
action, namely an electronic spin S ¼ 1 in an axially-symmetric
complex. This case was originally treated by Bertini et al. [109].
We can neglect the electronic Zeeman interaction for integer spin

at low field, and so the coherent part of bbL S is simply the static
ZFS interaction. The static ZFS is axially symmetric with an aniso-
tropy D and an associated frequency of transition xD ¼ D=ð2pÞ,
whilst the transient ZFS possesses both an axial and rhombic aniso-
tropy Dt and Et, as the instantaneous distortion of the coordination
environment need not necessarily be axial. The electronic relax-
ation superoperator isbbCZFS;TÔ ¼ 1

�h2

X
m

X
n;n0

eSðn0 Þ
2�m;

eSðnÞ
2�m

� 	y
; Ô

� � 
Jjmj �xðnÞ

�m

� �
; ð9:143Þ

where we have retained the sum over both n and n0. The operatorsbSðnÞ
2m of the transient ZFS and their characteristic frequenciesxðnÞ

m due
to evolution under the static ZFS are given in Table 9.2. We also
write the spectral density functions as JjmjðxÞ � JþmþmðxÞ ¼
J�m�mðxÞ, where we take þm as positive, as they are independent
of the sign of m.

The longitudinal relaxation of the spin is described by two time

constants Tð10Þ
1e and Tð20Þ

1e , which describe the relaxation of the

expectation values of the operators bS10 and bS20 respectively. They
are determined from the following expressions:

1

Tð10Þ
1e

¼
bS10j bbCZFS;TjbS10

� �
bS10jbS10

� 	 ; ð9:144Þ

1

Tð20Þ
1e

¼
Ŝ20j bbCZFS;TjŜ20
� �

Ŝ20jŜ20
� 	 : ð9:145Þ

Table 9.2
The spin operators bSðnÞ

2m and associated frequencies xðnÞ
m of an electronic spin S ¼ 1

subject to an axially symmetric static ZFS interaction.

bSðnÞ2m xðnÞ
m

m n ¼ 1 n ¼ 2 n ¼ 1 n ¼ 2

0
ffiffi
1
6

q bS2z � SðSþ 1Þ1̂S

� 	 – 0 –

	1 � 1
2
bSzbS	 � 1

2
bS	bSz xD �xD

	2 1
2
bS2	 – 0 –
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Explicit calculations give the following time constants:

1

Tð10Þ
1e

¼ 1

�h2 J1ðxDÞ þ 4J2ð0Þ½ �; ð9:146Þ

1

Tð20Þ
1e

¼ 1

�h2 3J1ðxDÞ½ �: ð9:147Þ

We see that the two spectral densities present in these expressions
are J1ðxDÞ and J2ð0Þ. The reason why these spectral densities are
evaluated at these frequencies is readily understood by reference
to Fig. 4.3. The former spectral density function refers to a transition
between either the states j1� 1i ! j10i or j1þ 1i ! j10i, both of
which occur with transition frequency xD at zero field. Hence
J1ðxÞ is evaluated at frequencyxD. The latter spectral density refers
to a transition between the states j1� 1i ! j1þ 1i, which occurs at
zero frequency due to their degeneracy at zero field. Hence J2ðxÞ is
evaluated at zero frequency.

The transverse relaxation is described by three time constants

T ð1	1Þ
2e , T ð2	1Þ

2e , and T ð2	2Þ
2e , which refer to the relaxation of the operatorsbS1	1, bS2	1, and bS2	2 respectively. They are calculated from:

1

Tð1	1Þ
2e

¼
bS1	1j bbCZFS;TjbS1	1

� �
bS1	1jbS1	1

� 	 ; ð9:148Þ

1

Tð2	1Þ
2e

¼
bS2	1j bbCZFS;TjbS2	1

� �
bS2	1jbS2	1

� 	 ; ð9:149Þ

1

Tð2	2Þ
2e

¼
bS2	2j bbCZFS;TjbS2	2

� �
bS2	2jbS2	2

� 	 ; ð9:150Þ

which, in turn, give the expressions:

1

Tð1	1Þ
2e

¼ 1
�h2

3
2
J0ð0Þ þ

5
2
J1ðxDÞ þ J2ð0Þ

� 
; ð9:151Þ

1

Tð2	1Þ
2e

¼ 1
�h2

3
2
J0ð0Þ þ

1
2
J1ðxDÞ þ J2ð0Þ

� 
; ð9:152Þ

1

Tð2	2Þ
2e

¼ 1

�h2 J1ðxDÞ þ 2J2ð0Þ½ �: ð9:153Þ

We will see that the important electronic relaxation processes
that determine the PRE at low field are those that contribute to

T ð10Þ
1e and T ð1	1Þ

2e .

9.6.5. Nuclear relaxation
9.6.5.1. Nuclear relaxation due to S ¼ 1 in an axially-symmetric
environment. We now derive the closed expressions for the longi-
tudinal and transverse relaxation times constants for the PRE due
to an electronic spin S ¼ 1 in an axially-symmetric coordination
environment, as treated by Bertini et al. [109]. In order to calculate
the forms of the PRE time constants we must evaluate the elec-
tronic spectral density functions in Eq. (9.128) for the electronic
spin system in question. We begin by determining the transforma-

tion of the electronic Liouvillian bbL S on the rank-one electronic spin
operators. For the S ¼ 1 spin at low field, the Liouvillian is given bybbL S ¼ bbLZFS;S � i bbCZFS;T. The coherent static ZFS Liouvillian transforms
the rank-one spin operators as follows:

exp �i bbLZFS;St
� �eS10 ¼ eS10; ð9:154Þ

exp �i bbLZFS;St
� �eS1	1 ¼ cosðxDtÞeS1	1 � i

ffiffiffi
2

p
sinðxDtÞeS2	1; ð9:155Þ

where we are in the PAF of the static ZFS. The incoherent transient
ZFS Liouvillian causes the expectation values of the rank-one oper-
ators to decay in a mono-exponential fashion according to their lon-
gitudinal or transverse relaxation time constants:

exp � bbCZFS;Tt
� �eS10 ¼ eS10 exp �t=Tð10Þ

1e

� 	
; ð9:156Þ

exp � bbCZFS;Tt
� �eS1	1 ¼ eS1	1 exp �t=Tð1	1Þ

2e

� 	
: ð9:157Þ

The traces in Eq. (9.128) therefore evaluate to

TrS eSy
10 exp i bbL Ss

� �eS10

� �� 
¼1
3
SðSþ1Þð2Sþ1Þexp �s=Tð10Þ

1e

� 	
ð9:158Þ

¼2exp �s=Tð10Þ
1e

� 	
; ð9:159Þ

TrS eSy
1	1 exp ibbL Ss

� �eS1	1

� �� 
¼1
3
SðSþ1Þð2Sþ1Þ


cosðxDsÞexp �s=Tð1	1Þ
2e

� 	
ð9:160Þ

¼2cosðxDsÞexp �s=Tð1	1Þ
2e

� 	
: ð9:161Þ

Following Fourier transformation we obtain the following expres-
sions for the electronic spectral density functions:

Re sSD00 ðxÞ
 � ¼ sc;1
1þx2s2c;1

; ð9:162Þ

Re sSD	1	1ðxÞ
 � ¼ 1
2

sc;2
1þ ðxþxDÞ2s2c;2

þ sc;2
1þ ðx�xDÞ2s2c;2

" #
; ð9:163Þ

where sc;1 and sc;2 are correlation times that depend upon the elec-
tronic longitudinal and transverse relaxation times respectively,
and the rotational correlation time:

s�1
c;1 ¼ Tð10Þ

1e

� 	�1
þ 1
3
s�1
R ; ð9:164Þ

s�1
c;2 ¼ Tð1þ1Þ

2e

� 	�1
þ 1
3
s�1
R : ð9:165Þ

The expressions for T1 and T2 are given by Eqs. (9.129) and
(9.130), and have the following forms:

1
T1

¼ 4b2
SI

9�h2

4sc;1
1þx2

I s2c;1
þ sc;2
1þ ðxI þxDÞ2s2c;2

þ sc;2
1þ ðxI �xDÞ2s2c;2

" #
; ð9:166Þ

1
T2

¼ 2b2
SI

9�h2 4sc;1 þ 2sc;2
1þx2

Ds2c;2
þ 4sc;1
1þx2

I s2c;1

"

þ sc;2
1þ ðxI þxDÞ2s2c;2

þ sc;2
1þ ðxI �xDÞ2s2c;2

#
: ð9:167Þ

In the limit of low field, large static ZFS, and slow motional dynam-
ics such that jxDsc;2j � 1, the relaxation rates are dominated by the
terms that do not contain the ZFS frequency:

1
T1

¼ 16b2
SI

9�h2

sc;1
1þx2

I s2c;1
; ð9:168Þ

1
T2

¼ 8b2
SI

9�h2 sc;1 þ sc;1
1þx2

I s2c;1

" #
: ð9:169Þ

Hence for both relaxation processes the characteristics of the PRE
are dominated by the terms that contain the correlation time sc;1,
which in the slow-rotation limit is dominated by the electronic lon-
gitudinal relaxation properties.

9.6.5.2. Nuclear relaxation due to higher electronic spins. The expres-
sions for the PRE in the low-field, slow-motion limit have also been
derived for systems of higher electronic spin, and in environments
of lower symmetry. Westlund derived the PRE expression for T1
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due to an electronic S ¼ 1 in a rhombic environment [138]. The
expression is clearly more complicated than for the axial case, as
it depends on both the static axial and rhombic ZFS anisotropies,
as well as three electronic relaxation times rather than two. Corre-
sponding expressions have also been derived by Nilsson et al. for
S ¼ 3=2 in both axial and rhombic environments, and S ¼ 2,
S ¼ 5=2, S ¼ 3, and S ¼ 7=2 in axially-symmetric environments
[139,140]. For low-field expressions of the PRE for arbitrary elec-
tronic spin, we use the general expressions in Eqs. (9.129) and
(9.130).

9.7. The PRE under fast-rotation conditions in solution

9.7.1. Introduction
When the rotational motion of the paramagnetic complex is

rapid, the application of the decomposition approximation to the
rotational and electronic spin dynamics is not as straightforward
as it is under slow-motion conditions. One significant difference
the fast-motion regime has from the slow-motion regime is that
the rapid motion modulates both the static ZFS and the spin-
dipolar hyperfine interactions, with the former acting as a source
of electronic relaxation, and the latter resulting in nuclear relax-
ation. This situation was investigated by Kruk and Kowalewski,
under conditions of high and low external field [307].

This situation is of considerable interest for studying the relax-
ation properties of contrast agents in aqueous solution in MRI
[128,130]. A specific class of systems that we focus on here is para-
magnetic complexes in solution, where the bound ligands are
taken from the solvent, an example of which is the aqueous hex-
aaquairon(II) complex [Fe(H2O)6]2+. It is assumed that the solvent
molecules are in chemical exchange between the bound (ligand)
and unbound (bulk) states. Under these circumstances we can
identify two separate contributions to the PRE, known as the
inner-sphere and outer-sphere contributions. In the inner-sphere
mechanism the solvent molecules experience a substantial PRE
when bound to the metal ion in the complex. The measured contri-
bution to the nuclear relaxation rate depends upon this PRE, and
upon the rate of exchange between the bound and unbound states.
The second, and less important, outer-sphere mechanism is the
PRE experienced by solvent molecules that never enter into the
complex with the metal ion. It depends on the translational diffu-
sion of the solvent molecules through the bulk.

The fast rotational theory of the PRE describes both of these
mechanisms. The main assumptions are:

1. The unperturbed electronic Hamiltonian is the Zeeman interac-
tion at high field, and the static ZFS interaction at low field.

2. The fast motion results in orientational averaging of the static
ZFS interaction, so that it acts as a source of electronic relax-
ation in addition to the transient ZFS.

3. The electronic relaxation is in the Redfield limit.
4. The spin-dipolar hyperfine and static ZFS interactions share the

same PAF.
5. For outer-sphere relaxation the translational and rotational dif-

fusion and electronic spin relaxation are all uncorrelated with
each other.

Note that the second assumption is the opposite to that made in
the slow-rotation theory.

9.7.2. A simple model of inner- and outer-sphere relaxation
Before we examine the inner- and outer-sphere mechanisms in

the stochastic Liouville formalism we summarise a simple theory
for the PRE due to a complex in solution, proposed by Luz and Mei-
boom [121]. The overall longitudinal PRE 1=T1 is written as the
sum of the inner-sphere and outer-sphere contributions. These

contributions have a complicated form, which are characterised
by the longitudinal inner- and outer-sphere PREs 1=T1;IS and
1=T1;OS. However, as we will see, the inner-sphere contribution is
not simply equal to 1=T1;IS.

The model of Luz and Meiboom deals specifically with inner-
sphere relaxation in which the solvent molecules are in exchange
between the bound (B) and unbound (U) states. These two sites
have lifetimes of sB and sU respectively, and are associated with
different longitudinal relaxation times T1;B and T1;U. The central
assumption is that the paramagnetic species is dilute, so that the
number of bound molecules nB is much lower than the number
of unbound molecules nU. Hence the ratio of bound to unbound
molecules f, which is defined as

f ¼ nB

nU
¼ sB
sU

; ð9:170Þ

is much less than unity, i.e. f � 1.
The nuclear spins of solvent molecules in both states give bulk

magnetization vectors. Aswe are, at present, only considering longi-
tudinal relaxation, we focus on the z-components of themagnetiza-
tion vectors of the spins in their bound and unbound states Mz;BðtÞ
and Mz;UðtÞ. Following the assumption of the dilute nature of the
paramagnetic species these magnetization components satisfy
jMz;BðtÞj � jMz;UðtÞj at all times. The equilibrium values of the mag-

netization vector components,Mð0Þ
z;B and Mz;UðtÞð0Þ, are related to the

ratio f via f ¼ Mð0Þ
z;B=M

ð0Þ
z;U. The longitudinal relaxation behaviour of

the magnetizations in the two states is governed by a pair of simul-
taneous differential equations [258]:

dMz;BðtÞ
dt

¼ � 1
T1;IS

Mz;BðtÞ �Mð0Þ
z;B

� 	
� 1
sB

Mz;BðtÞ þ 1
sU

Mz;UðtÞ; ð9:171Þ
dMz;UðtÞ

dt
¼ � 1

T1;U
Mz;UðtÞ �Mð0Þ

z;U

� 	
� 1
sU

Mz;UðtÞ þ 1
sB

Mz;BðtÞ; ð9:172Þ

where we have noted that the longitudinal relaxation time in the
bound state T1;B is simply the inner-sphere relaxation time T1;IS.
We should note that the treatment of chemical exchange in this
model is different to that in the Solomon–Bloembergen–Morgan
theory of the PRE. In the Solomon–Bloembergen–Morgan theory
the rate of chemical exchange is assumed to be sufficiently fast that
it falls into the Redfield limit where it can be treated as a relaxation
process, and the exchange lifetime used as a correlation time. How-
ever in the present situation the exchange need not be fast, and we
note that Eqs. (9.171) and (9.172) are also valid in the limits of slow
and intermediate exchange, which are outside the Redfield regime.

Since the fraction of bound solvent molecules f is small, we can
approximate dMz;BðtÞ=dt � 0, and simplify Eq. (9.171) to give an
expression for the z-magnetization of the nuclear spins in the
bound molecules in terms of the z-magnetization from the spins
in the unbound molecules:

Mz;BðtÞ ¼ f
sBMð0Þ

z;U þ T1;ISMz;UðtÞ
sB þ T1;IS

 !
: ð9:173Þ

By substituting this into Eq. (9.172) and simplifying we obtain an
expression for the relaxation behaviour of the nuclear spins in the
unbound molecules:

dMz;UðtÞ
dt

¼ � 1
T1;U

þ f
sB þ T1;IS

� �
Mz;UðtÞ �Mð0Þ

z;U

� 	
: ð9:174Þ

This expression is of the form

dMz;UðtÞ
dt

¼ � 1
T1;eff

Mz;UðtÞ �Mð0Þ
z;U

� 	
; ð9:175Þ

where T1;eff is an effective longitudinal relaxation time constant
which is given by
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1
T1;eff

¼ 1
T1;U

þ f
sB þ T1;IS

: ð9:176Þ

In the NMR experiment the observed signal is dominated by the
nuclear spins in the unbound solvent molecules, as
jMz;BðtÞj � jMz;UðtÞj, and so Eq. (9.176) is the longitudinal relaxation
time constant that is actually measured. The second term in Eq.
(9.176) is the enhancement of the relaxation rate, 1=T1;U, that would
otherwise be observed in the absence of the paramagnetic species
and so we associate it with the inner-sphere PRE:

1
T1

¼ f
sB þ T1;IS

; ð9:177Þ

which we see is related to the longitudinal nuclear relaxation time
constant T1;IS, the lifetime sB associated with the bound state, and
the fraction f of bound molecules.

The outer-sphere relaxation contribution to the overall PRE is
included by simply adding the term 1=T1;OS to Eq. (9.177):

1
T1

¼ f
sB þ T1;IS

þ 1
T1;OS

: ð9:178Þ

A description of outer-sphere relaxation is more difficult, as it
requires a description of the stochastic variation of the distance
between the nucleus and paramagnetic centre. We can also derive
an analogous expression for the inner- and outer-sphere transverse
PREs. The following sections are concerned with the calculation of
the expressions for the inner- and outer-sphere relaxation time
constants Tq;IS and Tq;OS that are used in Eq. (9.178), using the
stochastic Liouville formalism.

9.7.3. Inner-sphere relaxation at high field
In formulating the inner-sphere PREs 1=T1;IS and 1=T2;IS we

model the ligand as being bound to the metal ion so that the dis-
tance between the nuclear spin and paramagnetic centre is fixed.
The PRE is then calculated using the expression for the spectral
density KSD

mmðxÞ:

KSD
mmðxÞ¼30b2

SI

X
q;q0

2 1 1
m�q q�m

� �
2 1 1

m�q0 q0 �m

� �


Z 1

0
TrL bSy

1qD
ð2Þ
0;m�q XPLð0Þð Þ exp i bbL Ls

� �bS1q0D
ð2Þ
0;m�q0 XPLð0Þð Þ

� �bP0

� 

expð�ixsÞds:

ð9:179Þ
The relevant degrees of freedom in the lattice are those pertaining
to the electronic spin, the rotational diffusion, and the distortion
of the complex geometry via collisions. The Liouvillian is therefore
given by:bbL L ¼ bbL S þ bbLR þ bbLD; ð9:180Þ
where the electronic spin Liouvillian comprises terms for the elec-
tronic Zeeman interaction and the static and transient ZFS
interactions:bbL S ¼ bbLZ þ bbLZFS;S þ bbLZFS;T: ð9:181Þ
The equilibrium lattice density operator is given by the direct pro-
duct of the electronic spin and rotational diffusion density opera-

tors: bP0 ¼ bP0;S � bP0;R.
In the high-field limit the electronic Zeeman interaction domi-

nates the electronic energy levels, and the static and transient
ZFS interactions cause electronic relaxation via their stochastic
time dependence, the former by rapid rotational diffusion and
the latter by collisional distortions. The spin-dipolar hyperfine ten-
sor is also modulated by the rotational diffusion. We can reformu-
late Eq. (9.179) as follows:

KSD
mmðxÞ ¼ 30b2

SI

X
q;q0

2 1 1
m�q q �m

� �
2 1 1

m�q0 q0 �m

� �


Z 1

0
TrR Dð2Þ

0;m�q XPLð0Þð ÞTrS bSy
1q exp i bbL S þ bbLD

� �
s

� �bS1q0

� �� �

Dð2Þ

0;m�q0 XPLð�sÞð ÞbP0

i

 expð�ixsÞds;

ð9:182Þ
where we have assumed that the static ZFS and spin-dipolar inter-
actions have the same PAF, and so are both modulated according to
the same time-dependent set of Euler angles XPLðtÞ. If we further
assume that the rotational motion is so rapid that the electronic
spins experience only the average effect of the reorientation we
can factorize the part of the correlation function containing the
electronic spin degrees of freedom from the part containing the
rotational diffusion, as we have done before:

KSD
mmðxÞ ¼ 30b2

SI

X
q;q0

2 1 1

m� q q �m

 !
2 1 1

m� q0 q0 �m

 !



Z 1

0
hDð2Þ

0;m�q XPLð0Þð ÞDð2Þ
0;m�q0 XPLð�sÞð Þi


 TrS bSy
1q exp i bbLZ � i bbC e

� �
s

� �bS1q0

� �bP0;S

� 
expð�ixsÞds

ð9:183Þ

¼ 6b2
SI

X
q

2 1 1

m� q q �m

 !2



Z 1

0
TrS bSy

1q exp i bbLZ � i bbC e

� �
s

� �bS1q

� �bP0;S

� 

 exp � ixþ 1=sRð Þs½ �ds; ð9:184Þ

where the electronic relaxation Liouvillian bbC e is the sum of two
terms corresponding to electronic relaxation under the static ZFSbbCZFS;S and transient ZFS bbCZFS;T, i.e.

bbC e ¼ bbCZFS;S þ bbCZFS;T.
We define the electronic spectral density in the laboratory

frame as

sSDpp ðxÞ ¼ 3
SðSþ 1Þð2Sþ 1Þ

Z 1

0
TrS bSy

1p exp i bbLZ � i bbC e

� �
s

� �bS1p

� �� 

 exp �ðixþ 1=sRÞs½ �ds; ð9:185Þ

which is the high-field equivalent of Eq. (9.128), but with the factor
of 1=3 removed from the exponent as the correlation time now
describes the effect of rotational diffusion on rank-two spatial ten-
sors. We note the following differences: in the present expression
the spin operators are expressed in the laboratory frame, rather
than the PAF of the static ZFS tensor, and the static ZFS interaction
appears as a relaxation superoperator. The spectral densities that
are used to calculate the PREs are therefore given by:

KSD
11ðxIÞ ¼ 1

15
b2
SISðSþ 1Þ sSD11ðxIÞ þ 3sSD00 ðxIÞ þ 6sSD�1�1ðxIÞ

� �
; ð9:186Þ

KSD
00 ð0Þ ¼

1
15

b2
SISðSþ 1Þ 3sSD11ð0Þ þ 4sSD00 ð0Þ þ 3sSD�1�1ð0Þ

� �
: ð9:187Þ

The resulting expressions for the longitudinal and transverse inner-
sphere relaxation time constants are therefore:

1
T1;IS

¼ 2b2
SI

15�h2 SðSþ 1ÞRe sSD11ðxIÞ þ 3sSD00 ðxIÞ þ 6sSD�1�1ðxIÞ
� �

; ð9:188Þ

1
T2;IS

¼ b2
SI

15�h2 SðSþ 1ÞRe 3sSD11ð0Þ þ 4sSD00 ð0Þ þ 3sSD�1�1ð0Þ
�

þ sSD11ðxIÞ þ 3sSD00 ðxIÞ þ 6sSD�1�1ðxIÞ
�
: ð9:189Þ
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These are the time constants that are used in the expressions of
the form of Eq. (9.177) to describe the overall inner-sphere PRE at
high field. These expressions are valid for arbitrary electronic spin,
and for electronic relaxation outside the Redfield limit. Further
simplification requires both the selection of a particular electronic
spin, and the assumption that the electronic relaxation processes
are within the Redfield limit. If we assume the latter, the electronic
relaxation rates are defined by spectral densities of the form
already computed in Eq. (9.140). The spectral densities due to
relaxation under reorientational motion of the static ZFS tensor
JSmm0 ðxÞ and collisional modulation of the transient ZFS tensor

JTmm0 ðxÞ are therefore given by

JSmm0 ðxÞ ¼ D2
s

5
sR

1þx2s2R
dmm0 ; ð9:190Þ

JTmm0 ðxÞ ¼ D2
t

5
sv

1þx2s2v
dmm0 ; ð9:191Þ

where D2
s ¼ 2D2=3þ 2E2 is the strength of the static ZFS interaction.

We now explore the special case of the inner-sphere PREs due to an
electronic spin S ¼ 1.

9.7.3.1. Inner-sphere relaxation for electronic S ¼ 1 at high field. In
the case of a paramagnetic centre with electronic spin S ¼ 1, the
electronic spectral densities in Eq. (9.185) are characterised by

the longitudinal and transverse electronic time constants T ð10Þ
1e

and Tð1	1Þ
2e . When combined with the rotational correlation time

we obtain the following overall correlation times sc;1 and sc;2:

1
sc;1

¼ 1

T ð10Þ
1e

þ 1
sR

; ð9:192Þ

1
sc;2

¼ 1

T ð1	1Þ
2e

þ 1
sR

: ð9:193Þ

We recall that these correlation times are those encountered in the
Solomon–Bloembergen–Morgan theory, but without the contribu-
tion from chemical exchange, which is included separately in the
expression for the inner-sphere PRE in Eq. (9.177).

The real parts of the electronic spectral densities are given by

Re sSD	1	1ðxÞ
 � ¼ sc;2
1þ x�xSð Þ2s2c;2

; ð9:194Þ

Re sSD00 ðxÞ
 � ¼ sc;1
1þx2s2c;1

: ð9:195Þ

Inserting these into Eqs. (9.188) and (9.189) we obtain the same
Solomon contributions to the longitudinal and transverse relaxation
rate constants that are calculated from the Solomon–Bloembergen–
Morgan theory:

1
T1

¼ 2
15

SðSþ 1Þ bSI

�h

� �2


 3sc;1
1þx2

I s2c;1
þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

" #
;

ð9:196Þ
1
T2

¼ 1
15

SðSþ 1Þ bSI

�h

� �2


 4sc;1 þ 6sc;2
1þx2

Ss2c;2
þ 3sc;1
1þx2

I s2c;1

"

þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

#
: ð9:197Þ

Here the electronic relaxation has been calculated explicitly, rather
than included phenomenologically in the Solomon–Bloembergen–
Morgan theory, and so these expressions are more rigorous. How-
ever we should note that they are only exact for a paramagnetic
centre with electronic spin S ¼ 1, and are not valid for higher elec-
tronic spins where the electronic relaxation requires more than two
time constants for a proper description. In this case we either use
Eqs. (9.188) and (9.189) directly, or else resort to the Solomon–Bl
oembergen–Morgan theory with a phenomenological description
of the electronic relaxation via effective longitudinal and transverse
relaxation time constants.

9.7.4. Outer-sphere relaxation at high field
The outer-sphere PRE is due to stochastic modulation of the

spin-dipolar hyperfine tensor by translational diffusion. As for
the inner-sphere case electronic relaxation is still due to rotational
modulation of the static ZFS and distortional modulation of the
transient ZFS. The total lattice Liouvillian is therefore the same as
for the inner-sphere case, with the addition of the stochastic

translational-motion Liouvillian bbLT:bbL L ¼ bbL S þ bbLR þ bbLD þ bbLT : ð9:198Þ
We also extend the lattice density operator to include the transla-
tional degrees of freedom, which are represented by the equilib-

rium density operator bP0;T. The overall equilibrium lattice density
operator is now the direct product of the equilibrium density oper-
ators for the electronic, rotational, and translational subsystems:bP0 ¼ bP0;S � bP0;R � bP0;T.

The outer-sphere longitudinal and transverse PREs 1=T1;OS and
1=T2;OS are given by

1
T1;OS

¼ 2

�h2 Re KOS
11ðxIÞ

� 	
; ð9:199Þ

1
T2;OS

¼ 1

�h2 Re KOS
00 ð0Þ þ KOS

11ðxIÞ
� 	

; ð9:200Þ

where the outer-sphere spectral density function KOS
mmðxÞ is:

KOS
mmðxÞ¼30c2SI

X
q;q0

2 1 1
m�q q �m

� �
2 1 1

m�q0 q0 �m

� �



Z 1

0
TrL bSy

1q

Dð2Þ
0;m�q XOLð0Þð Þ

rð0Þ3
exp i bbL Ls

� �bS1q0
Dð2Þ

0;m�q0 XOLð0Þð Þ
rð0Þ3

( )bP0

" #

expð�ixsÞds;

ð9:201Þ

where cSI ¼ l0lBgiso�hcI=ð4pÞ is a constant describing the strength
of the spin-dipolar coupling. There are two differences between
this function and the corresponding inner-sphere spectral density
in Eq. (9.179). Firstly the distance between the nuclear and
electronic spins rðtÞ is allowed to vary stochastically in
the outer-sphere case. We recall that we treat r as constant in
the inner-sphere case. Secondly the angular dependence of the
outer-sphere dipolar coupling vector is encoded in the Euler
angles XOL, which give the orientation of the dipolar coupling
PAF in the laboratory frame. We note that this PAF does not
necessarily coincide with the common PAF of the inner-sphere
spin-dipolar hyperfine interaction and static ZFS tensors. We
assume that the translational motion is statistically uncorrelated
with the electronic spin dynamics, and that the solvent molecules
in the outer sphere move independently of the complex. Hence
the translational motion is also uncorrelated with the rotational
motion of the complex. Thus we can factor the trace in Eq.
(9.201) into a part containing only the translational degrees of
freedom, and a part pertaining only to the electronic spin:
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KOS
mmðxÞ¼30c2SI

X
q;q0

2 1 1
m�q q �m

� �
2 1 1

m�q0 q0 �m

� �



Z 1

0

*
Dð2Þ

0;m�q XOLð0Þð Þ

rð0Þ3
Dð2Þ

0;m�q0 XOLð�sÞð Þ
rð�sÞ3

+


TrS bSy
1q exp i bbLZ�i bbC e

� �
s

� �bS1q0

� �bP0;S

� 

expð�ixsÞds:

ð9:202Þ
A description of the correlation function for translational diffu-

sion is provided by Kruk et al. [122,123]. The translational diffusion
in the presence of intermolecular interactions is described by the
Smoluchowski equation. Formally this equation gives the time vari-
ation of the probability P rðtÞjrð0Þð Þ of locating amolecule at position
rðtÞ at time t, given that it started at position rð0Þ at time t ¼ 0:

@P rðtÞjrð0Þð Þ
@t

¼ D12$ � $P rðtÞjrð0Þð Þ þ P rðtÞjrð0Þð Þ$ UðrðtÞÞ
kT

� �� 
:

ð9:203Þ
This equation considers two molecules, namely the metal-ion

complex and the solvent molecule in the outer sphere, with trans-
lational diffusion coefficients D1 and D2, and is parameterised by
D12 ¼ D1 þ D2, which is the relative translational diffusion coeffi-
cient of the two molecules. The mutual interaction energy is
denoted UðrðtÞÞ, and is assumed to depend only on the distance
rðtÞ between the complex and outer-sphere solvent molecule, i.e.
UðrðtÞÞ ¼ UðrðtÞÞ. The potential can then be calculated from a radial
distribution function grdf ðrÞ according to

ln grdfðrÞ½ � ¼ �UðrÞ
kT

: ð9:204Þ

The translational time-correlation function can then be shown
to be equal to

Dð2Þ
mk XOLð0Þð Þ

rð0Þ3
Dð2Þ

m0k0 XOLð�sÞð Þ
rð�sÞ3

* +
¼ 4p

5
NSgTðsÞdmm0dkk0 ; ð9:205Þ

where NS is the density of the electronic spins, and gTðsÞ is the
reduced translational correlation function that is given by

gTðsÞ ¼
Z

drð�sÞ
Z

drð0Þ Dð2Þ
mk XOLð0Þð Þ

rð0Þ3
Dð2Þ

m0k0 XOLð�sÞð Þ
rð�sÞ3

* +

 P rð�sÞjrð0Þð Þgrdfðrð0ÞÞ: ð9:206Þ

With this form of the translational correlation function the outer-
sphere spectral density function in Eq. (9.202) takes the form:

KOS
mmðxÞ ¼ 24pNSc2SI

X
q

2 1 1

m� q q �m

 !2


 1
2Sþ 1

Z 1

0
TrS bSy

1q exp i bbLZ � i bbC e

� �
s

� �bS1q

� �� 
gTðsÞ


 expð�ixsÞds:

ð9:207Þ

We see that the outer-sphere PREs are proportional to the den-
sity of paramagnetic centres, as expected. This expression can be
written more simply by defining the outer-sphere electronic spec-
tral density functions sOSqq ðxÞ as

sOSqq ðxÞ ¼ 3
SðSþ 1Þð2Sþ 1Þ



Z 1

0
TrS bSy

1q exp i bbLZ � i bbC e

� �
s

� �bS1q

� �� 
gTðsÞ


 exp �ixsð Þds:
ð9:208Þ

This has the same form as the expression for inner-sphere relax-
ation in Eq. (9.185), with the difference that the factor containing
the rotational correlation time has been replaced with the
translational-motion correlation function. Combining Eqs. (9.207)
and (9.208) gives us the following expressions for the longitudinal
and transverse PREs for outer-sphere relaxation at high field:

1
T1;OS

¼ 8pNSc2SISðSþ 1Þ
15�h2 Re sOSþ1þ1ðxIÞ þ 3sOS00 ðxIÞ þ 6sOS�1�1ðxIÞ

� �
; ð9:209Þ

1
T2;OS

¼ 4pNSc2SISðSþ 1Þ
15�h2 Re 3sOSþ1þ1ð0Þ þ 4sOS00 ð0Þ þ 3sOS�1�1ð0Þ

�
þ sOSþ1þ1ðxIÞ þ 3sOS00 ðxIÞ þ 6sOS�1�1ðxIÞ

�
; ð9:210Þ

which are valid for arbitrary electronic spin. Further simplification,
say for a particular spin S, requires a closed expression for the trans-
lational correlation function.

9.7.5. Inner- and outer-sphere relaxation at low field
Under conditions of low field the static ZFS interaction domi-

nates the electronic Zeeman interaction, and the latter can be
neglected. The electronic relaxation is caused by the distortional
modulation of the transient ZFS, independently of the rate of rota-
tion, and both the electronic relaxation properties and the inner-
sphere relaxation rates behave according to the low-field model
of Nilsson and Kowalewski, and as already described in Section
9.6 [139,140].

The corresponding low-field outer-sphere relaxation behaviour
is slightly different, and needs special consideration. The effects
have been described by Kruk et al. [122,123]. We start from the
outer-sphere spectral density in Eq. (9.201):

KOS
mmðxÞ¼30c2SI

X
q;q0

2 1 1
m�q q �m

� �
2 1 1

m�q0 q0 �m

� �



Z 1

0
TrL bSy

1q

Dð2Þ
0;m�q XOLð0Þð Þ

rð0Þ3 exp i bbL Ls
� �bS1q0

Dð2Þ
0;m�q0 XOLð0Þð Þ

rð0Þ3
( )bP0

" #

expð�ixsÞds;

ð9:211Þ

where the lattice Liouvillian is now given by

bbL L ¼ bbL S þ bbLR þ bbLT ; ð9:212ÞbbLS ¼ bbLZFS;S þ bbLZ � i bbCZFS;T: ð9:213Þ

Following the derivation of the slow-motion theory spectral density
in Section 9.6, we recall that in the low-field limit the electronic
spin is quantized in the PAF of the static ZFS interaction, and so
we write the electronic spin operators in that PAF using the relation
in Eq. (9.119). This gives the following general expression for the
spectral density function:

KOS
mmðxÞ ¼ 30c2SI

X
q;q0

2 1 1
m� q q �m

� �
2 1 1

m� q0 q0 �m

� �



X
p;p0

Z 1

0
TrL eSy

1pD
ð1Þ
pq XPLð0Þð Þ D

ð2Þ
0;m�q XOLð0Þð Þ

rð0Þ3
"


 exp i bbL Ls
� �eS1p0D

ð1Þ
p0q0 XPLð0Þð ÞD

ð2Þ
0;m�q0 XOLð0Þð Þ

rð0Þ3
( )bP0

#

 expð�ixsÞds: ð9:214Þ

This function is simplified by applying the following three
assumptions:
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1. The translational and rotational motion are completely uncorre-
lated. Therefore the Euler angles XPL are independent to the
angles XOL.

2. The rotational diffusion occurs on a sufficiently slow timescale
compared to the electronic dynamics that the two are
uncorrelated.

3. The electronic dynamics are uncorrelated with the translational
motion.

We can now factorize the translational, rotational, and elec-
tronic parts of the spectral density to obtain:

KOS
mmðxÞ ¼ 30c2SI

X
q;q0

2 1 1
m� q q �m

� �
2 1 1

m� q0 q0 �m

� �


X
p;p0

Z 1

0
hDð1Þ

pq XPLð0Þð ÞDð1Þ
p0q0 XPLð�sÞð Þi


 Dð2Þ
0;m�q XOLð0Þð Þ

rð0Þ3
Dð2Þ

0;m�q0 XOLð�sÞð Þ
rð�sÞ3

* +


 TrS eSy
1p exp i bbL Ss

� �eS1p0

� �bP0;S

� 
expð�ixsÞds:

ð9:215Þ
The two factors in angular brackets can be simplified as before, to
give us the final expression for the spectral density:

KOS
mmðxÞ ¼ 8p

9
NSc2SISðSþ 1Þ sOS11ðxÞ þ sOS00 ðxÞ þ sOS�1�1ðxÞ� �

; ð9:216Þ

where the sOSpp ðxÞ are electronic spectral density functions, which
have the form

sOSpp ðxÞ ¼ 3
SðSþ 1Þð2Sþ 1Þ



Z 1

0
TrS eSy

1p exp i bbL Ss
� �eS1p

� �� 
gTðsÞ


 exp½�ðixþ 1=ð3sRÞÞs�ds: ð9:217Þ
These spectral density functions have a similar form to those used
to calculate the inner-sphere relaxation spectral density at low field,
but with the difference that the outer-sphere function contains
information about the translational dynamics through the reduced
spectral density gTðsÞ. The resulting low-field outer-sphere PREs
are:

1
T1;OS

¼ 16pNSc2SISðSþ 1Þ
9�h2 Re sOSþ1þ1ðxIÞ þ sOS00 ðxIÞ þ sOS�1�1ðxIÞ

� �
; ð9:218Þ

1
T2;OS

¼ 8pNSc2SISðSþ 1Þ
9�h2 Re sOSþ1þ1ð0Þ þ sOS00 ð0Þ

�
þ sOS�1�1ð0Þ þ sOSþ1þ1ðxIÞ þ sOS00 ðxIÞ þ sOS�1�1ðxIÞ

�
: ð9:219Þ

As for the high-field case, further simplification requires a closed-
form expression for the translational correlation function.

9.8. The effect of vibrational motion on the PRE

9.8.1. Introduction
We now turn our attention to the role of vibrational motions

(phonons) on the PRE, and expand on the discussion in Section
8.4.4. Vibrational motions occur on a timescale of the order of
100 fs, which is too short to influence nuclear relaxation directly
[184]. This is because the correlation time where the contribution
of the spectral density to the relaxation rate is a maximum is
sc ¼ j1=xIj, which for a nuclear Larmor frequency of �500 MHz,
corresponding to a 1H at 11.74 T, is 0.3 ns. However phonons do

have a more substantial effect on electronic relaxation, as the mag-
nitude of the electronic Larmor frequency is 658 times higher than
that of 1H [310]. For example an unpaired electron at 11.74 T expe-
riences optimum relaxation with a correlation time of 500 fs. This
mechanism for electronic relaxation provides an alternative to the
modulation of the transient ZFS due to solvent collisions. The
pseudo-rotation model of the latter process, where the transient
ZFS is assumed to have constant amplitude and a PAF that changes
direction with time, is clearly an over-simplified description of the
distortion of the coordination environment, and can only be
applied to molecular systems in solution. The inclusion of phonons
removes many of these restrictions, and results in a theory of elec-
tronic relaxation, and therefore the PRE, that can be extended to
solid systems.

In this section we follow Kruk et al. [120] and explore the effects
of phonons on the PRE, to reveal a hierarchy of events: the relax-
ation of the vibrational degrees of freedom leads to electronic-
spin relaxation, which in turn leads to nuclear-spin relaxation.
We begin by treating the vibrational motion of the lattice using
quantummechanics, assuming that it lies within the Redfield limit.
The effect of this motion on the transient ZFS is then highlighted,
leading to a description of the electronic relaxation behaviour,
which we also assume can be described by the Redfield theory.
We assume that the paramagnetic centre is located in an environ-
ment with a vibrationally-averaged geometry that is cubic, so we
may ignore the static ZFS interaction. We then calculate the elec-
tronic relaxation times for the specific case of a spin S ¼ 1 in high
field. Finally we derive the expressions for the PRE, and show that
for S ¼ 1 at high field we recover the Solomon–Bloembergen–Mor
gan equations.

9.8.2. The vibrational subsystem
We begin by considering a paramagnetic molecule in solution.

In this case the vibrational motion can be modelled using a Hamil-

tonian bH that comprises three terms [118]:bH ¼ bHV þ bHB þ bHVB: ð9:220Þ

The first term bHV describes the vibrational motion of the isolated

molecule. The second term bHB describes the liquid bath (lattice),

to which the molecule is coupled via the third term bHVB. We note

that the form of bH is reminiscent of the Hamiltonian in the stochas-
tic Liouville formalism used to describe a combined spin system and
lattice.

An isolated molecule comprising N atoms possesses 3N � 6 nor-
mal modes of vibration if non-linear, or 3N � 5 if linear. For a par-
ticular normal mode i the displacement of the atoms during the
vibration is described by the normal coordinate operator q̂i, which
is a particular mass-weighted linear combination of the atomic dis-
placements. The motion for each mode can be approximated by a
simple harmonic oscillator with a reduced mass li that vibrates

at frequency xV;i. The Hamiltonian bHV is a sum of terms bHV;i, each
one of which represents a single mode:

bHV ¼
X
i

bHV;i; ð9:221Þ

where each bHV;i is given by

ĤV;i ¼ � �h2

2li

@2

@q̂2
i

þ 1
2
lix

2
V;iq̂

2
i : ð9:222Þ

We note that the normal modes are mutually orthogonal, and there-
fore independent of each other. For brevity we define a normal-
coordinate vector q̂ of all the normal coordinates. Note that we have
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defined the system so that the equilibrium displacement of the

molecule corresponds to q̂ ¼ 0̂. The vibrational state of the molecule
is described by a wavefunction jn1n2 . . .i, where ni is the vibrational
quantum number for normal mode i, which takes values
ni ¼ 0;1;2; . . .. The total energy of the system En1n2 ... is the sum of
the individual energies Eni of each mode:

En1n2 ... ¼
X
i

Eni ; ð9:223Þ

Eni ¼ ni þ 1
2

� �
�hxV;i: ð9:224Þ

The vibrational Liouvillian bbLð0Þ
V corresponds to bHV, and therefore

represents the coherent vibrational motion of all normal modes.
The vibrational frequencies generally take values of the order
100–1000 cm�1, and so the populations of the energy levels do
not conform to the high-temperature approximation. Therefore

the equilibrium population pð0Þ
n1n2 ... of each state jn1n2 . . .i is given

by the full Boltzmann distribution:

pð0Þ
n1n2 ...

¼ exp �bLEn1n2 ...
� �

ZV
; ð9:225Þ

where ZV is the partition function:

ZV ¼ TrV exp �bL
bHV

� 	h i
ð9:226Þ

¼
X

n1 ;n2 ;...

exp �bLEn1n2 ...
� �

; ð9:227Þ

and the trace is taken over all the vibrational states.

The Hamiltonian describing the bath bHB need not be stated
explicitly. However the coupling of the normal modes of vibra-
tion to the bath is of particular interest. The corresponding
Hamiltonian is equal to the intermolecular potential
Vðq̂1; q̂2; . . .Þ with which the normal modes interact. We expand
the potential as a Taylor series in the qi to give the expression

for bHVB:

bHVB ¼
X
i

@V
@q̂i

� �
q̂¼0̂

q̂i þ 1
2

X
i;j

@2V
@q̂i@q̂j

 !
q̂¼0̂

q̂iq̂j þ � � � ; ð9:228Þ

where we have defined the potential in the equilibrium molecular

geometry Vð0̂; 0̂; . . .Þ to be zero. The relaxation of the vibrational

subsystem is due to fluctuations in bHVB. For example the first term
in Eq. (9.228) contains the intermolecular forces Fi ¼ @V=@qi, and so
fluctuations in this first term are due to the time modulation of
these forces, which can be shown to occur on a sub-picosecond
timescale [118,119]. These fluctuations occur on a timescale that
is much shorter than the timescale of vibrational relaxation, and
so we are in the Redfield limit. The relaxation is governed by the

relaxation superoperator bbCV , and is characterized by two time con-
stants associated with each normal mode, T1V;i and T2V;i, with the
former giving the lifetime of a vibrational state, and the latter gov-
erning the width of the transition observed in the vibrational
spectrum.

We determine the time evolution of the vibrational density
operator for the entire system q̂VðtÞ via the Liouville–von Neumann
equation

dq̂VðtÞ
dt

¼ � i bbLð0Þ
V þ bbCV

� �
q̂VðtÞ; ð9:229Þ

where we have included the effects of coherent vibrational motion

via bbLð0Þ
V , and vibrational relaxation via bbCV . We now focus on a sim-

plified system possessing a single normal mode of vibration with
normal coordinate q, vibrational frequency xV, and longitudinal

and transverse relaxation times T1V and T2V. Further we assume that
only the ground state j0i and first excited state j1i, with energies E0

and E1, need be considered, as these are the only states with non-

negligible equilibrium populations pð0Þ
0 and pð0Þ

1 . In Liouville space
this system is described by a set of four basis operators
q̂V;mn � jmihnj. As with NMR the operators with m ¼ n correspond
to the population of state jni, and those with m – n correspond to
a coherence between states jmi and jni. Writing the Liouville–von
Neumann Eq. (9.229) explicitly for the matrix elements qV;mn we
obtain

d
dt

qV;00ðtÞ
qV;11ðtÞ
qV;10ðtÞ
qV;01ðtÞ

0BB@
1CCA

¼

�T�1
1V exp �bLE1ð Þ=ZV T�1

1V exp �bLE0ð Þ=ZV 0 0

T�1
1V exp �bLE1ð Þ=ZV �T�1

1V exp �bLE0ð Þ=ZV 0 0

0 0 �ixV�T�1
2V 0

0 0 0 ixV�T�1
2V

0BBBBB@

1CCCCCA



qV;00ðtÞ
qV;11ðtÞ
qV;10ðtÞ
qV;01ðtÞ

0BB@
1CCA:

ð9:230Þ

The block-diagonal form of the Liouville supermatrix allows us to
solve the equation separately for the populations, and each of the
coherences. The matrix elements of the two population operators
are coupled by two simultaneous differential equations, which have
the following solutions:

qV;00ðtÞ¼ pð0Þ
1 qV;00ð0Þ�pð0Þ

0 qV;11ð0Þ
h i

expð�jtj=T1VÞþpð0Þ
0 ; ð9:231Þ

qV;11ðtÞ¼ �pð0Þ
1 qV;00ð0Þþpð0Þ

0 qV;11ð0Þ
h i

expð�jtj=T1VÞþpð0Þ
1 : ð9:232Þ

We see that at infinite time both population operators relax accord-
ing to the time constant T1V, and tend to their equilibrium expres-

sions of pð0Þ
n . The matrix elements of the two coherence operators

evolve independently of each other according to

qV;10ðtÞ ¼ qV;10ð0Þ expð�ixVtÞ expð�jtj=T2VÞ; ð9:233Þ
qV;01ðtÞ ¼ qV;01ð0Þ expðþixVtÞ expð�jtj=T2VÞ: ð9:234Þ
The coherence operators precess at frequency 	xV, and decay to
zero with the time constant T2V.

9.8.3. Electronic relaxation
The electronic spin is coupled to the lattice of quantum vibra-

tions through the ZFS interaction. We now derive the form of the
electronic relaxation rates by considering the resulting fluctuations
in the transient ZFS. The evolution of the electronic spin is gov-
erned by the following Liouville–von Neumann equation

dq̂SðtÞ
dt

¼ � i bbLZ þ bbC e

� �
q̂SðtÞ; ð9:235Þ

where the coherent evolution is due to the electronic Zeeman inter-
action (we recall that the static ZFS is zero), and the relaxation is

governed by the relaxation superoperator bbC e in Eq. (9.82). This
relaxation is due to the modulation of the transient ZFS by the pho-

nons, and so we can write bbC e in terms of the transient ZFS and
relaxation Liouvillians as

�i bbC e ¼ bbLZFS;T þ bbLð0Þ
V � i bbCV: ð9:236Þ

The transient ZFS Hamiltonian is
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bHZFS;T ¼
Xþ2

m¼�2

ð�1ÞmbF2m
bS2�m; ð9:237Þ

where we have written the spatial tensors bF 2m explicitly as opera-
tors to acknowledge that they depend on the normal coordinate

operators q̂. As before we write bF2m in terms of the corresponding

tensors eF2m in the PAF of the interaction:

bF 2m ¼
Xþ2

m0¼�2

eF2m0Dð2Þ
m0mðXFLÞ: ð9:238Þ

The PAF tensor components eF 2m0 are functions of the normal coordi-
nates, and so fluctuate with time during the vibrations. We can
therefore define a set of functions h2m0 ðq̂Þ, which depend on q̂, and
write the operators explicitly as

bF 2m ¼
Xþ2

m0¼�2

hm0 ðq̂Þ: ð9:239Þ

We assume that the transient ZFS is independent of rotational

motion, and so the form of bF 2m does not depend on m. For small dis-
placements of the atomic positions from their equilibrium positions
we can expand hm0 ðq̂Þ as a Taylor series in the normal coordinates as
follows:

hm0 ðq̂Þ ¼ hm0 ð0̂Þ þ
X
i

@hm0

@q̂i

� �
q̂¼0̂

q̂i þ 1
2

X
i;j

@2hm0

@q̂i@q̂j

 !
q̂¼0̂

q̂iq̂j

þ � � � : ð9:240Þ

The zeroth order term hm0 ð0̂Þ gives the magnitude and direction of
the ZFS after motional averaging due to the vibrations, and there-
fore corresponds to the static ZFS. As already stated we treat this
term as zero. The higher-order terms in the Taylor expansion corre-
spond to the transient ZFS.

The electronic relaxation rates depend on the following spectral
density function JðxÞ:

JðxÞ ¼ Re
Z 1

0
hbF 2mð0ÞybF 2mð�sÞi expð�ixsÞds

� 
; ð9:241Þ

which, in turn, depends on the following the time-correlation
function:

hbF2mð0ÞybF 2mð�sÞi ¼ TrV bF y
2m exp i bbLð0Þ

V � i bbCV

� �
s

� �bF 2m

� �bPV ;0

� 
;

ð9:242Þ

where the trace is taken over all vibrational states, and bPV ;0 is the
equilibrium lattice density operator for the vibrational subsystem.

We note that, since bF2m do not depend on the index m, neither does
the spectral density nor the correlation function. Because there is no
coupling between the normal modes we are able to write the total
spectral density as the sum of terms JiðxÞ due to each normal mode:

JðxÞ ¼
X
i

JiðxÞ: ð9:243Þ

To facilitate the discussion we therefore restrict ourselves again to
considering a system with a single normal mode. The final result
can then be easily generalised to several normal modes. From Eq.

(9.240) we write the transient ZFS spatial tensor operators bF2m as
Taylor series in q̂, truncating at second order to givebF 2m ¼ Aq̂þ Bq̂2; ð9:244Þ

where the constants A and B are given by

A ¼
Xþ2

m0¼�2

@hm0

@q̂

� �
q̂¼0̂

; ð9:245Þ

B ¼ 1
2

Xþ2

m0¼�2

@2hm0

@q̂2

 !
q̂¼0̂

: ð9:246Þ

We can now write the correlation function in terms of the normal
coordinate as follows:

hbF2mð0ÞybF2mð�sÞi ¼ A2hq̂ð0Þyq̂ð�sÞi þ B2hq̂2ð0Þyq̂2ð�sÞi
þ ABhq̂ð0Þyq̂2ð�sÞi
þ BAhq̂2ð0Þyq̂ð�sÞi: ð9:247Þ

The terms in angular brackets denote correlation functions of pow-
ers of the normal coordinate operators, which have the following
general expressions:

hq̂xð0Þyq̂yð�sÞi¼TrV q̂xð0Þy exp i bbLð0Þ
V � i bbCV

� �
s

� �
q̂yð0Þ

� �bPV ;0

� 
ð9:248Þ

¼ 1
ZV

TrV q̂xð0Þyq̂yð�sÞexp �bL
bHV

� 	h i
ð9:249Þ

¼
X
m;n

exp �bLEmð Þ
ZV

hmjq̂xð0Þyjnihnjq̂yð�sÞjmi: ð9:250Þ

We therefore compute the correlation function by evaluating all the
terms in Eq. (9.247) in turn. Once again we consider only the states
n ¼ 0 and n ¼ 1.

We begin by evaluating the first term in A2 in Eq. (9.247), which
corresponds to the first-order coupling between the electronic spin
and the vibrational lattice. To facilitate the calculation we write the
normal coordinate operator as a linear combination of the vibra-
tional basis operators q̂V;mn:

q̂ ¼
X
m;n

hmjq̂jniq̂V;mn; ð9:251Þ

The matrix elements hmjq̂jni can be shown to be given by [207]

hmjq̂jni ¼ �h
2lxV

� �1=2

ðnþ 1Þ1=2dm;nþ1 þ ðnÞ1=2dm;n�1

h i
; ð9:252Þ

where l is the reduced mass associated with the normal mode.
Restricting ourselves to the two lowest-lying states we obtain the
following expression for q̂:

q̂ ¼ �h
2lxV

� �1=2

q̂V;10 þ q̂V;01½ �; ð9:253Þ

which we see depends only on the two coherence operators. The
time dependence of q̂ is determined by using the expressions for
the time dependence of the vibrational coherence operators
q̂V;10ðtÞ and q̂V;01ðtÞ which we have previously computed in Eqs.
(9.233) and (9.234). The resulting expression for q̂ðtÞ is therefore

q̂ðtÞ ¼ �h
2lxV

� �1=2

q̂V;10ð0Þ exp �ixVtð Þ þ q̂V;01ð0Þ exp ixVtð Þ½ � exp �jtj=T2Vð Þ

¼ �h
2lxV

� �1=2

j1ih0j exp �ixVtð Þ þ j0ih1j exp ixVtð Þ½ � exp �jtj=T2Vð Þ:

Combining this expression and Eq. (9.250) gives us the correlation
function hq̂ð0Þyq̂ð�sÞi, which is:

hq̂ð0Þyq̂ð�sÞi ¼ �h
2lxV

pð0Þ
0 exp ixVsð Þ þ pð0Þ

1 exp �ixVsð Þ
h i

exp �s=T2Vð Þ:

ð9:254Þ

The corresponding contribution to the spectral density Jð1ÞðxÞ is
given by the Fourier–Laplace transform, and is equal to
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Jð1ÞðxÞ ¼ A2�h
2lxV

pð0Þ
0

T2V

1þ x�xVð Þ2T2
2V

þ pð0Þ
1

T2V

1þ xþxVð Þ2T2
2V

" #
:

ð9:255Þ
We see that the first-order contribution contains spectral-density
components at frequencies x�xV and xþxV, and contains a cor-
relation time that is equal to the transverse relaxation time con-
stant T2V of the vibrational subsystem.

The second term (in B2) in Eq. (9.247) represents a second-order
coupling between the electronic spin and the vibrational lattice.
Repeating the analysis for the first-order term, we begin by writing
the operator q̂2 in terms of the basis operators q̂V;mn:

q̂2 ¼
X
m;n

hmjq̂2jniq̂V;mn; ð9:256Þ

where the matrix elements hmjq̂2jni are [207]

hmjq̂2jni ¼ �h
2lxV

ðnþ 1Þðnþ 2Þð Þ1=2dm;nþ2 þ ð2nþ 1Þdmn

h
þ nðn� 1Þð Þ1=2dm;n�2

i
; ð9:257Þ

Considering only the states n ¼ 0 and n ¼ 1 we obtain:

q̂2 ¼ �h
2lxV

q̂V;00 þ 3q̂V;11½ �: ð9:258Þ

In contrast to the expression for q̂, which depends only on the
coherence operators, q̂2 depends only on the population operators.
The time dependence of the population operators in Eqs. (9.231)
and (9.232) gives us the following time-dependent expression for
q̂2ðtÞ:

q̂2ðtÞ ¼ �h
lxV

pð0Þ
0 j1ih1j � pð0Þ

1 j0ih0j
h i

exp �jtj=T1Vð Þ

þ �h
2lxV

pð0Þ
0 þ 3pð0Þ

1

h i
1̂V: ð9:259Þ

The first term in Eq. (9.259) is time dependent due to the longitudi-
nal relaxation of the vibrational lattice, whereas the second repre-
sents its equilibrium configuration. In determining the electronic
relaxation properties we are interested in the deviation of the vibra-
tional lattice from its equilibrium configuration, and so we remove
this second term and replace Eq. (9.259) with the following:

q̂2ðtÞ ¼ �h
lxV

pð0Þ
0 j1ih1j � pð0Þ

1 j0ih0j
h i

exp �jtj=T1Vð Þ: ð9:260Þ

The correlation function is therefore evaluated to be

hq̂2ð0Þyq̂2ð�sÞi ¼ �h
lxV

� �2

pð0Þ
0 pð0Þ

1

� 	2
þ pð0Þ

0

� 	2
pð0Þ
1

� 
exp �s=T1Vð Þ ð9:261Þ

¼ �h
lxV

� �2 exp �bL�hxVð Þ
1þ exp �bL�hxVð Þð Þ2

exp �s=T1Vð Þ: ð9:262Þ

The resulting second-order contribution from this normal mode to
the spectral density Jð2ÞðxÞ is

Jð2ÞðxÞ ¼ B2 �h
lxV

� �2 exp �bL�hxVð Þ
1þ exp �bL�hxVð Þð Þ2

T1V

1þx2T2
1V

: ð9:263Þ

We see that this contribution to the spectral density does not
depend on the vibrational frequency, and is characterised by a cor-
relation time equal to the longitudinal vibrational relaxation time
constant T1V. This is because the operator q̂2 depends on the popu-
lation operators, and not on the coherence operators, of the vibra-
tional subsystem.

The remaining terms in Eq. (9.247) do not contribute to the
spectral density, as the mixed-order correlation functions are zero:

hq̂ð0Þyq̂2ð�sÞi ¼ hq̂2ð0Þyq̂ð�sÞi ¼ 0: ð9:264Þ
Therefore the total spectral density JðxÞ for this single normal
mode, up to second order, is

JðxÞ ¼ Jð1ÞðxÞ þ Jð2ÞðxÞ ð9:265Þ

¼ A2�h
2lxV

pð0Þ
0

T2V

1þ x�xVð Þ2T2
2V

þ pð0Þ
1

T2V

1þ xþxVð Þ2T2
2V

" #

þ B2 �h
lxV

� �2 exp �bL�hxVð Þ
1þ exp �bL�hxVð Þð Þ2

T1V

1þx2T2
1V

: ð9:266Þ

In a system with more than one normal mode, we simply sum the
individual contributions to the spectral density from each mode
to obtain the total spectral density, as in Eq. (9.243). The resulting
spectral density is then

JðxÞ ¼
X
i

A2
i �h

2lixV;i
pð0Þ
0;i

T2V;i

1þ x�xV;i
� �2T2

2V;i

þ pð0Þ
1;i

T2V;i

1þ xþxV;i
� �2T2

2V;i

( )"

þ B2
i

�h
lixV;i

� �2 exp �bL�hxV;i
� �

1þ exp �bL�hxV;i
� �� �2 T1V;i

1þx2T2
1V;i

#
; ð9:267Þ

where we have added a subscript i to the parameters that are differ-
ent for different normal modes. These results are general for an
arbitrary electronic spin. We now examine the special case of S ¼ 1.

9.8.3.1. Electronic relaxation of a spin S ¼ 1. As already discussed the
electronic relaxation properties of a paramagnetic centre with
S ¼ 1 are characterised by a relaxation time constant for each spin
basis operator. The relaxation processes of the two basis operatorsbS10 and bS20 are described by the two time constants Tð10Þ

1e and T ð20Þ
1e ,

whilst the operators bS1	1; bS2	1, and bS2	2 relax according to the

transverse time constants Tð1	1Þ
2e ; Tð2	1Þ

2e , and T ð2	2Þ
2e . The time con-

stants are calculated from the electronic relaxation superoperatorbbC e in Eq. (9.82), and in the current formalism are given by

1

Tð10Þ
1e

¼ 1
�h2 JðxSÞ þ 4Jð2xSÞ½ �; ð9:268Þ

1

Tð20Þ
1e

¼ 1

�h2 3JðxSÞ½ �; ð9:269Þ

1

Tð1	1Þ
2e

¼ 1

�h2

3
2
Jð0Þ þ 5

2
JðxSÞ þ Jð2xSÞ

� 
; ð9:270Þ

1

Tð2	1Þ
2e

¼ 1

�h2

3
2
Jð0Þ þ 1

2
JðxSÞ þ Jð2xSÞ

� 
; ð9:271Þ

1

Tð2	2Þ
2e

¼ 1
�h2 JðxSÞ þ Jð2xSÞ½ �: ð9:272Þ

We recall that we have neglected the static ZFS throughout this
section, and so the spectral densities are evaluated at multiples of
the electronic Larmor frequency.

9.8.4. The PRE
The electronic relaxation behaviour derived in the preceding

section can be included in the spectral density functions describing
the nuclear-spin relaxation. We can then use the following familiar
equations to derive expressions for the longitudinal and transverse
PREs:

1
T1

¼ 2

�h2 Re KFC
11ðxIÞ þ KSD

11ðxIÞ
� 	

; ð9:273Þ
1
T2

¼ 1

�h2 Re KFC
00ð0Þ þ KFC

11ðxIÞ þ KSD
00 ð0Þ þ KSD

11ðxIÞ
� 	

: ð9:274Þ

A.J. Pell et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 111 (2019) 1–271 139



These expressions can be evaluated in any motional regime, and at
any field, as discussed in this chapter. As stressed at the beginning
of this section the main role of the vibrational motions is to influ-
ence the electronic relaxation. Once this has been characterised
the electronic relaxation properties are used in the common expres-
sion for the PRE.

9.8.4.1. The high-field PRE due to an electronic spin S ¼ 1. A final
example of a calculation of nuclear-spin relaxation concerns the
PRE due to an electronic spin S ¼ 1 at high field, and in the absence
of a static ZFS interaction. The relevant electronic relaxation time
constants are given in Eqs. (9.268) and (9.270). If we include them
in the expressions for the PRE, we simply recover the Solomon–B
loembergen–Morgan equations:

1
T1

¼ 2
3
SðSþ 1Þ AFC

�h

 !2
sE;2

1þ ðxS �xIÞ2s2E;2
þ 2
15

SðSþ 1Þ bSI

�h

� �2


 3sc;1
1þx2

I s2c;1
þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

" #
; ð9:275Þ

1
T2

¼ 1
3
SðSþ 1Þ AFC

�h

 !2

sE;1 þ sE;2
1þ ðxS �xIÞ2s2E;2

" #
þ 1
15

SðSþ 1Þ bSI

�h

� �2


 4sc;1 þ 6sc;2
1þx2

Ss2c;2
þ 3sc;1
1þx2

I s2c;1
þ 6sc;2
1þ ðxS þxIÞ2s2c;2

þ sc;2
1þ ðxS �xIÞ2s2c;2

" #
:

ð9:276Þ

As we discussed in Chapter 8, these expressions are also relevant for
solid-state paramagnetic systems.

9.9. Longitudinal relaxation in metallic solids

9.9.1. Introduction
The final topic that we review in our discussion of relaxation in

paramagnetic systems is nuclear spin relaxation in solid metals.
The primary interest here is to compare the result with the expres-
sions for the PRE in solid insulators that have been derived in pre-
vious sections. Here we restrict the discussion to high-field
conditions, so that we can compare the PRE calculated for a metal
with the Solomon–Bloembergen–Morgan expression for a solid
insulator in Eqs. (8.185) and (8.186).

As for the other cases discussed in this chapter, understanding
the PRE in metallic systems requires us to treat the lattice as a
quantum mechanical object, because the degrees of freedom
include the energy levels associated with the electronic bands in
addition to the electronic spins. However in contrast to the other
cases of relaxation that we have discussed we do not employ Red-
field theory. Instead we restrict the discussion to longitudinal
relaxation, which we describe as being due to energy exchange
between the nuclear spin system and the lattice, via transitions
between the nuclear spin states accompanied by simultaneous
transitions between the electronic states. The longitudinal relax-
ation rates were first described in this way by Korringa [311],
whose treatment was later expanded upon by Abragam [184]
and Slichter [246]. However this description is wholly inadequate
for describing transverse relaxation, for which we would require
a Redfield treatment [253,96].

We proceed according to the following assumptions:

1. We are in the high-field regime, so that the nuclear-spin
dynamics are dominated by the nuclear Zeeman interaction.

2. The temperature is sufficiently high that the nuclear-spin-state
populations are described by the high-temperature approxima-
tion to the Boltzmann distribution.

3. We expect the only significant contributions to the PRE to be
due to conduction electrons near the Fermi level. It is assumed
that the corresponding wavefunctions have substantial s-
character, so that the hyperfine interaction is dominated by
the Fermi-contact part.

4. The stochastic process that causes nuclear relaxation is the
motion of the conduction electrons. The correlation time is
given by the average duration over which the electron remains
localized on a given atom.

9.9.2. Longitudinal relaxation due to transitions between energy levels
As we have pointed out above, the longitudinal relaxation rate

of a system can be calculated by considering the transitions
between the energy levels of the system that are induced by
stochastic processes. In order to conserve energy, any transition
between the nuclear spin states must be accompanied by a transi-
tion of equal energy and in the opposite direction between the lat-
tice states. This is illustrated in Fig. 9.2, which shows an absorptive
transition for a nuclear spin 1=2 from the state j þ 1=2i to j � 1=2i
occurring simultaneously with an emissive transition in the lattice
from state jk;msi to jk0

;m0
si. We are interested in the return to equi-

librium of the populations of the nuclear spin states jni, as this cor-
responds to longitudinal relaxation. We can explain the relaxation
process as arising from the rates of change of the state populations
pn, which are given by:

dpn

dt
¼
X
m

pmWmn � pnWnmð Þ: ð9:277Þ

The positive term pmWmn in Eq. (9.277) describes the increase in pn

due to a transition from state jmi, whereas the negative term
�pnWnm describes a reduction in pn due to a transition to state
jmi. The transition coefficientWmn is the number of transitions from
jmi to jni that occur per unit time. At equilibrium the populations

have their equilibrium values pð0Þ
n , and their rate of change is zero.

Therefore from Eq. (9.277), we are able to deduce the following rela-
tionship between Wmn and Wnm:

pð0Þ
m Wmn ¼ pð0Þ

n Wnm: ð9:278Þ
The longitudinal relaxation rate governing this return to equilib-
rium depends on the transition coefficients and the energies of
the states. It can be shown that the expression is

1
T1

¼ 1
2

P
m;nWmn Em � Enð Þ2P

nE
2
n

: ð9:279Þ

It we only consider the effects of the conduction electrons near the
Fermi surface, Eq. (9.279) corresponds to the longitudinal PRE. We
now require expressions for the transition coefficients.

9.9.3. The longitudinal PRE of nuclei in a metal
We first consider transitions of the combined system from the

initial occupied state jMIkmsi to the final unoccupied state

Fig. 9.2. Illustration of the nuclear relaxation process for a nuclear spin coupled to
an electronic lattice. Here the nuclear-spin absorption transition is accompanied by
an emission transition in the lattice, so that energy is exchanged between the two
parts of the system.
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jM0
Ik

0m0
si. The corresponding transition coefficients WMIkms ;M0

Ik
0m0

s
are

given by the Fermi golden rule:

WMIkms ;M0
Ik

0m0
s
¼ 2p

�h
jhMIkmsjbHILjM0

Ik
0m0

sij2d EMI þ Ekms � EM0
I
� Ek0m0

s

� 	
;

ð9:280Þ
where EMI is the energy of nuclear spin state jMIi, and Ekms is the

energy of the lattice state jkmsi, and the Hamiltonian bHIL is
describes the coupling between the nuclear spin system and the lat-
tice, which here is due to the Fermi-contact interaction. We see
that, due to the Dirac delta function, the rate of transition is non-
zero only if the total energy is conserved, i.e.
EMI þ Ekms ¼ EM0

I
¼ Ek0m0

s
. These transition coefficients refer to transi-

tions from the nuclear spin state jMIi to jM0
Ii that are accompanied

by a transition between particular lattice states. However the same
nuclear spin transitions can also occur simultaneously with other
lattice transitions. We are therefore interested in the overall transi-
tion coefficient WMI ;M

0
I
that describes the number of nuclear-spin

transitions per unit time that occur, irrespective of the lattice-
state transitions involved. This is computed by summing the
WMIkms ;M0

Ik
0m0

s
both over all occupied initial lattice states jkmsi, and

over all unoccupied final lattice states jk0m0
si:

WMI ;M
0
I
¼

X
kms occ:

X
k0m0

s unocc:

WMIkms ;M0
Ik

0m0
s

ð9:281Þ

¼
X

kms ;k
0m0

s

WMIkms ;M0
Ik

0m0
s
f ms

ðkÞ 1� f m0
s
ðk0Þ

h i
: ð9:282Þ

The Fermi–Dirac function f ms
ðkÞ can be interpreted as the probabil-

ity that the state jkmsi is occupied, and so 1� f m0
s
ðk0Þ

h i
is the corre-

sponding probability that jk0m0
si is unoccupied. Therefore the

inclusion of the factor f ms
ðkÞ 1� f m0

s
ðk0Þ

h i
in the second line allows

us to remove the restriction of only summing over occupied or
unoccupied states.

The coupling between the nuclear spin system and the lattice is
described by the Fermi-contact interaction Hamiltonian from Eq.
(2.191). Here we consider the coupling to a single electron, which

gives us the following Hamiltonian bHIs:

bHIs ¼ 2
3
l0lBge�hcIdðrÞÎ � ŝ; ð9:283Þ

where the nucleus is at r ¼ 0. The first step in the calculation of the

transition coefficients is to evaluate the matrix element of bHIs in Eq.
(9.280) using the combined states jMIkmsi ¼ jMIij/kðrÞijmsi:

hMIkmsjĤIsjM0
Ik

0m0
si ¼

2
3
l0lBge�hcI/kð0Þ/k0 ð0Þ


 hMI ĵIjM0
Ii � hmsjŝjm0

si: ð9:284Þ
Inserting this into the expression for the transition coefficient in the
combined spin–lattice system, we obtain

WMIkms ;M0
Ik

0m0
s
¼ 2p

�h
4
9
l2

0l
2
Bg

2
e�h

2c2I j/kð0Þj2j/k0 ð0Þj2


 d EMI þ Ekms � EM0
I
� Ek0m0

s

� 	


X
i;j

hMI ĵIijM0
IihM0

I ĵIjjMIihms ĵsijm0
si


 hm0
s ĵsjjmsi: ð9:285Þ

We see that the rate of the transition is proportional to the elec-
tronic spin density at the nucleus in both the initial and final states.

We obtain the total transition coefficient for each pair of
nuclear spin states by combining Eqs. (9.282) and (9.285).

Recalling that the sums over k and k0 can be replaced by integrals
according to Eq. (2.30), we obtain the double integral:

WMI ;M
0
I
¼ V2

X
ms ;m0

s

ZZ
hWMIkms ;M0

Ik
0m0

s
iEk ;Ek0 f ms

ðEkÞ


 1� f m0
s
ðEk0 Þ

h i
gms

ðEkÞgm0
s
ðEk0 ÞdEkdEk0 ð9:286Þ

¼ 2p
�h

4
9
l2

0l
2
Bg

2
e�h

2c2I V
2
X
i;j

hMIjbIijM0
IihM0

IjbIjjMIi



X
ms ;m0

s

hms ĵsijm0
sihm0

s ĵsjjmsi



ZZ

hj/kð0Þj2iEk hj/k0 ð0Þj2iEk0 f ms
ðEkÞ


 1� f m0
s
ðEk0 Þ

h i
gms

ðEkÞgm0
s
ðEk0 Þ


 d EMI þ Ekms � EM0
I
� Ek0m0

s

� 	
dEkdEk0 ; ð9:287Þ

where we have used the density of states for electrons in a partic-
ular spin state gms

ðEkÞ, and V is the volume of the metal. The first
integral over the energy Ek0 is easy to compute due to the Dirac delta
function. The result is

WMI ;M
0
I
¼ 2p

�h
4
9
l2

0l
2
Bg

2
e�h

2c2I V
2
X
i;j

hMIjbIijM0
IihM0

IjbIjjMIi



X
ms ;m0

s

hms ĵsijm0
sihm0

s ĵsjjmsi 

Z

hj/kð0Þj2iEk hj/k0 ð0Þj2iEk0 f ðEkms Þ


 1� f ðEk0m0
s
Þ

h i
gms

ðEkÞgm0
s
ðEk0 ÞdEk; ð9:288Þ

where we have replaced f ms
ðEkÞ with f ðEkms Þ, and Ek0 is equal to

Ek0 ¼ Ek þ Ems � Em0
s
þ EMI � EM0

I
: ð9:289Þ

To make further progress we now make some simplifications.
In the expression relating the energies of the two k-states in Eq.
(9.289), we neglect the electronic and nuclear transition energies
Em0

s
� Ems and EM0

I
� EMI , and set Ek0 ¼ Ek � E. This statement

amounts to saying that Wmn ¼ Wnm, which we recall results in
zero nuclear polarization, which is unphysical. However we are
able to neglect the difference between Wmn and Wnm here as this
effect has already been included in Eq. (9.278) [246]. Therefore a
better interpretation of this statement is that it amounts to assum-
ing low nuclear polarization. Hence this theory of relaxation
implicitly contains a high-temperature approximation. This fur-
ther allows us to replace the density of states for a particular spin
state gms

ðEÞ with gðEÞ=2, where gðEÞ is the total density of states.
This gives us

WMI ;M
0
I
¼ 2p

�h
1
9
l2

0l
2
Bg

2
e�h

2c2I V
2
X
i;j

hMIjbIijM0
Ii


 hM0
IjbIjjMIi

X
ms ;m0

s

hms ĵsijm0
sihm0

s ĵsjjmsi



Z 1

0
hj/kð0Þj2i2Ef ðEÞ 1� f ðEÞ½ �gðEÞ2dE: ð9:290Þ

The integral is evaluated by noting that the factor containing the
Fermi–Dirac functions f ðEÞ 1� f ðEÞ½ � is proportional to a Dirac delta
function:

f ðEÞ 1� f ðEÞ½ � ¼ �kTf 0ðEÞ ð9:291Þ
¼ kT dðE� EFÞ; ð9:292Þ

from which we obtain
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Z 1

0
hj/kð0Þj2i2Ef ðEÞ 1� f ðEÞ½ �gðEÞ2dE

¼ hj/kð0Þj2i2EFgðEFÞ2kT: ð9:293Þ

The sum over the product of the electronic spin matrix elements is
simplyX
ms ;m0

s

hms ĵsijm0
sihm0

s ĵsjjmsi ¼ Trs ŝi ŝj
� � ð9:294Þ

¼ 1
2
dij: ð9:295Þ

The final expression for the transition coefficients is therefore:

WMI ;M
0
I
¼ p

9
l2

0l
2
Bg

2
e�hc

2
I V

2hj/kð0Þj2i2EFgðEFÞ2


 kT
X
i

hMIjbIijM0
IihM0

IjbIijMIi: ð9:296Þ

The transition coefficient is proportional to the square of the aver-

age single-electron spin density at the Fermi level hj/kð0Þj2iEF , and
to the square of the density of states at the Fermi level gðEFÞ. This
means that the rate of nuclear-spin transitions is dominated by
the conduction electrons at the Fermi level. As the temperature
increases the number of electrons that are promoted into excited
states increases. Since these electrons are all in the vicinity of the
Fermi level this means that we can expect the rate of nuclear tran-
sitions mediated by the Fermi-contact interaction with these elec-
trons to also increase. This is observed by the proportionality of
WMI ; M0

I
to T.

It now remains to compute the longitudinal PRE, which is done
by inserting Eq. (9.296) into Eq. (9.279) to obtain

1
T1

¼ p
18

l2
0l

2
Bg

2
e�hc

2
I V

2hj/kð0Þj2i2EFgðEFÞ2kT

P
i

P
MI ;M

0
I
hMI jbI ijM0

IihM0
IjbIijMIi EMI � EM0

I

� 	2
P

MI
E2
MI

ð9:297Þ

¼ � p
18

l2
0l

2
Bg

2
e�hc

2
I V

2hj/kð0Þj2i2EFgðEFÞ2kT
P

iTrI bHIZ ;bI ih i2� �
TrI bH2

IZ

� 	 ; ð9:298Þ

where to go to the second line we have invoked the high-field
approximation and assumed that the nuclear spin Hamiltonian is

dominated by the Zeeman Hamiltonian bHIZ ¼ ��hcIB0
bIz. The numer-

ator and denominator of the quotient are evaluated to beX
i

TrI bHIZ ;bIih i2� �
¼ ��h2c2I B

2
0TrI bI2x þbI2y� 	

; ð9:299Þ

TrI bH2
IZ

� 	
¼ �h2c2I B

2
0TrI bI2z� 	

; ð9:300Þ

and since the following identity applies for all nuclear spins I:

TrI bI2x� 	
¼ TrI bI2y� 	

¼ TrI bI2z� 	
; ð9:301Þ

we calculate the quotient to be �2. The final expression for the lon-
gitudinal PRE is therefore

1
T1

¼ p
9
l2

0l
2
Bg

2
e�hc

2
I V

2hj/kð0Þj2i2EFgðEFÞ2kT: ð9:302Þ

As we have already commented for the transition coefficientWMI ;M
0
I
,

we see that the PRE increases with the square of the total electron

spin density at the nucleus hj/kð0Þj2iEFgðEFÞ, which is dominated by

the electrons close in energy to the Fermi level, and with the
temperature.

9.9.4. The Korringa relation
There is an important relationship between the longitudinal

PRE in Eq. (9.302) and the Knight shift in Eq. (7.165), which is
known as the Korringa relation [311,184,246]. Specifically the
two expressions can be combined to give a quantity T1K

2 that is
equal to

T1K
2 ¼ vP

gðEFÞ
� �2 4

pkT
1

l2
0l2

Bg2
e�hc2I

: ð9:303Þ

We see that this quantity depends only on the magnetic susceptibil-
ity, the density of states at the Fermi level, and the temperature. In
the special case of non-interacting electrons the magnetic suscepti-
bility is given by the Pauli expression in Eq. (7.178), and the Kor-
ringa relation becomes [311]:

T1K
2 ¼ �h

4pkT
cS
cI

� �2

; ð9:304Þ

where T1K
2 depends only on the temperature, and the ratio of the

electronic and nuclear gyromagnetic ratios. In principle it should
be possible to use the Korringa relation to calculate T1 relaxation
times from Knight shifts. However care should be taken in the
application of the Korringa relation, since it has been shown that,
for simple metals, the experimental T1 values are greater than the
values predicted. This is because of the neglect of effects such as
electron–electron interactions, and other relaxation mechanisms.

9.9.5. Comparison of the longitudinal PRE in solid insulators and
metals

An initial comparison of the longitudinal PRE in a metal in
Eq. (9.302) with the corresponding expression for a solid insula-
tor from the Solomon–Bloembergen–Morgan theory in Eq.
(8.185) appears to indicate that there is little similarity between
the two expressions. The most obvious difference is that in a
metal the dominant source of relaxation is a Bloembergen-
type mechanism due to the Fermi-contact interaction, whereas
we have shown that in an insulator the Bloembergen contribu-
tion is negligible compared to the Solomon contribution. How-
ever on closer examination there is greater similarity than one
would expect.

Here we compare the longitudinal PRE in a metal to the Bloem-
bergen expression in a solid insulator. In order to facilitate the dis-
cussion we take the expression for the metal in Eq. (9.302), and
assume the free-electron model. The density of states at the Fermi
level then takes the simple expression gðEFÞ ¼ 3N=ð2VEFÞ, where N
is the number of electrons, and we obtain:

1

Tmetal
1

¼ p
4

l0lBgecI
� �2 Nhj/kð0Þj2iEF

� 	2 �h
EF

� �
kT
EF

� �
: ð9:305Þ

We can rationalize this expression as follows. The factor

Nhj/kð0Þj2iEF is the total electronic density at the nucleus due to
the N electrons, which is computed from the average one-electron
density due to the electrons at the Fermi surface. The factor �h=EF

can be interpreted as follows. The fluctuation local field exerted
by the electronic spin on the nucleus has a correlation time which
is the average duration for which the conduction electron remains
localized at the nucleus. The order of magnitude of this correlation
time is �h=EF [184]. For typical values of the Fermi energy in simple
metals �h=EF � jxS �xIj, indicating that we are in the extreme nar-
rowing limit. Finally the factor kT=EF gives the fraction of electrons
that participate in the relaxation process at finite temperature, with
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the remainder having no overall contribution due to the spin
pairing.

For a solid insulator the longitudinal PRE due to the Bloember-
gen mechanism is give in Eq. (8.185). If we assume that the para-
magnetic centre has a single unpaired electron, so that S ¼ 1=2,
and also assume that we are in the extreme-narrowing limit we
obtain the following expression:

1

T insul:
1

¼ 2
9
l0lBgecI
� �2qa�bð0Þ2T2e: ð9:306Þ

This expression bears some similarity to Eq. (9.305). The electron-
spin density at the nucleus is now given by qa�bð0Þ which, unlike
in the metal, is a contribution from a single unpaired electron. This
reflects the fact that in an insulator the Fermi-contact interaction is
short-range, as the electrons are largely localised in the metal coor-
dination site, rather than delocalised throughout the material as in a
metal. In addition the PRE is proportional to the electron T2e, which
plays the role of the correlation time. However we should note that
T2e has a very different interpretation to the correlation time in the
metal, as in the insulator the electrons are largely localised, and the
electronic relaxation is largely due to the vibrational motions.

9.10. Key concepts

� A general treatment of electronic and nuclear relaxation can be
made using the stochastic Liouville–von Neumann equation.

� The resulting expressions for nuclear relaxation include the
effects of electronic relaxation for spins S > 1 that is outside
the Redfield limit, spin–orbit coupling effects on the electronic
spin (g-anisotropy, and static ZFS), and low-field conditions.

� Under high-field conditions and for S ¼ 1 we recover the
Solomon–Bloembergen–Morgan equations (Eqs. (9.111) and
(9.112)). For higher electronic spins we recover the Solomon–
Bloembergen–Morgan equations assuming a phenomenological
treatment of electronic relaxation.

� Under conditions of low field and slow motions the PREs are
given by Eqs. (9.129) and (9.130) for arbitrary electronic spin,
and Eqs. (9.166) and (9.167) for S ¼ 1.

� Metal ions in solution that coordinate to the solvent molecules
have a complicated relaxation process that can be separated
into inner- and outer-sphere mechanisms (Eq. (9.178)). The
expressions for the inner-sphere relaxation rates at high field
determined by Redfield theory are given in Eqs. (9.188) and
(9.189). For inner-sphere relaxation at high field the expres-
sions for S ¼ 1 reduce to the Solomon–Bloembergen–Morgan
equations. The expressions for the outer-sphere relaxation rates
are given in Eqs. (9.209) and (9.210) at high field, and Eqs.
(9.218) and (9.219) at low field.

� Vibrational motions are an important source of electronic relax-
ation both in solution and in solid insulators. The PRE expres-
sions at high field are the Solomon–Bloembergen–Morgan
equations.

� In a metal the PRE is mainly due to the Fermi-contact interac-
tion with the delocalised electrons, and so shares some similar-
ities with the Bloembergen mechanism in solid insulators. The
longitudinal PRE is given in Eq. (9.302).

Chapter 10: Inhomogeneous broadening due to the bulk
paramagnetic susceptibility

The description of the paramagnetic shielding tensor has so far
focussed on the local effects of the paramagnetic metal centres on
the observed nuclear spin. However in certain cases we must also
consider the bulk magnetic properties of the system, which can
affect the measured values of the shift and the inhomogeneous

linewidth in the spectrum. Such effects can be present in solution,
single crystals, and solid powders. The important points to con-
sider are the shape of the crystal containing the nucleus in solid
samples, any neighbouring crystallites, and the shape of the sam-
ple container. These bulk properties are collectively known as bulk
magnetic susceptibility (BMS) effects as they depend on the sus-
ceptibility tensor of the entire sample. The BMS has been shown
to influence both the measured paramagnetic shift and shift aniso-
tropy, and the line shape and linewidth [154,155]. The treatment of
the BMS effects in this chapter is based on the theory of classical
electrodynamics, on which further information can be found in
standard textbooks such as the one by Jackson [187]. Here we focus
on paramagnetic solids, considering first single crystals, and then
microcrystalline powders.

10.1. The BMS shift in a single crystal

10.1.1. The demagnetising field in a single crystal
In Section 2.2 we introduced the concept that a magnetic field

can be described either in terms of the H-field HðrÞ or the B-field
BðrÞ, which are related by Eq. (2.9), which is repeated below for
convenience:

BðrÞ ¼ l0ðHðrÞ þMðrÞÞ; ð10:1Þ
and where we have explicitly written in the dependence on position
of both fields and the magnetization. The H-field HðrÞ is equal to the
sum of the applied H-field H0 and a demagnetising H-field HDðrÞ,
which is an opposing field produced by the combined effect of all
the magnetic moments in the solid crystal. The magnetic B-field
BðrÞ is therefore given by

BðrÞ ¼ l0ðH0 þ HDðrÞ þMðrÞÞ ð10:2Þ
¼ B0 þ BDðrÞ; ð10:3Þ

where B0 ¼ l0H0 is the applied B-field, and BDðrÞ ¼ l0ðHDðrÞþ
MðrÞÞ is the demagnetising B-field. So far this description is valid
for any magnetic solid. Restricting the discussion to paramagnetic
solids, the bulk magnetization inside the crystallite Mc is due to
the applied field H0, and can be written as

Mc ¼ vV � H0; ð10:4Þ
where vV is the bulk magnetic susceptibility tensor per unit volume,
which in general is anisotropic. By contrast the magnetization out-
side the crystallite MðrÞ is zero.

For an object of micrometre dimensions or larger, the demag-
netising fields can be calculated from classical magnetostatics,
where we model the crystallite as a uniformly-magnetized object
occupying a spatial volume V that is bounded by a surface S. The
demagnetising H-field HDðrÞ is then given by the vector gradient
of a scalar potential UDðrÞ [187]

HDðrÞ ¼ �$UDðrÞ; ð10:5Þ

where we have acknowledged that both the field and scalar poten-
tial vary with position r, the origin of which is the centre of mass of
the crystallite. Note that the nucleus can be located either inside
this crystallite, or outside in a second crystallite. The scalar poten-
tial is given by the following integral expression:

UDðrÞ ¼ � 1
4p

ZZZ
V

$0 �Mðr0Þ
jr � r0j dV 0 þ 1

4p

Z
�
Z
S

n0 �Mðr0Þ
jr � r0j da0; ð10:6Þ

where r0 is the vector giving the position of the paramagnetic cen-
tre, r is the position of the nucleus, n0 is the unit vector normal to
the surface pointing outwards, and da0 is an infinitesimal area
located on the surface S. The first integral is over the volume of
the crystallite, and the second integral is taken its bounding surface.
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Both integrals are evaluated with respect to the primed coordi-
nates. In the paramagnetic regime we assume that within the
crystallite MðrÞ ¼ Mc and is uniform throughout V, and hence
both $0 �Mðr0Þ and the volume integral are equal to zero, which
leaves us with

UDðrÞ ¼ 1
4p

Z
�
Z
S

n0 �Mc

jr � r0jda
0: ð10:7Þ

From Eqs. (10.4), (10.5), and (10.7) the magnetic field HD takes the
following form [152]:

HDðrÞ ¼ �NðrÞ � vV � H0; ð10:8Þ

where NðrÞ is the demagnetising tensor, which has the following
components NijðrÞ:

NijðrÞ ¼ 1
4p

@

@ri

Z
�
Z
S

n0
j

jr � r0jda
0 ð10:9Þ

¼ � 1
4p

Z
�
Z
S

ri � r0i
jr � r0j3

n0
jda

0: ð10:10Þ

The demagnetising H-field is therefore a matrix product of three
parts, each of which is due to a different physical property of
either the system or the experimental conditions. The demag-
netising field has a magnitude proportional to H0, but with a
reduced size, and has a different direction due to the demag-
netising and volume susceptibility tensors. The latter tensor vV

encodes the influence of the (generally anisotropic) magnetic
moments of the paramagnetic ions in the crystallite, in the same
way as the single-ion susceptibility influences the local paramag-
netic shielding tensor as shown in Chapter 4, via the g- and ZFS
tensors. The demagnetising tensor NðrÞ contains all the informa-
tion about the shape of the crystallite via the surface integral.
We therefore expect it to be anisotropic for crystallites that
deviate from spherical symmetry. This is also the only contribu-
tion to HDðrÞ that is position dependent. The trace of the demag-
netising tensor can be calculated to be

TrðNðrÞÞ ¼ � 1
4p

Z
�
Z
S

r � r0ð Þ � n0

jr � r0j3
da0 ð10:11Þ

¼ � 1
4p

ZZZ
V
$0 � r � r0ð Þ

jr � r0j3
( )

dV 0 ð10:12Þ

¼
ZZZ

V
dðr0 � rÞdV 0 ð10:13Þ

¼ 1; if r is inside the crystallite;
0; if r is outside the crystallite;

�
ð10:14Þ

where to go to the second line we have used the divergence theo-
rem for the integrals of vector fields [190]. Fig. 10.1 gives three
examples of demagnetising tensors for crystals of different shapes
that can be used for calculating the internal demagnetising field.
We see that for each tensor the trace is equal to unity. In all three
examples the form of NðrÞ matches the symmetry of the crystal
shape. With the axis system shown this results in all three matrices
being diagonal, and so these axes give the PAF of the tensor. If
instead we take an axis system that is fixed to the laboratory frame
of reference the tensor NðrÞ is of course not diagonal. We note that
in any direction i where the crystal dimension extends to infinity
there is no bounding surface, and so Nii ¼ 0.

Once we have calculated HDðrÞ we can calculate the demag-
netising B-field from

BDðrÞ ¼ l0ðHD þMðrÞÞ ð10:15Þ
¼ �l0NðrÞ � vV � H0 þ l0MðrÞ ð10:16Þ
¼ �NðrÞ � vV � B0 þ l0MðrÞ; ð10:17Þ

where MðrÞ is equal to vV �H0 ¼ vV � B0=l0 inside the crystallite,
and zero outside the crystallite. Alternatively we can calculate
BDðrÞ directly from the vector potential ADðrÞ from the relation

BDðrÞ ¼ $
 ADðrÞ; ð10:18Þ
where the vector potential is given by

ADðrÞ ¼ l0

4p

ZZZ
V

$0 
Mðr0Þ
jr � r0j dV 0 þ l0

4p

Z
�
Z
S

Mðr0Þ 
 n0

jr � r0j da0: ð10:19Þ

Fig. 10.1. The demagnetising tensors of three uniformly-magnetized crystals of different three-dimensional shapes that give the demagnetising field at any point within each
crystal. The crystal shapes are (a) a sphere, (b) an infinitely-long cylindrical rod, and (c) a plane extending to infinity in two dimensions. The arrows in (b) and (c) indicate the
directions in which the crystals extend to infinity. The axis system is shown to the left.
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If we, once again, assume that MðrÞ is independent of position
within the crystallite the volume integral is equal to zero and the
vector potential reduces to

ADðrÞ ¼ l0

4p

Z
�
Z
S

Mc 
 n0

jr � r0j da
0: ð10:20Þ

The calculation of BDðrÞ directly from the vector potential gives the
same result as the calculation starting from the scalar potential via
HDðrÞ. The former method was used by Kubo et al. [152], whereas
the latter is the approach of Dickinson et al. [153].

The demagnetising B-field can be thought of as being due to a
chemical shielding at the nuclear spin. This BMS chemical shield-
ing rBMS can be calculated by equating the two forms of the nuclear
Zeeman interaction:

� �hcIBðrÞ � Î ¼ ��hcIB0 � 1� rBMSðrÞ� � � Î ð10:21Þ
B0 þ BDðrÞ½ � � 1 ¼ B0 � 1� rBMSðrÞ� �

; ð10:22Þ
which gives

BDðrÞ � 1 ¼ �B0 � rBMSðrÞ: ð10:23Þ
The final expression for the BMS shielding tensor is therefore

rBMSðrÞ ¼ vV � NðrÞT � 1
� 	

; inside the crystallite;

vV � NðrÞT ; outside the crystallite:

8<: ð10:24Þ

Both the isotropic and anisotropic parts of the BMS shielding tensor
depend on the nature of the paramagnetic centres via the bulk sus-
ceptibility tensor, and the crystallite shape via the demagnetizing
tensor.

10.1.2. The BMS shift of a spherical crystallite
We now consider the simple case of a spherical crystallite with

radius ac. The scalar potential is given by Eq. (10.7) following a con-
version to spherical polar coordinates r ! r; h;/ð Þ and
r0 ! r0; h0;/0ð Þ:

UDðrÞ ¼ a2c
4p

Z 2p

0
d/0

Z p

0
dh0 sin h0


 Mc;x sin h0 cos/0 þMc;y sin h0 sin/0 þMc;z cos h0

jr � r0j :

ð10:25Þ
The integrals can be computed by using the following identity for

jr � r0j�1 [187]:

1
jr � r0j ¼ 4p

X1
l¼0

Xþl

m¼�l

1
2lþ 1

rl<
rlþ1
>

Ylmðh0;/0ÞYlmðh;/Þ; ð10:26Þ

where the Ylmðh;/Þ are spherical harmonic functions of rank l and
order m. The distance r< is equal to the smaller of r and r0, and like-
wise r> to the larger of the two. Of the terms in Eq. (10.26), only
those with l ¼ 1 give a non-zero contribution to the integral, and
so the scalar potential has the simple expression

UDðrÞ ¼ 1
3
a2c

r<
r2>

� �
Mc � r

r

� �
: ð10:27Þ

If the observed nuclear spin is located inside the crystallite the

scalar potential becomes Uin
D ðrÞ, which is

Uin
D ðrÞ ¼

1
3
Mc � r; ð10:28Þ

and the corresponding demagnetising H-field Hin
D is

Hin
D ¼ �1

3
Mc ð10:29Þ

¼ �1
3
vV � H0: ð10:30Þ

Comparing this with Eq. (10.8) we see that the demagnetising ten-
sor NðrÞ is equal to

NðrÞ ¼ 1
3
1; ð10:31Þ

which is isotropic, as expected for a spherical crystallite. The BMS
shielding of the nucleus inside the crystallite is now easily calcu-
lated from Eq. (10.24), giving

rBMS ¼ �2
3
vV ; inside the crystallite: ð10:32Þ

If the observed nuclear spin is outside the crystallite in question
the scalar potential Uout

D ðrÞ is:

Uout
D ðrÞ ¼ a3c

Mc � r
3r3

ð10:33Þ

¼ V c
Mc � r
4pr3

ð10:34Þ

¼ mc � r
4pr3

; ð10:35Þ

where Vc ¼ 4pa3
c=3 is the volume of the crystallite, and mc ¼ VcMc

is its total magnetic moment. The demagnetising field Hout
D evalu-

ates to

Hout
D ¼ 1

4p
3r mc � rð Þ

r5
�mc

r3

� 
; ð10:36Þ

which we immediately recognise as the field exerted by a point
dipole moment mc at position r. We therefore obtain the result that
a nucleus outside the crystallite experiences a dipolar coupling
interaction with the crystallite, and that the crystallite can be mod-
elled as a point dipole with a magnetic moment equal to the bulk
value mc. The demagnetising tensor has the components

NijðrÞ ¼ �V cC
dip
ij ðrÞ; ð10:37Þ

where Cdip is the reduced point-dipolar coupling tensor:

Cdip
ij ðrÞ ¼ 3rirj � r2dij

4pr5
: ð10:38Þ

Eq. (10.24) gives the corresponding BMS shielding tensor:

rBMSðrÞ ¼ �VcvV � CdipðrÞ; outside the crystallite; ð10:39Þ
which is an analogous expression to that obtained for the spin-
dipolar contribution to the local paramagnetic shielding tensor in
terms of the single-paramagnetic-centre susceptibility tensor in
Eq. (4.182).

10.1.3. The IBMS and ABMS contributions to the paramagnetic
shielding tensor

The contributions to the BMS shielding tensor of a nucleus both
inside and outside a given crystallite can be separated into two
groups: those due to the isotropic volume susceptibility of the
crystallite, and those due to the volume susceptibility anisotropy.
The former contributions give rise to isotropic bulk magnetic sus-
ceptibility (IBMS) effects, whilst the latter are responsible for the
anisotropic bulk magnetic susceptibility (ABMS) effects. Four terms
can be clearly distinguished, which are listed in Table 10.1 for a
spherical crystallite, along with their irreducible spherical tensor
ranks.

If the observed nucleus is within the crystallite in question, the
two contributions to the BMS shielding tensor are 1 and 2. Term 1
is the IBMS contribution, with a size that is proportional to the iso-
tropic volume susceptibility viso

V and simply changes the isotropic
shift. Term 2, on the other hand, is the ABMS contribution which
is purely anisotropic, with anisotropy parameters that are
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proportional to those of the anisotropic volume susceptibility van
V .

These IBMS and ABMS shielding parameters are

rIBMS;1
iso ¼ �2

3
viso
V ; ð10:40Þ

DrABMS;2 ¼ �2
3
DvV ; ð10:41Þ

gABMS;2 ¼ gvV ; ð10:42Þ

where rIBMS;1
iso , DrABMS;2, and gABMS;1 are the isotropic shielding, SA,

and asymmetry parameter of the BMS shielding tensor, and viso
V ,

DvV , and gvV are the isotropic part, anisotropy, and asymmetry
parameter of the volume susceptibility. Both the IBMS and ABMS
contributions depend only on the volume susceptibility, and so
are independent of both the size of the crystallite, and the position
of the nucleus within the crystallite. Terms 1 and 2 are the ‘‘bulk
equivalents” of the local shielding terms in the susceptibility for-
malism, given in Table 5.1, that are the contact shift �visoCcon and
SA �DvCcon.

For a nuclear spin outside the crystallite, the IBMS and ABMS
contributions to the shielding tensor are terms 3 and 4, both of
which depend on the dipolar coupling between the nucleus and
the whole crystallite. Term 3 is purely anisotropic, with anisotropic
shielding parameters that depend solely on the dipolar coupling
tensor. The resulting anisotropy DrIBMS;3 and asymmetry gIBMS;3 are

DrIBMS;3 ¼ � Vc

2pr3
viso
V ; ð10:43Þ

gIBMS;3 ¼ 0: ð10:44Þ
The ABMS term 4 is a matrix product between the anisotropic

part of the volume susceptibility tensor and the dipolar coupling
tensor, and so contains parts of irreducible spherical tensor ranks
0 (isotropic), 1 (anisotropic and antisymmetric), and 2 (anisotropic
and symmetric). The isotropic part rABMS;4

iso has the form of a PCS:

rABMS;4
iso ¼� V c

12pr3
DvV ;ax 3cos2ðhÞ�1

� �þ3
2
DvV ;rh sin

2ðhÞcosð2/Þ
� 

;

ð10:45Þ
where DvV ;ax and DvV ;rh are the axial and rhombic anisotropies of
the volume susceptibility tensor, and h and / are the spherical polar
angles which give the orientation of van

V with respect to the vector r
connecting the nucleus to the centre of the crystallite. In contrast to
the situation where the nucleus is inside the crystallite, the BMS
shielding tensor contributions of a nucleus outside the crystallite
are proportional to the volume Vc. This is because the dipolar cou-
pling constant is proportional to the bulk magnetic moment of the
crystallite, which is itself proportional to its volume. Therefore, dou-
bling the volume of the crystallite has the effect of doubling both
the isotropic and anisotropic parts of the BMS shielding tensor. In
addition the tensor parameters all vary with the distance between

the nucleus and the centre of the crystallite as 1=r3. Terms 3 and

4 are the ‘‘bulk equivalents” of the local terms �visoCdip and

�Dv � Cdip in Table 5.1, which are the spin-dipolar parts of the local
paramagnetic shielding tensor.

If the crystallite is non-spherical the expressions in Table 10.1 no
longer apply, and wemust use Eq. (10.24) in its most general form. In
this case terms 1 and 2 both contain mixtures of parts of ranks 0, 1,
and 2 as N has an anisotropic component. Term 3 still has no isotro-
pic part as TrðNðrÞÞ ¼ 0 outside the crystallite. Analytical and numer-
ical calculations of the demagnetising fields have been made for a
range of geometries, both in the fields of NMR in chemistry and
MRI of living organisms. Notable examples of geometries that have
been considered include cylinders [311,313], parallelepipeds [314],
triangular surfaces [315], and cones, ellipsoids, paraboloids, and
hyperboloids [153]. We should also consider the case where the
nucleus has a measurable local shielding tensor rS in addition to
the BMS shielding tensor. The local contribution is due to nearby
paramagnetic centres A, located within an Ewald sphere with
dimensions much smaller than the crystallite, and centred on the
nucleus. The remainder of the crystallite is modelled classically,
and contributes the BMS shielding tensor. This situation is shown
in Fig. 10.2(a). When calculating the BMS shielding, it is important
to subtract the contribution from the Ewald sphere, equal to
�2vV=3, from the top expression in Eq. (10.24). This gives us a
BMS shielding of rBMS ¼ vV � ðNðrTÞ � 1=3Þ inside the crystallite. In
this case, the IBMS term 1 has an isotropic part of zero for crystallites
of any shape, but the ABMS term 2 has both an isotropic and aniso-
tropic part for crystallites that deviate from spherical symmetry.

If the nucleus is outside a non-spherical crystallite, the resulting
demagnetising tensor no longer has the form of a simple dipolar
coupling interaction to a point dipole mc. Nevertheless we can still
interpret NðrÞ as the spatial part of a coupling interaction that
approximately resembles a point-dipolar coupling interaction for
approximately spherical crystallites. If the nuclear spin is suffi-
ciently far from the crystallite so that r � r0, we can approximate
the interaction as a point-dipolar coupling. This can be seen by
writing the scalar potential as

UDðrÞ ¼ 1
4p

Z
�
Z
S

n0 �Mc

jr � r0jda
0 ð10:46Þ

¼ 1
4p

ZZZ
V
$0 � Mc

jr � r0j
� �

dV 0 ð10:47Þ

¼ 1
4p

ZZZ
V
Mc � r � r0

jr � r0j3
( )

dV 0; ð10:48Þ

where to the go the second line we have used the divergence theo-
rem [190]. This result is so far general for a nuclear spin in any loca-
tion. However if we now assume that r � r0, we can simplify the
expression for the scalar potential as follows

UDðrÞ ¼ Mc � r
4pr3

ZZZ
V
dV 0 ð10:49Þ

¼ Mc � r
4pr3 V c ð10:50Þ

¼ mc � r
4pr3

; ð10:51Þ

which gives the expression for the scalar potential of a point-dipolar
coupling interaction in Eq. (10.35) [187]. The demagnetising tensor
is therefore the dipolar coupling tensor in Eq. (10.37).

10.2. The BMS shift in a polycrystalline powder

10.2.1. The IBMS and ABMS contributions to the paramagnetic
shielding

The treatment of the BMS effects of a single crystallite can now
be extended to the case of polycrystalline solids, which represents

Table 10.1
Terms contributing to the BMS paramagnetic shielding tensor of a nucleus due to a
single spherical crystallite. The individual contributions 1–4 are separated according
to whether they act on a nucleus that is either inside or outside the crystallite in
question, and whether they are due to the isotropic (IBMS) or anisotropic (ABMS) part
of the volume susceptibility tensor of the crystallite.

Location Type rBMS

Term Expression Rank

Inside IBMS 1 � 2
3v

iso
V

0

ABMS 2 � 2
3v

an
V

2

outside IBMS 3 �Vc viso
V CdipðrÞ 2

ABMS 4 �Vcvan
V � CdipðrÞ 0, 1, 2
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a far larger number of studies in solid-state NMR. This case was
originally considered by both VanderHart and Earl [148], and Alla
and Lippmaa [149], for both diamagnetic and paramagnetic sam-
ples. The model we use is that of Kubo et al. [152], which is itself
a modification of the model of Schwerk et al. [151], and is shown
in Fig. 10.2. As shown in Fig. 10.2(a) we assume that the observed
nucleus I is inside crystallite c0, and possesses a local paramagnetic
shielding tensor rS which is a sum of contributions from the

nearby paramagnetic centres SðAÞ. The form of this tensor is the
subject of Chapters 3–7. The nuclear spin is at the centre of an
Ewald sphere [187], with dimensions that are much smaller than
those of the crystallite, within which the sum of contributions from
the paramagnetic centres A converges. It is then assumed that the
remainder of the crystallite is a uniformly-magnetised continuum
which contributes a BMS shielding tensor rBMS

0 to the total shield-
ing of I, which can be calculated using the methods described both
in this section and in Section 10.1. The sample itself contains a
number of crystallites ck that are assumed to occupy the sites of
a close-packed lattice with occupancy pk, which takes values of 0
or 1 if the site is unoccupied or occupied respectively. Each crystal-
lite contributes a term rBMS

k to the total BMS shielding tensor of I.
Once again it is assumed that the sum of these contributions con-
verges with an Ewald sphere with dimensions that are smaller
than those of the sample container (Fig. 10.2(b)). The remainder
of the sample is assumed to be uniformly magnetised, as shown
in Fig. 10.2(c).

The total paramagnetic shielding tensor r of the nuclear spin I is
equal to the sum of the local rS and BMS rBMS contributions:

r ¼ rS þ rBMS; ð10:52Þ

where rBMS is given by

rBMS ¼ vð0Þ
V � Nð0Þ r � rð0Þ

� �T � 1
3
1

� �
þ
X
k–0

pkv
ðkÞ
V � NðkÞ r � rðkÞ

� �T
þ vðRÞ

V � NðRÞ r � rðRÞ
� �T � 1

3
1

� �
; ð10:53Þ

where vðkÞ
V and rðkÞ are the volume susceptibility and the position of

the centre of mass of crystallite k. The terms in Eq. (10.53) can be
summarised as follows. The first term is due to the uniformly-
magnetized region of the crystallite c0, and the second is a sum of
all the shielding contributions from the other crystallites ck. The
third term is due to the uniformly-magnetized region of the sample
container, the centre of mass of which is located at position rðRÞ, and

which has a bulk volume susceptibility vðRÞ
V , and produces a demag-

netising tensor NðRÞ r � rðRÞ
� �

. It is important to note that in calculat-
ing both the first and third terms in Eq. (10.53) we have subtracted
the contributions from the respective Ewald spheres. The two Ewald

spheres would contribute the shielding tensors �2vð0Þ
V =3 and

�2vðRÞ
V =3 to the first and third terms respectively. Subtracting these

contributions from each respective term prevents the double count-
ing of the parts of the sample included in the Ewald spheres. In the
case of the first term, the contribution from the Ewald sphere in
Fig. 10.2(a) is already included in rS, whereas for the third term
the contribution is already included in rS and the first two terms
of the BMS shielding tensor.

The BMS contribution can be written as the sum of the IBMS
and ABMS parts rIBMS and rABMS:

rBMS ¼ rIBMS þ rABMS; ð10:54Þ

Fig. 10.2. Illustration of the model of a polycrystalline sample. In (a) is shown a single crystallite c0 that contains the nucleus I of interest. The nucleus experiences a local
paramagnetic shielding rS that is due to the nearby paramagnetic metal ions SðAÞ . The Ewald sphere is a sphere centred on the nucleus with a radius that is much smaller than
the dimensions of the crystallite and within which the sum of contributions to rS converges. The remainder of the crystallite is modelled as a uniformly-magnetized
continuum (shown in grey) which contributes to the BMS shielding tensor rBMS

0 of I. In (b) is shown a set of closely-packed crystallites ck , with k – 0, within a Ewald sphere,
each of which contributes a BMS shielding tensor rBMS

k to I. We assume that the distribution of the orientations of the bulk magnetic susceptibility tensors is random. This
Ewald sphere is part of the entire sample which is held in a container as shown in (c). The remainder of the sample is assumed to be uniformly magnetised.
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rIBMS ¼ vð0Þ;iso
V Nð0Þ r � rð0Þ

� �T � 1
3
1

� �
þ
X
k–0

pkv
ðkÞ;iso
V NðkÞ r � rðkÞ

� �T
þ vðRÞ;iso

V NðRÞ r � rðRÞ
� �T � 1

3
1

� �
; ð10:55Þ

rABMS ¼ vð0Þ;an
V � Nð0Þ r � rð0Þ

� �T � 1
3
1

� �
þ
X
k–0

pkv
ðkÞ;an
V

� NðkÞ r � rðkÞ
� �T þ vðRÞ;an

V � NðRÞ r � rðRÞ
� �T � 1

3
1

� �
; ð10:56Þ

where vðkÞ;iso
V and vðkÞ;an

V are the isotropic and anisotropic parts of the

volume susceptibility tensor of the kth crystallite, and vðRÞ;iso
V and

vðRÞ;an
V are the isotropic and anisotropic parts of the volume suscep-

tibility tensor of the uniformly-magnetised continuum part of the
sample container.

If all the crystallites and the sample container are perfectly
spherical, the first and third terms drop out of Eq. (10.53), and
we are left with the sum over the dipolar coupling tensors of the
neighbouring crystallites. The IBMS and ABMS parts of the BMS
shielding tensor are then

rIBMS ¼�
X
k–0

pkV
ðkÞ
c vðkÞ;iso

V Cdip r� rðkÞ
� � ð10:57Þ

¼� 1
4p
X
k–0

pkV
ðkÞ
c vðkÞ;iso

V

3 r� rðkÞ
� �

r� rðkÞ
� �� jr� rðkÞj21
jr� rðkÞj5

" #
; ð10:58Þ

rABMS ¼�
X
k–0

pkV
ðkÞ
c vðkÞ;an

V �Cdip r� rðkÞ
� � ð10:59Þ

¼� 1
4p
X
k–0

pkV
ðkÞ
c vðkÞ;an

V � 3 r� rðkÞ
� �

r� rðkÞ
� �� jr� rðkÞj21
jr� rðkÞj5

" #
; ð10:60Þ

where V ðkÞ
c is the volume of the kth crystallite. We see that, in this

case, the IBMS shielding is purely anisotropic and symmetric, and
has the spatial properties of the total dipolar coupling field experi-
enced by the nucleus, whereas the ABMS shielding tensor has com-
ponents of irreducible spherical tensor ranks 0, 1, and 2.

10.2.2. BMS inhomogeneous broadening
It was shown in Section 2.6 that the chemical shielding tensor

depends on the two Euler angles describing the orientation of the
PAF in the laboratory frame, aPL and bPL. As we will see in the fol-
lowing Chapter 11, in a static powder where crystallites of all ori-
entations are present, this leads to a broadening of the NMR
resonance with the width of the line proportional to the SA. Whilst
this description is complete as far as the local shielding tensor rS is
concerned, the BMS contribution is more complicated and requires
more careful consideration. It was shown by both VanderHart and
Earl [148], and Alla and Lippmaa [149], that the presence of BMS
effects, particularly the ABMS, leads to a broader distribution of
shifts, and is therefore an additional source of inhomogeneous
broadening.

In the high-field approximation the chemical shielding r of a
nuclear spin in a particular crystallite q can be written in terms
of the irreducible spherical tensor components r00 and r20 as

rðq;aPL;bPLÞ ¼ �
ffiffiffi
1
3

r
r00ðqÞ þ

ffiffiffi
2
3

r
r20ðq;aPL;bPLÞ; ð10:61Þ

where we have explicitly written the dependence of the terms on q
and the Euler angles aPL and bPL. We emphasise that q labels all the
crystallites with the same orientation, as defined by ðaPL;bPLÞ. In
order to calculate the spectrum of the whole powder, we first aver-
age over the crystallites q with the same orientation, and then per-
form the average over the Euler angles.

For the local shielding this first averaging step is easy as rS

depends only on the Euler angles ðaPS;L; bPS;LÞ:

rSðaPS;L;bPS;LÞ ¼ �
ffiffiffi
1
3

r
rS

00 þ
ffiffiffi
2
3

r
rS

20ðaPS;L; bPS;LÞ; ð10:62Þ

where ðaPS;L;bPS;LÞ are the Euler angles giving the orientation of the
PAF ‘PS’ of rS

20 in the laboratory frame ‘L’. We therefore see that the
subset of crystallites q with the same orientation have exactly the
same shielding tensor, and so an average over this subset will result
in a sharp resonance in the NMR spectrum.

The IBMS and ABMS contributions both depend on q and the
Euler angles giving the orientations of their respective PAFs:

rIBMSðq;aPI;L;bPI;LÞ ¼
ffiffiffi
2
3

r
rIBMS

20 ðq;aPI;L; bPI;LÞ; ð10:63Þ

rABMSðq;aPA;L; bPA;LÞ ¼ �
ffiffiffi
1
3

r
rABMS

00 ðqÞ þ
ffiffiffi
2
3

r
rABMS

20 ðq;aPA;L; bPA;LÞ; ð10:64Þ

where ‘PI’ and ‘PA’ refer to the PAFs of the anisotropic parts of the
IBMS and ABMS shielding tensors respectively and we have used
the fact that, from Eq. (10.58), the isotropic part of the IBMS shielding
tensor is zero. If we average over the crystallites q with the same ori-
entation qwe obtain a very different result than for the local shielding
tensor. This is because, from Eqs. (10.58) and (10.60), both the IBMS
and ABMS shielding tensors of a particular crystallite depend on the
configurations of the surrounding crystallites k, via pk, their sizes,

via V ðkÞ
c , and the orientations of their volume susceptibility tensors.

As each crystallite is orientated independently of the others, this
means that averaging over q results in a distribution of anisotropic
shifts from the IBMS of the surrounding crystallites, and a distribution
of both isotropic and anisotropic shifts from their ABMSes. Both
effects are a source of inhomogeneous broadening in the NMR spec-
trum, and are often collectively referred to as BMS broadening.

10.3. Key concepts

� A sample (solution or single crystal) containing an ensemble of
paramagnetic ions generates a demagnetising field that adds to
the local paramagnetic magnetic fields. The demagnetising field
can be described in terms of a bulk magnetic volume suscepti-
bility tensor.

� The bulk magnetic susceptibility tensor leads to a BMS contri-
bution to the shielding tensor (Eq. (10.24)).

� In a spherical crystal the bulk isotropic susceptibility changes
the isotropic shift, and the bulk susceptibility anisotropy
changes the shift anisotropy (Table 10.1).

� In a non-spherical crystal the bulk susceptibility anisotropy also
affects the isotropic shift.

� In a powder sample the demagnetising fields of the surrounding
crystallites result in bulk isotropic and anisotropic contribu-
tions to the paramagnetic shielding (Eqs. (10.58) and (10.60)).

� The bulk susceptibility anisotropies of the surrounding crystal-
lites result in inhomogeneous broadening of the resonance (the
anisotropic bulk magnetic susceptibility broadening).

Chapter 11: The NMR spectrum for non-interacting spins

Up until now we have examined in some detail the theoretical
aspects of the paramagnetic shielding interactions, the PRE, and
bulk susceptibility effects. Now we focus on the impact these
effects have on the NMR spectrum. We begin by summarising
the quantum mechanical description of the nuclear-spin interac-
tions, with a focus on the chemical shielding and quadrupolar
interactions up to second order, and how we can use this descrip-
tion to calculate the resulting NMR spectrum for systems in solu-
tion, and static and spinning powders. Then we examine the
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specific forms of the conventional one-dimensional NMR spectra
for spin I ¼ 1=2 nuclei subject to a paramagnetic shielding interac-
tion, and quadrupolar nuclei subject to both paramagnetic shield-
ing and first- and second-order quadrupolar interactions.

11.1. The quantum mechanics of NMR

11.1.1. The Hamiltonian, propagator, and density operator
In NMR a sequence of pulses and delays is referred to as a pulse

sequence. The effects of the sequence on the spin system are

described by a Hamiltonian bHðtÞ that is in general time-
dependent, and comprises all the relevant interactions of the spin
system and the effects of the radiofrequency (RF) pulses. This

Hamiltonian is written as the sum of a term bH0ðtÞ that describes

the spin interactions, and a term bH1ðtÞ that describes the RF pulses:bHðtÞ ¼ bH0ðtÞ þ bH1ðtÞ: ð11:1Þ
The former term is time-dependent when the sample is rotated, for
example under magic-angle spinning (MAS), and is time-
independent otherwise. The latter term is time-dependent because
the RF field amplitudes and phases vary throughout the sequence.
This time dependence can either be piecewise, where the sequence
can be broken down into sections within each of which the pulse
amplitudes and phases are constant, or continuous, where the
amplitudes and phases vary throughout the sequence.

The response of the nuclear spin system to the pulse sequence is
described by the time evolution of the density operator q̂ðtÞ during
the sequence. The coherent time evolution of q̂ðtÞ is governed by
the Liouville–von Neumann equation:

dq̂ðtÞ
dt

¼ � i
�h
bHðtÞ; q̂ðtÞ
h i

: ð11:2Þ

Note that here we neglect the effects of incoherent processes such
as relaxation. To include them in Eq. (11.2) we need to add an addi-
tional term, which for relaxation processes is described in Chapters
8 and 9. The solution to the Liouville–von Neumann equation in Eq.
(11.2) has the general form

q̂ðtÞ ¼ bUðt;0Þq̂ð0ÞbUðt;0Þ�1
; ð11:3Þ

where bUðt; 0Þ is the propagator corresponding to bHðtÞ. In general
the expression for the Hamiltonian at an arbitrary time point

t1; bHðt1Þ, does not commute with the Hamiltonian evaluated at a

second arbitrary time point t2; bHðt2Þ. In this case the propagator
describing the evolution between t1 and t2 has the general form

bUðt2; t1Þ ¼ bT exp � i
�h

Z t2

t1

dt bHðtÞ
� �

; ð11:4Þ

where bT is the Dyson time-ordering operator, which ensures that
the events described by the Hamiltonian occur in the proper order.
Whilst this form of the propagator is general it is not analytically
useful, and further analysis of the sequence generally requires other
methods such as average Hamiltonian theory [193] or Floquet the-
ory [316–319]. However in certain special cases the propagator
does reduce to a simpler and more useful form.

In the first case, if the Hamiltonian evaluated at an arbitrary
time always commutes with the Hamiltonian at a second arbitrary
time, the propagator is:

bUðt2; t1Þ ¼ exp � i
�h

Z t2

t1

dt bHðtÞ
� �

: ð11:5Þ

This situation is encountered in solid-state MAS NMR when the spin
interactions contain only single-spin operators of rank k and order

zero bIk0, such as the nuclear interactions discussed in Chapter 2,

during a period of free precession where there are no pulses, so thatbH1ðtÞ is zero.

In the second case the Hamiltonian bH is time-independent, and
the propagator reduces to the simple form

bUðt2; t1Þ ¼ exp � i
�h
bHðt2 � t1Þ

� �
: ð11:6Þ

For example this situation is encountered in solution NMR, and the
solid-state NMR of static systems, during periods of free precession.
In NMR sequences where the time dependence due to the pulses is
piecewise, the propagator describing the evolution during the
whole sequence can be written as the product of propagators of
the form of Eq. (11.6). For instance consider a sequence comprising
two consecutive sections, which are labelled S12 and S23 respec-
tively. Section S12 starts at time t ¼ t1 and ends at t2 and is

described by the Hamiltonian bH12, and the second section S23

described by bH23 commences at t2 and continues until time t3.
The overall propagator describing the evolution of the spin system
between times t1 and t3 is given by the product of the two propaga-
tors representing each sequence:

Ûðt3; t1Þ ¼ Û23ðt3; t2ÞÛ12ðt2; t1Þ

¼ exp � i
�h
Ĥ23ðt3 � t2Þ

� �
exp � i

�h
Ĥ12ðt2 � t1Þ

� �
: ð11:7Þ

The equilibrium density operator q̂0 represents the equilibrium
state of the system in the absence of RF irradiation, and where there
is no dynamic change due to the interactions of the spins with either
the external magnetic field or each other. We therefore see that, from

Eq. (11.2), q̂0 must commute with the system Hamiltonian bH0ðtÞ. We
have seen that the nuclear-spin interactions are dominated by the
Zeeman interaction, and so the general expression for q̂0 is

q̂0 ¼ expð�bbHZÞ
TrI expð�bbHZÞ
h i ð11:8Þ

¼ expðb�hcIB0
bIzÞ

TrI expðb�hcIB0
bIzÞh i : ð11:9Þ

In the high-temperature limit we expand the exponentials to first-
order in a Taylor series, and obtain the following expression for q̂0:

q̂0 � 1̂þ b�hcIB0 Îz
2I þ 1

: ð11:10Þ

The first term in 1̂ commutes with all Hamiltonians, does not pro-
duce any observable signal, and so we can ignore it. The second is

proportional to bIz and has a magnitude �hcIB0=ðð2I þ 1ÞkTÞ. The max-
imum amplitude of the observable signal following excitation is
equal to this factor, and so we see that we obtain higher sensitivity
for nuclei with larger gyromagnetic ratios, and under conditions of
larger applied magnetic fields and lower temperatures. In practice,
when analysing pulse sequences, we usually ignore this factor and

write q̂0 ¼ bIz.
11.1.2. Radiofrequency pulses and sequences

A general RF pulse of duration sp with a time-dependent RF field
amplitude x1ðtÞ and phase /1ðtÞ applied to a nuclear spin I has the
following Hamiltonian:bH1ðtÞ ¼ x1ðtÞbRz /1ðtÞð ÞbIxbRz /1ðtÞð Þ�1 ð11:11Þ

¼ x1ðtÞ cos /1ðtÞð ÞbIx þ sin /1ðtÞð ÞbIyh i
; ð11:12Þ

where bRað/Þ ¼ exp �i/bIa� 	
is the unitary operator that represents a

rotation of the spin operator in spin space through an angle / about
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an axis a. The propagator representing the Hamiltonian bH1ðtÞ at
arbitrary time takes the general form in Eq. (11.4). Neglecting the

spin interactions in bH0ðtÞ and considering only the effect of bH1ðtÞ
during the pulse, the net evolution can be represented as an overall
rotation through a net angle n about a net axis with orientation rel-
ative to z specified by the spherical polar angles ðh;/Þ. The propaga-

tor that describes this net transformation due to the sequence bUseq

then has the form

bU seq ¼ bRzð/ÞbRyðhÞbRzðnÞbRyðhÞ�1bRzð/Þ�1
: ð11:13Þ

In the case where both the amplitude x1 and phase /1 are constant
during the pulse, the net pulse propagator is

bU seq ¼ bRzð/1ÞbRzðn1ÞbRzð/1Þ�1
; ð11:14Þ

where n1 ¼ x1sp is the flip angle of the pulse.

11.1.3. The spin interactions
We recall that the internal spin interactions are treated as per-

turbations to the nuclear Zeeman interaction, that the Zeeman

Hamiltonian is removed from bH0ðtÞ, and that the remaining system
Hamiltonians are calculated using the secular approximation
[184]. The particular spin interactions with which we concern our-
selves in this chapter are the secular chemical shift and quadrupo-

lar interactions to second order. Hence all the terms in bH0ðtÞ
commute with each other at all times t1 and t2, i.e.bH0ðt2Þ; bH0ðt1Þ
h i

¼ 0. The total Hamiltonian is written as a sum of

terms due to different interactions, each of which is the product

of a spatial tensor KðKÞ
k;l0ðtÞ of space rank l, and a spin tensor operatorbIðKÞk0 of spin rank k:

bH0ðtÞ ¼
X
K;l;k

KðKÞ
k;l0ðtÞbIðKÞk0 ; ð11:15Þ

where K labels the distinct interactions. We note that the space

tensor components KðKÞ
k;l0ðtÞ are generally time-dependent if sample

rotation is employed, and are time-independent otherwise. We also
point out that for some interactions different spatial tensors of the
same space rank may couple to spin tensors of different spin ranks.
For example in the case of the second-order quadrupolar interaction
there are two spatial tensors of space rank zero, one of which cou-
ples to the rank-one spin tensor and the other of which couples to
the rank-three spin tensor. These two spatial tensors are different,

and so we also indicate a dependence of KðKÞ
k;l0ðtÞ on k via the sub-

script. Likewise there are two spatial tensors of ranks two that cou-
ple to the spin tensors of ranks one and three, and also two rank-
four spatial tensors. To facilitate the calculation of the frequencies

of evolution under bH0ðtÞ we rewrite the Hamiltonian in terms of

the frequency components XðKÞ
k;l0ðtÞ and reduced spin tensor opera-

tors t̂ðKÞk0 as follows:bH0ðtÞ ¼ �h
X
K;l;k

XðKÞ
k;l0ðtÞ̂tðKÞk0 : ð11:16Þ

The reduced tensor operators are given in terms of the bIðKÞk0 by

t̂ðKÞk0 ¼ NðKÞ
k0
bIðKÞ
k0 ; ð11:17Þ

where NðKÞ
k0 are normalizing factors that are equal to

NðKÞ
00 ¼ 1; NðKÞ

10 ¼ 1; NðKÞ
20 ¼

ffiffiffi
2
3

r
; NðKÞ

00 ¼
ffiffiffiffiffiffi
10

p

3
: ð11:18Þ

The operators therefore have the expressionsbt00 ¼ 1̂; ð11:19Þbt10 ¼ bIz; ð11:20Þ
bt20 ¼ bI2z � 1

3
IðI þ 1Þ1̂; ð11:21Þ

bt30 ¼ 1
3

5bI3z � 3IðI þ 1Þ � 1ð ÞbIzh i
: ð11:22Þ

The frequency components are related to the spatial tensor compo-
nents via

KðKÞ
k;l0ðtÞ ¼ �hNðKÞ

k0 X
ðKÞ
k;l0ðtÞ: ð11:23Þ

For the one-spin interactions that we have so far considered the fre-
quencies of the components with different spatial and spin ranks
are given in Table 11.1.

The overall propagator bU0ðt2; t1Þ that describes the time evolu-
tion of the density operator under these interactions, in the
absence of RF irradiation, is

bU0ðt2; t1Þ ¼ exp � i
�h

Z t2

t1

dt bH0ðtÞ
� �

: ð11:24Þ

Remembering the commutation properties of all the terms of bH0ðtÞ,
we can write bU0ðt2; t1Þ asbU0ðt2; t1Þ ¼

Y
K;l;k

exp �iUðKÞ
k;l0ðt2; t1 Þ̂tðKÞk0

� 	
; ð11:25Þ

where the phase factor UðKÞ
k;l0ðt2; t1Þ is the integral of the frequency

XðKÞ
k;l0ðtÞ between times t1 and t2:

UðKÞ
k;l0ðt2; t1Þ ¼

Z t2

t1

dtXðKÞ
k;l0ðtÞ: ð11:26Þ

We note that in this case the order of multiplication of the terms in
Eq. (11.25) does not matter as all the Hamiltonian terms commute
with each other.

Table 11.1
The frequency components XðKÞ

k;l0 occurring in the Hamiltonian for certain nuclear spin interactions K arising from the different combinations of space ranks l and spin ranks k.

Interaction K k XðKÞ
k;l0

l ¼ 0 l ¼ 2 l ¼ 4

1st-order quadrupolar 2 –
ffiffi
2
3

q
xQv20

–

1st-order chemical
shielding

1 �x0riso �
ffiffi
2
3

q
x0r20

–

2nd-order quad–quad 1 4x2
Q ½4IðI þ 1Þ � 3�wðQ ;QÞ

00 =ð45
ffiffiffi
5

p
x0Þ 2x2

Q ½4IðI þ 1Þ � 3�wðQ ;QÞ
20 = 45

ffiffiffiffiffiffi
14

p
x0

� 	
�2x2

Q ½4IðI þ 1Þ � 3�wðQ ;QÞ
40 = 15

ffiffiffiffiffiffi
70

p
x0

� 	
3 4x2

Qw
ðQ ;QÞ
00 = 5

ffiffiffi
5

p
x0

� 	
�4

ffiffiffi
2

p
x2

Qw
ðQ ;QÞ
20 = 5

ffiffiffi
7

p
x0

� 	
�204x2

Qw
ðQ ;QÞ
40 = 45

ffiffiffiffiffiffi
70

p
x0

� 	
2nd-order quad–shield 2 �2xQw

ðC2;QÞ
00 =

ffiffiffi
5

p
xQ

ffiffiffi
2

p
wðC1;QÞ

20 þ ffiffiffiffiffiffiffiffi
2=7

p
wðC2;QÞ

20

h i
4

ffiffiffiffiffiffiffiffiffiffiffi
2=35

p
xQw

ðC2;QÞ
40

2nd-order shield–shield 1 x0
ffiffiffiffiffiffiffiffiffiffiffi
1=12

p
wðC1;C1Þ

00 þ ffiffiffiffiffiffiffiffiffiffiffi
1=20

p
wðC2;C2Þ

00

h i
x0

ffiffiffiffiffiffiffiffiffiffiffi
1=24

p
wðC1;C1Þ

20 � ffiffiffiffiffiffiffiffi
1=2

p
wðC1;C2Þ

20 � ffiffiffiffiffiffiffiffiffiffiffi
1=56

p
wðC2;C2Þ

20

h i
�x0

ffiffiffiffiffiffiffiffiffiffiffi
2=35

p
wðC2;C2Þ

40
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11.1.4. Basis operators
The nuclear spin wavefunction of a single nuclear spin I is con-

veniently written as a linear combination of 2I þ 1 basis functions.
These basis functions are usually taken to be the eigenfunctions of
the Zeeman Hamiltonian jIMi, which are orthonormal:

hIM1jIM2i ¼ dM1 ;M2 : ð11:27Þ
In addition the description of the nuclear spin dynamics is facili-
tated by writing the density operator as a superposition of basis

operators bBi

n o
, of which there are ð2I þ 1Þ2 and which are chosen

to be orthogonal according to

bBijbBj

� 	
¼ TrI bBy

i
bBj

� 	
ð11:28Þ

¼ Ndij; ð11:29Þ

where N is a normalization factor.
Of course there is a choice of several bases. One common basis

is the set of irreducible spherical tensor operators bIkln o
of ranks k

from 0 to 2I, and orders l from �k to þk, in integer steps [191].
These operators have been used extensively in this review for both
nuclear and electronic spins. However for the subsequent discus-
sion we adopt the single-element basis operators, which are
denoted jIM1ihIM2jf g. These operators are so-called because in
the Zeeman function basis each operator represents a single ele-
ment of the density matrix. The single-element basis operators
can be grouped as follows. There are 2I þ 1 operators for which
M1 ¼ M2, and which represent the populations of the correspond-
ing states. We refer to these as population operators and denote

them bIðMÞ
p :

bIðMÞ
p ¼ jIMihIMj: ð11:30Þ

The remaining 2Ið2I þ 1Þ operators each represent a coherence
between two different states. Half of these have M1 < M2, and are

referred to as lowering operators bIðM2 ;M1Þ� . They are given by

bIðM2 ;M1Þ� ¼ jIM1ihIM2j: ð11:31Þ
The remaining coherence operators have M1 > M2 and are referred

to as raising operators bIðM1 ;M2Þþ :

bIðM1 ;M2Þþ ¼ jIM1ihIM2j: ð11:32Þ
These basis operators can be used to write down expressions for

other operators. For example the Cartesian operators 1̂;bIz;bI�;bIþn o
are given by:

1̂ ¼
XþI

M¼�I

bIðMÞ
p ; ð11:33Þ

bIz ¼ XþI

M¼�I

MbIðMÞ
p ; ð11:34Þ

bI� ¼
XþI

M¼�Iþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ �MðM � 1Þ

p bIðM;M�1Þ
� ; ð11:35Þ

bIþ ¼
XþI�1

M¼�I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ �MðM þ 1Þ

p bIðMþ1;MÞ
þ : ð11:36Þ

We see that both 1̂ and bIz are written in terms of the 2I þ 1 popu-
lation operators. The identity operator represents the total popula-
tion of all the spin states, and remains invariant as required. The

operator bIz represents the differences in populations of the spin

states. The operator bI� is written in terms of the 2I coherence oper-

ators bIðM;M�1Þ
� with M1 �M2 ¼ �1, and so represents nuclear spin

magnetization in the transverse plane. Likewise bIþ is written in

terms of the 2I coherence operators bIðMþ1;MÞ
þ with M1 �M2 ¼ þ1.

11.1.5. NMR frequencies and spin order
In order to make use of the advantages afforded by decompos-

ing the density operator into a sum of basis operators, we need to
determine how each basis operator evolves under the HamiltonianbH0ðtÞ that describes the internal spin interactions. We do this by
calculating the evolution over time of a single basis operator
q̂ð0Þ ¼ jIMiihIMjj subject to a single term in the Hamiltonian with
a particular space-rank and spin-rank. The propagator is given by
a single factor from Eq. (11.25). Applying this to q̂ð0Þ and allowing
the system to evolve we obtain the density operator q̂ðtÞ at time t:

q̂ðtÞ ¼ exp �iUðKÞ
k;l0ðt;0Þt̂k0

� 	
q̂ð0Þ exp þiUðKÞ

k;l0ðt;0Þ̂tk0
� 	

; ð11:37Þ

where we have dropped the superscript ðKÞ from the reduced
spherical tensor spin operator t̂k0 as these operators are the same
for all one-spin interactions. The spin states jIMii are also eigen-
states of the operators t̂k0, and so we can determine q̂ðtÞ in a
straightforward manner:

q̂ðtÞ ¼ exp �iUðKÞ
k;l0ðt;0Þt̂k0

� 	
jIMiihIMjj exp þiUðKÞ

k;l0ðt;0Þ̂tk0
� 	

ð11:38Þ

¼ exp �iNk;MiMj
UðKÞ

k;l0ðt;0Þ
� 	

jIMiihIMjj: ð11:39Þ

We see that the basis operator simply acquires a phase

�Nk;MiMj
UðKÞ

k;l0ðt; 0Þ that is proportional to the intrinsic phase

UðKÞ
k;l0ðt; 0Þ of the interaction, multiplied by a factor Nk;MiMj

that is
given by

Nk;MiMj
¼ hIMi ĵtk0jIMii � hIMj ĵtk0jIMji: ð11:40Þ

The factor Nk;MiMj
is the spin-order of rank k that defines the single-

element basis operator jIMiihIMjj [320]. The spin orders of ranks 0, 1,
2, and 3 are given the symbols sMiMj

, pMiMj
, dMiMj

, and f MiMj
in analogy

with the hydrogen-like atomic orbitals in electronic structure the-
ory [320]. They take the forms:

sMiMj
¼ N0;MiMj

ð11:41Þ
¼ 0; ð11:42Þ

pMiMj
¼ N1;MiMj

ð11:43Þ
¼ Mi �Mj; ð11:44Þ

dMiMj
¼ N2;MiMj

ð11:45Þ
¼ M2

i �M2
j ; ð11:46Þ

f MiMj
¼ N3;MiMj

ð11:47Þ

¼ 1
3

5 M3
i �M3

j

� 	
� 3IðI þ 1Þ � 1ð ÞðMi �MjÞ

h i
: ð11:48Þ

The s-order sMiMj
is associated with the identity operator and does not

affect the evolution of the density operator, so we do not consider it
further. The p-order pMiMj

is also known as coherence order, which

is an important concept in signal selection in multiple-pulse NMR
experiments [321]. The rank-two spin order dMiMj

is known as either
d-order or satellite order [322]. Finally the rank-three order f MiMj

is

referred to as f-order. If for a particular interaction the Hamiltonian
term of a particular space rank l is associated with more than one spin
rank k, we can use the spin-order defined in Eq. (11.40) to define a

total frequency XðKÞ
l0;MiMj

ðtÞ that depends only on l:

XðKÞ
l0;MiMj

ðtÞ ¼ �
X
k

Nk;MiMj
XðKÞ

k;l0ðtÞ: ð11:49Þ

For the interactions considered here this only applies to the second-
order quadrupolar interaction, where the terms of spatial ranks 0, 2,
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and 4 are each associated with two spin ranks 1 and 3. For this
interaction we can write the frequencies in Eq. (11.49) for the three
space ranks l ¼ 0, 2, and 4 in terms of the c-order parameters cl;MiMj

,
which are given by:

c0;MiMj
¼ 9

5
f MiMj

þ 4IðI þ 1Þ � 3
5

pMiMj
; ð11:50Þ

c2;MiMj
¼ �18

5
f MiMj

þ 4IðI þ 1Þ � 3
10

pMiMj
; ð11:51Þ

c4;MiMj
¼ �51

5
f MiMj

� 3 4IðI þ 1Þ � 3½ �
10

pMiMj
: ð11:52Þ

For all the one-spin interactions in Table 11.1, the frequencies
defined in Eq. (11.49) are given in Table 11.2.

Using these definitions we can write down the evolution of the
density operator term jIMiihIMjj under the action of a Hamiltonian
term corresponding to a particular interaction K and space rank l
summed over the relevant spin ranks k. The result is:

q̂ðtÞ ¼ exp iUðKÞ
l0;MiMj

ðt;0Þ
� 	

jIMiihIMjj; ð11:53Þ

UðKÞ
l0;MiMj

ðt2; t1Þ ¼
Z t2

t1

dtXðKÞ
l0;MiMj

ðtÞ: ð11:54Þ

The accrued phase factor UðKÞ
l0;MiMj

ðt;0Þ is simply the time integral of

the frequency component.
During signal detection in the NMR experiment we acquire the

two transverse components of the bulk nuclear magnetization, Mx

and My, simultaneously using quadrature detection, and combine
them into a single quadrature quantity Mþ ¼ Mx þ iMy. The mag-
netization components Mx and My are proportional to the expecta-

tion values of bIx and bIy. Hence the quantity Mþ is proportional to

the expectation value of bIþ, and so the signal sðtÞ is given by

sðtÞ ¼
TrI bIþq̂ðtÞ� 	
TrI bIþbI�� 	 : ð11:55Þ

The only term of the density operator that contributes to the trace

in the numerator is bI�, which we see from Eq. (11.35) represents the
sum of the basis operators of coherence (p-) order �1. Each operatorbIðM;M�1Þ
� contributing to bI� evolves under a characteristic frequency

to accrue a phase UðKÞ
l0;M�1;Mðt;0Þ, which gives the following expres-

sion for q̂ðtÞ:XþI

M¼�Iþ1

bIðM;M�1Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ �MðM � 1Þ

p
exp iUðKÞ

l0;M�1;Mðt;0Þ
� 	

: ð11:56Þ

Following summation over all relevant interactions K, we obtain
the following signal in the time domain:

sðtÞ ¼ 3
2IðI þ 1Þð2I þ 1Þ

XþI

M¼�Iþ1

½IðI þ 1Þ �MðM � 1Þ�



Y
K

exp iUðKÞ
l0;M�1;Mðt;0Þ

� 	
: ð11:57Þ

We see that a nuclear spin I has 2I observable signal components,
which in general evolve with different frequencies to give 2I distinct
peaks in the NMR spectrum.

11.1.6. Solution NMR
In the absence of sample rotation the frequency components

XðKÞ
l0;MiMj

are time-independent, and are related to the PAF compo-

nents of the irreducible spherical spatial tensor in its PAF eK ðKÞ
k;lm0

by the expression

XðKÞ
l0;MiMj

¼ �
X
k

Nk;MiMj

�hNðKÞ
k0

X
mm0

eK ðKÞ
k;lm0D

ðlÞ
m0mðXKCÞDðlÞ

m0ðXCLÞ: ð11:58Þ

The Euler angles XKC describe the orientation of the PAF K in a
frame of reference that is fixed relative to the molecular geometry
in molecular systems, or the crystal geometry for solid crystals C.
The XKC are a fixed property of the system under study. The Euler
angles XCL give the orientation of the crystal/molecular-fixed refer-
ence frame relative to the laboratory reference frame L, and so
depend on the orientation of that particular crystal or molecule in
the sample container. We see that for static systems at high field
the frequency depends only on two of the Euler angles, aCL and
bCL, of the latter set.

In an isotropic solution of molecules, there are no restrictions
on the orientations that the molecules, and therefore the PAFs of
the interaction tensors, are able to take. Furthermore the molecules
are tumbling rapidly in comparison to the Larmor frequency, so
that each molecule samples all possible orientations, resulting in
the overall frequency component being given simply by the orien-
tational average over the Euler angles ðaCL; bCL; cCLÞ. The orienta-
tional dependence is contained wholly within the Wigner

rotation matrix elements DðlÞ
m0ðaCL; bCL; cCLÞ, and so the relevant inte-

gral is

1
8p2

Z 2p

0
daCL

Z p

0
dbCL sin bCLð Þ

Z 2p

0
dcCLD

ðlÞ
m0ðaCL;bCL; cCLÞ ¼ dl0dm0;

ð11:59Þ
which we have simplified using the orthogonality relations of the

DðlÞ
mm0 ðaCL;bCL; cCLÞ. We see that the only terms that survive the orien-

tational averaging are those of rank l ¼ 0, which are, by definition,
the isotropic terms. Each term in the density operator therefore
evolves under a total isotropic frequency Xiso;MiMj

, which is given

Table 11.2
The frequency components XðKÞ

l0;MiMj
from different nuclear spin interactions K for different space ranks l, given in terms of the spin orders Nk;MiMj

.

Interaction K k XðKÞ
l0;MiMj

l ¼ 0 l ¼ 2 l ¼ 4

1st-order quadrupolar 2 – �dMiMj

ffiffi
2
3

q
xQv20

–

1st-order chemical shielding 1 pMiMj
x0riso pMiMj

ffiffi
2
3

q
x0r20

–

2nd-order quad–quad 1,3 �c0;MiMj
4x2

Qw
ðQ ;QÞ
00 = 9

ffiffiffi
5

p
x0

� 	
�c2;MiMj

4x2
Qw

ðQ ;QÞ
20 = 9

ffiffiffiffiffiffi
14

p
x0

� 	
�c4;MiMj

4x2
Qw

ðQ ;QÞ
40 = 9

ffiffiffiffiffiffi
70

p
x0

� 	
2nd-order quad–shield 2 dMiMj

2xQw
ðC2;QÞ
00 =

ffiffiffi
5

p
�dMiMj

xQ

ffiffiffi
2

p
wðC1;QÞ

20 þ ffiffiffiffiffiffiffiffi
2=7

p
wðC2;QÞ

20

h i
�dMiMj

4
ffiffiffiffiffiffiffiffiffiffiffi
2=35

p
xQw

ðC2;QÞ
40

2nd-order shield–shield 1 �pMiMj
x0

ffiffiffiffiffiffiffiffiffiffiffi
1=12

p
wðC1;C1Þ

00 þ ffiffiffiffiffiffiffiffiffiffiffi
1=20

p
wðC2;C2Þ

00

h i
�pMiMj

x0
ffiffiffiffiffiffiffiffiffiffiffi
1=24

p
wðC1;C1Þ

20 � ffiffiffiffiffiffiffiffi
1=2

p
wðC1;C2Þ

20 � ffiffiffiffiffiffiffiffiffiffiffi
1=56

p
wðC2;C2Þ

20

h i
pMiMj

x0
ffiffiffiffiffiffiffiffiffiffiffi
2=35

p
wðC2;C2Þ

40
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by sum of the isotropic first-order shift frequency XðCÞ
00;MiMj

, the

second-order isotropic quadrupolar frequency XðQ ;QÞ
00;MiMj

, the second-

order isotropic frequency due to the cross-term between the

quadrupolar and shift interactions XðQ ;CÞ
00;MiMj

, and the second-order

isotropic shift frequency XðC;CÞ
00;MiMj

:

Xiso;MiMj
¼ XðCÞ

00;MiMj
þXðQ ;QÞ

00;MiMj
þXðQ ;CÞ

00;MiMj
þXðC;CÞ

00;MiMj
: ð11:60Þ

Therefore the total phase acquired during signal acquisition is sim-
ply Xiso;MiMj

t:

Xiso;MiMj
t ¼ XðCÞ

00;MiMj
þXðQ ;QÞ

00;MiMj
þXðQ ;CÞ

00;MiMj
þXðC;CÞ

00;MiMj

h i
t: ð11:61Þ

11.1.7. Solid-state NMR of static powders
In a solid sample with no tumbling the frequency components

XðKÞ
l0;MiMj

are given by Eq. (11.58), with all spatial ranks contributing.

In a single crystal the evolution frequency depends on the crystal
orientation through the pair of Euler angles ðaCL; bCLÞ. The corre-
sponding time-domain signal is sðaCL; bCL; tÞ, which is given by

sðaCL;bCL;tÞ¼
3

2IðIþ1Þð2Iþ1Þ
XþI

M¼�Iþ1

½IðIþ1Þ�MðM�1Þ�



Y
K

exp iXðKÞ
l0;M�1;MðaCL;bCLÞt

� 	
; ð11:62Þ

and which gives a spectrum containing 2I distinct lines. The spectral
positions of all these lines are, in general, orientation-dependent,
varying with the crystal orientation.

If we have an ensemble of such crystallites with random orien-
tations, such as in a solid powder, the total signal sðtÞ is the average
over all orientations ðaCL; bCLÞ of the individual signals sðaCL; bCL; tÞ.
For a large ensemble of crystallites this average is given by the
double integral

sðtÞ ¼ 1
4p

Z 2p

0
daCL

Z p

0
dbCL sin bCLð ÞsðaCL;bCL; tÞ: ð11:63Þ

The resulting NMR spectrum therefore contains a continuum of
spectral intensity the width and shape of which is defined by the
anisotropies DK and asymmetry parameters gK of the interactions.
Hence the anisotropic interactions result in resonance broadening,
with the centre of mass of the resonance located at the isotropic
frequency.

11.1.8. Solid-state NMR of spinning powders
In a spinning solid sample the Euler angles that specify the ori-

entation of the crystal in the laboratory frame are time-dependent
[323]. To recognise this we define the orientation of the PAF in the
laboratory frame via three frame transformations, each of which is
associated with its own set of Euler angles. As for static samples we
first specify the orientation of the PAF K in the crystal-fixed frame
C with the Euler anglesXKC, which are fixed according to the geom-
etry of the system. Secondly we specify the orientation of the crys-
tal frame in a rotor-fixed frame R with Euler angles XCR. This
second set of angles changes as we change the orientation of the
crystal in the sample container, and so are the angles we average
over in a powder. Finally the orientation of the rotor frame relative
to the laboratory frame L is defined by a set of time-dependent
Euler angles XRLðtÞ. If the spinning axis of the rotor is inclined at
a fixed angle bRL relative to the external magnetic field, and the
rotor spins at frequency xr from an initial angular position
aRLð0Þ, this set of Euler angles is XRLðtÞ ¼ ðaRLð0Þ þxrt; bRL;0Þ. We

can now rewrite the frequencies XðKÞ
c;l0;MiMj

ðcCR; tÞ as Fourier series

[324]

XðKÞ
c;l0;MiMj

ðcCR; tÞ ¼
Xþl

m¼�l

xðKÞ
c;lm;MiMj

ðcCRÞ exp �imxrtð Þ; ð11:64Þ

where the coefficients xðKÞ
c;lm;MiMj

ðcCRÞ are frequencies that are given

by the following expression:

xðKÞ
c;lm;MiMj

ðcCRÞ ¼ � expð�imaRLð0ÞÞdðlÞ
m0ðbRLÞ



X
k

Nk;MiMj

�hNðKÞ
k0

X
m00m0

eK ðKÞ
lm00DðlÞ

m00m0 ðXKCÞDðlÞ
m0mðXCRÞ: ð11:65Þ

The frequency is periodic over the rotor period sr ¼ 2p=xr. Note
that, although the expression in Eq. (11.64) is a sum of complex
plane waves, the frequencies are in fact real. This is because the

coefficients in Eq. (11.65) satisfy xðKÞ
c;l�m;MiMj

ðcCRÞ ¼ xðKÞ
c;lm;MiMj

ðcCRÞ,
and so the terms in the sum with m – 0 form conjugate pairs, and
the remaining term with m ¼ 0 is real. At this point it is useful to
introduce the concept of a carousel c, which is a subset of crystal-
lites that during the sample rotation occupy the same orientations
but at different times. As shown by Levitt a single carousel contains
crystallites with the same Euler angles aCR and bCR, but different cCR
[325]. Therefore the dependence of the frequencies and phases on
aCR and bCR is indicated with a subscript c, while the dependence
on cCR is given explicitly. From Eq. (11.65) the cCR-dependence
has the simple form:

xðKÞ
c;lm;MiMj

ðcCRÞ ¼ xðKÞ
c;lm;MiMj

ð0Þ expð�imcCRÞ: ð11:66Þ

In Eq. (11.64) we see that a frequency component of spatial rank l
comprises 2lþ 1 components m that oscillate at frequencies
�mxr. This proves to be important when calculating the signal from
a powder sample. We see that the component with m ¼ 0 is time-
independent, and corresponds to a constant frequency. In particular
we note that the time-independent coefficient with m ¼ 0 is also
independent of cCR.

The phase UðKÞ
c;l0;MiMj

ðcCR; t2; t1Þ accrued during evolution under

the Hamiltonian is calculated from the time integral of the fre-
quency in Eq. (11.64):

UðKÞ
c;l0;MiMj

ðcCR; t2; t1Þ ¼ xðKÞ
c;l0;MiMj

ðt2 � t1Þ þ
X
m–0

xðKÞ
c;lm;MiMj

ðcCRÞ
�imxr


 exp �imxrt2ð Þ � exp �imxrt1ð Þ½ �: ð11:67Þ
The phase is the sum of a part due to the time-independent fre-
quency, and another part due to the time-dependent and periodic
frequency. The complex exponential phase factor due to the latter
is both periodic and cyclic, and so can be written as a complex Four-
ier series. The combined phase factor is then

exp iUðKÞ
c;l0;MiMj

ðcCR; t;0Þ
� 	

:

exp iUðKÞ
c;l0;MiMj

ðcCR; t;0Þ
� 	

¼ exp ixðKÞ
c;l0;MiMj

t
� 	 Xþ1

l¼�1
AðKÞ;ðlÞ
c;l0;MiMj

ðcCRÞ


 exp i/ðKÞ;ðlÞ
c;l0;MiMj

ðcCRÞ
h i

exp ilxrt½ �:
ð11:68Þ

The complex coefficients of the Fourier series have magnitudes

AðKÞ;ðlÞ
c;l0;MiMj

ðcCRÞ and phases /ðKÞ;ðlÞ
c;l0;MiMj

. The evolution under the periodic

part of the Hamiltonian therefore results in a spectral resonance
that is split into a manifold of spinning sidebands. The lth-order
sideband appears at frequency xðKÞ

c;l0;MiMj
þ lxr, with an intensity

AðKÞ;ðlÞ
c;l0;MiMj

ðcCRÞ and a phase /ðKÞ;ðlÞ
c;l0;MiMj

ðcCRÞ that are given by
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AðKÞ;ðlÞ
c;l0;MiMj

ðcCRÞ exp i/ðKÞ;ðlÞ
c;l0;MiMj

ðcCRÞ
h i

¼ 1
sr

Z sr

0
exp i

X
m–0

xðKÞ
c;lm;MiMj

ðcCRÞ
�imxr

exp �imxrtð Þ � 1½ �
24 35


 exp �ilxrt½ �dt: ð11:69Þ
We can elucidate an important symmetry property relating to

the dependence on cCR of the sideband intensities and phases,
which was first described by Levitt [325]. Due to the
cCR-dependence of the coefficients given in Eq. (11.66) we deduce
that the frequency component at time t of a crystallite with angle
cCR is equal to the frequency of a different crystallite with cCR ¼ 0
evaluated at time t þ cCR=xr:

XðKÞ
c;l0;MiMj

ðcCR; tÞ ¼ XðKÞ
c;l0;MiMj

ð0; t þ cCR=xrÞ: ð11:70Þ

From this we can derive the following symmetry relation pertaining
to the accrued phase:

UðKÞ
c;l0;MiMj

ðcCR; t;0Þ ¼ UðKÞ
c;l0;MiMj

ð0; t þ cCR=xr;0Þ
�UðKÞ

c;l0;MiMj
ð0; cCR=xr;0Þ: ð11:71Þ

Substituting this into Eq. (11.68) we obtain

exp ixðKÞ
c;l0;MiMj

t
� 	 Xþ1

l¼�1
AðKÞ;ðlÞ
c;l0;MiMj

ðcCRÞ exp i/ðKÞ;ðlÞ
c;l0;MiMj

ðcCRÞ
h i


 exp ilxrt½ � ¼ exp ixðKÞ
c;l0;MiMj

t
� 	 Xþ1

l¼�1
AðKÞ;ðlÞ
c;l0;MiMj

ð0Þ


 exp i/ðKÞ;ðlÞ
c;l0;MiMj

ð0Þ
h i

exp ilðxrt þ cCRÞ½ �


 exp �i
X
m–0

xðKÞ
c;lm;MiMj

ð0Þ
�imxr

exp �imcCRð Þ � 1½ �
24 35; ð11:72Þ

from which we see that the sideband intensities are independent of
cCR, and the sideband phases have the following well-defined cCR
dependence:

AðKÞ;ðlÞ
c;l0;MiMj

ðcCRÞ ¼ AðKÞ;ðlÞ
c;l0;MiMj

ð0Þ � AðKÞ;ðlÞ
c;l0;MiMj

; ð11:73Þ
/ðKÞ;ðlÞ

c;l0;MiMj
ðcCRÞ ¼ /ðKÞ;ðlÞ

c;l0;MiMj
ð0Þ þ lcCR

�
X
m–0

xðKÞ
c;lm;MiMj

ð0Þ
�imxr

exp �imcCRð Þ � 1½ �: ð11:74Þ

Henceforth we denote the sideband intensity as AðKÞ;ðlÞ
c;l0;MiMj

.

The signal component due to evolution under the Hamiltonian
of a particular interaction for a single crystal is

sðKÞ
c ðcCR; tÞ ¼

3
2IðI þ 1Þð2I þ 1Þ

XþI

M¼�Iþ1

½IðI þ 1Þ �MðM � 1Þ�


 exp iUðKÞ
c;l0;M�1;MðcCR; t; 0Þ

� 	
: ð11:75Þ

The signal due to the whole powder is conveniently calculated in

two steps. Firstly we average the signal sðKÞc ðcCR; tÞ over all the cCR
angles to obtain the signal sðKÞc ðtÞ from carousel c:

sðKÞ
c ðtÞ ¼ 1

2p

Z 2p

0
dcCR s

ðKÞ
c ðcCR; tÞ; ð11:76Þ

and secondly we average sðKÞc over the remaining Euler angles aCR

and bCR to obtain the signal from the whole powder sðKÞðtÞ:

sðKÞðtÞ ¼ 1
4p

Z 2p

0
daCR

Z p

0
dbCR sin bCRð ÞsðKÞ

c ðtÞ: ð11:77Þ

For the first step we start from Eq. (11.72) and expand the final
phase factor as a Fourier series:

sðKÞc ðcCR; tÞ ¼
3

2IðI þ 1Þð2I þ 1Þ
XþI

M¼�Iþ1

½IðI þ 1Þ �MðM � 1Þ�


 exp ixðKÞ
c;l0;M�1;Mt

� 	 Xþ1

l;l0¼�1
AðKÞ;ðlÞ
c;l0;M�1;MA

ðKÞ;ðl0 Þ
c;l0;M�1;M


 exp i /ðKÞ;ðlÞ
c;l0;M�1;Mð0Þ � /ðKÞ;ðl0 Þ

c;l0;M�1;Mð0Þ
� 	h i


 exp icCRðl� l0Þ½ � exp ilxrt½ �: ð11:78Þ
Following integration over the angle cCR the only terms that remain
are those with l ¼ l0, which gives the following time-domain signal
for the carousel:

�sðKÞc ðtÞ ¼ 3
2IðI þ 1Þð2I þ 1Þ

XþI

M¼�Iþ1

½IðI þ 1Þ �MðM � 1Þ�


 exp ixðKÞ
c;l0;M�1;Mt

� 	 Xþ1

l¼�1
AðKÞ;ðlÞ
c;l0;M�1;M

h i2
exp ilxrt½ �:

ð11:79Þ
All the sidebands have zero phase, and each has an intensity that is
equal to the square of the corresponding single-crystal sideband
intensity. Finally the signal from the whole powder is given by

sðKÞðtÞ ¼ 3
2IðI þ 1Þð2I þ 1Þ

XþI

M¼�Iþ1

½IðI þ 1Þ �MðM � 1Þ�



Xþ1

l¼�1
Il;M�1;MðtÞ exp ilxrt½ �; ð11:80Þ

where the time-dependent sideband functions are given by

Il;M�1;MðtÞ ¼ 1
4p

Z 2p

0
daCR

Z p

0
dbCR


 sin bCRð Þ exp ixðKÞ
c;l0;M�1;Mt

� 	
AðKÞ;ðlÞ
c;l0;MiMj

h i2
: ð11:81Þ

The overall effect on the powder spectrum of the sample rota-
tion is twofold. Firstly the broad resonance due to the anisotropic
interaction observed under static conditions is split into a manifold
of spinning sidebands. Secondly the linewidth of each spinning

sideband is given by the range of the static frequencies xðKÞ
c;l0 that

we obtain following powder averaging. From Eq. (11.65) we see
that these frequency components are proportional to the reduced

Wigner matrix elements dðlÞ
00ðbRLÞ. For frequencies with l ¼ 0 this

factor is dð0Þ
00 ðbRLÞ ¼ 1, indicating that these frequencies are unaf-

fected by the sample rotation. This is exactly as expected as these
frequencies are due to spatially isotropic interactions that are, by
definition, independent of crystallite orientation. These frequen-
cies always appear in the NMR spectrum, but do not cause any
orientation-dependent broadening of the resonance. For anisotro-
pic frequencies of rank l ¼ 2 the scaling factor is:

dð2Þ
00 ðbRLÞ ¼ 3 cos2ðbRLÞ � 1

� �
=2: ð11:82Þ

This factor, plotted as a function of bRL in Fig. 11.1, is zero if we set
the angle of the rotor axis bRL to the magic angle, which is given by

tan�1
ffiffiffi
2

p� 	
¼ 54:74� [326,323]. Hence magic-angle spinning (MAS)

completely removes the broadening of the spinning-sidebands from
rank-two interactions.

Interactions of spatial rank l ¼ 4 have static frequencies that are
scaled down by

dð4Þ
00 ðbRLÞ ¼ 35 cos4ðbRLÞ � 30 cos2ðbRLÞ þ 3

� �
=8: ð11:83Þ
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This factor is also plotted as a function of rotor angle in Fig. 11.1.
Spinning at the magic angle does not completely remove these fre-
quency components, which are instead scaled down by a factor of
�7=18. Hence the broadening due to this spread of frequencies is

decreased by the same factor. The matrix element dð4Þ
00 ðbRLÞ does

have two angles at which it is zero, namely 30:56� and 70:12�,
and inclining the rotor axis at either of these two angles has the
result of completely removing the broadening due to rank-four
interactions. However spinning at either of these two angles does
not suppress the broadening due to the rank-two interactions,
which are then scaled down by factors of 0.61 and �0:33
respectively.

11.2. The shift and shift anisotropy in paramagnetic NMR

11.2.1. The chemical shielding frequencies
The Hamiltonian describing the chemical shielding interaction,

truncated to first order in the secular approximation, is given by
Eq. (2.94) and reproduced here for convenience:

bH ¼ ��hx0 �
ffiffiffi
1
3

r
r00 þ

ffiffiffi
2
3

r
r20

 !bIz: ð11:84Þ

The terms in parentheses combine to give the chemical shielding,
the irreducible spherical tensor components of which transform
under a spatial rotation according to

rlm ¼
Xþl

m0¼�l

erlm0DðlÞ
m0mðaPL;bPL; cPLÞ: ð11:85Þ

The tensor is given in its most general form, without reference to
the various contributions that are specific to the metal ion under
consideration, or to the chemical environment. This enables us to
highlight the features of the spectrum that are common to all para-
magnetic systems. We do not consider the second-order shielding
interaction, as it is predicted to be negligible compared to the other
second-order interactions we have discussed.

From Table 11.2 we can write down the isotropic and anisotro-
pic frequencies, Xiso;MiMj

and XSA;MiMj
, under which a coherence rep-

resented by the basis operator jIMiihIMjj evolves, as:

Xiso;MiMj
¼ pMiMj

x0riso; ð11:86Þ

XSA;MiMj
¼ pMiMj

ffiffiffi
2
3

r
x0r20: ð11:87Þ

For any nuclear spin I all the observable coherences have the same
coherence order pMiMj

¼ �1, and so all 2I components in Eq. (11.57)

evolve at the same isotropic and anisotropic frequencies, which we

denote Xiso ¼ �x0riso and XSA ¼ �x0

ffiffiffiffiffiffiffiffi
2=3

p� 	
r20. If the chemical

shielding is the only interaction present this means that the 2I com-
ponents appear at the same position in the NMR spectrum, and so
only a single distinct resonance is observed. This section therefore
provides a complete description of the paramagnetic effects both
for nuclear spins-1=2, and for quadrupolar nuclei in cubic environ-
ments for which CQ ¼ 0. To complete the picture for quadrupolar
nuclei in non-cubic environments we also need to consider the
quadrupolar interaction.

11.2.2. Solution NMR
We first consider a paramagnetic complex in an isotropic solu-

tion. The general features of solution NMR have been reviewed
many times and can be found, for example, in the textbooks by
Ernst et al. [258], Levitt [1], and Keeler [255].

In solution we have seen that only the isotropic interactions
remain during molecular tumbling. Therefore the only shielding
contribution is the isotropic frequency Xiso ¼ �x0riso, which con-
tains the local contributions due to the hyperfine coupling to the
paramagnetic centres, including contact and pseudo-contact
terms.

The lineshape and linewidth in the spectrum originate from two
different sources: incoherent homogeneous, and inhomogeneous.1

The former is due to the stochastic fluctuation of the local field expe-
rienced by the nucleus, which gives rise to relaxation as discussed in
Chapters 8 and 9, whereas the latter is due to the distribution of Lar-
mor frequencies over the sample volume. In the absence of inhomo-
geneous broadening the time-domain signal, referred to as the free-
induction decay (FID), sðtÞ due to a single resonance is

sðtÞ ¼ shome ðtÞ exp iXisotð Þ; ð11:88Þ
where shome ðtÞ is the envelope function describing the signal decay
due to relaxation. The spectrum SðxÞ is the Fourier transform of
sðtÞ, which is given by

SðxÞ ¼
Z 1

0
dt sðtÞ expð�ixtÞ: ð11:89Þ

As we saw in Chapters 8 and 9, for a single spin I ¼ 1=2 nucleus in
the Redfield relaxation limit we can model the relaxation envelope
function as a mono-exponential decay with a time constant T2, giv-
ing the following FID:

sðtÞ ¼ exp iXisotð Þ exp �t=T2ð Þ: ð11:90Þ
For quadrupolar nuclei with I > 1 the decay is in general multi-
exponential. However we still model it here using a mono-
exponential decay function that is parameterized by an effective
T2. For small paramagnetic complexes in solution, the T2 relaxation
time constant is given by the Solomon–Bloembergen–Morgan
expression in Eq. (8.108). The T2 time constants of large biomole-
cules, on the other hand, are dominated by Curie relaxation pro-
cesses, and T2 is given by Eq. (8.152). The Fourier transform of
this function gives a spectrum with the Lorentzian lineshape:

SðxÞ ¼ LAðT2;x�XisoÞ þ iLDðT2;x�XisoÞ: ð11:91Þ

1 Here we note that our usage of the terms ‘homogeneous’ and ‘inhomogeneous’
differs from the usage by Maricq and Waugh [323]. We use the terms to refer to the
sources of line broadening in the spectrum, whilst Maricq and Waugh use the same
terms to refer to the commutation properties of the Hamiltonians of spin interactions.
Nevertheless, we note that there is a correspondence between the conventions. For
instance the shift interaction is termed inhomogeneous by Maricq and Waugh, and a
distribution of shifts leads to inhomohgeneous broadening according to the conven-
tion used here; homonuclear dipolar coupling interactions are homogeneous
interactions, and lead to coherent homogeneous broadening in the spectrum of
solids. The only contribution to spectral broadening not considered by Maricq and
Waugh is due to relaxation, which is homogeneous.

Fig. 11.1. Plot of the reduced Wigner rotation matrix elements dð2Þ
00 ðbRLÞ and dð4Þ

00 ðbRLÞ
as a function of the rotor angle bRL. The angles at which the broadening due to the
rank-two and rank-four anisotropic interactions is completely removed by spinning
are indicated by arrows.
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The real and imaginary parts of the spectrum are the absorption-
mode and dispersion-mode Lorenztian functions LAðT;xÞ and
LDðT;xÞ, which are given by

LAðT;xÞ ¼ T

1þx2T2 ; ð11:92Þ

LDðT;xÞ ¼ � xT2

1þx2T2 : ð11:93Þ

In high-resolution NMR we examine only the real part of the spec-
trum with the absorption-mode lineshape. The spectrum therefore
contains a single, sharp peak at position Xiso and with a linewidth
(defined as the full-width at half-maximum, FWHM) of
2=T2 rad s�1. An example is shown in Fig. 11.2(a).

In many cases the inhomogeneous broadening cannot be
neglected, with notable contributions from the inhomogeneity of
the applied magnetic field B0 due to instrumental limitations,
and a BMS contribution due to the non-spherical shape of the sam-
ple container, as discussed in Section 10.2. The effect of the con-
tainer shape, usually cylindrical, on the spectral resolution has
been studied at length [327,328,313]. In the presence of inhomo-
geneity of the local magnetic field, the offset frequency becomes
a function of position r, and so can be written as XðrÞ. We define
it in terms of the position-dependent deviation DXðrÞ from the
nominal offset Xiso:

XðrÞ ¼ Xiso þ DXðrÞ: ð11:94Þ
The FID is then given by averaging over all positions to give

sðtÞ ¼ sinhome ðtÞ exp iXisotð Þ exp �t=T2ð Þ½ �; ð11:95Þ
which is the product of the inhomogeneous envelope function
sinhome ðtÞ, and, in brackets, the FID in the absence of inhomogeneous
effects. The envelope function depends on the function f ðrÞ that
describes the distribution of DXðrÞ and, assuming the ideal case of
constant signal per unit volume inside the active volume and zero
signal outside, is given by an integral over the sample volume V:

sinhome ðtÞ ¼ 1
V

ZZZ
V
d3r f ðrÞ exp iDXðrÞtð Þ: ð11:96Þ

The inhomogeneous spectral lineshape Sinhome ðxÞ is defined as
the Fourier transform of sinhome ðtÞ:

Sinhome ðxÞ ¼
Z 1

0
dt sinhome ðtÞ expð�ixtÞ: ð11:97Þ

The FID in Eq. (11.95) is the product of two functions, and so the
resulting spectrum SðxÞ is simply the convolution of the inhomo-

geneous linewidth function Sinhome ðxÞ and the Lorentzian in Eq.
(11.91):

SðxÞ ¼ 2p LAðT2;x�XisoÞ þ iLDðT2;x�XisoÞ½ �  Sinhome ðxÞ;
ð11:98Þ

where the convolution of two functions is indicated by the , and is
defined as

ðf  gÞðxÞ ¼
Z þ1

�1
f ðxÞgðx� xÞdx: ð11:99Þ

The overall spectral lineshape is therefore a mixture of the Lorent-
zian from the homogeneous decay, and the inhomogeneous line-
shape. It is common to assume that the inhomogeneous lineshape
is a Gaussian, or Lorentzian. In the latter case we can define an
overall rate of signal decay which is mono-exponential, and charac-
terised by a time constant TH

2 , which is equal to

1
TH
2

¼ 1
T2

þ 1
Ty
2

; ð11:100Þ

where Ty
2 is the time constant associated with the mono-

exponential inhomogeneous decay.

11.2.3. Solid-state NMR of static powders
The case of static powder solids is more complex than isotropic

solutions, as we must now explicitly consider the effect of the ani-
sotropic shielding terms on the form of the spectrum. The Hamil-
tonian in the absence of BMS effects was derived in Section 2.6.
For a crystallite q in which the PAF of the shielding tensor has an
orientation relative to the crystal frame given by the Euler angles
aPC; bPC; cPCð Þ, the Hamiltonian is given by Eq. (2.109) [195]:bH ¼ �h Xiso þXSA XPC;XCLð Þð ÞbIz; ð11:101Þ
where we have written the isotropic offset Xiso ¼ �x0riso as before,
and XSA XPC;XCLð Þ is the anisotropic contribution to the offset of

Fig. 11.2. Simulated spectra of paramagnetic systems subject to a shielding
interaction, and in the absence of inhomogeneous broadening. This picture is
complete for spins-1=2, and quadrupolar nuclei in cubic environments where
CQ ¼ 0. The high-resolution, isotropic solution spectrum is shown in (a), showing a
single peak at the isotropic offset. A powder sample in the solid state gives the
classic CSA powder pattern in (b), which splits into a series of spinning sidebands
under MAS, as shown in (c). The chemical shielding parameters are
�x0DrS=2p ¼ 500 kHz, and gS ¼ 0:3, and the frequency is measured relative to
the isotropic offset Xiso. The MAS spectrum was simulated at 60 kHz MAS.
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crystallite q, and is given in terms of the anisotropic shielding
rSA XPC;XCLð Þ:
XSA XPC;XCLð Þ¼�x0rSA XPC;XCLð Þ; ð11:102Þ

rSA XPC;XCLð Þ¼1
2
Dr 3cos2ðbPLÞ�1�gcosð2aPLÞsin2ðbPLÞ
n o

: ð11:103Þ

We have written rSA XPC;XCLð Þ in terms of the Euler angles ðaPL;bPLÞ
that describe the overall rotation from the PAF to the laboratory
frame via the crystal frame. Note that rSA XPC;XCLð Þ, and therefore
XSA XPC;XCLð Þ, depends on neither cPL nor cCL. The homogeneous
decay of the corresponding coherence during acquisition now
depends on two processes: incoherent homogeneous, and coherent
homogeneous. The former process is due to transverse relaxation,
characterised by the time constant T2 as described in Chapters 8
and 9, and the latter is a non-random dephasing due to the
extended network of dipolar couplings in each crystallite [195].
The coherent homogeneous decay is commonly assumed to be

mono-exponential and characterised by a time constant Tcoh
2 . The

time constant that describes the overall homogeneous decay is T 0
2,

and is calculated from the following expression:

1
T 0
2

¼ 1
T2

þ 1

Tcoh
2

: ð11:104Þ

The FID of the single crystallite following excitation sðXPC;XCL; tÞ
also depends on the same Euler angles, and has a form that is sim-
ilar to the FID of an isotropic solution, with the difference that the
offset includes the anisotropic term, and the decay time constant is
T 0
2 and not T2:

sðXPC;XCL; tÞ ¼ exp iXisotð Þ exp iXSA XPC;XCLð Þtð Þ exp �t=T 0
2

� �
:

ð11:105Þ
The Fourier transform yields the spectrum, which contains a Lorent-
zian peak SðXPC;XCL;xÞ at position Xiso þXSA XPC;XCLð Þ, with a line-
width equal to 2=T 0

2 rad s�1. The spectrum is

SðXPC;XCL;xÞ ¼ LAðT 0
2;x�Xiso �XSA XPC;XCLð ÞÞ

þ iLDðT 0
2;x�Xiso �XSA XPC;XCLð ÞÞ: ð11:106Þ

In order to obtain the form of the spectrum of the complete powder
we must average the single-crystallite spectrum SðXPC;XCL;xÞ over
all possible orientations, giving

SðxÞ¼ 1
4p

Z 2p

0
daCL

Z p

0
sinðbCLÞdbCL LAðT 0

2;x�Xiso�XSA XPC;XCLð ÞÞ

þiLDðT 0

2;x�Xiso�XSA XPC;XCLð ÞÞ�: ð11:107Þ
The powder spectrum has a width that is proportional to the SA
jx0DrSj, as shown by the example in Fig. 11.2(b). We note that nei-
ther the FID nor the spectrum of the powder depends on the Euler
angles XPC. This is a result of all crystallite orientations being repre-
sented in the spectrum, so that the information about the absolute
orientation of the PAF in the crystal frame is lost. One consequence
of this is the well-known observation that one cannot extract the
absolute values of XPC from the spectrum of a powder sample.

Hitherto we have neglected the inhomogeneous broadening we
would expect from the BMS effects. We have shown that these
effects can be partitioned into IBMS and ABMS contributions. The
former gives a purely anisotropic offset XIBMS

SA ðXPI;CðqÞ;XCL; qÞ,
whilst the latter gives both isotropic and anisotropic contributions

XABMS
iso ðqÞ and XABMS

SA ðXPA;CðqÞ;XCL; qÞ for spherical crystallites. They
are given in terms of the corresponding chemical shieldings:

XIBMS
SA ðXPI;CðqÞ;XCL; qÞ ¼ �x0rIBMS

SA ðXPI;CðqÞ;XCL; qÞ; ð11:108Þ
XABMS

iso ðqÞ ¼ �x0rABMS
iso ðqÞ; ð11:109Þ

XABMS
SA ðXPA;CðqÞ;XCL; qÞ ¼ �x0rABMS

S ðXPA;CðqÞ;XCL; qÞ; ð11:110Þ

where XPI;C and XPA;C give the orientations of the IBMS and ABMS
shielding PAFs in the crystal reference frame. Here we have defined
a parameter q which describes the variation of the isotropic shift,
SA, asymmetry, and Euler angles giving the orientation of the BMS
tensor in the crystal frame. If we assume that the crystallites are
spherical, and make the somewhat unrealistic assumption that they
are held in a spherical sample container, the BMS shielding contri-
bution to a particular crystallite depends only on the dipolar cou-
pling interaction with the neighbouring crystallites, and has no
part from the internal bulk susceptibility. Hence the BMS shielding
of the crystallite under consideration depends only on the configu-
ration of the surrounding crystallites, which is defined by q.

In order to calculate the spectrum from the complete sample,
we average over all the crystallites in two steps: firstly for all crys-
tallites with the same configuration parameter q we average over
the Euler angles XCL; secondly we average over the configurations
q. If we define the total BMS frequency DXðXPI;CðqÞ;XPA;CðqÞ;XCL; qÞ
as

DXðXPI;CðqÞ;XPA;CðqÞ;XCL; qÞ ¼ XIBMS
SA ðXPI;CðqÞ;XCL; qÞ

þXABMS
iso ðqÞ

þXABMS
SA ðXPA;CðqÞ;XCL; qÞ; ð11:111Þ

we can write the FID sðq;XCL; tÞ from a particular crystallite orienta-
tion with a particular BMS configuration as

sðq;XCL; tÞ ¼ exp iXisotð Þ exp iXSA XPC;XCLð Þtð Þ

 exp iDXðXPI;CðqÞ;XPA;CðqÞ;XCL; qÞtð Þ exp �t=T 0

2

� �
:

ð11:112Þ
The signal from the whole powder is then

SðxÞ ¼ 1
4p

Z 2p

0
daCL

Z p

0
sinðbCLÞdbCL


 1
Nq

Z
dqf ðqÞsðq;XCL; tÞ; ð11:113Þ

where f ðqÞ is a function describing the distribution of configura-
tions, and Nq is a normalization factor.

The integral over the configurations q only affects the phase fac-
tor exp iDXðXPI;CðqÞ;XPA;CðqÞ;XCL; qÞtð Þ. At this point, to simplify the
discussion, we make the simplifying assumption that the integral
over q is independent of the crystallite orientation XCL, which is
equivalent to stating that the inhomogeneous broadening depends
only on the surrounding crystallites. This assumption is justified if
the sum over the configurations contains a complete average over
the orientation of the PAFs in the crystal frame, i.e. an average over
all values of XPI;CðqÞ and XPA;CðqÞ. If this is the case the integral over
q is independent of the Euler angles XCL, in the same way that the
integral over XCL in the absence of inhomogeneous broadening is
independent of XPC. We can then define a BMS decay envelope
function sBMS

e ðtÞ that describes the coherent decay due to the inho-
mogeneous broadening. This envelope function has a similar form
to that for the isotropic solution:

sBMS
e ðtÞ ¼ 1

Nq

Z
dqf ðqÞ


 exp iDXðXPI;CðqÞ;XPA;CðqÞ;XCL; qÞtð Þ: ð11:114Þ

The Fourier transform of the envelope function SBMS
e ðxÞ is defined in

the same way as in Eq. (11.97). The FID from the sample is

sðtÞ ¼ sBMS
e ðtÞ 1

4p

Z 2p

0
daCL

Z p

0
sinðbCLÞdbCL


 exp iXisotð Þ exp iXSA XPC;XCLð Þtð Þ exp �t=T 0
2

� �
; ð11:115Þ
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which is the product of the FID in the absence of the BMS, and the
BMS envelope function. The overall spectrum SðxÞ is then the con-
volution of SBMS

e ðxÞ with the expression in Eq. (11.107):

SðxÞ ¼2p 1
4p

Z 2p

0
daCL

Z p

0
sinðbCLÞdbCL

�
LAðT 0

2;x�Xiso�XSA XPC;XCLð ÞÞ
�

þiLDðT 0
2;x�Xiso�XSA XPC;XCLð ÞÞ


SBMS

e ðxÞ;

ð11:116Þ

The BMS lineshape has a complicated form which is non-trivial to
model since it ultimately requires a description of how particles
of different sizes and shapes are packed in a compressed powder
[329,151]. It may, however, be approximated as a Gaussian, for
which case an example of the resulting overall spectrum is shown
in Fig. 11.3(a). It can be seen that the inhomogeneous broadening
smears out the distinctive spectral features of the classic SA powder
pattern. Some notable experimental examples of this lineshape in
static solid-state NMR spectra include the battery samples pre-
sented by Kim et al. [54].

11.2.4. Solid-state NMR of spinning powders
Under MAS conditions the anisotropic frequency is time-

dependent, periodic, and cyclic over the rotor period sr. Therefore,
as we have seen, the single-crystal FID scðcCR; tÞ is split into a series
of spinning-sideband contributions:

scðcCR; tÞ ¼ exp iXisotð Þ exp iUSA
c cCR; t;0ð Þ

� 	
exp �t=T 0

2

� � ð11:117Þ
¼ exp iXisotð Þ exp �t=T 0

2

� �


Xþ1

m¼�1
AðmÞ
c exp ið/ðmÞ

c ðcCRÞ þmxrtÞ
� 	

: ð11:118Þ

We note that T 0
2 depends on the MAS frequency, since faster

spinning has the effect of weakening the extended dipolar coupling
network, thus reducing the rate of coherent dephasing. The single-

crystal sideband amplitudes and phases are denoted AðmÞ
c and

/ðmÞ
c ðcCRÞ. Following Fourier transformation we obtain the spinning

sideband manifold in the spectrum:

ScðcCR;xÞ ¼
Xþ1

m¼�1
AðmÞ
c exp i/ðmÞ

c ðcCRÞ
� 	

LA T 0
2;x�Xiso �mxr

� �

þ iLD T 0

2;x�Xiso �mxr
� ��

: ð11:119Þ
The orientation dependence is contained wholly within the side-

band amplitudes AðmÞ
c and phases /ðmÞ

c ðcCRÞ. The former depend only
on aRL and bRL, whereas the latter depend on all three angles. The
spectrum of the whole powder is therefore obtained by averaging
the complex sideband coefficients over all orientations. The result-
ing spectrum is

SðxÞ¼
Xþ1

m¼�1
IðmÞ LA T 0

2;x�Xiso�mxr
� �þ iLD T 0

2;x�Xiso�mxr
� �
 �

;

ð11:120Þ

where the mth-order sideband intensity IðmÞ is equal to

IðmÞ ¼ 1
4p

Z 2p

0
daCR

Z p

0
sinðbCRÞdbCR AðmÞ

c

h i2
: ð11:121Þ

An example of the spectrum obtained by MAS is shown in Fig. 11.2
(c), which has been simulated using the same SA parameters as the
spectrum of the static powder in Fig. 11.2(b).

The effect of the IBMS and ABMS on the inhomogeneous broad-
ening can be considered in a similar way as for the static powder,
but with the inclusion of MAS. The isotropic ABMS shift frequency
is labelled XABMS

iso ðqÞ, and we group together the IBMS and ABMS

Fig. 11.3. The effect of the inhomogeneous BMS broadening on static and MAS NMR spectra of a paramagnetic powder. The static spectra are shown in (a), and the MAS
spectra are shown in (b). In both cases we partition the spectrum into two parts. The first is the spectrum in the absence of BMS effects, which exhibits either the classic CSA
powder pattern, or the spinning-sideband manifold. The second shows the spectral lineshape due solely to BMS effects which, for the static case can be assumed to be
Gaussian, and for the MAS case to be a manifold of spinning sidebands, each with a Gaussian lineshape. In both cases the final spectrum is given by the convolution of these
two parts. The chemical shielding parameters are �x0DrS=2p ¼ 500 kHz, and gS ¼ 0:3, and the frequency is measured relative to the isotropic offset Xiso. The MAS spectrum
was simulated at 60 kHz MAS. For the static case the Gaussian function has a mean of 0 kHz and a standard deviation of 200 kHz. For the MAS case each individual sideband is
a Gaussian function with a standard deviation of 10 kHz, and the intensities of the Gaussians in the manifold are weighted by a Gaussian function with a standard deviation of
200 kHz.
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contributions to the SA to give the total BMS anisotropic frequency

XBMS;SA
c q; cCR; tð Þ. During evolution under MAS the observable

coherences accrue a periodic phase UBMS;SA
c q; cCR; t;0ð Þ due to the

evolution of the BMS SA. We compute the complete FID by averag-
ing over the Euler angles cCR all the contributions from crystallites
with the same q, and then averaging over q. As for the static case,
we assume that the average of the BMS phase factors over q results
in a BMS time-domain envelope function that is the same for all
crystallite orientations XCR. This function is then given by

sBMS
e ðtÞ ¼ 1

Nq

Z
dqf ðqÞ exp iXABMS

iso ðqÞt
� 	

exp iUBMS;SA
c q; cCR; t;0ð Þ

� 	
¼ 1

Nq

Z
dqf ðqÞ exp iXABMS

iso ðqÞt
� 	



Xþ1

m¼�1
BðmÞ
c ðqÞ exp iðnðmÞ

c ðq; cCRÞ þmxrtÞ
� 	

; ð11:122Þ

where we have expanded the periodic phase factor due to the BMS
SA as a Fourier series with sideband intensities BðmÞ

c ðqÞ and phases
nðmÞ
c ðq; cCRÞ. We are able to write sBMS

e ðtÞ in the following form:

sBMS
e ðtÞ ¼

Xþ1

m¼�1
sðmÞ
e ðtÞ exp imxrtð Þ; ð11:123Þ

where

sðmÞ
e ðtÞ ¼ 1

Nq

Z
dqf ðqÞ exp iXABMS

iso ðqÞt
� 	

BðmÞ
c ðqÞ


 exp inðmÞ
c ðq; cCRÞ

� 	
ð11:124Þ

are sideband functions that decay with time. The envelope function
is therefore a spinning-sideband manifold, in which each sideband
experiences an inhomogeneous decay. The intensities BðmÞ

c ðqÞ only

affect the overall magnitudes of the sðmÞ
e ðtÞ, whereas XABMS

iso ðqÞ
changes the overall rate of inhomogeneous decay. Therefore all
the sidebands exhibit the same inhomogeneous broadening. The
Fourier transform of sBMS

e ðtÞ gives the function SBMS
e ðxÞ which spec-

ifies the inhomogeneous broadening that we observe in the
spinning-sideband manifold of the spectrum. This function has
the form

SBMS
e ðxÞ ¼ 4p2

Xþ1

m¼�1
SðmÞ
e ðxÞ  dðx�mxrÞ: ð11:125Þ

The delta functions dðx�mxrÞ in Eq. (11.125) are the Fourier
transforms of the complex exponentials exp imxrtð Þ, and the line-

shape functions SðmÞ
e ðxÞ are the Fourier transforms of the decay

functions sðmÞ
e ðtÞ. The spectral inhomogeneous broadening function

SBMS
e ðxÞ therefore comprises a series of spinning sidebands whose
effect is to broaden the spinning sidebands in the final spectrum,
which is the convolution of Eqs. (11.120) and (11.125), as shown
in Fig. 11.3(b) for Gaussian broadening. In addition to the ABMS
broadening of the individual sidebands, we also see a perturbation
of the sideband intensities from the ‘nominal’ intensities we would
expect from a simple SA. The distribution of intensities shows a
Gaussian distribution superimposed upon the nominal pattern.

The predicted form of the spinning-sideband manifold in the
presence of BMS effects is illustrated with the solid-state 7Li MAS
NMR spectra of LiMnPO4 and LiFePO4 shown in Fig. 11.4 [31]. Both
transition metals are in the þ2 oxidation state and occupy dis-
torted octahedral sites as part of a TMO6 unit, where TM refers to
the transition metal, and have high-spin electronic configurations.
The metal ion Mn2+ has the octahedral electronic configuration
t32ge

2
g corresponding to a ground term 6A1g in the standard notation

of group theory. For this system the SO-coupling effects can be

neglected, and the metal ion behaves as a spin-only paramagnetic
centre with an isotropic g-tensor that is close to the free-electron
value, and a small ZFS. The susceptibility is approximately isotro-
pic, and so the ABMS is negligible. The metal ion Fe2+, on the other
hand, has an electron configuration of t42ge

2
g , giving an orbitally-

degenerate ground term of 5T2g . The EPR parameters are therefore
influenced by SO coupling, giving an anisotropic g-tensor and non-
zero ZFS as a result of the distortion from cubic symmetry. Both the
susceptibility anisotropy and ABMS are therefore non-zero. As can
be seen from the full spectra in Fig. 11.4(a), both spinning-
sideband manifolds show a Gaussian distribution of sideband
intensities superimposed on the nominal pattern, which can be
ascribed to the influence of the IBMS in both cases. The manifold
of LiFePO4 is also expected to be distorted by the ABMS, though
we expect this effect to be smaller. In addition if we examine the
centrebands of both manifolds, we see that the linewidth of
90 ppm for LiFePO4 is considerably larger than that for LiMnPO4,
despite the former sample giving a longer T 0

2 value for 7Li. The lar-
ger linewidth for LiFePO4 can be ascribed to the ABMS inhomoge-
neous line broadening that is absent in the spectrum of LiMnPO4.

11.3. Paramagnetic NMR of integer-spin quadrupolar nuclei

We now examine the form of the NMR spectrum of an integer-
spin quadrupolar nucleus subject to a first-order quadrupolar
interaction. We focus on the simplest case of nuclei with nuclear
spin I ¼ 1. The first-order quadrupolar interaction is wholly aniso-
tropic, and so does not influence the observed resonance frequen-
cies in solution. We therefore consider the spectra of solid-state
powders under both static and MAS conditions.

11.3.1. Static solid powders
We derived the Hamiltonian for the first-order quadrupolar

interaction in Chapter 2, with the result given in Eq. (2.141). The
Hamiltonian is characterised by a frequency of interaction
XQ ðXQC;XCLÞ, which is given in terms of the quadrupolar splitting
frequency xQ , asymmetry parameter gQ , the Euler angles specify-
ing the orientation of the PAF in the crystal frame XQC, and the ori-
entation of the crystal frame in the laboratory frame XCL:

XQ ðXQC;XCLÞ¼
ffiffiffi
2
3

r
xQv20 ð11:126Þ

¼1
2
xQ 3cos2ðbQLÞ�1þgQ sin2ðbQLÞcosð2aQLÞ
h i

: ð11:127Þ

There are two observable coherences, represented by the operators
j10ih1þ 1j and j1� 1ih10j, which result in two distinct resonances
in the spectrum. The two frequencies XQ ;MiMj

ðXQC;XCLÞ are given
by the expression in Table 11.2 in terms of the satellite order d by

XQ ;MiMj
ðXQC;XCLÞ ¼ �dMiMj

XQ ðXQC;XCLÞ: ð11:128Þ
The two coherences have d-values of �1 and þ1 respectively, and so
the two resonance frequencies are:

XQ ;MiMj
ðXQC;XCLÞ ¼

þXQ ðXQC;XCLÞ; j10ih1þ 1j;
�XQ ðXQC;XCLÞ; j1� 1ih10j:

�
ð11:129Þ

The resulting FID for a single crystallite is calculated from Eq.
(11.62), and is given by

sðXQC;XCL;tÞ¼1
2
exp þiXQ ðXQC;XCLÞt½ �þexp �iXQ ðXQC;XCLÞt½ �½ � ð11:130Þ

¼ cos XQ ðXQC;XCLÞt½ �: ð11:131Þ

The resulting spectrum contains two peaks at frequencies
	XQ ðXQC;XCLÞ and is symmetrical about the reference frequency,
which here is zero. Following the calculation of the powder average
over the Euler angles XCL, the two resonances broaden to give the
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same characteristic lineshapes as for the SA interaction in Fig. 11.2
(b), with one lineshape related to the other by a reflection about the
reference frequency. The resulting symmetrical spectrum is shown
in Fig. 11.5(a), and exhibits a shape known as a Pake pattern [195].

11.3.2. Solid powders under MAS
Under MAS conditions the quadrupolar frequency, now denoted

XQ
c ðcCR; tÞ, is time dependent and periodic. Therefore the two com-

ponents of the FID each split into a spinning-sideband manifold,
with the two manifolds related to each other by complex
conjugation.

scðcCR;tÞ¼
1
2

exp þiUQ
c ðcCR;t;0Þ

h i
þexp �iUQ

c ðcCR;t;0Þ
h ih i

ð11:132Þ

¼1
2

Xþ1

m¼�1
EðmÞ
c exp ið�ðmÞ

c ðcCRÞþmxrtÞ
� �h

þEðmÞ
c exp �ið�ðmÞ

c ðcCRÞþmxrtÞ
� �i ð11:133Þ

¼
Xþ1

m¼�1
EðmÞ
c cos ið�ðmÞ

c ðcCRÞþmxrtÞ
� �

; ð11:134Þ

where UQ
c ðcCR; t;0Þ is the periodic phase accrued by evolution of the

frequency XQ
c ðcCR; tÞ. The intensity and phase of the mth order side-

band of the j10ih1þ 1j coherence are EðmÞ
c =2 and �ðmÞ

c ðcCRÞ respec-

tively, whereas for the j1� 1ih10j coherence they are Eð�mÞ
c =2 and

��ð�mÞ
c ðcCRÞ. Therefore the mth-order sideband of the sum of the

two manifolds has a total complex intensity of

EðmÞ
c exp i�ðmÞ

c ðcCRÞ
� 	

þ Eð�mÞ
c exp �i�ð�mÞ

c ðcCRÞ
� 	h i

=2, which is equal

to the complex intensity of the �mth-order following complex con-
jugation. This results in a spectrum that is symmetrical about the
reference frequency. This symmetry is also preserved in the powder
average, as shown by the MAS spectrum in Fig. 11.5(c).

11.3.3. First-order quadrupolar and paramagnetic shift anisotropy
interactions

In paramagnetic systems the NMR spectrum contains informa-
tion about the paramagnetic shift and SA, as described in Section
11.2, in addition to the first-order quadrupolar interaction. An
example is given in Fig. 11.5, in which the spectra in (a) and (c)
are modified by including an SA interaction. The spectrum of the
static powder is shown in Fig. 11.5(b), and the corresponding spec-
trum under MAS is in Fig. 11.5(d). Both spectra contain information
about the size of the quadrupolar interaction, via xQ and gQ , and
the size of the SA, via DrS and gS, and information about the rela-
tive orientation of one PAF relative to the other. Extracting all the
available information can be a difficult task due to the complexity

of the spectrum, which is exacerbated by the presence of substan-
tial inhomogeneous broadening and multiple nuclear sites.

11.4. Paramagnetic NMR of half-integer-spin quadrupolar nuclei

We now examine the form of the NMR spectrum of a half-
integer-spin quadrupolar nucleus subject to a first-order
quadrupolar interaction, using the simplest case of I ¼ 3=2 as an
example. The principal difference between half-integer spins and
integer spins is that the observable coherences of the former can
be divided into a central transition (CT), which does not evolve
under the first-order quadrupolar interaction, and a series of satel-
lite transitions (STs) which do. For quadrupolar nuclei in symmet-
ric environments with no CSA/SA, the resulting spectra are
dominated by a narrow peak due to the CT, with the STs resulting
in broader features that may be difficult to observe. However for
nuclei with broad CT resonances, due either to a particularly large
quadrupolar interaction or an SA, the STs cannot be neglected and
must be considered for a proper interpretation of the spectra. In
contrast to the previous section we also consider the effect of the
second-order quadrupolar interaction, and the second-order cross
term between the quadrupolar and SA interactions. Unlike the
first-order interaction, the second-order interaction does affect
the evolution of the CT coherence, and leads to broadening of the
corresponding peak.

11.4.1. First-order quadrupolar interaction
11.4.1.1. Static solid powders. The frequencies of evolution under
the first-order quadrupolar interaction are given by the expression
in Eq. (11.128) in terms of the satellite order d. For a spin I ¼ 3=2
there are two observable ST coherences j 32 þ 1

2ih32 þ 3
2 j and

j 32 � 3
2ih32 � 1

2 j, which have d values of �2 and þ2 respectively and
so evolve under the first-order interaction with distinct frequen-
cies. By contrast the CT coherence j 32 � 1

2ih32 þ 1
2 j has d ¼ 0, and so

does not evolve. There are therefore three individual resonances
in the FID, which evolve at the following frequencies:

XQ ;MiMj
ðXQC;XCLÞ ¼

þ2XQ ðXQC;XCLÞ; j 32 þ 1
2ih32 þ 3

2 j;
0; j 32 � 1

2ih32 þ 1
2 j;

�2XQ ðXQC;XCLÞ; j 32 � 3
2ih32 � 1

2 j:

8><>: ð11:135Þ

The single-crystal FID is calculated from Eq. (11.62), and has the
expression

sðXQC;XCL; tÞ ¼ 1
10

3exp þ2iXQ ðXQC;XCLÞt½ �½
þ 4þ 3 exp �2iXQ ðXQC;XCLÞt½ �� ð11:136Þ

¼ 1
5

3 cos 2XQ ðXQC;XCLÞt½ � þ 2½ �: ð11:137Þ
An example of a spectrum of a powder sample is shown in Fig. 11.6
(a). The spectrum is dominated by a sharp peak due to the CT, which
is at zero frequency. The two STs give considerably broader reso-
nances of lower intensity. A vertical expansion of the spectrum,
shown in Fig. 11.6(c), reveals the form of the two ST resonances
which, like the spectrum of the spin I ¼ 1 nucleus in Fig. 11.5(a),
combine to give a Pake pattern [195].

11.4.1.2. Solid powders under MAS. Under MAS the quadrupolar fre-
quency XQ

c ðcCR; tÞ is time-dependent and periodic. As the spin
system evolves the two ST coherences evolve at frequencies
	2XQ

c ðcCR; tÞ, and accrue periodic phases of 	2UQ
c ðcCR; t;0Þ,

whereas the CT coherence does not evolve. The result is that the
FID contains a time-independent contribution from the CT, and
two periodic contributions from the STs that each split into
spinning-sideband manifolds:

Fig. 11.4. Solid-state 7Li MAS NMR spectra of the cathode materials LiTMPO4,
TM = Mn, Fe. For both spectra the full spinning-sideband manifold is shown in (a),
and an expansion of the centreband is shown in (b). The MAS frequency is 60 kHz.
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scðcCR;tÞ¼
3
10

exp þ2iUQ
c ðcCR;t;0Þ

h i
þexp �2iUQ

c ðcCR;t;0Þ
h ih i

þ2
5

ð11:138Þ

¼ 3
10

Xþ1

m¼�1
FðmÞ
c exp iðhðmÞ

c ðcCRÞþmxrtÞ
� 	h

þFðmÞ
c exp �iðhðmÞ

c ðcCRÞþmxrtÞ
� 	i

þ2
5

ð11:139Þ

¼3
5

Xþ1

m¼�1
FðmÞ
c cos iðhðmÞ

c ðcCRÞþmxrtÞ
� 	

þ2
5
; ð11:140Þ

where FðmÞ
c and hðmÞ

c ðcCRÞ are the intensity and phase of the mth-
order sideband in the manifold of the j 32 þ 1

2ih32 þ 3
2 j ST. As for the spin

I ¼ 1 MAS spectrum, the spinning-sideband manifold of the second
ST is related to the first by a reflection about the reference
frequency. The resulting MAS spectrum of the powder contains a
single sharp peak due to the CT and a symmetrical and broad
spinning-sideband manifold due to the two STs, whose centrebands
are coincident with each other and with the CT peak, as shown in
Fig. 11.6(e).

11.4.2. Second-order quadrupolar interaction
We now turn our attention to the second-order quadrupolar

interaction, the Hamiltonian of which is given in Eq. (2.149). The
frequency components, in Table 11.2, comprise an isotropic term,
a rank-two term, and a rank-four term, that are proportional to
the spin-order parameters c0;MiMj

; c2;MiMj
, and c4;MiMj

respectively.
For all three contributions to the frequency both STs have the same
value of ci, which is different to that of the CT. Hence the value of c0

is �6 for both STs and þ3 for the CT, c2 takes values of þ6 and �12
for the STs and CT, and c4 is equal to þ24 and �27 for the STs and
CT. The resulting frequencies of evolution for the three transitions
are therefore:
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���� �
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þ3
2

� ����; ð11:141Þ
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The effect of these second-order contributions is shown in the spec-
tra in Fig. 11.6, with the spectra calculated to first-order also shown
for comparison. The full spectrum of the static powder in Fig. 11.6
(b), the vertical expansion highlighting the STs in (d), and the
MAS spectrum in (f) show a negligible change in the form of the
ST resonances, since the broadening due to the first-order
quadrupolar is much larger than the second-order broadening. In
fact the only change that is immediately apparent is the reduction
in the intensity of the CT peak, which is due to the broadening from
the rank-four frequency component. Since the CT is unaffected by
the first-order interaction, this second-order rank-four term is the
only source of broadening in the CT peak due to the quadrupolar
interaction, and so is non-negligible.

Fig. 11.5. Simulated powder spectra of a spin I ¼ 1 nucleus subject to first-order quadrupolar and shielding interactions. The spectrum of a static powder with the first-order
quadrupolar interaction only is shown in (a). Inclusion of the shift anisotropy under static conditions gives the more complicated spectrum in (b). Under MAS each resonance
splits into a manifold of spinning sidebands, as shown in (c) and (d). The spectrum in (c) was simulated with the same first-order quadrupolar coupling parameters as (a) and
in the absence of the shift anisotropy. Inclusion of the shift anisotropy gives the MAS spectrum in (d). The quadrupolar interaction parameters are CQ = 1.19 MHz
(corresponding to xQ=2p = 892.5 kHz), gQ ¼ 0:52, and XQC ¼ ð0� ;0� ;0�Þ. The chemical shielding parameters are �x0DrS=2p ¼ 500 kHz, gS ¼ 0:3, and XPC ¼ ð0� ;90�;0�Þ. The
frequency is measured relative to the isotropic offset Xiso. The MAS spectrum was simulated at 60 kHz MAS.
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The CT peak is highlighted more clearly in the spectra of
Fig. 11.7, which are expansions of those shown in Fig. 11.6. The
spectra in Fig. 11.7(a) and (c) are calculated under static conditions
and MAS respectively assuming the first-order quadrupolar inter-
action only. In the spectrum of the static powder in (a) the sharp
peak of the CT is superimposed on the broad ST resonances, which
here cannot be seen. Under MAS the sharp CT peak also contains a
small contribution from the centrebands of the two ST spinning-
sideband manifolds, as shown in (c). We recall that, to first order,
the centrebands of the two STs are resonant both with each other
and the CT, here at zero frequency. The introduction of the second-
order interaction has two noticeable effects on the spectrum of the
static powder, in Fig. 11.7(b). Firstly we see that the CT resonance
is broadened due to the combination of the rank-two and rank-four
frequency components. Secondly the centre of mass of the reso-
nance is shifted from zero frequency due to the second-order iso-
tropic frequency. Under MAS the broadening of the CT is reduced
but not eliminated, as shown by the spectrum in Fig. 11.7(d). This
is because, whilst the rank-two broadening is indeed removed the
rank-four broadening is only scaled by a factor of �7=18. We note

that this negative factor also results in a reversal of the lineshape
relative to the frequency axis. Magic-angle spinning also reveals
an additional feature of the second-order interactions. Because
the CT and STs have different values of c0 the former no longer
appears at the same isotropic frequency as the latter. The opposite
signs of the two c0 values results in the CT and ST centrebands
being shifted in opposite directions. Clearly care must be taken
to recognize the ST centrebands and not to confuse them with
additional nuclear sites.

11.4.3. Second-order quadrupolar and paramagnetic shift anisotropy
interactions

In paramagnetic systems, NMR spectra are also affected by the
SA interaction. Under static conditions the SA leads to an additional
broadening of the spectrum, as shown in Fig. 11.8(a). The CT and ST
resonances are both broadened by the rank-two SA, which leads to
a complicated lineshape. As for the spin I ¼ 1 case this spectrum
also depends on the relative orientation of the SA tensor relative
to the EFG tensor. Under MAS the broad lineshape splits into a
manifold of spinning sidebands, as shown in Fig. 11.8(b). Like the

Fig. 11.6. Simulated powder spectra of a spin I ¼ 3=2 nucleus subject to a first- and second-order quadrupolar interaction. The spectrum of a static powder with the first-
order quadrupolar interaction only is shown in (a). In (b) is shown the same spectrum calculated with the second-order quadrupolar interaction. The spectra in (c) and (d) are
vertical expansions of (a) and (b) in order to highlight the broad ST resonances. Under MAS the ST resonances split into spinning-sideband manifolds, giving the spectra in (e)
and (f). The spectrum in (e) was simulated with the first-order quadrupolar interaction only, whereas (f) includes the second-order interaction. The quadrupolar interaction
parameters are CQ = 3.3 MHz (corresponding to xQ=2p = 825 kHz), gQ ¼ 0:21, and XQC ¼ ð0�;0�;0�Þ. The nuclear Larmor frequency is x0=2p ¼ �105:9 MHz, giving
x2

Q=ð2px0Þ ¼ �6:4 kHz. The MAS spectrum was simulated at 60 kHz MAS.
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static spectrum, the sidebandmanifold is very complicated and dif-
ficult to interpret, as it contains contributions principally from the
first-order quadrupolar and SA interactions for the STs, and the SA
for the CT. An expansion of the region containing the centrebands,
Fig. 11.8(c), shows that the sidebands are broadened by the rank-
four frequency components.

Finally we briefly mention the second-order cross term
between the quadrupolar and SA interactions, the Hamiltonian of
which is given in Eq. (2.152). The frequency components, given
in Table 11.2, comprise an isotropic, a rank-two, and a rank-four
term, all of which are proportional to the satellite order dMiMj

.
The evolution frequencies of the three transitions are therefore:
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We see that the CT is unaffected by this cross term, and so expe-
riences no additional broadening or resonance shift, whereas the
two ST coherences evolve with frequencies of opposite sign. One
consequence of this is that the centrebands of the two STs no
longer appear at the same isotropic frequency. Hence the centre-
band region of the MAS spectrum now contains three distinct
peaks instead of two, one for each transition.

11.5. Key concepts

� A paramagnetic solution results in an NMR spectrum where the
shift is dominated by the isotropic paramagnetic shift, and the
linewidth is given by a combination of the paramagnetic relax-
ation enhancement, and the inhomogeneous broadening due to
the non-spherical shape of the sample container.

� A static paramagnetic powder results in an NMR spectrum
where the shift is dominated by the isotropic paramagnetic
shift, and the lineshape and linewidth are due to the shift aniso-
tropy and bulk magnetic susceptibility broadening.

� A spinning paramagnetic powder produces a spinning-sideband
manifoldwith an isotropic frequency given by the isotropic para-
magnetic shift. The pattern of sideband intensities is due to both
the shift anisotropy and the bulk magnetic susceptibility. The
linewidth of each spinning sideband is due to a combination of
the anisotropic bulk magnetic susceptibility broadening, param-
agnetic relaxation enhancement, and the extended network of
dipolar couplings between nuclei.

� Quadrupolar nuclei in paramagnetic systems have additional
interactions due to the first- and second-order quadrupolar
interactions.

� For integer-spin quadrupolar nuclei the quadrupolar interaction
is an additional source of resonance broadening under static
conditions, and gives rise to a spinning-sideband manifold
under MAS.

� For half-integer-spin quadrupolar nuclei the central transition
is broadened by the second-order quadrupolar interaction in
both static and spinning powders. The satellite transitions are
broadened by the first-order quadrupolar interaction under

Fig. 11.7. Expansions of the simulated powder spectra of a spin I ¼ 3=2 nucleus shown in Fig. 11.6 to highlight the CT. The spin is subject to a first- and second-order
quadrupolar interaction. The CT resonance of a static powder with the first-order quadrupolar interaction only is shown in (a). In (b) is shown the same CT resonance
calculated with the second-order quadrupolar interaction. The spectra in (c) and (d) were simulated under MAS. The spectrum in (c) was simulated with the first-order
quadrupolar interaction only, whereas (d) includes the second-order interaction. The quadrupolar interaction parameters are CQ = 3.3 MHz (corresponding to
xQ=2p = 825 kHz), gQ ¼ 0:21, and XQC ¼ ð0�;0�;0�Þ. The frequency is measured relative to the isotropic offset Xiso. The nuclear Larmor frequency is x0=2p ¼ �105:9 MHz,
giving x2

Q=ð2px0Þ ¼ �6:4 kHz. The MAS spectrum was simulated at 60 kHz MAS.
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static conditions, and give rise to an extensive spinning-
sideband manifold under MAS. The isotropic peak of the satel-
lite manifold is shifted relative to the isotropic peak of the man-
ifold of the central transition by the second-order quadrupolar
interaction, and so care must be taken not to confuse the former
with an additional nuclear site.

Chapter 12: A survey of NMRmethods for paramagnetic systems

In this chapter we survey the experimental NMR methods that
have either been used on, or are applicable to, paramagnetic sys-
tems. There are many NMR pulse sequences that have been
designed for diamagnetic systems, including small- to medium-
sized molecules in solution [255], large biomolecules in solution
[330], solid materials [331,2], and biosolids [332]. However many
of these methods cannot be easily applied to equivalent paramag-
netic systems due to the large shifts, SAs, and short relaxation
times. The methods we survey can be divided into two groups:
the relatively small proportion of those which were designed for
diamagnetic systems but can be applied to paramagnetic systems
with little or no modification, and those which are designed

specifically for paramagnetic systems in order to circumvent the
drawbacks caused by the presence of paramagnetic centres, or to
evaluate quantitatively paramagnetic effects. In addition we pro-
vide some general guidance on how to acquire NMR spectra of
paramagnetic species.

We divide the survey into two parts. Firstly we discuss methods
for solution NMR. Many of the topics covered here have already
been discussed by Bertini et al. [333,334,15], and so we keep the
discussion brief. Secondly we discuss solid-state NMR methods.
The development and application of solid-state NMR methods for
paramagnetic materials and biomolecules is a field that has seen
considerable progress in recent years, and so we devote more space
to it here.

We also add that this survey is not intended to be the final word
on paramagnetic NMR methodology. There are still many potential
improvements in RF probe technology and experimental schemes to
bemade in order to be able to study ever more demanding systems.

12.1. NMR pulse sequences

One- and two-dimensional NMR pulse sequences follow the
general scheme in Fig. 12.1. The general one-dimensional scheme
in Fig. 12.1(a) comprises a preparation period, which contains an
excitation sequence of duration sexc. This sequence is either a sin-
gle RF pulse or a combination of pulses, and generates observable
coherences of order p ¼ �1. The coherences are then observed in
the detection period of time t. The resulting FID is then subjected
to Fourier transformation to produce the spectrum.

The general two-dimensional sequence, shown in Fig. 12.1(b), is
more complex. Here the preparation period generates coherences
which may or may not be directly observable. These coherences
evolve during the evolution period, which comprises a time vari-
able t1 that is incremented stepwise. This is followed by a mixing
period, during which magnetization is transferred from one
nuclear species to another via a coupling interaction. The mixing
period generates observable coherences of order p ¼ �1, which
are observed during the detection period t2. The acquisition strat-
egy is as follows. Firstly we set t1 ¼ 0 and acquire a spectrum dur-
ing t2 in real time. We then increment t1 by an amount Dt1 and
repeat the experiment to acquire a second FID in t2. This process
is repeated until we have extended the evolution time t1 to the
desired value. The data are stored as data points sampled at dis-
crete values of t1 and t2, resulting in a two-dimensional FID
sðt1; t2Þ which is stored as an array, as shown in Fig. 12.2(a). This
FID is subjected to a two-dimensional Fourier transform to give a
two-dimensional spectrum Sðx1;x2Þ, which is a function of the
indirect frequency x1 and the direct frequency x2:

Sðx1;x2Þ ¼
Z 1

0
dt1

Z 1

0
dt2sðt1; t2Þ


 exp �ix1t1ð Þ exp �ix2t2ð Þ: ð12:1Þ
This is also presented as an array (Fig. 12.2(b)).

12.2. Solution NMR methods for paramagnetic systems

12.2.1. The general strategy
There are two principal observations associated with obtaining

an NMR spectrum of a paramagnetic compound in solution. Firstly
the large isotropic shifts result in a spectrum with a spectral dis-
persion that is considerably larger than that for diamagnetic mole-
cules. This means that it is harder to excite the full spectral range
efficiently with the RF powers that are typically available for solu-
tion NMR probes. Since the range of frequencies that are excited by
a pulse, known as the bandwidth, is generally proportional to the
RF field amplitude x1, we expect pulse sequences containing only

Fig. 11.8. Simulated powder spectra of a spin I ¼ 3=2 nucleus subject to a second-
order quadrupolar interaction and a shift anisotropy. The spectrum of the static
powder is shown in (a), which under MAS splits into the spinning-sideband
manifold in (b). The spectrum in (c) is an expansion of (b) showing the centreband
and the first-order sidebands of both the CT and ST resonances. The quadrupolar
interaction parameters are CQ = 3.3 MHz (corresponding to xQ=2p = 825 kHz),
gQ ¼ 0:21, and XQC ¼ ð0�;0�;0�Þ. The chemical shielding parameters are
�x0DrS=2p ¼ 500 kHz, gS ¼ 0:3, and XPC ¼ ð0� ;90�;0�Þ. The frequency is measured
relative to the isotropic offset Xiso. The nuclear Larmor frequency is
x0=2p ¼ �105:9 MHz, giving x2

Q=ð2px0Þ ¼ �6:4 kHz. The MAS spectrum was
simulated at 60 kHz MAS.
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short, high-power RF pulses to be more applicable than sequences
with longer periods of low-power irradiation, such as spin lock
pulses and periods of decoupling. High-power spin-lock periods
and decoupling sequences are not advisable as they may damage
both the probe and the sample.

The second observation we encounter is that the relaxation
times are typically very short due to the large PREs. On the one
hand, the short T1 and T2 time constants result in a considerable
loss of signal during an experiment, which severely limits the
length of the pulse sequence that we can successfully employ. In
addition the short T2 gives very broad peaks in the spectrum. This
is particularly problematic for large molecules such as proteins,
where there is an appreciable Curie contribution to transverse
relaxation. Both effects lead to low sensitivity, and some peaks
may be missing altogether. On the other hand the short T1 can
be a useful property, as the dominant factor that determines the
total length of the experiment is the recycle delay, which is the
time between the individual scans we allow for the spin system
to relax back to equilibrium, which is set to between 3T1 and 5T1

for a quantitative spectrum. The short T1 values allow us to reduce
the recycle delay, so that we can acquire more scans in a certain
experiment time. This partly offsets the reduction in sensitivity
resulting from broad peaks and signal losses during the sequence.

12.2.1.1. Spectral editing using relaxation time differences. When
acquiring NMR spectra of paramagnetic molecules in solution
one difficulty that may arise is that the broad, low-intensity signals
from the paramagnetic species are difficult to observe as they are
dominated by sharper, more intense signals from diamagnetic spe-
cies, for example the solvent. This is frequently the case for param-
agnetic proteins, where the solvent peak(s) dominate the
spectrum. Fortunately solvent peaks can be suppressed easily by
exploiting the fact that their longitudinal relaxation time constants

are significantly longer than those for paramagnetic species. We

denote the solvent and paramagnetic-species T1 times T long
1 and

Tshort
1 respectively. If we set the recycle delay so that it is equal to

5Tshort
1 , but shorter than T long

1 , and acquire several scans, the signals
components from the paramagnetic species are fully-relaxed at the
start of each new scan, whereas the solvent signals are not. The for-
mer signals are acquired with maximum intensity, reflecting the
size of their equilibrium longitudinal magnetization, whereas the
latter are almost completely saturated. The resulting spectrum
then contains far more of the signals from the paramagnetic spe-
cies, with the longer-relaxing solvent signals being largely sup-
pressed. This is a simple example of spectral editing, where the
signal components with longer T1 values are selectively sup-
pressed to allow the observation of the signals with shorter T1 time
constants. The saturation is usually not perfect, and so improved
techniques are required.

A more effective T1-spectral-editing technique is based on the
Water Eliminated Fourier Transform (WEFT) pulse sequence,
which is shown in Fig. 12.3(a) [335]. The sequence is the simple
inversion–recovery sequence, which can be used to measure T1.
The z-magnetization vectors from all the signal components are
inverted by the 180� pulse, and then relax during the subsequent

recovery delay s. For WEFT the delay s is set to T long
1 ln 2, at which

time the z-magnetization due to the solvent passes through zero. If

however Tshort
1 is sufficiently short the z-magnetization of the para-

magnetic species is fully relaxed. The second pulse of 90� flip angle
then excites coherences the magnitudes of which are proportional
to the recovered z-magnetization, with the result that the spec-
trum contains only the rapidly-relaxing signal components from
the paramagnetic species.

The WEFT experiment has been improved by employing the
same sequence, but using different values of the recovery delay s

Fig. 12.1. General schemes for one- and two-dimensional NMR pulse sequences. The general one-dimensional scheme is shown in (a), and the two-dimensional scheme is in
(b).

Fig. 12.2. Array representation of the FID and spectrum from a two-dimensional experiment. The FID is shown in (a), and the spectrum is in (b).
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[336]. It has been shown that if the recycle delay is shortened so
that the solvent peaks are saturated, but is also sufficiently long
to enable full relaxation of the paramagnetic signals, then one
can find a value of the delay s at which the solvent signals have
zero intensity after several scans (super WEFT). This experiment
has been applied to paramagnetic proteins in solution in order to
separate signals from the protein experiencing a moderate PRE
from those that relax with a larger PRE. Aa an example, 200 MHz
1H super WEFT NMR spectra of a heme-containing cytochrome c
mutant Ala80cytc are shown in Fig. 12.4 [337,334]. The super
WEFT spectrum obtained with both s and the recycle delay set to
250 ms, spectrum (a), shows several signals with paramagnetic
shifts that take them outside the normal diamagnetic region, and
which exhibit T1 times of approximately 100 ms. However these
signals obscure the peaks from the axially-coordinated histidine,
which have shorter T1 times, of the order of a few ms. These more
rapidly-relaxing signals can be observed in the spectrum of
Fig. 12.4(b), which was acquired by setting the s and the recycle
delays to 20 ms and 33 ms respectively.

Fig. 12.3(b) shows an alternative pulse sequence for suppress-
ing the solvent signals, which is referred to as MOdified Driven
Equilibrium Fourier Transform (MODEFT) [338]. Here the delay s
is chosen to be short compared to T long

1 , and long compared to

Tshort
1 . If these conditions are met, the solvent signals experience

no significant relaxation during the spin echo, and the combined
effect of the two 90� and 180� pulses is to rotate the equilibrium
solvent magnetization by 360� so that it returns to its equilibrium
position and the solvent signals are not excited. However the para-
magnetic signals experience significant relaxation during the spin
echo, at the end of which the magnetization has returned to equi-
librium. The final pulse then acts as a simple excitation pulse, and
we observe the paramagnetic signals. Typically super WEFT per-
forms better than MODEFT when a single signal is to be sup-
pressed, but MODEFT has comparable, or better, results when
more than one slowly-relaxing signal needs to be suppressed
[334].

12.2.2. Small molecules
There is an extensive suite of pulse sequences available for

small molecules in solution, a comprehensive survey and explana-
tion of which can be found in Keeler [255]. Here we provide a brief
overview of sequences that have been employed in paramagnetic
NMR.

12.2.2.1. Homonuclear through-bond correlations. One very impor-
tant class of experiments is that of homonuclear through-bond cor-
relation experiments. Correlations are observed between nuclear
spins that are coupled to each other via a through-bond J-
coupling interaction. The strength of this interaction is quantified
by the J-coupling constant J, which typically has a magnitude of
0–20 Hz for 1H–1H interactions, and 0–100 Hz for 13C–13C cou-
plings. In the experiments described here the observation of a cor-
relation requires that the indirect evolution time t1 be sufficiently
long to allow measurable evolution of the J-coupling. The desired

signal varies as sinðpJt1Þ and so the evolution time required for
maximum cross-peak signal is of the order 1=ð2JÞ [255], which
for 1H–1H correlation experiments means that t1 must extend to
times of the order of 25 ms. Clearly this may present a problem
for systems with large transverse PREs.

Fig. 12.5 shows three pulse sequences that have been success-
fully used [333]. The simplest experiment, shown in Fig. 12.5(a)
is the COrrelation SpectroscopY (COSY) sequence, which has a mix-
ing period comprising a single 90� pulse. There are only two pulses
in the sequence, which is an advantage in that this minimizes the
potential for problems with non-ideal excitation to occur. A simu-
lated example of a spectrum is shown in Fig. 12.6(a). The spectrum
contains both diagonal-peak multiplets, and cross-peak multiplets
that indicate the presence of homonuclear correlations. Each
diagonal-peak multiplet appears as an in-phase array, meaning
that all the individual peaks have the same phase. By contrast
the cross peaks are anti-phase in each dimension, so that the two
components have intensities of opposite sign. The resulting multi-
plet appears as an anti-phase square array in the two-dimensional
spectrum. This form of the spectrum has a disadvantage when the
linewidth is comparable to or larger than the J-coupling, as the
components of the cross-peak multiplet cancel to an extent, result-
ing in a low-intensity multiplet, whereas the diagonal peaks rein-
force. Therefore it is often observed in rapidly-relaxing systems
that COSY spectra exhibit very intense diagonal-peak multiplets
that dominate the cross-peak multiplets. Furthermore the diagonal
peaks are out of phase with the cross peaks by 90� in both dimen-
sions. Hence if the cross peaks are phased to double absorption (i.e.
absorption mode in both dimensions), as is conventionally done,
the diagonal peaks are in double dispersion, and therefore have
lineshapes with broad bases that can mask the presence of nearby
cross-peaks.

The Double-Quantum-Filtered COSY (DQF-COSY) experiment
(Fig. 12.5(b)) is an improvement over the basic COSY sequence.
The mixing period comprises a double-quantum filter of two 90�

pulses between which only double-quantum coherences (with
p ¼ 	2) are retained. The main advantage over basic COSY is that
the diagonal- and cross-peak multiplets have the same phase,
and both appear as anti-phase square arrays so that there is a more
equal balance of intensities. This is seen in the simulated spectrum
in Fig. 12.6(b). In addition the double-quantum filter ensures that
any nuclear spins that are not J-coupled do not contribute to the
spectrum, and so there are no intense singlet resonances. The only
disadvantage of the DQF-COSY experiment is that the double-
quantum filter reduces the sensitivity relative to conventional
COSY by a factor of two.

The 1H–1H COSY spectrum of (2-NCH3-21-CH3CTPP)-NiCl in
CDCl3 is shown in Fig. 12.7 [339]. Here the Ni2+ ion coordinates
to a porphyrin ring 2-NCH3-21-CH3CTPPH, the structure of which
is also shown, with the result that the 1H nuclei experience appre-
ciable paramagnetic shifts. Despite the larger dispersion of 60 ppm
the COSY experiment yields a substantial number of 1H–1H
through-bond correlations. This is in part because the transverse
PREs, which cause losses in sensitivity during the COSY pulse

Fig. 12.3. Pulse sequences for the selective suppression of signals from nuclear species with long T1. The basic sequence for the WEFT and super WEFT experiments is shown
in (a), and (b) shows the MODEFT sequence. The filled and unfilled rectangles indicate pulses with nominal flip angles of 90� and 180� respectively, and phase x.
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sequence, due to Ni2+ are relatively modest compared to other 3d
metal ions, as seen from Table 8.5. Hence complexes of these other
ions may be less suitable for 1H–1H COSY.

It should be noted that, in order to maximize the signal-to-noise
ratio of the cross peaks in the two-dimensional COSY spectrum, it
is important to tailor the time-domain weighting functions to the
expected T2 time constants [258]. For a two-spin system the time

modulation of the cross-peak multiplet between spins 1 and 2 in
the FID has the form sin X1t1ð Þ sin pJt1ð Þ exp iX2t2ð Þ sin pJt2ð Þ
exp �t1=T

ð1Þ
2

� 	
exp �t2=T

ð2Þ
2

� 	
, where T ðiÞ

2 is the transverse relax-

ation time constant for spin i. When relaxation is negligible the sig-
nal maximum in the FID is at t1 ¼ t2 ¼ 1=ð2JÞ, and so we require a
weighting function with a maximum at this point. However for

Fig. 12.4. 1H NMR spectra of the cyanide adduct of a cytochrome c mutant Ala80cytc acquired using the super WEFT pulse sequence. In (A) is shown the spectrum acquired
with s ¼ 250 ms and a recycle delay of 250 ms. The spectrum in (B) was acquired with s ¼ 20 ms and a recycle delay of 33 ms, and clearly shows the two signals of the
axially-coordinated histidine at 16.1 and �3:4 ppm [337]. Reproduced from [334], with permission from Elsevier.

Fig. 12.5. Pulse sequences and coherence-transfer pathways for two-dimensional homonuclear through-bond correlation experiments. The basic COSY sequence in shown in
(a), the DQF-COSY sequence is shown in (b), and (c) shows the TOCSY sequence. The filled rectangles indicate pulses with a nominal flip angle of 90� and phase x. In the TOCSY
experiment the grey rectangle represents continuous irradiation during an isotropic mixing sequence such as DIPSI-2.
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paramagnetic systems where JT2 � 1 we require a weighting func-
tion with maxima at approximately t1 ¼ t2 ¼ T2. Typically we then
acquire data points in the t1 dimension only out to a maximum
time of 2T2.

The TOtal Correlation SpectroscopY (TOCSY) sequence is shown
in Fig. 12.5(c). The mixing period is a z-filter, comprising two
pulses between which coherences are suppressed and only longi-
tudinal terms are retained, that contains a period of isotropic mix-
ing. The latter, which is a period of continuous low-power RF
irradiation with duration sm, which is referred to as the mixing
time, is responsible for correlating signals. Transfer from one
nuclear spin to another occurs due to the J-coupling, which for
maximum signal requires sm to be of the order of 1=ð2JÞ. This mix-
ing may result in low sensitivity due to (1) the length of the mixing
time giving large relaxation losses and (2) inefficient transfer due
to the low RF field amplitude of the irradiation being insufficient
to cover the spectral range of the paramagnetic shifts. The former
problem is mitigated by compromising on the length of the mixing
time, and ensuring that it is no longer than T2. However the form of
the spectrum has a distinct advantage over COSY and DQF-COSY as
all the multiplets are in phase. This means the cross-peak multi-
plets due to J-couplings that are comparable to the linewidth have
a larger intensity, and so are easier to observe. An example of the
simulated spectrum is shown in Fig. 12.6(c). One additional differ-
ence between TOCSY and the other experiments is that, for suffi-
ciently long mixing times, we observe ‘relay’ cross peaks
between spins that are not directly coupled to each other, provided
that both are within the same continuously-coupled network of
spins. For example consider a linear spin system A–M–X, in which
A is coupled to M and M is coupled to X, but A and X are not cou-
pled to each other. Both COSY and DQF-COSY give cross-peak mul-
tiplets between A and M, and M and X, only. However TOCSY also
gives a cross-peak multiplet between A and X, due to a relayed
transfer from A to M, and then from M to X (and vice versa). This
allows TOCSY to be used to identify isolated spin systems within
a molecule.

An example of a 1H–1H TOCSY spectrum is shown in Fig. 12.8
(b) [340]. The system is the medium-sized lanthanide-ion com-
plex YbH(oep)(tpp), the structure of which is shown in (a). Here
the isotropic shift dispersion is relatively modest, as the 1H
shifts are dominated by a small PCS, and the Yb3+ induces a
comparatively modest PRE. For this reason the isotropic mixing
sequence is able to induce a transfer with sufficient efficiency
across the spectrum in order to observe a number of cross-
peaks.

12.2.2.2. Homonuclear through-space correlations. A second type of
homonuclear correlation experiment that is very important for
structure determination involves through-space magnetization
transfers between nuclear spins via the dipolar coupling. In solu-
tion the dipolar couplings are averaged to zero by molecular tum-
bling of the molecules. However the stochastic fluctuations of the
internuclear vectors result in a cross-relaxation mechanism in
which magnetization is transferred from one nuclear spin to the
other. This transfer mechanism, referred to as the nuclear Over-
hauser effect (NOE), is useful for determining both the conforma-
tions adopted by flexible molecules, and relative stereochemistry.

There are two pulse sequences that are commonly used. This
first is the Nuclear Overhauser Effect SpectroscopY (NOESY)
sequence, which is shown in Fig. 12.9. The sequence has the same
form as the TOCSY sequence, but without the isotropic mixing ele-
ment; instead the mixing sequence is a simple z-filter of duration
sm. The transfer of z-magnetization from one spin to another
occurs during sm, which for diamagnetic systems is usually
between 100 ms and 1 s. For paramagnetic systems, on the other
hand, one should set sm so that is does not exceed T1. The two-
dimensional spectrum contains both diagonal and cross peaks,
both with the absorption lineshape. One interesting feature of
the NOESY experiment is that the relative signs of the cross and
diagonal peaks change with the correlation time sc. For small
molecules with rotational correlation times, of the order of
10�10 s, the cross peaks are of opposite sign to the diagonal peaks.
Hence if we process the spectrum so that the diagonal peaks are of
negative intensity, the cross-peaks are positive. A NOESY spectrum
simulated for such a small molecule is shown in Fig. 12.10(a). On
the other hand, large biomolecules with longer correlation times,
of the order of 10�8 s, the sign of the cross-peaks is inverted so that
it is the same as that of the diagonal peaks. This is shown in the
plot of the ratio of the cross-peak and diagonal peak as a function
of correlation time for a two-spin system in Fig. 12.10(b). It can be
seen that there is a intermediate correlation time at which the rate
of cross relaxation is zero; the precise value depends on the Larmor
frequencies of the nuclei, and therefore the magnetic field, but is
generally of the order of 5
 10�10 s. This is disadvantageous if
the molecule under study happens to have such a correlation time,
as no cross peaks are observed.

The second experiment avoids this problem. The pulse
sequence of this Rotating frame Overhauser Effect SpectroscopY
(ROESY) experiment is shown in Fig. 12.11. Here the mixing period
comprises a spin lock of the single-quantum coherences, during

Fig. 12.6. Examples of homonuclear through-bond correlation spectra of a two-spin system. The basic COSY spectrum shown in (a), the DQF-COSY spectrum is shown in (b),
and in (c) is the TOCSY spectrum. The chemical shift offset frequencies of the two spins are X1 and X2, and the coupling between them, in Hz, is J. The one-dimensional traces
shown above each two-dimensional spectrum are taken parallel to the x2-axis at x1 ¼ X1 þ pJ, as indicated by the arrow. Positive contours are coloured red, and negative
contours are black.
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which cross-relaxation takes place. The spin lock is often applied
off resonance to avoid transfer via the TOCSY mechanism. The
advantage of ROESY over NOESY is that the cross and diagonal
peaks are always of opposite sign for any correlation time, as
shown by the plot of the ratio of the intensities of the cross peak
and diagonal peak in Fig. 12.10(b), and so the spectrum has the
same form as that in Fig. 12.10(a). The disadvantage of ROESY is
that it is necessary to spin lock for times of the order of 100 ms,
and so only low RF field amplitudes can be used. This may be prob-
lematic for paramagnetic molecules with large spectral dispersion.

A comparison between the NOESY and ROESY spectra of the lan-
thanide complex YbH(oep)(tpp) is shown in Fig. 12.8(c) and (d)
[340]. For this system it can be seen that there are a number of
cross peaks observed in the ROESY spectrum (19–22) that are not
seen by NOESY. As for the TOCSY spectrum applied to this complex,
we note that the modest shift dispersion and PRE induced by Yb3+

ensure that the spin-lock transfer in the ROESY sequence is rela-
tively efficient.

The through-space NOE transfer can also be achieved using one-
dimensional techniques, such as the steady-state and selective-
inversion NOE pulse sequences shown in Fig. 12.12(a) and (b). In
the steady-state experiment the longitudinal magnetization of
one spin is perturbed from its equilibrium value by selective satu-
ration for a time of the order of 1–100 ms. During the irradiation
the magnetization is transferred via cross relaxation. A final 90�
pulse then excites the resonances, which are observed during
acquisition. The NOE transfer leads to an enhancement or diminu-
tion of the resonance intensities of the spins that are close in space
to the irradiated spin. This enhancement can be seen more easily
by subtracting from the steady-state spectrum a reference one-
dimensional spectrum in which the amplitude of the irradiation
field is set to zero or, more commonly, the irradiation frequency
is set well outside the spectrum of interest. Furthermore it is found
experimentally that it is preferable not to fully saturate the signal
of interest, but rather to irradiate with just sufficient power to
reduce the intensity to 60% of its initial value [341,342]. The full
set of NOE transfers can be obtained by repeating the experiment,
irradiating each spin in turn. The inversion-transfer experiment
follows a similar principle. Here one spin is perturbed from equilib-
rium by a selective 180� inversion pulse. The NOE transfer happens
during the subsequent mixing time sm, and the spectrum is excited
by the final 90� pulse. Once again the signal changes caused by the
NOE are observed following subtraction of a reference spectrum.

Fig. 12.13 shows a series of difference spectra acquired for YbH
(oep)(tpp) using the steady-state NOE sequence [340]. In the dif-
ference spectra the positive peaks from nuclei experiencing an
NOE transfer are of low intensity, but can still be easily identified
even when they are close to the more intense negative peak of
the irradiated nuclear spin. The selective steady-state method
has also been used to provide an unequivocal assignment of the
resonances in the small paramagnetic molecule YbDOTMA in solu-
tion, which is an analogue of the MRI contrast agent GdDOTA[343].
This assignment was used to elucidate the confirmation adopted in
solution.

12.2.2.3. Homonuclear exchange correlations. The final homonuclear
correlation experiment we consider is EXchange SpectroscopY
(EXSY). This method correlates between nuclear species that are
in slow chemical exchange, which is defined as being when the
rate of exchange is small compared to the differences in chemical
shifts expressed in frequency units. The pulse sequences are the
same as for the NOESY and ROESY experiments in Figs. 12.9 and
12.11. In both cases the transfer of magnetization between nuclear
spins occurs during the mixing periods sm, and result in similar
spectra. We note that when we are in the fast exchange limit, such
that the rate of exchange is large compared to the difference in
chemical shifts, the two distinct peaks in the spectrum collapse
into a single resonance the linewidth of which depends in part
on the exchange lifetime sM. Fig. 12.14 gives an example of a sim-
ulated spectrum that would be observed for slow exchange
between two sites with offset frequencies X1 and X2.

Two-dimensional 1H EXSY has been used to study the slow-
exchange dynamics of the two isomeric forms of molecules derived
from the MRI contrast agent GdDOTA. Expansions of the 1H EXSY
spectra of YbDOTA� acquired at two temperatures are shown in
Fig. 12.15 [296]. The spectrum acquired at 25 �C in Fig. 12.15(a)
shows several cross peaks between resonances of the two isomeric
forms of the molecule. When the temperature is lowered to 0 �C in
Fig. 12.15(b), the rate of exchange is reduced and fewer cross peaks
are observed at the same mixing time. An analogous study has
been made of the molecule YbDOTMA in solution [343].

Fig. 12.7. Experimental two-dimensional 1H–1H COSY spectrum of (2-NCH3-21-
CH3CTPP)-NiCl in CDCl3. The upper spectrum shows the high chemical shift region
of the pyrrole protons, and the lower spectrum shows the meso-phenyl region with
lower shifts. The structure of the porphyrin ring 2-NCH3-21-CH3CTPPH is shown
above the spectra. Adapted with permission from [339]. Copyright (1996) American
Chemical Society.
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12.2.2.4. Heteronuclear through-bond correlations. A central experi-
ment in any spectral assignment strategy is correlation between
different types of nuclear spin. For the NMR of small organic mole-
cules the most acquired correlations are between 1H and a
heteronucleus X, which may for example be 13C or 15N at natural
abundance. When choosing a pulse sequence we have a choice
over which nucleus to excite at the beginning of the sequence,
and which to observe. If the excited nuclear spin has gyromagnetic
ratio cexc and longitudinal relaxation time constant Texc

1 , and the
observed nucleus has gyromagnetic ratio cobs, it can be shown that
the overall sensitivity is approximately proportional to [258]

cexcc
3=2
obs 1� exp �T=Texc

1

� �
 �
; ð12:2Þ

where T is the recycle delay. Eq. (12.2) represents an optimistic
expectation for the achievable sensitivity, and in practice must be
multiplied by factors that account for the efficiency of the coher-
ence transfer(s) in the sequence, the quality factor of the probe
for the observed nucleus, and the inverse linewidth of the observed
nucleus. For diamagnetic molecules there is a sensitivity advantage
to both exciting and detecting 1H (via two transfers), as it has firstly
the larger gyromagnetic ratio, and secondly generally lower T1 val-
ues which allow us to shorten the recycle delay. For paramagnetic
molecules the advantage is less clear as the shorter 1H T2 time con-
stants lead both to a loss in the efficiency of the coherence transfers,
which is exacerbated by the use of a second transfer back to 1H, and
to broader 1H lines. Nevertheless it is generally observed that for
small paramagnetic molecules 1H excitation and detection is prefer-
able, whereas for large paramagnetic biomolecules with significant
Curie broadening better sensitivity can be obtained by detecting the
narrower heteronucleus resonances.

One experiment that has been successfully applied to paramag-
netic molecules is the Heteronuclear Multiple-Quantum Correla-
tion (HMQC) sequence for one-bond correlations shown in
Fig. 12.16(a). The 1H spin is excited by the first pulse, and then
evolves under the heteronuclear J-coupling during the delay s1.
The coherence is transferred to X by the first X pulse, which gener-
ates multiple-quantum coherences between the two spins of total
coherence orders �2, 0, and þ2. The chemical shift of X then

Fig. 12.8. Experimental two-dimensional 1H–1H homonuclear correlation spectra of the YbH(oep)(tpp) complex acquired in solution at 11.74 T and 298 K. The structure of
the complex is shown in (A) with Ln3+ = Yb3+. The spectra shown are (B) a TOCSY spectrum with an isotropic mixing time of 40 ms, (C) a NOESY spectrum with a mixing time
of 40 ms, and (D) a ROESY spectrum with a spin-lock time of 20 ms. Adapted with permission from [340]. Copyright (1996) American Chemical Society.

Fig. 12.9. Pulse sequence and coherence-transfer pathway for the two-dimensional
NOESY and EXSY experiments. The filled rectangles indicate pulses with a nominal
flip angle of 90� and phase x.
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evolves during t1, before the second X pulse regenerates the 1H
single-quantum coherence and the J-coupling evolves during the
second delay s1. Finally 1H is detected during t2. If heteronuclear
decoupling is applied to X during detection the spectrum contains
a single peak, as shown by the simulated spectrum in Fig. 12.17(a).
For paramagnetic systems heteronuclear decoupling may be inef-
fective, or deleterious to the quality of the spectrum. In this case
the decoupling pulses can be omitted during acquisition
(Fig. 12.16(b)), resulting in a spectrum containing a doublet with
an in-phase splitting in the direct dimension, as shown in
Fig. 12.17(b).

The advantage of this experiment is its simplicity: there are
only four pulses in the sequence, which reduces the effects of
imperfections when applied to paramagnetic systems. The two
most significant sources of error are the 180� pulse on 1H, and
the heteronuclear decoupling during acquisition. The first problem
arises because the bandwidths of 180� pulses are generally lower
than those of 90� pulses. However if the conventional pulse proves
to have insufficient bandwidth to excite the whole 1H spectrum it
can be replaced by more broadband composite 180� pulses, such as
the broadband inversion pulses (BIPs) of Smith et al. [344]. The sec-

ond problem is due to the large spectral dispersion of paramag-
netic systems, which may make decoupling inefficient. However
if this is the case the decoupling can simply be omitted.

The peak intensity is proportional to sin2 pJISs1ð Þ, where JIS is
the one-bond heteronuclear J-coupling constant, and so the opti-
mum value for s1 is 1=ð2JISÞ. For one-bond correlations between
1H and 13C the coupling constant is typically 140 Hz, resulting in
an optimum s1 of 3.6 ms, as shown in Fig. 12.17(d). However for
short T2 it is usually found that the optimum delay is shorter, as
shown in Fig. 12.17(d) where a T2 of 4 ms reduces the optimum
value of s1 to 2.4 ms. The maximum peak intensity is reduced to
0.22 of the value expected with no relaxation. Such losses are
expected for paramagnetic systems, but may be unacceptable
when sensitivity is at a premium. In these cases we can simply
omit the second delay s1 to mitigate this sensitivity loss, which
gives the pulse sequence in Fig. 12.16(b). The resonance now
appears as an anti-phase doublet, as shown in Fig. 12.17(c), with
an intensity proportional to sin pJISs1ð Þ with no relaxation. How-
ever when we account for relaxation with the same T2 of 4 ms,
we see in Fig. 12.17(d) that the optimum s1 is again reduced to
2.4 ms, but that the intensity of the peak is reduced only to 0.48.
Thus the omission of the second delay s1 can result in double the
sensitivity compared to the first sequence.

A second heteronuclear correlation experiment that is widely
used is the Heteronuclear Single-Quantum Correlation (HSQC).
The basic pulse sequence, which contains more pulses than the
HMQC sequence, is shown in Fig. 12.16(c). This experiment corre-
lates the anti-phase single-quantum coherences of the S-spin in t1
against the in-phase single-quantum coherence of the I-spin in t2.
The anti-phase coherences are generated and reconverted by a pair
of heteronuclear spin-echo sequences, with half-echo delays s1.
The form of the spectra in the presence and absence of heteronu-
clear decoupling during acquisition is, as shown in Fig. 12.17(a)
and (b), the same as for the corresponding HMQC spectra. The

Fig. 12.12. Pulse sequences for the (a) one-dimensional steady-state, and (b) one-dimensional selective-inversion-transfer NOESY experiments. The filled rectangles indicate
pulses with a nominal flip angle of 90� , and unfilled rectangles indicate pulses with a nominal flip angle of 180� . The grey rectangle indicates a saturation pulse-sequence
element.

Fig. 12.10. Example of a homonuclear through-space correlation spectrum of a two-spin system in a small molecule acquired using either the NOESY or ROESY pulse
sequence. The two-dimensional spectrum is shown in (a). The chemical shift offset frequencies of the two spins are X1 and X2. Positive contours are coloured red, and
negative contours are black. The plot in (b) shows the variation of the intensity of the cross peak divided by the intensity of the diagonal peak as a function of correlation time
for both two-dimensional NOESY and ROESY. The plot in (b) was calculated for two 1H nuclei separated by 5 Å, in a magnetic field of 11.74 T. The NOE/ROE mixing time is
100 ms. Here the correlation time at which the NOE enhancement is zero is 360 ps.

Fig. 12.11. Pulse sequence and coherence-transfer pathway for the two-dimen-
sional ROESY experiment. The filled rectangles indicate pulses with a nominal flip
angle of 90� and phase x, and the grey rectangle is a spin-lock pulse of duration sm
and phase y.
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intensity of the resonance is proportional to sin2 2pJISs2ð Þ, which is
a maximum when s2 is set to 1=ð4JISÞ, if we neglect relaxation
effects. For a coupling constant of 140 Hz, the optimum s2 is
1.8 ms. As for the HMQC experiment, the reconversion of the I-
spin coherences from anti-phase to in-phase immediately prior
to acquisition in the HSQC experiment can be omitted for systems
with short T2 times. The arguments for the improved sensitivity
resulting from the omission of the second spin echo are the same
as for the HMQC experiment given above, and so the plots in
Fig. 12.17(d) also apply to the HSQC sequences with s1 ¼ 2s2. This
resulting HSQC pulse sequence is shown in Fig. 12.16(d), and pro-
duces a spectrum with an anti-phase splitting as shown in
Fig. 12.17(c).

When any of these HMQC or HSQC sequences are applied to
proteins in aqueous solution, it is very important to suppress the
water signal. This can be done, for example, by incorporating
pulse-sequence elements based on experiments like WEFT. This
has been done recently by Ciofi-Baffoni et al. who incorporated
water suppression in an HSQC sequence to give the IR-HSQC-AP
experiment [345].

12.3. Solution NMR of paramagnetic proteins

The study of the structure and dynamics both of paramagnetic
metalloproteins [346] in solution, and proteins carrying a param-
agnetic tag [347], has seen substantial progress over the years.
As for small molecules the paramagnetic ion in the protein is a rich

Fig. 12.13. One-dimensional NOE difference spectra of the YbH(oep)(tpp) complex
acquired at 11.74 T and 298 K. The upper trace is the reference spectrum, labelled
with the integrals of selected regions. The six spectra (A)–(D), (F), and (J) are the
NOE difference spectra acquired following saturation of the corresponding 1H
indicated in the reference spectrum. In all cases the irradiated 1H gives a negative
peak in the difference spectrum, and the 1H nuclei experiencing an NOE transfer
give positive peaks. The structure of YbH(oep)(tpp) is given in Fig. 12.8(a).
Reproduced with permission from [340]. Copyright (1996) American Chemical
Society.

Fig. 12.14. Example of a homonuclear EXSY spectrum of a two-spin system in
which the two nuclear spins are in slow exchange. The chemical shift offset
frequencies of the two spins are X1 and X2. Positive contours are coloured red.

Fig. 12.15. Expanded region of the two-dimensional 1H EXSY spectrum of YbDOTA�

acquired at two temperatures. The structure of YbDOTA� is given above the spectra.
The spectrum acquired at 25�C is shown in (A), and the spectrum at 0 �C is shown in
(B). The 1H Larmor frequency is �400 MHz, and the mixing time is 5 ms. Adapted
with permission from [296]. Copyright (1992) American Chemical Society.
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source of structural information that can be exploited, but also pre-
sents spectroscopic challenges. Many of these challenges are the
same as for small molecules. However there is an additional prob-
lem that we meet when studying paramagnetic proteins, which is

that the transverse PREs are augmented by substantial Curie relax-
ation, which leads to very severe line broadening. These features
are briefly discussed here, beginning with drawing a parallel with
diamagnetic proteins.

Fig. 12.16. Pulse sequences and coherence-transfer pathways for the two-dimensional HMQC and HSQC experiments. The basic HMQC sequence is shown in (a), in which we
detect the in-phase doublet during acquisition. Heteronuclear decoupling may be employed in order to observe a singlet. Alternatively we can observe the anti-phase doublet
using the sequence in (b). The delays s1 have an optimum value of 1=ð2JISÞ in the absence of relaxation. The basic HSQC sequence is shown in (c), in which we observe either
the in-phase doublet or, using heteronuclear decoupling, a singlet. We can also observe the anti-phase doublet directly using the HSQC sequence in (d). The delays s2 have an
optimum value of 1=ð4JISÞ. The filled rectangles indicate pulses with a nominal flip angle of 90� , and unfilled rectangles indicate pulses with a nominal flip angle of 180� . The
grey rectangle represents broadband heteronuclear decoupling. All pulses have phase x.

Fig. 12.17. Examples of heteronuclear correlation spectra of a two-spin heteronuclear spin system I–S acquired using either the HMQC or HSQC experiment. The chemical
shift offset frequencies of the two spins are XI and XS , and the heteronuclear J-coupling constant is J. In (a) is shown the spectrum obtained with heteronuclear S-spin
decoupling during acquisition. In the absence of decoupling we obtain a doublet with an in-phase splitting in x2, as shown in (b). Alternatively we can acquire immediately
after the final 90� pulse(s), and obtain a spectrum with an anti-phase doublet, as shown in (c). Positive contours are coloured red, and negative contours are black. In (d) are
shown the peak intensities obtained with and without transverse relaxation for the HMQC (as a function of s1) and HSQC (as a function of s2) pulse sequences that generate
the in-phase and anti-phase doublets. These curves were generated with J ¼ 140 Hz and T2 ¼ 4 ms.
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12.3.1. General strategy for resonance assignment and structural
restraints

When used to describe a protein the term ‘structure’ has a more
complex meaning than for a small molecule. This is because a pro-
tein is a macromolecule, and exhibits structural features on four
different levels. Proteins are formed from a sequence of amino
acids, of which there are twenty with the basic structure
H2NC⁄HRCO2H, via a series of peptide bonds. Each amino acid com-
prises a carboxylic acid group, and an amine and sidechain R joined
to the a carbon. The precise sequence of amino acids that forms the
protein, an example of which is shown in Fig. 12.18(a), is referred
to as the primary structure. The primary structure comprises two
parts, referred to as the backbone and the sidechains. The former
comprises a repeating sequence of the directly-bonded atoms of
an amide nitrogen (N), which is joined to an a carbon (CA), which
is joined to a carbonyl carbon (CO, or C0). To this basis sequence we
also add the amide proton (HN), a proton (HCA), and the b carbon
(CB), to give an extended backbone. The sidechains (SC) comprise
the R groups of the amino acids.

The amino acid sequence can then form local structural confor-
mations, such as a-helices or b-sheets; an example of the latter is

shown in Fig. 12.18(b). These structural features are due to cooper-
ative hydrogen bonds, and are referred to as secondary structure.
The tertiary structure is the overall three-dimensional shape that
the protein adopts when it folds, as shown in Fig. 12.18(c). Finally,
individual protein units can aggregate to form larger assemblies,
the quaternary structure.

Frequently a strategy for obtaining structural information about
the protein comprises two parts. Firstly we need to obtain a com-
plete assignment of the nuclear resonances along the protein back-
bone and sidechains. For the backbone this requires a so-called
sequential assignment in which the connectivities of the N, CO,
CA, CB, HN, HCA, and possibly HCB are established using three-
and higher-dimensional triple-resonance experiments that corre-
late the 1H, 13C, and 15N nuclear spins. These experiments combine
heteronuclear one-bond coherence transfers, using schemes based
on either the HSQC or HMQC experiments and homonuclear 1H–1H
and 13CA13C transfers either following spin-echo pulse sequence
elements, or using TOCSY. There are experimental schemes that
accomplish one-bond coherence transfers between spins within
each amino acid, and other schemes that perform transfers across
the COAN bonds in order to establish connectivities between the

Fig. 12.18. Illustration of the structure of a protein. The primary structure, comprising the sequence of amino acids, is shown in (a). The first step in the NMR structural
analysis of the protein is to perform a sequential assignment of the nuclear spins along the backbone (HN, CO, CA, CB), and of the nuclear spins in the sidechains (SC).
Following this the three-dimensional secondary and tertiary structures are determined by measuring distance restraints. This may involve measuring distances between 1H
nuclei in the backbone or sidechains via dipolar-based methods (b), or measuring the PCS induced by a paramagnetic centre (c).

Fig. 12.19. Schematic highlighting the different regions of a metalloprotein containing a paramagnetic metal ion that behave differently in the NMR experiment. There is a so-
called ‘blind sphere’ centred on the metal ion, of typical radius 8–10 Å, where the nuclear spins cannot be observed using conventional NMR pulse sequences. The size of this
sphere for any given protein is reduced if we employ protonless NMR methods and observe 13C instead. Beyond the blind sphere there is a region where the nuclear spins can
be observed using conventional methods, and which exhibit long-range paramagnetic effects, such as PCS and PRE, that are measurable. Beyond this region the nuclear spins
are sufficiently far from the paramagnetic centre for the paramagnetic shifts and relaxation effects to be too small to be measurable.
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resonances of one amino acid and those of the neighbouring resi-
due. These experimental schemes are well-established, and gener-
ally follow the pattern that 1H is both excited and directly detected
in order to maximize sensitivity as in the HSQC experiment [348].
In addition similar techniques are used for the sequential assign-
ment of the amino acid sidechains [348].

Secondly, having obtained the assignment of the full set of res-
onances, we employ experimental schemes to establish which
nuclear spins have a close spatial proximity. These distance
restraints are then used in a restrained molecular dynamics simu-
lation to determine how the protein folds in the tertiary structure.
Typically we employ three- and higher-dimensional triple-
resonance experiments which contain a NOESY through-space
transfer block in order to measure distance restraints between
the backbone protons, restraints between protons on the backbone
and those on the sidechains, and restraints between sidechain pro-
tons [348].

In paramagnetic proteins we have the additional advantage
that the paramagnetic effects can be used to measure the positions
of the nuclear spins relative to the metal ion. These so-called

paramagnetic restraints can then be combined with the other dis-
tance restraints described above. However we also encounter
problems that arise from the large shifts and PREs that are experi-
enced by nuclei close to the metal ion. These mean that nuclear
spins close to the metal centre are harder to observe using conven-
tional experimental schemes which use practicable RF fields and
contain several coherence-transfer steps with an overall duration
of several milliseconds. The result is that the protein contains a
so-called blind sphere centred on the metal ion, within which
we do not observe the nuclear spins using conventional experi-
mental pulse sequences. This is illustrated in Fig. 12.19, which also
includes the other regions into which we can divide the protein,
depending upon the effect of the paramagnetic centre. The size
of the blind sphere depends on the nature of the metal ion, and
in particular the size of the PRE. For example metal ions which
induce large PREs, such as Mn2+, Cu2+, and Gd3+, have larger blind
spheres than metal ions associated with substantially lower
induced PREs, such as the other trivalent lanthanide ions. If we
employ both the excitation and detection of protons the typical
radius of the blind sphere is in the range 8–10 Å for a 10 kDa pro-
tein, and becomes larger for increasing molecular mass. One key
reason for the presence of the blind sphere is that the nuclear
spins close to the metal ion experience a large SA which, in com-
bination with the slow rotational diffusion of the protein, results
in severe line broadening due to transverse Curie relaxation. How-
ever we can reduce the size of the sphere by employing protonless
NMR methods, in which the strategies for both assignment and
distance restraints are based only on 13C and 15N, which are of
lower gyromagnetic ratio and therefore experience a lower PRE
[349,350,346,351,352]. Here we trade sensitivity for increased res-
olution. In such cases the blind sphere radius may be reduced to
approximately 5.5 Å.

At distances from the metal centre beyond the blind sphere
there is a region in which the nuclear spins are observable by con-
ventional (or adapted) NMR experiments and exhibit measurable
paramagnetic effects, such as the PCS and PRE, as shown in
Fig. 12.19. It is in this region that paramagnetic restraints can be
used to refine the tertiary structure of the protein. Finally in very
large proteins there is a further region at longer distances from
the metal ion in which there are no paramagnetic shifts or relax-
ation effects. However we may see broadening from the BMS due
to a non-spherical sample. Here standard NMR experiments can
be used exactly as for diamagnetic proteins.

Fig. 12.21. The IPAP and S3E pulse sequences for direct detection of CO with removal of the splitting due to the CO–CA J-coupling. The IPAP sequences are shown in (a) and
(b). The sequence in (a) acquires the in-phase (IP) spectrum, and the anti-phase (AP) spectrum is acquired by (b). As shown in (c) the sum and difference of the two spectra
give different components of the doublet. A frequency shift of each component to the position of the CO shift followed by a second summation gives the final decoupled
spectrum. The same result can be achieved with the S3E experiment in (d), but with a shorter sequence. The delay D is set to 1=ð2JCOCAÞ. Narrow and broad shapes indicate CO-
or CA-selective 90� and 180� pulses respectively. The phases are: (a) /IPAP ¼ x; �x, and /rec ¼ x; �x; (b) /IPAP ¼ �y; y, and /rec ¼ x; �x; (d) /S3Eð1Þ ¼ p=4; p=4; /1ð1Þ ¼ x; y,
/2ð1Þ ¼ x; y, /recð1Þ ¼ x; �x, and /S3Eð2Þ ¼ p=4; 5p=4; /1ð2Þ ¼ x; y, /2ð2Þ ¼ �x; �y, /recð2Þ ¼ x; �x, where ð1Þ and ð2Þ are the two experiments required to separate the in-
phase and anti-phase spectra. Reproduced from [362], with permission from Elsevier.

Fig. 12.20. Illustration of the sequential assignment procedure using 13C/15N
experiments. The relevant one-bond J-coupling constants are given. Reproduced
with permission [346]. Copyright John Wiley and Sons.
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12.3.2. Paramagnetic NMR methods
12.3.2.1. Inside the blind sphere. Despite being referred to as the
‘blind sphere’ it is actually possible to observe and assign the
nuclear spins within this region if we use pulse sequences that

are optimized for large shifts and large PREs. Residue-specific
assignments of the protons can be performed using simple NMR
pulse sequences such as the one-dimensional steady-state NOE
experiment [353], and two-dimensional COSY and NOESY

Fig. 12.22. The DIPAP pulse sequences for direct detection of CA with removal of the two splittings due to the CO–CA and CA–CB J-couplings. The four sequences acquire
spectra that are (a) in-phase with respect to both couplings (IP-IP), (b) anti-phase with respect to the CO–CA coupling only (AP-IP), (c) anti-phase with respect to the CA–CB
coupling only (IP-AP), and (d) anti-phase with respect to both couplings (AP-AP). In (e) are shown the four spectra acquired from a single amino acid, plus the decoupled
spectrum obtained from a suitable combination of the four spectra. The delays D and f are set to 1=ð2JCACBÞ and 1=ð2JCOCAÞ respectively. Narrow and broad shapes indicate CO-
or CA-selective 90� and 180� pulses respectively. The phases are: /DIPAPðAÞ ¼ y; �y, /DIPAPðBÞ ¼ x; �x, /DIPAPðCÞ ¼ �y; y, /DIPAPðDÞ ¼ x; �x, and /rec ¼ x; �x. Reproduced from
[362], with permission from Elsevier.

Table 12.1
Two- and three-dimensional protonless NMR experiments available for obtaining sequential assignments of
the C and N spins [362]. For each experiment the observed correlations are given, where the subscript refers to
the residue number in the sequence.

Experiment Correlations Refs.

2D
CACO–IPAP/S3E CAiACOi [352,359]
CBCACO–IPAP/S3E CBiACOi, CAiACOi [350,352]
CCCO–IPAP/S3E C(B,G,D,E)iACOi, CAiACOi [352]
CON–IPAP NiACOi�1 [352,364]
CANCO–IPAP CAiACOi�1, CAi�1ACOi�1 [360,361]
CBCANCO–IPAP CAiACOi�1, CAi�1ACOi�1, CBiACOi�1, CBi�1ACOi�1 [352]

3D
CBCACO–IPAP/S3E CBiACAiACOi, CAiACAiACOi [350]
CCCO–IPAP/S3E C(B,G,D,E)iACAiACOi, CAiACAiACOi [352]
CANCO–IPAP CAiANiACOi�1, CAi�1ANiACOi�1 [360,361]
CBCANCO–IPAP CAi�1ANiACOi�1, CBi�1ANiACOi�1 [352]
CCCON–IPAP CAi�1ANiACOi�1, C(B,G,D,E)i�1ANiACOi�1 [352]
CBCANCO–IPAP CAiANiACOi�1, CAi�1ANiACOi�1, CBiANiACOi�1, CBi�1ANiACOi�1 [352]

Fig. 12.23. Illustration of the information available from the different paramagnetic restraints in a paramagnetic protein, applied to the NAH amide bond. The pseudo-contact
shift (PCS) of the 1H can be used to determine the position of the H with respect to the magnetic susceptibility tensor of the unpaired electrons, via the distance between the
nucleus and paramagnetic centre r, and the angles ðh;/Þ that define the orientation of the paramagnetic centre–nucleus vector with respect to the PAF of the susceptibility
tensor (a). The 1H paramagnetic relaxation enhancement (PRE) is used to determine the distance r of the H from the paramagnetic centre (b). Both the cross-correlated
relaxation (CCR) and residual dipolar coupling (RDC) provide structural restraints for the HAN bond. The CCR broadening of 1H provides both the distance r between the
paramagnetic centre and H, and the angle # between the paramagnetic centre–H vector and the HAN bond vector (c). The RDC depends on the angles ðH;UÞ that describe the
orientation of the NAH bond relative to the PAF of the magnetic susceptibility tensor.
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[354,355]. If necessary, additional sequences can be employed to
aid the assignment, such as 1H TOCSY and 1H–13C HMQC [47].

Great care must be taken in interpreting the COSY spectra of
paramagnetic biomolecules with slow rotational diffusion. It has
been shown by Bertini et al. that in addition to the expected cross
peaks that indicate J-coupling, cross peaks may also appear due to
relaxation-induced coherence transfer even in the absence of a J-
coupling [266]. This is due to cross-correlation between the relax-
ation mechanism involving the dipolar coupling of the two spins in
question with the Curie relaxation mechanism of one of the spins.
As discussed in Section 8.8.3, the presence of the cross-peak mul-
tiplet is due to cross-relaxation between the in-phase and anti-
phase coherences of the spin that is induced by cross-correlated
relaxation (CCR). In addition the CCR results in the two compo-

nents of the doublet having different linewidths in the two dimen-
sions, and so for zero J-coupling we do not obtain the perfect
cancellation that we would see without CCR. The result is that with
CCR, even in the limit of zero J-coupling, we can both generate an
anti-phase coherence which is transferred to the second spin dur-
ing the mixing period, and observe an anti-phase doublet in the
cross-peak multiplet. However the COSY experiment remains an
extremely useful assignment aid in the blind sphere of paramag-
netic proteins [356].

12.3.2.2. Outside the blind sphere. Nuclear species outside the so-
called blind sphere can be observed by employing the standard
NMR experiments for diamagnetic proteins. For example two-
dimensional 1H–15N HSQC spectroscopy has been performed on

Fig. 12.24. Structures of molecular fragments used as paramagnetic tags. Fragments (1)–(3) are nitroxide radicals, (4)–(6) are metal-binding tags based on EDTA, (7)–(9) are
caged lanthanide-binding tags, and (10)–(12) are metal-binding tags based on dipicolinic acid. Reproduced from [347], with permission from Elsevier.
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the 30 kDa complex between the N-terminal domain of the � sub-
unit and the h subunit of Escherichia coli DNA polymerase III both in
the absence and presence of a paramagnetic metal ion [357]. In
order to reduce sensitivity losses due to transverse Curie relax-
ation, the sequence in Fig. 12.16(d) was used in which the anti-
phase splitting is detected in the direct 1H dimension in the
absence of 15N decoupling.

Since 1H has a larger gyromagnetic ratio than either 13C or 15N,
both initial excitation and detection of 1H are used in conventional
sequences to maximize the sensitivity, according to Eq. (12.2)
[348]. However the larger gyromagnetic ratio also leads to a larger
Curie transverse PRE in paramagnetic proteins, which leads to a
reduction in sensitivity due to the increased line broadening
observed in the 1H dimension, and coherence decay during transfer
steps that involve 1H. For nuclei that are close to the metal ion the
relaxation losses incurred may negate any increase in sensitivity
from the initial excitation and detection of 1H. In these cases it
has been shown that protonless NMR experiments, in which the
initial excitation and observation are both on 13C lead to better
sensitivity closer to the metal centre, and allow us to detect nuclei
closer to the paramagnetic ion, reducing the radius of the blind
sphere from 8–10 Å to 4–5 Å [349,358,350,346,351,352,359–362].
For example single-resonance 13C COSY, 13C multiple-quantum
experiments between CO and CA (COCAMQ), and 13C NOESY have
been shown to be useful for the detection of signals in Cu2+/Zn2+

superoxide dismutase (SOD), allowing detection as close as 4 Å to
the Cu2+ ion [349], and in Tb3+-substituted human oncomodulin
(OM), where the use of protonless methods reduces the radius of
the blind sphere from 16 Å to 8 Å [358].

A sequential assignment of the backbone and sidechain reso-
nances can be achieved using a combination of the 13C/15N exper-
iments CON, CANCO, CACO, CBCACO, and 13C TOCSY [350,346]. The
assignment procedure is illustrated in Fig. 12.20. We begin with
the CACO experiment, which correlates between the CO and CA
nuclei of the same amino acid residue. The CO is correlated to
the CB via the CBCACO experiment, and the CA is correlated with
the other carbons of the sidechain via the TOCSY. We then connect
the sequence of amino acid residues together by measuring corre-
lations between CO and N via the CON experiment, and the CA and
CO via the CANCO experiment.

In the resulting spectra a significant limitation in the available
13C resolution is the one-bond homonuclear J-coupling between
the CO and CA, and the CA and CB carbons. Therefore it is of advan-
tage to decouple these interactions, to obtain narrower resonances.
Whilst in general homonuclear J-decoupling is very difficult, we
are assisted in the present case by the uniformity of COACA and
CAACB J-coupling constants, which take values of 55 Hz and
35 Hz respectively. This uniformity allows us to apply methods
such as the In-Phase Anti-Phase (IPAP) and Selective-Spin-State
Excitation (S3E) methods shown in Fig. 12.21 [362]. In the IPAP
method two sequences are employed (Fig. 12.21(a) and (b)) which
acquire two spectra of the CO resonances, in which the splitting
due to the COACA coupling is in-phase (IP) and anti-phase (AP)
respectively. This is achieved by allowing the CO coherence to
evolve during selective spin-echoes in which the total echo delay
is D ¼ 1=ð2JCOCAÞ = 9.1 ms. As shown in Fig. 12.21(c), the sum of
the IP and AP spectra yields a spectrum in which only one compo-
nent of the doublet is present, and the difference yields the other
component. Finally a frequency shift of the components in the
two spectra, so that they lie at the CO shift, followed by summa-
tion, results in a CO spectrum that is homonuclear JCOCA-
decoupled. The S3E method achieves the same result, but using
the sequence in Fig. 12.21(d). Here two spectra are acquired fol-
lowing evolution during two selective spin-echo sequences with
total echo delays of D=2 ¼ 1=ð4JCOCAÞ = 4.5 ms. These are combined
as for the IPAP method to give the decoupled CO spectrum. It is

worth noting that the S3E method has the advantage of using the
shorter pulse sequences, and so incurs lower losses due to trans-
verse Curie relaxation. Both methods can be incorporated into
any more sophisticated correlation experiment in which the CO
dimension is directly acquired.

Both the IPAP and S3E methods can also be implemented for
direct observation of the CA resonances in order to remove the
splitting due to the COACA coupling. The resulting spectra will,
of course, still contain the splitting due to the other large
J-coupling between CA and CB. However this latter splitting can
be removed too by employing the Double IPAP (DIPAP) method
shown in Fig. 12.22 [362]. Here we acquire four spectra using the
pulse sequences in Fig. 12.22(a)–(d), in which the CA resonance
is (a) in-phase with respect to both couplings (IP-IP), (b) anti-
phase with respect to the COACA coupling only (AP-IP), (c) anti-
phase with respect to the CAACB coupling only (IP-AP), and (d)
anti-phase with respect to both couplings (AP-AP) as shown in
Fig. 12.22(e). These four spectra are then summed and subtracted
to give four new spectra, each one of which contains a single com-
ponent of the doublet of doublets. Following a frequency shift and
sum, we obtain the homonuclear-decoupled CA spectrum. As for
the simple IPAP and S3E methods, the DIPAP method can be incor-
porated into any pulse sequence which detects the CA spins
directly. The disadvantage of the DIPAP method compared to the
simple IP method is that the selective spin echoes have a longer
total echo time D, which is required for the complete conversion
of the CAACB in-phase coherence to an anti-phase coherence.
Hence D ¼ 1=ð2JCACBÞ = 14.3 ms, which reflects the shorter CAACB
coupling constant compared to the COACA coupling constant.

Fig. 12.25. The 1H–15N HSQC spectrum of the 30 kDa complex between the N-
terminal domain of the � subunit and the h subunit of Escherichia coli DNA
polymerase III in the absence and presence of a paramagnetic metal ion. The
spectrum contains the anti-phase doublets of the two proteins, one binding
paramagnetic Dy3+ (yellow and blue peaks) and the other with no metal ion (red
and black peaks). Straight dotted lines connect each paramagnetic resonance with
the diamagnetic equivalent. Also shown is the one-dimensional trace in the 1H
dimension taken at d1 ¼ 115 ppm and d2 ¼ 7:4 ppm. The PCS is given by the overall
change in chemical shift of the resonance, the transverse PRE is given by the overall
line broadening, the CCR effects are measured from the difference in linewidth of
the two components of the anti-phase doublet, and the RDC is calculated from the
change in the splitting across the doublet. Reproduced with permission from [357].
Copyright (2004) American Chemical Society.
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A large number of two- and three-dimensional protonless NMR
experiments has been proposed for the sequential assignment of
the backbone and sidechains of paramagnetic proteins, incorporat-
ing the IPAP or S3E methods where appropriate. These are listed in
Table 12.1 [362] Once the assignment has been obtained we can
acquire structural restraints with a 13C NOESY experiment [363],
and combine these with a set of paramagnetic structural restraints
as described in Section 12.3.3.

12.3.3. Paramagnetic structural restraints
The NMR methods described in the previous section for observ-

ing the nuclei outside the blind sphere are used to obtain structural
restraints describing the position of either the nucleus or a chem-
ical bond with respect to the paramagnetic centre. These restraints
can then be used in combination with conventional restraints, such
as those obtained from NOESY, to obtain the three-dimensional
protein structure. Here we describe four such restraints, namely
the PCS, PRE, cross-correlated relaxation (CCR) between the Curie
and diamagnetic dipolar mechanisms, and the residual dipolar
coupling (RDC). The distance and orientation information that
can be obtained from these four restraints is illustrated in
Fig. 12.23 [357]. In addition we discuss a fifth restraint, namely
the contact shift measured inside the so-called blind sphere, and
how it is used to provide structural information for nuclei located
in the metal binding site.

12.3.3.1. Intrinsic paramagnetic centres and paramagnetic tag-
ging. When discussing paramagnetic structural restraints in pro-
tein NMR, we divide proteins into two groups. The first group
comprises metalloproteins with one or more metal binding sites
[346]. This includes proteins where the bound metal ion is param-
agnetic or else becomes paramagnetic during the relevant meta-
bolic process, such as in superoxide dismutase (SOD) where the
copper ion changes between the Cu+ and Cu2+ oxidation states.
However we also include proteins that bind diamagnetic ions, such
as Ca2+ or Zn2+, which can be substituted with paramagnetic ions

for the purpose of introducing paramagnetic effects into the NMR
spectrum.

The second group contains all other types of protein that do not
have an intrinsic metal binding site, but for which it would be
desirable to introduce a paramagnetic species into the structure
in order to measure the resulting paramagnetic effects to give
more information on the structure and dynamics. The paramag-
netic centre is introduced in the form of a tag, which is a molecular
fragment that is attached to part of the protein [347]. There is a
wide variety of different tags, each with different paramagnetic
shift and PRE properties and which are optimized for the measure-
ment of different paramagnetic restraints. A selection of organic-
radical and metal-binding tags is summarized in Fig. 12.24 [347].
The simplest tags are nitroxide labels (Fig. 12.24(1)–(3)), which
have an unpaired electron in the NO group, and which can be easily
attached to a cysteine amino acid residue that is exposed on the
surface of the protein. The NO radical exhibits relatively slow elec-
tronic relaxation, and so is particularly useful for inducing large
PREs in the region immediately surrounding the tag. The other tags
are molecular fragments that bind metal ions. For instance pep-
tides that are used to mimic a metal-binding site can be attached
to either terminus of the protein. Other examples include tags
based on ethylenediamine tetraacetic acid (EDTA) (Fig. 12.24(4)–
(6)), caged lanthanide-binding tags (Fig. 12.24(7)–(9)), and tags
based on dipicolinic acid (Fig. 12.24(10)–(12)), which can be used
to introduce metal ions onto specific surface-exposed amino acid
residues. Such tags can bind to either 3d-transition-metal ions or
lanthanide ions, depending on the particular paramagnetic
restraint we wish to measure. The metal ions Mn2+, Cu2+, and
Gd3+ can be used to induce large PREs, whereas Co2+ and non-
Gd3+ lanthanide ions induce large PCS and RDC effects [347].

12.3.3.2. The diamagnetic reference. When performing measure-
ments on a paramagnetic system, we should note that the param-
agnetic contributions cannot be measured in isolation. Rather the
quantity we measure contains contributions both from the

Fig. 12.26. PARACEST data acquired from aqueous solutions of two lanthanide complexes Ln–DOTA–4AmCE with a concentration of 63 mM, pH of 7, and at room
temperature. The PARACEST profiles were obtained at 4.7 T with a 1.0 s presaturation pulse, and the two 1H spectra at the top were acquired at 11.74 T in order to be able to
identify the signal from the bound water. The two lanthanide ions are (a) Eu3+ and (b) Nd3+. In both cases the signal due to the bulk solvent water is assigned a shift of 0 ppm,
and the bound water signals appear at 50 ppm and �32 ppm for Eu–DOTA–4AmCE and Nd–DOTA–4AmCE respectively. On irradiation of the bound water signals the bulk
water signal is reduced in intensity by 57% and 48% respectively [386,388]. Reproduced from [390], with permission from Elsevier.
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diamagnetic (orbital) and paramagnetic effects. Therefore when
obtaining paramagnetic restraints we need to perform two sets
of measurements, one on a diamagnetic reference protein and
the other on the paramagnetic protein. If the two proteins have
the same structure, and the same diamagnetic electronic proper-
ties, the difference between a quantity measured on one and that
measured on the other is equal to the paramagnetic contribution.
For a paramagnetic metallotprotein with a Co2+-binding site, a suit-
able diamagnetic reference would be the same protein with the
metal ion substituted with the diamagnetic Zn2+ ion. The question
whether the two systems really do have the same structure and
diamagnetic electronic properties is rather a delicate one. However
we can assume that any local structural distortions resulting from
the change of metal ion are limited to within a few Å of the ion, and
so are not measurable on the spins we observe outside the blind
sphere, tens of Å from the metal ion. For short-range effects such

as the contact shifts, however, the distortions of the metal binding
site are more problematic, and the use of a diamagnetic reference
may not be appropriate.

The measurement of paramagnetic restraints is illustrated with
1H–15N HSQC spectra of the 30 kDa complex between the N-
terminal domain of the � subunit and the h subunit of Escherichia
coli DNA polymerase III in the absence and presence of a paramag-
netic metal ion, shown in Fig. 12.25 [357].

12.3.3.3. Pseudo-contact shifts. The paramagnetic shifts of nuclei
outside the blind sphere can be ascribed entirely to the PCS, which
in the point-dipole approximation is given by Eq. (5.77), repro-
duced below for convenience:

dPCS ¼ 1
12pr3

Dvax 3 cos2ðhÞ � 1
� �þ 3

2
Dvrh sin

2ðhÞ cosð2/Þ
� 

:

ð12:3Þ
The PCS is calculated from the difference in chemical shift

between corresponding resonances in the paramagnetic and dia-
magnetic proteins, as shown in Fig. 12.25. The PCS can be used
to back-calculate the distance r of the nucleus (here H) from the
metal ion, and the angles ðh;/Þ that fix the orientation of the
ion–nucleus vector relative to the PAF of the magnetic susceptibil-
ity tensor Dv, as shown in Fig. 12.23(a) [42,16]. Clearly a PCS is only
observed for metal ions that have an anisotropic susceptibility
tensor.

12.3.3.4. Contact shifts. For amino-acid residues close to the metal
ion the shifts may also have an appreciable contribution from the
contact interaction. The contact shifts have a sign and size that
depend on the orbital occupancy of the metal ion, and the overlap
between these metal orbitals and the s-orbitals of the observed
nuclear spin, via any intermediate orbitals of bridging atoms.
Therefore measurement of the contact shifts should provide
important information regarding the geometry and unpaired
electronic-spin transfer within the metal binding site [365]. How-
ever the measurement and interpretation of the contact shifts pre-
sents some difficulties. Firstly the distortion of the metal-binding
site on substituting the paramagnetic metal ion with a diamagnetic
analogue is expected to be significant enough that the orbital shifts
also change, and so we cannot simply subtract one shift from
another. Secondly these nuclei are also expected to have a signifi-
cant PCS, which cannot be separated from the contact shift.
Thirdly, even with reliable experimental contact shifts, their use

Fig. 12.27. MAS NMR spectra of the compound 1 acquired at 11.74 T. The 1H
spectra acquired at 11 kHz and 33 kHz MAS are shown in (a) and (b). The
corresponding 13C spectra acquired without decoupling at 11 kHz and 33 kHz MAS
are shown in (c) and (d). All experiments were acquired using the spin-echo pulse
sequence shown, with an echo delay of 90 ls. Adapted with permission from [7].
Copyright (2006) American Chemical Society.

Fig. 12.28. Pulse sequences and coherence-transfer pathways, and the simulated MAS NMR spectra due to an SA, for the one-pulse and spin-echo experiments. The pulse
sequence for the one-pulse experiment is shown in (a). If the FID is collected immediately after an ideal pulse the spinning-sideband manifold of the MAS spectrum (b) has
uniform phase. However in reality there is a short dead time dde between excitation and acquisition, as seen in the sequence in (c), which results in the loss of the first points
of the FID, and a phase-distorted spectrum (d). The phase distortion is removed by employing the spin-echo sequence (e) [21], in which the isotropic and anisotropic shifts are
refocused at the start of acquisition, resulting in a spectrum of uniform phase (f). Unless otherwise indicated filled rectangles indicate pulses with a nominal flip angle of 90�

and unfilled rectangles indicate pulses with a nominal flip angle of 180� , and all pulses have phase x.
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as structural restraints is not straightforward without the use of
first-principles quantum-chemistry or DFT calculations. For these
reasons, contact shifts are currently not as widely used as PCS.
However they have been used extensively for certain types of sys-
tem, such as iron–sulphur proteins [355,365–368], heme proteins
[369–372], and blue copper proteins [373–375].

12.3.3.5. Paramagnetic relaxation enhancements. The PRE of a
nuclear spin is calculated from the difference in measured relax-
ation rate constants between paramagnetic and diamagnetic sys-
tems. As shown in Chapter 8 for both the Solomon–
Bloembergen–Morgan and Curie mechanisms, the PRE has a simple
variation with the distance of the nucleus from the metal ion of
1=r6; it can therefore be used to back-calculate this distance, as
shown in Fig. 12.23(b) [99,101]. The paramagnetic contribution

to the linewidth kPRE is dominated by the transverse Curie PRE
and, from Eq. (8.128), is given by

kPRE ¼ k
r6

4sR þ 3sR
1þx2

I s2R

� 
; ð12:4Þ

in the absence of chemical exchange, and where k is a constant. This
PRE can be measured either from the decay during a spin-echo
sequence or, as shown in Fig. 12.25, from the difference in linewidth
between the paramagnetic and diamagnetic systems.

12.3.3.6. Cross-correlated relaxation. As shown in Chapter 8 the
effect of the CCR between the Curie and nuclear–nuclear dipolar
coupling relaxation mechanisms on the HAN amide relaxation
properties is to give a doublet in the 1H dimension in which the

Fig. 12.29. Experimental one-pulse and spin-echo spectra of the cathode material LiFe0.5Mn0.5PO4 at 11.74 T and 60 kHz MAS. The one-pulse (0.55 ls at 455 kHz RF field
amplitude) 7Li spectrum with 8192 scans is shown in (a), and exhibits poor phase properties. Using a spin-echo pulse sequence gives the spectrum in (b) with uniform phase.
The reduced excitation bandwidth of the spin echo presents no problems because the isotropic chemical shifts of the different sites lie within a range of 60 kHz. The one-pulse
(0.60 ls at 417 kHz RF field amplitude) 31P spectrum with 32,768 scans has very poor sensitivity and phase, as shown in (c). Use of the spin echo gives some improvement in
the phase across the spectrum, and a much better signal-to-noise ratio, but at the expense of excitation bandwidth, as the isotropic shifts cover a range of 800 kHz. The
spectra in (a)–(d) have been plotted against both chemical shift and frequency scales. For the latter the frequency is calculated as x0drel , where drel is the chemical shift
measured relative to 0 ppm for 7Li and 6000 ppm for 31P. In (e) and (f) are shown simulations of the excitation profile of a 400 kHz 90� pulse, and the inversion profile of a
400 kHz 180� pulse at 60 kHz MAS, for a range of CSAs. Reproduced from [35], with permission from Elsevier.
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two components have different linewidths. The difference between
the two linewidths is given by

DkCCR ¼ j
3 cos2ð#Þ � 1

r3
4sR þ 3sR

1þx2
I s2R

� 
; ð12:5Þ

where # is the angle between the NAH vector and the vector con-
necting the paramagnetic centre to the observed nucleus, the latter
being of length r, and j is a constant. This dependence on r and # is
shown in Fig. 12.23(c). The CCR restraint is determined from the dif-
ference in linewidth between the two doublet components as
shown for example in Fig. 12.25 [376–379].

12.3.3.7. Residual dipolar couplings. For a protein in isotropic solu-
tion, unrestricted rotational diffusion has the effect of completely
averaging out anisotropic NMR interactions such as nuclear–nu-
clear dipolar couplings. Therefore the splitting in the resonances
in the 1H–15N HSQC spectrum is equal to the one-bond 1HA15N J-
coupling JIS. The same is true of a paramagnetic protein in which
the magnetic susceptibility of the metal ion is isotropic. However
for a paramagnetic protein with a susceptibility anisotropy, there
is an energetic preference for the susceptibility tensor to orientate
so that the axis of the PAF with the largest susceptibility compo-
nent is parallel to the external field. Hence the rotational diffusion
is no longer unrestricted, and the nuclear–nuclear dipolar cou-
plings are averaged to a value that is non-zero, and referred to as
the RDC. Therefore the splitting in the HSQC resonance is given
by JIS þ DRDC, where the RDC DRDC is given by

DRDC ¼ K Dvax 3 cos2ðHÞ � 1
� �þ 3

2
Dvrh sin

2ðHÞ cosð2UÞ
� 

: ð12:6Þ

This is illustrated in Fig. 12.25. The RDC depends on the angles
ðH;UÞ which specify the orientation of the NAH bond relative to
the PAF of the susceptibility tensor, as shown in Fig. 12.23(d), and
so can be used to back-calculate these restraints [380,16,381]. In
practice the RDCs are measured from the differences in the split-
tings measured in paramagnetic and diamagnetic systems.

12.3.4. Solvent PREs for measuring protein–solvent interactions
In addition to refining the three-dimensional protein structure

it has been shown that paramagnetic restraints can be used to
study the interactions between protein residues and solvent mole-
cules. A key restraint used in these studies is the solvent PRE [382–
385,546,547]. Here the solvent is doped with a paramagnetic mole-
cule, which enhances the relaxation rates of any nuclei in residues
that are exposed to the solvent via the spin-dipolar interaction.
Therefore this solvent PRE can be used to distinguish between resi-
dues that are located on the solvent-exposed surface of the protein,
and those that are located in the protein core and are not in contact
with the solvent. In order for this technique to be effective it is cru-
cial that we use a paramagnetic centre that induces a relatively
large PRE. For this reason the popular choices of paramagnetic cen-
tres for measuring solvent PREs are those with slow electronic
relaxation such as Gd3+ complexes similar to those used as MRI
contrast agents, nitroxyl radicals, or molecular oxygen.

12.4. Measuring chemical exchange in solution NMR and MRI

In this section we briefly review the role of paramagnetic sys-
tems in the measurement of chemical exchange, and the observa-
tion of species with low concentrations in both solution NMR of
small molecules and biomolecules, and in MRI. The specific meth-
ods we discuss are Chemical Exchange dependent Saturation
Transfer (CEST) [386], and application of CEST with paramagnetic
shift reagents (PARACEST) [387–389].

12.4.1. Chemical exchange dependent saturation transfer (CEST)
The CEST and PARACEST experiments are generally used to

observe the NMR signals of dilute concentrations of a solute species
in aqueous solution, where the former has exchangeable protons
that are in slow chemical exchange with the water molecules of
the latter [390]. We recall that slow chemical exchange is defined
as when the exchange rate constants k describing the process are
smaller than the difference in resonance frequencies of the signals
of the two environments DX, i.e. k 6 jDXj. The peak of the protons
in the solute environment may be of too low intensity to be observ-
able in a conventionalNMRspectrum.Howeverweare able todetect
the presence of this environment by performing a saturation–trans-
fer experiment in which we irradiate the solute peak with a low-
power presaturation pulse of RF field amplitude x1 6 jDXj, which
causes a transfer of saturation via chemical exchange with the sol-
vent proton sites. Therefore we observe the presence of the solute
indirectly by direct detection of the solvent, resulting in an effective
sensitivity enhancement of the solute signals. In addition CEST also
enables us to measure the rate constants of the chemical exchange
process, which are a probe of the pH of the system, and to perform
imaging experiments on dilute species [390].

The CEST experiment can be described easily using the Bloch–
McConnell equations:

dMBðtÞ
dt

¼ cIMBðtÞ
BðtÞ�RB MBðtÞ�M0;B½ ��kBUMBðtÞþkUBMUðtÞ;
ð12:7Þ

dMUðtÞ
dt

¼ cIMUðtÞ
BðtÞ�RU MUðtÞ�M0;U½ ��kUBMUðtÞþkBUMBðtÞ:
ð12:8Þ

Here we assume two-site exchange between the ‘‘bound” pro-
tons in the solute (B) and the ‘‘unbound” protons in the solvent
(U). The magnetization vectors from each environment are denoted
MBðtÞ and MUðtÞ respectively, and the equilibrium magnetization
vectors areM0;B andM0;U. The longitudinal and transverse relaxation
of each environment is governed by the relaxation supermatricesRB

and RU, and the chemical exchange processes B ! U and U ! B are
described by the exchange supermatrices kBU and kUB. Themagnetic
field, incorporating both the static B0 field and that due to the RF
pulse, is BðtÞ. We focus on the z-magnetization components from
the two environments, as it is these that give the observable signal
components following the selective saturation and excitation. The
relevant parts of the Bloch–McConnell equations are:

dMz;BðtÞ
dt

¼x1My;B� 1
T1;B

Mz;BðtÞ�M0;B½ ��kBUMz;BðtÞþkUBMz;UðtÞ;

ð12:9Þ
dMz;UðtÞ

dt
¼x1My;U� 1

T1;U
Mz;UðtÞ�M0;U½ ��kUBMz;UðtÞþkBUMz;BðtÞ;

ð12:10Þ

Fig. 12.30. Illustration of the frequency-stepping method for obtaining a wideline
MAS NMR spectrum [397,396]. The complete spectrum is shown in (a) with the
frequencies to which the transmitter is tuned in turn indicated by arrows. The
individual sub-spectra, shown in (b), are summed to recover the spectrum in (a).
Adapted from [396], with the permission of AIP Publishing.

182 A.J. Pell et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 111 (2019) 1–271



where Mi;BðtÞ and Mi;UðtÞ are the i-components of the magnetization
vectors for the solute and solvent protons, M0;B and M0;U are the
equilibrium values of the z-components, T1;B and T1;U are the two
longitudinal relaxation time constants, and kBU and kUB are the
exchange rate constants for the two processes B ! U and U ! B.
We assume that jMz;BðtÞj � jMz;UðtÞj so that we can only observe
the peak due to the solvent.

To simplify the description of CEST we focus on three limiting
cases. Firstly we take the situation where the low-power presatu-
ration is far off resonance for both the solvent and solute protons.
In this case the Bloch–McConnell equations show that neither Mz;B

nor Mz;U is perturbed from its equilibrium value, and the excitation
following the presaturation gives the conventional spectrum. Sec-
ondly if the carrier is resonant with the solvent peak and we
achieve complete saturationMz;U is zero at the end of the spin lock,
and we observe no solvent signal in the corresponding spectrum.
The final case is the most interesting, and is when the carrier fre-
quency is resonant with the solute peak. Here we saturate the
solute magnetization so that Mz;B ¼ 0. The solvent magnetization

reaches a time-independent steady-state MSS
z;U, the expression for

which is calculated from Eq. (12.10):

MSS
z;U ¼ 1

1þ T1;UkUB
M0;U: ð12:11Þ

From this expression we see immediately that the steady-state sol-
vent magnetization is of the same sign as the equilibrium magneti-
zation, but has a reduced magnitude. In the resulting spectrum we
still observe the solvent peak, but with a reduced intensity com-
pared to the conventional spectrum. This reduction in intensity of
the solvent peak is easier to detect than the solute peak in the con-
ventional spectrum, and so CEST is able to detect the solute
indirectly with an effective sensitivity enhancement [390]. This
description is simplified for perfect saturation and ignores

imperfect saturation and near-off-resonance effects of the presatu-
ration. However these can be accounted for as described by Zhou
and van Zijl [390].

In practice we apply CEST by performing a series of saturation–
excitation experiments with different carrier frequencies, and
acquiring the spectrum of the solvent peak for each. When the car-
rier is resonant with the solute peak we observe a decrease in the
solvent resonance, and are therefore able to identify the chemical
shift of the solute resonance. Further the complete solvent inten-
sity profile as a function of carrier frequency can be fitted to the
Bloch–McConnell equations to extract the chemical exchange rate
constants.

12.4.2. Paramagnetic shift reagents in chemical exchange dependent
saturation transfer (PARACEST)

To be able to perform a CEST experiment we need to be able to
selectively irradiate the exchangeable proton of the solute, which
also requires the exchange to be slow or intermediate, i.e.
k 6 jDXj. For diamagnetic systems the proton chemical shift of
the solute is typically within 6 ppm of the bulk water, and so CEST
is limited to the study of exchange rate constants of up to the order
of 1 kHz. However we can employ paramagnetic solute systems,
such as chelated lanthanide ions, to study faster exchange pro-
cesses. In these systems the bound protons experience paramag-
netic shifts which increase the chemical shift difference from the
bulk water, and so increase the upper bound of the exchange rate
constant we are able to study by orders of magnitude. This applica-
tion of CEST is referred to as PARACEST [387–389].

The first examples of PARACEST were demonstrated for lan-
thanide complexes by Zhang and Sherry [387,388]. The studied
the lanthanide complexes Ln–DOTA–4AmCE, with Ln = Pr, Nd, Eu,
and Yb, which bind water molecules via a slow exchange process.
Two PARACEST profiles for Eu–DOTA–4AmCE and Nd–DOTA–
4AmCE are shown in Fig. 12.26(a) and (b) [390]. In both cases

Fig. 12.31. Solid-state 17O MAS NMR spectrum of La2NiO4+d acquired using frequency stepping, with assignments [415]. The crystal structure of La2NiO4.17 is shown in (a),
with the oxygen sites in axial Oax, equatorial Oeq, and interstitial Oi positions. The individual sub-spectra were acquired at the indicated transmitter offsets and summed to
give the sum spectrum in (b). Each sub-spectrum was acquired with the rotor-synchronized spin-echo pulse sequence 30�–sr–60�–sr, where the pulse lengths were scaled
down by I þ 1=2 ¼ 3. An expansion of the spectral region between 2000 and �1000 ppm is shown in (c), showing the assignments to the LaAlO3 impurity phase, and
interstitial Oi in La2NiO4+d. The spectra were acquired at 7.05 T and 12.5 kHz MAS, with 120,000 scans per sub-spectrum and a recycle delay of 0.5 s. Spinning sidebands are
indicated with asterisks. Reproduced with permission from [415]. Copyright (2016) American Chemical Society.
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the intensity of the bulk water signal (assigned a shift of 0 ppm)
was monitored as a function of the frequency of the presaturation
pulse. For both profiles the observed features can be explained
with reference to the simple saturation model described in Section
12.4.1. In the case of Eu–DOTA–4AmCE in Fig. 12.26(a), we observe
no reduction in the intensity of the bulk water signal when the pre-
saturation is far off-resonance from both the bulk and bound water
signals, for example at 	80 ppm. When the presaturation fre-
quency is at 0 ppm we completely saturate the magnetization
due to bulk water with the result that the peak is completely sup-
pressed. The feature that is of particular interest is the reduction in
the intensity of the bulk water peak that is observed when the pre-
saturation frequency is set to 57 ppm, which corresponds to the
chemical shift of the bound water molecule. The saturation of the
magnetization of this bound water molecule caused a transfer in
the polarization to the bulk water signal resulting in a reduction
of 57%. Furthermore the width of this dip in the PARACEST profile
was used to estimate the exchange lifetime of the bound water,
which was found to be 380 ls [387,388]. Similar features were
observed in the PARACEST profile of Nd–DOTA–4AmCE in
Fig. 12.26(b). Here the reduction in the bulk water peak was
observed with a carrier frequency of �32 ppm, and the broader
dip indicated a faster exchange process with a lifetime of 80 ls
[387,388].

In vivo, the form of the PARACEST profiles is sensitive to a num-
ber of physiological conditions, such as pH and temperature. This
has been exploited in a number of studies, and lanthanide com-
plexes have been used to measure pH [389], detect the presence
of particular metabolites [391], perform imaging within cells
[392], and measure temperature [393].

12.5. Solid-state NMR methods for paramagnetic systems

12.5.1. The general strategy
When applying NMR methods to paramagnetic materials in the

solid state we are faced with a task which has many similarities to,
but also many differences from, the analysis of paramagnetic mole-
cules in solution.

Some features of a paramagnetic NMR spectrum do not change
between the two cases. Notably, a nucleus next to a paramagnetic
centre displays identical isotropic paramagnetic shifts, contact or
pseudo-contact in origin, independently of whether the NMR anal-
ysis is performed in solution or in the solid state. Therefore in both
cases the spectroscopist may be confronted with the acquisition of
signals with very large chemical shift dispersions, and with the
interpretation of peak positions significantly different from con-
ventional diamagnetic chemical shifts. This is a situation that
already falls within the expertise of a solid-state NMR spectro-
scopist, as the community already has considerable experience in
working with broad resonances in diamagnetic samples, due to
the CSA and quadrupolar interactions.

The Solomon–Blombergen–Morgan relaxation mechanisms
operate in the solid state in an analogous way to solution, and
accelerate nuclear relaxation. As experienced in solution NMR,
the resulting PREs may lead to a reduction in sensitivity due to sig-
nal loss during the pulse sequence, but at the same time have the
effect of allowing rapid acquisition of a large number of scans by
reducing the recycle delay.

However a first main difference comes from the Curie broaden-
ing, which is the limiting factor in the study of large paramagnetic
molecules by solution NMR. In solids, whilst there may still be a
contribution to Curie relaxation from slow internal motions of
the system, the overall rate of Curie relaxation, and the corre-
sponding contribution to the linewidth, is generally lower than
in solution. This is of particular importance for the study of sys-
tems containing paramagnetic centres for which the correlation
times for the electronic fluctuations are short (< 10�11 s). In solids,
these centres (typically CoII, FeII, LnIII) significantly enhance the
longitudinal relaxation of the surrounding spins, but have a negli-
gible effect both on their observed linewidths and their coherence
lifetimes, and so do not significantly reduce the efficiency of mag-
netization transfers.

A number of other phenomena affect a paramagnetic NMR
spectrum specifically in the solid state. In addition to the features
of paramagnetic systems in solution, we now also need to account
for large anisotropic interactions, such as the paramagnetic shift
anisotropy and quadrupolar interactions. These lead to broader
spectra than are generally observed in solution NMR, which can
lead to further difficulties in obtaining broadband excitation. This
spectral broadening therefore also leads to a reduction in sensitiv-
ity. The strength of the SAs in particular is very large in solid mate-
rials that contain a dense array of paramagnetic ions, as the
paramagnetic contributions add up.

Another important difference in solids is the presence of BMS
effects, which lead to large inhomogeneous broadening in both sta-
tic and MAS spectra. In solid materials containing paramagnetic
ions with rapid electronic relaxation, it is generally found that it
is this effect, and not the transverse PRE, that gives the largest con-
tribution to the linewidth, and hence is the factor that limits
resolution.

The sizes of the shift and SA, and the inhomogeneous broaden-
ing, scale with the external magnetic field, and so a low magnetic
field (200 MHz or lower) results in a spectrum with lower disper-
sion that is easier to excite with practicable RF field amplitudes.
However, this has the primary disadvantage that the overall sensi-

Fig. 12.32. Pulse sequence and coherence-transfer pathway for the one-dimen-
sional CPMG experiment [417,418]. The time points at which the isotropic shift is
refocussed are indicated with arrows. Unless otherwise indicated, filled rectangles
indicate pulses with a nominal flip angle of 90� and unfilled rectangles indicate
pulses with a nominal flip angle of 180� , and all pulses have phase x.

Fig. 12.33. Pulse sequence and coherence-transfer pathways of the CP-HETCOR
experiment with direct detection [19,419]. The filled rectangle indicates a pulse
with a nominal flip angle of 90� and phase x. The two shaded rectangles indicate the
spin-lock pulses applied during cross polarization. The spin-lock pulses are applied
simultaneously for a contact time scon during which the nominal I-spin and S-spin
RF field amplitudes are set to a Hartmann–Hahn matching condition:
jx1;I �x1;Sj ¼ nxr, or x1;I þx1;S ¼ nxr, where n ¼ 1;2.
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tivity is reduced. A workaround can be adopted for nuclei with
more than one NMR-active isotope, for example 1/2H and 6/7Li. As
the shift and SA scale with the gyromagnetic ratio, studying the
isotope with the lower cI produces a narrower spectrum, which
is easier to excite. However, as in the case of reducing the magnetic
field, nuclei with lower cI also have lower intrinsic sensitivity. In

addition the second-order quadrupolar interaction scales inversely
with the external field, and so a low field increases the resonance
broadening associated with this interaction in the spectra of
quadrupolar nuclei such as 23Na.

All of these observations suggest that the development of pulse
sequences incorporating broadband excitation that can excite a
wide range of shifts and SAs at high field would be advantageous.
In recent years there has been growing interest in studying solids
with increasingly strong paramagnetic effects, such as battery
materials with a large density of paramagnetic ions in the lattice
[54]. This has provided strong motivation for developing broad-
band NMR sequences specifically optimized for paramagnetic
materials, as described in Section 12.5.7 [57]. These methods pro-
vide a solution to studying nuclei with high gyromagnetic ratios
and large SAs at high field. They include the development of tai-
lored RF pulse schemes, and their combination into more sophisti-
cated sequences, for example to resolve individual local
environments [7,31], or otherwise to separate the spectral features
of a local environment due to different spin interactions
[393,396,200]. In the presence of multiple nuclear local environ-
ments, each experiencing multiple interactions, these tools help
to resolve complicated spectra with multiple overlapping features,
and to extract the required interaction parameters with site-
specific resolution.

Another difference between the NMR of solids and solutions is
the presence of large homonuclear and heteronuclear dipolar cou-
plings in the former, which are generally difficult to decouple.

It was recognized early on by Clayton et al. that heteronuclear
1H decoupling is ineffective for increasing the resolution in the

Fig. 12.35. Pulse sequences and coherence-transfer pathways for the TEDOR experiments with direct- and indirect-detection. The pulse sequence for direct detection of the
heteronucleus is shown in (a) [420]. The sequence in (b) is designed for indirect (proton) detection. The numbers of repetitions of the inversion pulses n1 and n2 must be odd
in order to ensure refocussing of the SA of the active spin. For n1 ¼ n2 ¼ 0, these sequences are referred to as the DINEPT [27] and DHSQC experiments respectively [28].
Unless otherwise indicated, filled rectangles indicate pulses with a nominal flip angle of 90� and unfilled rectangles indicate pulses with a nominal flip angle of 180� . All pulses
have phase x, with the exception of the 180� TEDOR recoupling pulses inside the loops, which have phases /i that vary independently according to the XY-8 supercycle
xyxyyxyx [421].

Fig. 12.34. Comparison between the direct-excitation 13C MAS spectrum, 1H–13C CP
spectrum, and 1H–13C TEDOR spectrum of the compound 1, the structure of which is
shown in Fig. 12.27 [7]. The direct-excitation 13C spectrum acquired at 33 kHz MAS
is shown in (a). The CP spectrum in (b) was acquired with a contact time of 500 ls,
and the TEDOR spectrum in (c) was obtained with a recoupling time of 60 ls.
Adapted with permission from [7]. Copyright (2006) American Chemical Society.
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NMR spectra of paramagnetic complexes, due to the difficulty in
efficiently irradiating the very broad resonances [23]. In addition,
the use of high-power decoupling requires that the recycle delay
is set to a minimum of five times the total decoupling time to pre-
vent damage to the probe. This requirement often extends the
recycle delay to longer than is required for complete longitudinal
relaxation, which for paramagnetic systems means that the short
T1 is not being exploited. This idea was taken further by Ishii
et al. who suggested that, because decoupling is at best ineffective
and at worse has a deleterious effect on the spectrum, it is better
not to decouple and to rely instead on fast MAS to average out
the dipolar couplings [26,6].

Increasing the MAS frequency also has an additional beneficial
effect on resolution and sensitivity, as the signal in the spinning-
sideband manifolds is concentrated in fewer sidebands that are
more widely separated in the spectrum. Furthermore, the recycle
delay now only reflects the short T1 of the system, and not any
requirements due to the decoupling, and so scans can be acquired
more rapidly. An example of the benefits of fast spinning, rapid
pulsing, and no decoupling are shown by the 1H and 13C MAS spec-
tra of a paramagnetic organometallic complex in Fig. 12.27 [7]. The
1H spectra acquired at 11 kHz and 33 kHz in (a) and (b) show that
there is a clear improvement in both resolution and sensitivity on
increasing the MAS frequency. The improvement is even more
marked for 13C. The spectacular enhancement experienced in sen-
sitivity and resolution as compared to slower rates is nowadays
amplified by the continuous development of new probes capable
of faster MAS, allowing efficient detection of previously unobserv-
able nuclei in highly paramagnetic substances.

12.5.2. One-dimensional NMR
12.5.2.1. One-pulse and spin-echo spectroscopy. The simplest pulse
sequence for obtaining a one-dimensional MAS spectrum is the
one-pulse sequence shown in Fig. 12.28(a). The sequence com-
prises a single pulse which generates p ¼ �1 coherences that are
observed during acquisition. In order to obtain maximum sensitiv-
ity the pulse flip angle should be set to a nominal value of 90�.
However under circumstances where the pulse is of too low an
RF field amplitude to ensure broadband excitation, a shorter pulse
of the same amplitude can deliver a more uniform excitation
response as there is less time for substantial deviations from ideal
behaviour. The resulting sensitivity is lower, but this can be offset
when we note the partial excitation means that the system is clo-
ser to its equilibrium configuration than after a 90� pulse, and so a
shorter recycle delay can be used. In the ideal case this excitation
pulse gives a spectrum with a uniformly-excited spinning-
sideband manifold, as shown in Fig. 12.28(b).

Fig. 12.38. Pulse sequences and coherence-transfer pathways for the spin-diffusion
and RFDR homonuclear correlation experiments. The basic spin-diffusion pulse
sequence is shown in (a). Modification of this sequence to include RFDR homonu-
clear recoupling during the z-filter gives the sequence in (b) [426]. Unless otherwise
indicated filled rectangles indicate pulses with a nominal flip angle of 90� and
unfilled rectangles indicate pulses with a nominal flip angle of 180� . All 90� pulses
have phase x. The phases / of the 180� RFDR pulses vary according to the XY-8
supercycle xyxyyxyx [421].

Fig. 12.37. Illustration of the application of RAPT to the 25Mg NMR of the battery
material Mg6MnO8. The enhancement profile showing the RAPT enhancement as a
function of repetition frequency m is shown in (a). The optimum enhancement is
obtained with values of m between 250 and 270 kHz, corresponding to an estimated
CQ of 3.3–3.6 MHz. A spectrum acquired separately with a repetition rate of
270 kHz is shown in (b), and exhibits an enhancement of 1.6. Reproduced by
permission of the PCCP Owner Societies [59].

Fig. 12.36. Illustration of the RAPT sequence for enhancing the signal from the CT of a half-integer-spin quadrupolar nucleus [422]. The effect of ST saturation is illustrated on
the nuclear-spin energy level diagrams for a spin I ¼ 3=2 in (a). Saturation of the two STs leads to the simultaneous removal of the ST polarization, and enhancement of the CT
polarization. The RAPT pulse sequence is shown in (b). The saturation period comprises a pair of pulses with flip angle b and alternating phases þx and �xwith total length sc,
that is repeated N times. The final pulse is a CT-selective, low-power pulse calibrated to deliver a 90� rotation to the CT polarization.
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However we encounter a problem imposed by instrumental
limitations, which means that this ideal performance is not
observed in practice. In practice the acquisition period does not
immediately follow excitation, since (1) the pulse has a non-zero
duration, and (2) we require a delay of a few ls, known as the dead
time dde, to switch from excitation mode to observation mode. Both
effects lead to significant phase dispersion across the spectrum. As
shown in the sequence in Fig. 12.28(c), the inclusion of the dead
time means that we miss the initial points of the FID, and therefore
do not acquire the initial evolution of both the isotropic shift and
SA. This is more problematic for the larger spectral widths needed
for paramagnetic systems, as the sampling rate of the FID is inver-
sely proportional to the spectral width. The quality of the spec-
trum, shown in Fig. 12.28(d), is severely degraded by the
resulting large frequency-dependent phase errors.

A solution to this problem is to employ the rotor-synchronised
spin-echo pulse sequence shown in Fig. 12.28(e) [21]. Here the 90�

excitation pulse is followed by two delays each of which is of the
same duration nsr, equal to an integer number of rotor periods n,
that sandwich a 180� pulse, and we absorb the dead time into
the second delay. The coherence-transfer pathway shown is the
sole pathway available for ideal pulses, but in practice cycling of
the 180� pulse phase is employed to eliminate unwanted pathways
that arise from non-ideal behaviour such as insufficient bandwidth
[321]. The sequence has the property that it refocuses the evolu-
tion of both the isotropic chemical shift and time-dependent SA
at the start of acquisition. The refocussing process can be explained
as follows. During a delay s the sum of the frequencies due to both
the isotropic and anisotropic shifts is proportional to the coherence

order, and is given by �pXiso � pXSA
c ðsÞ. During the first delay nsr

the time-dependent SA self-refocusses due to the periodicity under
MAS, and the total acquired phase is �Xisoðnsr � 0Þ�
USA

c ðnsr;0Þ ¼ �Xisonsr. In the same way we can calculate the phase
acquired following the 180� pulse as Xisoð2nsr � nsrÞþ
USA

c ð2nsr;nsrÞ ¼ Xisonsr. The two phases accrued before and after
the 180� pulse then sum to zero. This refocussing means that at
the start of acquisition we have effectively put the spin system into
the same state as we would obtain from ideal one-pulse excitation,
and we obtain the same spectrum without phase errors, as shown
in Fig. 12.28(f). If the 180� pulse is sufficiently broadband, the only
difference between the two sequences is the signal loss from
dephasing during the spin echo. This dephasing is due to relaxation
and coherent homogeneous processes, but not to inhomogeneous
decay as the chemical shift distribution of the latter is refocussed
by the echo.

Experimental examples of spectra obtained from the one-pulse
and spin-echo pulse sequences are shown in Fig. 12.29 [35]. The
system is the battery cathode material LiFe0.5Mn0.5PO4, which
has two species of paramagnetic transition-metal ions Fe2+ and
Mn2+ in a 1:1 ratio. The 7Li one-pulse and spin-echo spectra are
shown in Figs. 12.29(a) and (b). The former clearly shows a
frequency-dependent phase error across the spectrum, due to evo-
lution of the SA during the dead time, which is removed in the lat-
ter. The range of isotropic shifts of the multiple Li sites is
comparatively small at 90 ppm, which is approximately equal to
the inhomogeneous broadening of the individual sidebands. The
31P spectrum, by contrast, displays overlapping spinning-
sideband manifolds from 32 distinct local environments with a

Fig. 12.40. Experimental two-dimensional 6Li EXSY spectra acquired with monoclinic Li3Fe2(PO4)3 at 25 kHz MAS. The one-dimensional spectrum contains three distinct
resonances for the three Li sites A, B, and C. The spectrum in (a) was acquired with a mixing time of 0.5 ms, and shows no cross peaks. The spectrum in (b) was recorded with a
longer mixing time of 3.0 ms, and exhibits cross peaks due to exchange between all three sites. The temperature is 311 K. Reproduced with permission from [429]. Copyright
(2010) American Chemical Society.

Fig. 12.39. Experimental two-dimensional 13C–13C dipolar correlation spectrum
acquired with 13C- and 15N-labelled Cu(DL-Ala)2 with RFDR mixing at 40 kHz MAS.
The two-dimensional correlation sequence was preceded by a 1H–13C dipolar
transfer with the DINEPT sequence [27]. The RFDR mixing period comprised a train
of 4 ls 180� pulses (125 kHz) and was of total duration 1.6 ms. Reproduced from
[427], with the permission of AIP Publishing.
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range of isotropic shifts of 4000 ppm [31]. The one-pulse spectrum
in Fig. 12.29(c) also has a frequency-dependent phase error, and a
very poor signal-to-noise ratio that is worse than for 7Li. This is due
to the larger range of isotropic shifts which leads to a greater
degree of differential evolution during the dead time. The spin-
echo spectrum in Fig. 12.29(d) has improved phase properties
and sensitivity, despite the T 0

2 decay during the echo, but also
shows a smaller excitation bandwidth. This is because the range
of isotropic frequencies over which we obtain quantitative inver-
sion (the inversion bandwidth) with a 180� pulse is lower than
the corresponding isotropic frequency range over which we obtain
quantitative excitation (the excitation bandwidth) with a 90�

pulse. This can be seen from the simulated 90� pulse excitation
and 180� pulse inversion profiles shown in Fig. 12.29(e) and (f).
Nevertheless the spin-echo sequence is an indispensable experi-
ment in solid-state paramagnetic NMR. In addition to one-
dimensional spectroscopy, the spin-echo pulse sequence can be
appended to any of the more complex sequences presented here,
such as those used for two-dimensional correlations, in order to
obtain uniform phase in the direct dimension.

We make a final comment about the application of these pulse
sequences to quadrupolar nuclei, considering half-integer and inte-
ger spins separately. In the solid state the NMR spectrum of an
half-integer nuclear spin is dominated by the sharp and intense
resonance due to the CT, with the ST resonances broadened to
the point where they are sometimes difficult to detect. Hence in
practice the spectrum is sometimes obtained by applying excita-
tion pulses that are of low power, so that x1 � xQ , and are there-
fore selective for the CT. In this case the excitation Hamiltonian
due to an excitation pulse phase x applied to a spin experiencing
a first-order quadrupolar interaction can be approximated as

Hð1Þ
Q þx1

bIx � Hð1Þ
Q þx1ðI þ 1=2ÞbIðþ1=2;�1=2Þ

x : ð12:12Þ

where bIðþ1=2;�1=2Þ
x ¼ bIðþ1=2;�1=2Þ

þ þbIðþ1=2;�1=2Þ
�

� 	
=2. We see that the

effective RF field amplitude is x1ðI þ 1=2Þ, i.e. it has been scaled
up by the spin-dependent factor ðI þ 1=2Þ [331]. Therefore we only
apply the pulse for a time that is shorter by a factor ðI þ 1=2Þ than
the nominal pulse length. In paramagnetic systems we often need
to apply higher-power pulses to fully excite the CT resonance,
which is broadened by a large SA interaction. For nuclear species
with small quadrupolar interactions, such as 7Li, this means that
the RF field amplitude is comparable to or greater than xQ , so that
no scaling of the pulse length is required. However nuclear species
with largerxQ frequencies, such as 23Na and 27Al, often still require
a scaling of the pulse length. For example this means that the spin-

echo sequence applied to 23Na with I ¼ 3=2 is 45�–sr–90�–sr, where
the flip angles are the nominal values calibrated in the absence of
the quadrupolar interaction.

For integer-spin nuclei such as 2H and 6Li, all the observable
transitions are affected by the quadrupolar interaction to first
order. In powder samples we generally excite all the observable
transitions, and so do not scale the pulse length.

12.5.2.2. Frequency stepping. A simple method to overcome the
bandwidth problem and obtain a quantitative, broadband one-
dimensional spectrum is to set the transmitter offset to different
values, with a step size that is equal to or smaller than the RF field
amplitude, and to acquire a of sub-spectrum for each offset. The
sub-spectra are then summed to give the final spectrum. The con-
cept is illustrated for MAS NMR in Fig. 12.30, which shows a spec-
trum in (a) obtained by summing the sub-spectra shown in (b)
[396]. This method has usually been applied to static solids, for
both quadrupolar nuclei and paramagnetic systems with large
interactions, and has been referred to as spin-echo mapping

Fig. 12.41. Experimental two-dimensional 1H–13C TEDOR spectra acquired with compound 1 of Fig. 12.27 using the pulse sequence in Fig. 12.35(a). The MAS frequency is
30 kHz, the loop counters were both set to 1, and the z-filter was omitted. The recoupling time of 60 ls is selective for short-range transfers over the distance scale of a single
HAC bond. The spectrum in (a) shows the region of the spectrum with the isotropic peaks. The black one-dimensional spectra along the 1H and 13C dimensions represent
projections of the two-dimensional spectrum onto those axes, and the red traces are cross-sections extracted at the frequencies indicated by the dashed lines. The lines are
broadened into ridges by inhomogeneous broadening. Applying a shearing transformation to the spectrum (see text for details) gives the spectrum in (b) where the horizontal
dimension represents the high-resolution zero-quantum (ZQ) dimension. Reproduced with permission from [7]. Copyright (2006) American Chemical Society.

Fig. 12.42. Two-dimensional 1H–13C correlation spectra of a paramagnetic Cu(II)-
cyclam complex at 30 kHz MAS. The DINEPT spectrum is shown in (a), and the
DHSQC spectrum is shown in (b). The recoupling times for the generation of anti-
phase coherences and reconversion back to in-phase coherences were both
33.33 ls. Adapted with permission from [28]. Copyright John Wiley and Sons.
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[398–404,54], Variable-Offset Cumulative Spectroscopy (VOCS)
[405–407], and frequency stepping [408–413]. The accurate recon-
struction of the spectrum is a delicate matter, particularly under
MAS where the number of published examples is smaller
[397,414]. However a recent theoretical treatment of frequency
stepping under MAS has shown that the spinning-sideband mani-
folds can be properly reproduced by careful summation of the sub-

spectra [396]. Accordingly the number of experimental examples
in material science is currently increasing [57,58,415]. An example
of frequency stepping applied to a particularly challenging mate-
rial is the solid-state 17O MAS NMR spectrum of La2NiO4+d [415],
shown in Fig. 12.31. The crystal structure in Fig. 12.31(a) shows
three distinct 17O sites which, with an additional resonance due
to a LaAlO3 impurity phase, give at least four resonances with iso-
tropic shifts over a range of 8000 ppm as shown in the sum-
spectrum in (b). There is additional broadening due to the SA inter-
actions, which broaden the spectrum over 20,000 ppm. The sum-
spectrum was acquired with the spin-echo pulse sequence 30�–
sr–60�–sr, where the nominal pulse lengths are reduced by a factor
of three in the CT-selective regime. An expansion of the spectrum
between 2000 and �1000 ppm is shown in Fig. 12.31(c).

Traditionally the acquisition of frequency-stepped solid-state
NMR spectra has necessitated a manual retuning of the probe for
each new sub-spectrum, making the whole process rather cumber-
some. However Pecher et al. have recently developed an external

Fig. 12.43. Pulse sequence, coherence-transfer pathway, and pulse timings of the
two-dimensional PASS and MAT experiments for separating the isotropic shift and
SA. The pulse sequence is shown in (a). To obtain a PASS spectrum the timings for
the 180� refocussing pulses shown in (b) are used [431]. The timings in (c) are used
for a MAT experiment, for which both N- and P-type datasets are required [432].
Unless otherwise indicated, filled rectangles indicate pulses with a nominal flip
angle of 90� and unfilled rectangles indicate pulses with a nominal flip angle of
180� , and all pulses have phase x.

Fig. 12.44. Simulated spectra illustrating the two two-dimensional spectroscopic
methods for separating overlapping spinning-sideband manifolds. The conventional
one-dimensional spectrum contains two overlapping spinning-sideband manifolds,
both with Gaussian inhomogeneous broadening of the isotropic shifts. The PASS
spectrum, in which the isotropic shift is refocussed in x1, is shown in (a). The
sidebands of the two manifolds are aligned parallel to the x1 ¼ x2 main diagonal,
and centred at x1 ¼ 0. The isotropic resonances, indicated by arrows, are now
clearly separated in the one-dimensional trace to the right taken parallel to x2

through the centrebands. The inhomogeneous broadening is also parallel tox2. The
MAT spectrum is shown in (b). Here the two spinning-sideband manifolds are
parallel to x2, and centred at the isotropic frequencies in x1. The isotropic
projection onto thex1 axis containing only the isotropic resonances is shown to the
right. The inhomogeneous broadening is parallel to the x1 ¼ x2 main diagonal.
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automatic tuning and matching (eATM) robot, applicable to both
static and MAS experiments, which allows the whole acquisition
to be automated [416]. This has resulted in an increase in the effi-
ciency of acquisition of frequency-stepped NMR spectra, for exam-
ple outside normal working hours without regular user input.

12.5.2.3. Homonuclear signal enhancement of spin-1=2 nuclei: CPMG.
One important limitation on the sensitivity that can be obtained in
the one-dimensional spectrum of paramagnetic systems is the
rapid decay of the FID due to both relaxation and inhomogeneous
effects. For paramagnetic solids it is generally found that for metal
ions with SO coupling the inhomogeneous broadening of each side-
band is an order of magnitude greater than the linewidth due to
relaxation, and so represents the larger sensitivity limitation. How-
ever greater sensitivity can be obtained by refocussing the inhomo-
geneous decay during the FID by applying the Carr–Purcell–
Meiboom–Gill sequence in Fig. 12.32 [417,418]. Here the acquisi-
tion period comprises a series of concatenated spin-echoes with

delays equal to the rotor period, during which the points of the
FID are acquired. Both the isotropic shift and inhomogeneous
decay are refocussed at the end of each echo, as indicated by the
arrows on the coherence-transfer pathway in Fig. 12.32, and so
the decay envelope of the FID is given by the longer homogeneous
decay time constant T 0

2, resulting in greater sensitivity.

12.5.2.4. Heteronuclear signal enhancement of spin-1=2 nuclei: CP and
TEDOR. One important method used in solid-state MAS NMR to
enhance the signal from nuclei with a low gyromagnetic ratio is
to transfer coherences from nuclear spins with a higher gyromag-
netic ratio. For instance this idea is commonly employed for
organic microcrystalline solids in order to enhance the low-
natural-abundance 13C signal by transferring coherences from the
large bath of highly-abundant 1H nuclei. For diamagnetic systems
the most commonly-used pulse sequence is the Cross-
Polarization (CP) experiment, which is shown in Fig. 12.33
[19,419]. The enhancement experiment is run here as a one-
dimensional version of this sequence, where t1 is set to zero. The
coherence-transfer step comprises a pair of spin-lock pulses that
are applied to the two channels simultaneously for a contact time
scon (typically a few ms), and with RF-field amplitudesx1;I andx1;S

that satisfy either a zero-quantum Hartmann–Hahn condition
jx1;I �x1;Sj ¼ nxr (n ¼ 1;2) [19], or a double-quantum condition
x1;I þx1;S ¼ nxr (n ¼ 1;2). It is generally found that applying a
ramp to the 1H spin lock improves the Hartmann–Hahn transfer,
as this compensates for mismatching due to RF inhomogeneity
and offset effects [419]. For paramagnetic systems the efficiency
of the CP transfer is reduced considerably compared to diamag-
netic systems, as shown by the comparison of the direct 13C MAS
and 1H–13C CP spectra of a paramagnetic organometallic solid in
Fig. 12.34(a) and (b) [7]. The comparison shows that the optimum
CP experiment can actually be less sensitive than the direct-
excitation experiment! The reasons for this are (1) the difficulty
of efficiently spin-locking a resonance with a large SA under MAS
with practicable RF field amplitudes, and (2) signal losses due to
relaxation during the spin-lock pulses. The latter problem results
in short optimum contact times, here 500 ls, but even then the for-
mer problem still results in poor transfer.

An improvement in the heteronuclear coherence transfer can be
obtained by employing the Transferred-Echo DOuble-Resonance
(TEDOR) sequence [420], as first demonstrated by Kervern et al.
[7]. The basic pulse sequence is shown in Fig. 12.35(a), with t1
set to zero. Here the I-spin in-phase coherences excited by the first
pulse evolve during the I-spin-echo. During each half of the echo a
series of recoupling 180� inversion pulses is applied to the S-spin,
resulting in the recoupling of the heteronuclear dipolar coupling
and the generation of anti-phase coherences. The coherences are
then transferred to the S-spin by the pair of 90� pulses, after which
the observable in-phase coherences on S are regenerated by the
second recoupling sequence. The S-spin FID is then observed fol-
lowing a z-filter. The advantage of TEDOR over CP is that it uses

Fig. 12.45. Two-dimensional 13C MAT spectrum at room temperature of [(C2H5)4-
N]2[Fe4S4(S13CH2C6H5)4]. The two-dimensional spectrum is shown in (a). The
resonance marked by the vertical arrow is due to the strongest sharp line at 0 ppm
from the natural abundance 13C spins in the terminal methyl groups of the
counterions. In (b) is shown the one-dimensional trace taken from the horizontal
slice at 101 ppm. Reproduced with permission from [433]. Copyright (2000)
American Chemical Society.

Fig. 12.46. Pulse sequence and coherence-transfer pathway of the two-dimensional MAT-PASS experiment for separating the isotropic shift and SA [434]. The experiment
comprises Ninc increments, where Ninc is a power of 2. The evolution time t1 is incremented from an initial value of sr to a final value of 2sr in steps of dt1 ¼ sr=Ninc. The length
of the sequence between the first pulse and start of acquisition therefore increases from 11sr=3 to 14sr=3. Filled rectangles indicate pulses with a nominal flip angle of 90� ,
and all pulses have phase x.
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only short, high-power pulses, which allows the use of higher RF
field amplitudes, and avoids the need to spin-lock the large aniso-
tropic resonances. This leads to a more efficient transfer, as shown
by the 1H–13C TEDOR spectrum in Fig. 12.34(c) which was acquired
with a short recoupling time of 60 ls. We should note that
although TEDOR is more efficient than CP, it still does not give a
signal enhancement compared to the direct excitation spectrum,
which is due to the short relaxation times leading to a reduction
in the coherence intensities during the recoupling sequence. How-
ever the strength of this method is that it enables the efficient
acquisition of two-dimensional heteronuclear correlation spectra,
as described in Section 12.5.5.

12.5.2.5. Signal enhancement of half-integer-spin quadrupolar nuclei:
RAPT. We have seen in Section 11.4 that quadrupolar nuclei of
half-integer spin give NMR spectra with ST resonances that are
broadened to the point of being undetectable, and relatively sharp
CT resonances. For this reason solid-state NMR of quadradrupolar
nuclei usually employs low-power RF excitation pulses of ampli-
tudes x1 � jxQ j that are selective for the CT [199]. In paramag-
netic systems however the CT resonance is broadened by the
large SA, which gives a broad spinning-sideband manifold, and
therefore requires a higher-power pulse for excitation [56]. Practi-
cable RF field amplitudes of the order of 100 kHz still result in a
pulse that is CT selective for quadrupolar nuclei such as 23Na,
where a typical CQ value of 3 MHz results in a quadrupolar splitting
frequency of 750 kHz. One consequence of this is that the polariza-
tion that is excited, given by the population difference of the two
states connected by the CT, is lower than the maximum available
if we consider all the states, as shown in Fig. 12.36(a) for a spin
I ¼ 3=2. This results in a spectrum with a lower signal-to-noise
ratio than is theoretically feasible.

In order to quantify the intensity of the CT that is available we

can write the equilibrium density operator bIz as a linear combina-
tion of the z-spin operators involving the pairs of states jIMi and
jI �Mi, which we write as bIðM;�MÞ

z ¼ bIðMÞ
p �bIð�MÞ

p

� 	
=2. Hence the

available polarization for the CT is represented by bIð1=2;�1=2Þ
z . Using

these operators bIz is given by

bIz ¼ XI

M¼1=2

2MbIðM;�MÞ
z : ð12:13Þ

Therefore we see the pair of levels giving the MQ transition has a
polarization that is greater than that of the CT by a factor of 2M.
In principle we can increase the polarization of the CT by saturating
all the STs so that their net polarization is reduced to zero, as shown
for the spin I ¼ 3=2 in Fig. 12.36(a). This has the effect of transform-
ing the equilibrium density operator into a non-equilibrium popu-
lation operator in which all the terms have the same polarization
I þ 1=2:

XI

M¼1=2

ðI þ 1=2ÞbIðM;�MÞ
z : ð12:14Þ

Hence the polarization of the CT has increased from 1 to I þ 1=2,
which results in a sensitivity enhancement of the CT resonance by
a factor of I þ 1=2, i.e. a factor of 2 for I ¼ 3=2.

Enhancement of the CT polarization can be achieved in practice
by using the Rotor-Assisted Population Transfer (RAPT) pulse
sequence shown in Fig. 12.36(b) [422]. The CT-selective excitation
pulse is preceded by the saturation sequence which comprises N
pairs of RF pulses of flip-angle b and with alternating phases of
þx and �x separated by short delays d. Each unit of bþx—d—b�x—
d has a total length of sc. The effect of this sequence is to apply a
net rotation to the ST magnetization terms, leaving the CT magne-
tization along z, whilst increasing its magnitude. The excitation of
this enhanced CT polarization is achieved with a CT-selective pulse
[423]. It has been shown by Prasad et al. that the optimum value of
the cycle time sc is the inverse of the quadrupolar splitting fre-
quency 2p=xQ , and is independent of gQ [424]. This provides a
simple method to allow the CQ parameter to be estimated, where
we acquire a series of RAPT spectra with varying sc to obtain the
value corresponding to the maximum enhancement. This is of par-
ticular interest for paramagnetic systems, where the presence of
the SA and inhomogeneous broadening in addition to the broaden-
ing from the quadrupolar interaction means that it is essentially
impossible to measure the quadrupolar interaction parameters
from a single one-dimensional spectrum.

The application of RAPT to paramagnetic Mg-ion battery mate-
rials is particularly striking. The only stable isotope of Mg that is
NMR active is 25Mg, which is of spin I ¼ 5=2 and suffers from very
low sensitivity due to both a low gyromagnetic ratio, and a low
natural abundance of 10%. Fig. 12.37 shows the experimental
application of RAPT to the material Mg6MnO8 [59]. In (a) is shown
the enhancement obtained as a function of the RAPT repetition fre-
quency m ¼ 1=sc. A maximum enhancement of 1.6 is obtained for
repetition rates 250–270 kHz. This is half of the theoretical maxi-
mum of I þ 1=2 ¼ 3, but nevertheless represents a very useful tool
for increasing the sensitivity of the NMR experiment. Furthermore
this maximum in the profile at the optimum repetition frequency
mopt ¼ 3CQ=40 gives an estimate of the CQ value of between 3.3
and 3.6 MHz, which is in remarkably good agreement with the
range of values of 3.64–3.69 MHz predicted from DFT [59]. The
optimum spectrum showing the spinning-sideband manifold of
the CT is shown in Fig. 12.37(b).

Fig. 12.47. The 31P MAT-PASS spectrum of Li3Fe2(PO4)3 acquired at 19.6 T and
30 kHz MAS. The one-dimensional spectrum shown in (a) comprises three
overlapping resonances, which are completely separated in the two-dimensional
MAT-PASS spectrum in (b). The isotropic spectrum that is shown was obtained
following a shear (described in Section 12.5.8) and projection. The MAT-PASS
spectrum was acquired using the frequency-stepping scheme with two sub-spectra
with the carrier positions denoted by Tx1 and Tx2 [396]. Reproduced with
permission from [434]. Copyright (2012) American Chemical Society.
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12.5.3. Homonuclear through-space correlations
One important mechanism for homonuclear correlation spec-

troscopy in solids is spin diffusion, inwhichwe transfer longitudinal
magnetization fromone spin to another via thehomonuclear dipolar
coupling [425]. This mechanism is particularly effective for 1H
nuclei, where it is referred to as proton spin diffusion (PSD), as the
large gyromagnetic ratio gives large dipolar coupling constants,
and therefore relatively rapid transfer. This mechanism bears a
superficial resemblance to the NOE transfer in solution, but there
is a fundamental difference. In solution the coherent dipolar cou-
pling is averaged to zero by isotropic molecular tumbling, and so
the NOE transfer occurs entirely through the stochastic modulation
of the dipolar interaction. It is therefore a relaxation process. On the
other hand the spin-diffusion mechanism in solids is due to the
coherentdipolar coupling interaction,which is not averagedas there
is no isotropicmolecular tumbling. It can therefore occur in systems
withno rotational dynamics. Thebasic pulse sequence is the sameas
used for NOESY in solution (Fig. 12.9(a)), and is shown in Fig. 12.38
(a). This sequence has been shown to be efficient for 1H–1H transfer
in systems experiencing moderate PREs and at moderate MAS (20–
30 kHz), where typical mixing times are of the order of 100 ls [28].

The rate of transfer due to spin diffusion is reduced with increasing
MAS frequency, and under fast MAS conditions (> 40 kHz) may
require mixing times of 100 ms. For paramagnetic systems this
causes a severe reduction in sensitivity due to the rapid longitudinal
relaxation that also occurs during the mixing period.

However the rate of transfer can be increased by employing a
homonuclear dipolar recoupling sequence during the mixing time.
One suitable sequence is the Radio-Frequency Driven Recoupling
(RFDR) scheme, which is constituted by a chain of elements
sr=2—180�—sr=2 comprising a high-power 180� pulse, as repre-
sented by the sequence in Fig. 12.38(b) [426]. As for the previous
sequences discussed, the suitability for paramagnetic systems is
due to the use of short, high-power pulses to obtain the best pos-
sible inversion bandwidth. An experimental example of a homonu-
clear 13C–13C RFDR correlation spectrum of 13C- and 15N-labelled
Cu(DL-Ala)2 acquired at 40 kHz MAS is shown in Fig. 12.39 [427].
The spectrum shows the correlations between the three 13C nuclei
within each alanine molecule, due to both the short-range (one-
bond) transfers between CA and CO and CA and CB, and to the
longer-range transfer between CO and CB. The use of RFDR is
crucial to obtaining any transfer as the fast MAS completely sup-

Fig. 12.48. Isotropic slices extracted from the 7Li MAT-PASS spectra of the as-synthesized Na-ion cathode material P2–Na0.8[Li0.12Ni0.22Mn0.66]O2 and at three different states
of charge along the first electrochemical cycle. The spectra were acquired at a magnetic field strength of 4.70 T and at 60 kHz MAS. Reproduced with permission from [56].
Copyright (2014) American Chemical Society.

Table 12.2
Amplitude x1ðtÞ, phase /pðtÞ, and frequency sweep xrf ðtÞ profiles for a selection of swept-frequency adiabatic pulses. For each scheme the transmitter offset is swept through a
range of frequencies Dx during the pulse length of sp with a maximum RF field amplitude of xmax

1 . For the hyperbolic secant pulse b is a dimensionless parameter given by
b ¼ sech�1ðf Þ, where f is the fraction of xmax

1 at which the beginning and end of the amplitude profile are truncated. Typically this truncation factor is set to 1%, and so
b ¼ sech�1ð0:01Þ ¼ 5:2983. For the tanh/tan pulse n and j are dimensionless parameters which take values n ¼ 10 and j ¼ tan�1ð20Þ. For the WURST pulse n is a factor controlling
the rate at which the amplitude profile is smoothed from zero to xmax

1 at the start and end of the pulse; typically n ¼ 20.

Pulse scheme x1ðtÞ /pðtÞ xrf ðtÞ
Hyperbolic secant [436] xmax

1 sech bð2t=sp � 1Þ� �
� Dxsp

4b ln sech bð2t=sp � 1Þ� �� �
 � Dx
2 tanh bð2t=sp � 1Þ� �

tanh/tan [437] xmax
1 tanh 2nt

sp

� 	
; 0 6 t 6 sp=2

xmax
1 tanh 2n 1� t

sp

� 	� 	
; sp=2 < t 6 sp

� Dxsp
4j tanj ln cos jð1� 2t=spÞ

� �� � � 1
2Dx cotðjÞ tan jð1� 2t=spÞ

� �

WURST [438] xmax
1 1�

��� sin p t
sp � 1

2

� 	� 	���n� 	
Dx
2

t2
sp � t þ sp

4

� 	
Dx
2

2t
sp � 1
� 	
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presses any direct spin diffusion between the 13C nuclei on the
timescale of longitudinal relaxation.

In order to ensure pure-phase lineshapes in the two-
dimensional spectra, it is recommended that the t1 increment is
set to an integer multiple of the rotor period, so that there is no
net evolution of the SA and only the isotropic shifts appear in the
x1 dimension. The spectrum therefore has the form given in
Fig. 12.14, with the exception that the resonance is split into a
spinning-sideband manifold in x2. In cases where the dispersion
of isotropic shifts is larger than the spinning frequency, it is neces-
sary to employ a t1 increment that is shorter than the rotor period.
In this case we also obtain spinning sidebands in thex1 dimension,
and no longer have pure-phase lineshapes [428]. This problemmay
be removed by refocussing the evolution of the SA during t1 using
the methods described in Section 12.5.6 to obtain anx1 dimension
free from spinning sidebands.

12.5.4. Homonuclear exchange correlations
Correlations between nuclear sites experiencing slow chemical

exchange can be obtained using the same two-dimensional EXSY
sequence as for solution NMR in Fig. 12.9(a), and with the same
requirement that the mixing time takes a maximum value of the
order of T1. One interesting application of EXSY in paramagnetic
solids has been the study of lithium exchange dynamics in
lithium-ion-conducting materials [429,430]. An example is the
two-dimensional 6Li EXSY spectra acquired on monoclinic Li3Fe2(-
PO4)3 at moderate MAS of 25 kHz shown in Fig. 12.40. The conven-
tional one-dimensional spectrum contains three resonances A, B,
and C corresponding to the three distinct Li sites in the material.
The 7Li spins have comparatively short T1 times of 1.1 ms, and so
6Li was used to measure the exchange as the lower cI gives smaller
PREs, thus allowing the use of longer mixing times. Spectra

acquired using two mixing times are shown. A short mixing time
of 0.5 ms gives the spectrum in Fig. 12.40(a) with no cross peaks.
However increasing the mixing time to 3.0 ms gives correlations
between all three sites, as shown in Fig. 12.40(b), indicating that
there is exchange amongst all the sites.

12.5.5. Heteronuclear through-space correlations
The two-dimensional heteronuclear correlation experiments

that have been most successfully employed for paramagnetic sys-
tems are based on the TEDOR [7] (Fig. 12.35(a)), Dipolar Insensitive
Nucleus Enhanced by Polarization Transfer (DINEPT) [27], and
Dipolar Heteronuclear Single-Quantum Correlation (DHSQC) [28]
experiments. As we have already seen for one-dimensional spec-
troscopy, these sequences give superior sensitivity compared to
the CP-based HETeronuclear CORrelation (HETCOR) experiment
in Fig. 12.33.

As for heteronuclear correlation spectroscopy in solution, there
is a choice to whether we observe the 1H spin or heteronuclear spin
in these experiments. In solid-state NMR there is a preference for
direct detection of the heteronucleus as the observation of the nar-
rower peaks usually offsets any penalty in sensitivity from the
lower gyromagnetic ratio. Fig. 12.35(a) shows the TEDOR sequence
that would be used for direct detection. When the loop counters n1

and n2 are both set to 1 we obtain a sequence that is closely related
to the DINEPT experiment of Wickramasinghe and Ishii [27]. An
example of a two-dimensional 1H–13C TEDOR spectrum acquired
for a paramagnetic organometallic complex is shown in
Fig. 12.41(a) [7]. A short recoupling time of 60 ls was used to
selectively transfer the coherences over a distance scale corre-
sponding to a single HAC bond. The spectrum allows the unam-
biguous assignment of the corresponding resonances. We also
note that the resonances are broadened along a ridge that is

Fig. 12.49. The amplitude, phase, and frequency-sweep profiles of three widely-used adiabatic pulse schemes. The amplitude, phase, and frequency-sweep profile for the
tanh/tan pulse scheme are shown in (a), (b), and (c) [437]. This class of pulse is suitable for the broadband SHAP. The plots in (d), (e), and (f) show the amplitude, phase, and
frequency-sweep profiles for WURST, which is used as a low-power S3AP [438]. Finally (g), (h), and (i) show the amplitude, phase, and frequency-sweep profiles for the
hyperbolic secant, which can also be used as an S3AP [436].
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inclined relative to both axes. This is due to the inhomogeneous
broadening which is a consequence of the ABMS effects discussed
in Chapter 10. Because the broadening is a distribution of chemical
shifts it leads to an elongation of the resonance in the two-
dimensional spectrum that is inclined relative to the x1 axis with
a gradient of Dx2=Dx1 ¼ jcS=c1j, which is here equal to 1=4 [258].
We are able to recover the intrinsically higher resolution in the
absence of the ABMS broadening by shearing the two-
dimensional spectrum parallel to x2 to give a new frequency axis

x0
2 ¼ x2 þ jx1, where j is a shear ratio equal to �jcS=c1j, and then

projecting onto x0
2. The spectra are shown in Fig. 12.41(b).

With the use of faster MAS it becomes possible to observe the
1H spectrum directly. This allows us to employ a version of the
TEDOR sequence with indirect detection, as shown in Fig. 12.35
(b), which benefits from the higher sensitivity of observing the
nucleus with the larger cI . This sequence is related to the DHSQC
experiment used by Swamy et al. by setting n1 ¼ n2 ¼ 0 [28]. A
comparison of the directly and indirectly-detected 1H–13C correla-

Fig. 12.50. Broadband pulse sequences employing adiabatic refocussing pulses, and coherence-transfer pathways, for the double adiabatic spin-echo and aMAT experiments.
The double adiabatic spin-echo sequence is shown in (a) with the coherence-transfer pathway [29]. The arrow indicates the time point at which the isotropic shift is
refocussed. The SHAP need not be an integer multiple of the rotor period in length. The aMAT sequence is shown in (b) [31]. Here the length of the SHAP is an integer multiple
m of the rotor period. Filled rectangles indicate pulses with a nominal flip angle of 90� , and unfilled rectangles with a diagonal stroke indicate SHAPs. All pulses have phase x.

Fig. 12.51. Experimental examples of the improved inversion and refocussing properties of SHAPs compared to conventional pulses when applied to paramagnetic materials.
In (a) and (b) are shown the conventional 7Li and 31P rotor-synchronized spin-echo spectra of the cathode material LiFe0.5Mn0.5PO4 at 11.74 T and 60 kHz MAS. The RF field
amplitudes are 455 kHz for 7Li and 417 kHz for 31P. The 7Li and 31P double-SHAP-echo spectra are shown in (c) and (d) at 60 kHz MAS, with the latter showing increased
bandwidth. The SHAP is a tanh/tan pulse sweeping through 5 MHz in 50 ls at RF field amplitudes of 455 kHz for 7Li and 417 kHz for 31P. Panel (e) shows the integrated
intensity of the 7Li spectrum following SHAP inversion at different RF field amplitudes and MAS frequencies. The integrated intensity of the 31P spectrum following SHAP
inversion at 60 kHz MAS and different RF field amplitudes is shown in (f). Reproduced from [35], with permission from Elsevier.
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tion spectra of a paramagnetic Cu(II) complex is shown in
Fig. 12.42 [28]. The DINEPT spectrum acquired at 30 kHz MAS
and a recoupling time of 33.33 ls is shown in (a). The correspond-
ing DHSQC spectrum is shown in (b). In both cases the combination
of fast MAS and short recoupling times enabled the acquisition of
spectra with good sensitivity and resolution.

12.5.6. Separation of shift and shift anisotropy interactions
The experimental methods presented in the previous sections

are designed to measure correlations between the isotropic shifts
of different nuclear sites. However in paramagnetic solids there
are other interactions which lead to spectral broadening and a loss
of resolution, but are also useful sources of structural information
where they can be measured. One such interaction is the SA, which
we have seen appears in the MAS NMR spectrum as a spinning-
sideband manifold. In solid materials in which a particular nucleus
is present in more than one site, the NMR spectrum contains mul-
tiple spinning-sideband manifolds that, in general, overlap. It is
therefore a matter of great interest to use an experiment that can
separate the SA from the isotropic shifts, so that both can be
measured.

There are two widely-used two-dimensional experiments that
remove the overlap between the spinning-sideband manifolds,
that are referred to as the Phase-Adjusted Spinning Sidebands
(PASS) experiment [431], and the Magic-Angle Turning (MAT)
experiment [432]. They both have the same basic pulse sequence,
which comprises a 90� excitation pulse followed by a sequence of n
180� refocussing pulses that occupy a recoupling delay T ¼ Nsr,
where N is an integer. This recoupling period forms the evolution
period of the two-dimensional experiment, and is followed by
direct acquisition. An example pulse sequence with five 180�

pulses is shown in Fig. 12.43(a). We define the timings in the pulse
sequence so that acquisition begins at t ¼ 0, which means that the
time point immediately following the excitation pulse is t ¼ �T.
The timing of the qth pulse is defined as �T þ sq. Hence the total
phase accrued during the evolution period Ucðc;0;�TÞ is given
by the sum of the phases due to the isotropic and anisotropic shifts,
and is given by:

Fig. 12.52. 1H MAS spectra of the organometallic compound Tb[C5H3N(COO)2Na]3
acquired using double-SHAP-spin-echo and SHAP-CPMG pulse sequences [30]. The
double-SHAP-spin-echo spectra acquired at MAS frequencies of 20, 33, and 66 kHz
are shown in (a), (b), and (c). Panel (d) shows the SHAP-CPMG pulse sequence that
was used to acquire the FID at 66 kHz MAS in (e). The corresponding spectra are
shown in (f) and (g). Reproduced with permission from [30]. Copyright (2007)
American Chemical Society.

Fig. 12.53. The two-dimensional 31P aMAT spectrum of the cathode material LiFe0.5Mn0.5PO4 acquired at 11.74 T and 60 kHz MAS. The SHAP is a tanh/tan pulse sweeping
through 5 MHz in 50 ls at an RF field amplitude of 417 kHz. The length of the MAT recoupling period is 7 rotor periods, excluding the pulse lengths.
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Ucðc;0;�TÞ ¼ Xisosseq þUSA
c ðc;0;�T þ snÞ

� ð�1Þn
Xn
q¼1

ð�1ÞqUSA
c ðc;�T þ sq;�T þ sq�1Þ; ð12:15Þ

where we define s0 ¼ 0, and the effective evolution time of the
isotropic shift sseq is

sseq ¼ T � 2
Xn
q¼1

ð�1Þnþqsq: ð12:16Þ

Whilst in conventional two-dimensional spectroscopy we map the
evolution during the indirect dimension by incrementing the evolu-
tion time, we do not do so in the PASS and MAT experiments.
Instead the total length of the evolution period is kept constant at
T, and we map out the evolution of the isotropic shift or SA by vary-
ing the timings sq of the n refocusing pulses. In order to quantify the
extent of evolution we define a ‘‘pseudo-t1” variable H, which is
known as the pitch. If we have Ninc increments, the pitch for the
jth increment (j ¼ 1;2; . . . ;Ninc) is H ¼ 2Npðj� 1Þ=Ninc. We now

make a decision as to whether we wish to refocus the isotropic shift
or SA during the evolution period. In the former case we obtain the
PASS experiment, and in the latter we obtain MAT.

12.5.6.1. PASS. In the PASS experiment we refocus the isotropic
shift in all the increments, and allow the SA to evolve progres-
sively. Therefore the phase acquired during the evolution block
in Eq. (12.15) becomes

Ucðc;0;�TÞ ¼ USA
c ðc;0;H=xrÞ; ð12:17Þ

and the effective evolution time of the isotropic shift is zero for all
increments:

sseq ¼ 0: ð12:18Þ
If we define the pulse timings in terms of angles hq ¼ xrsq and the
total length of the evolution block via an angle hT ¼ xrT , we obtain
a set of five simultaneous equations that must be solved for each
value of the pitch in order to obtain the required pulse timings. Four
equations pertain to the evolution of the SA, and are:

Fig. 12.54. Simulated inversion performance of S3APs under MAS. In (a) are shown contour plots of the inversion of the powder sample as a function of RF field amplitude and
carrier frequency at MAS frequencies of 20, 40, 60, 80, and 100 kHz. In each case, the S3AP is a WURST-20 pulse of length 1 ms with a sweep width equal to the spinning
frequency. The best inversion occurs when the transmitter is resonant with one of the sidebands and the RF field amplitude is sufficiently high to satisfy the adiabatic
condition for all crystallites. In (b) are shown horizontal cross sections through the contour plots, taken at the positions shown by the horizontal white dashed lines. The plots
show the inversion as a function of transmitter offset. The RF amplitude profiles in (c) are cross sections taken at the positions of the vertical white dashed lines in the contour
plots. The arrows in the plots in (b) and (c) indicate the transmitter offset and lowest RF field amplitude at which the best inversion performance is obtained for each MAS
frequency. Each pair of optimum values is also indicated by the intersection of the two white dashed lines in each contour plot in (a). The optimum values of (sideband order,
RF field amplitude) for the five MAS frequencies are: (�2, 20 kHz) at 20 kHz MAS, (þ2, 30 kHz) at 40 kHz MAS, (þ2, 50 kHz) at 60 kHz MAS, (0, 30 kHz) at 80 kHz MAS, and (0,
20 kHz) at 100 kHz MAS. The shift tensor parameters are: isotropic shift 0 kHz, SA þ200 kHz, and asymmetry parameter 0.3. Reproduced from [35], with permission from
Elsevier.
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2
Xn
q¼1

ð�1Þq exp �imhq
� �þ1�ð�1Þn expð�im HþhTÞð Þ¼0; m¼	1;	2;

ð12:19Þ

whilst the fifth is the requirement that the isotropic shift is refo-
cussed for all increments:

hT � 2
Xn
q¼1

ð�1Þnþqhq ¼ 0: ð12:20Þ

If we employ a sequence with n ¼ 5 180� pulses, these simultane-
ous equations can be solved to give unambiguous timings for each
increment. The solutions are non-trivial, but can be obtained by
numerical solution of the five equations [431]. An example of the
pulse timings is plotted in Fig. 12.43(b) for a recoupling block with
a length of one rotor period.

When implementing the PASS experiment we set the number of
increments Ninc to a power of two that is larger than the expected
number of sidebands in the broadest manifold. A simulated PASS
spectrum in shown in Fig. 12.44(b). We see that the two

spinning-sideband manifolds that overlap in the one-dimensional
spectrum are aligned parallel to the main diagonal x1 ¼ x2 in
the two-dimensional spectrum, and are separated. The isotropic
shifts can be obtained by extracting a one-dimensional trace at
x1 ¼ 0, which contains the centrebands. We note here that both
the homogeneous and inhomogeneous linewidth in the indirect
dimension are exactly zero. This is because firstly the evolution
block has a constant length, and so there is no differential T 0

2

dephasing as we increment the pitch; the T 0
2 dephasing therefore

only reduces the overall intensity of the spectrum. Secondly the
refocussing of the isotropic shift in the indirect dimension also
has the effect of refocussing the inhomogeneous decay. Therefore
both sources of line broadening only lead to broadening in x2.

12.5.6.2. MAT. The second strategy for separating the spinning-
sideband manifolds is to allow the isotropic shift to evolve progres-
sively during the evolution block, and to refocus the SA for all
increments, which results in the MAT experiment [432]. In this
case the pitch is used to define the increase of sseq from zero to a
maximum value via

Fig. 12.55. The 77Se and 1H NMR spectra of compounds 1 and 2 at 11.74 T, and 11 and 60 kHz MAS respectively, and the inversion performance with an S3AP [32]. The
conventional spectra are shown in (a) and (e). The spectra obtained following inversion with a 69 kHz and 200 kHz hard pulse, respectively, are shown in (b) and (f). Spectra
obtained following inversion by irradiation of the centreband with an S3AP are shown in (c) and (g). The inversion of the spectrum of 1 was achieved with a WURST-20 S3AP
with a sweep width of 10 kHz, duration of 5 ms, and peak RF field amplitude of 10 kHz. The inversion of 2 was achieved with a hyperbolic secant S3AP with a sweep width of
70 kHz, duration of 495 ls, and peak RF field amplitude of 60 kHz. Simulations showing the expected degree of inversion vs RF power are shown in (d) and (h). The 77Se
spectra of 1 were obtained with 1H–77Se CP followed by a z-filter during which the inversion pulse was applied. The 1H spectra of 2 were obtained with a double-SHAP-echo
sequence, using a tanh/tan SHAP of sweep width 10 MHz, length 60 ls, and peak RF field amplitude 200 kHz. The centrebands are marked with an asterisk. Reproduced from
[32], with the permission of AIP Publishing.
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sseq ¼ 	 H
xr

; ð12:21Þ

where the + sign refers to the P-type spectrum, and the� sign to the
N-type spectrum. The total phase acquired during the evolution
block is then

Ucðc;0;�TÞ ¼ 	Xiso
H
xr

: ð12:22Þ

As for PASS these restrictions give us five simultaneous equations
that need to be solved to obtain the correct pulse timings. The first
refers to the evolution of the isotropic shift:

hT � 2
Xn
q¼1

ð�1Þnþqhq ¼ 	H; ð12:23Þ

and the remaining four to the refocussing of the SA:

2
Xn
q¼1

ð�1Þq exp �imhq
� �þ 1� ð�1Þn exp �imhTð Þ

¼ 0; m ¼ 	1;	2: ð12:24Þ
The solution to these five equations is simpler than for PASS. We
again employ n ¼ 5 180� pulses, but with timings that are now
given by [432]:

sq ¼ Nsr
6

q	 1� ð�1Þq
2Ninc

� �
ðj� 1Þ

� 
; ð12:25Þ

where the number of rotor periods N can take any integer value that
is not an integer multiple of 3. These solutions are plotted graphi-
cally in Fig. 12.43(c) for the N-type and P-type experiments.

The MAT spectrum simulated with the same parameters as for
the PASS spectrum discussed above is shown in Fig. 12.44(c). Here
the spinning-sideband manifolds are parallel to the x2 dimension,
and the x1 dimension contains the isotropic spectrum that can be
obtained by a projection onto this axis. We also note that the inho-
mogeneous broadening is parallel to x1 ¼ x2, in contrast to PASS,
since now the isotropic shift evolves during the indirect dimension.

An example of MAT performed at slow MAS (0.5–1.5 kHz) is
given in Fig. 12.45 [433]. Fig. 12.45(a) shows the two-
dimensional 13C MAT spectrum of the system [(C2H5)4N]2[Fe4S4
(S13CH2C6H5)4], in which a single C atom has been 13C labelled.
The correlation reveals a broad spinning-sideband manifold with
an isotropic shift of 101 ppm, which is shown in Fig. 12.45(b).

12.5.6.3. MAT-PASS. The PASS and MAT methods are both poten-
tially very powerful for obtaining interpretable NMR data that
would otherwise be of too low resolution to be usable. However
both experiments have a weakness, which is that they employ a
train of 180� pulses, which we have seen have a comparatively
low bandwidth. One solution to this is to instead use more broad-
band pulse schemes, as described in Section 12.5.7. A second solu-
tion, proposed by Hung et al., replaces all of the 180� pulses by 90�

pulses which have a greater bandwidth [434]. The resulting MAT-
PASS pulse sequence is shown in Fig. 12.46. The sequence also rein-
troduces the real t1 evolution variable, which takes values from sr
to 2sr in steps of dt1 ¼ sr=Ninc. The spectrum has the same form as
the conventional PASS spectrum in Fig. 12.44(c). However the
overall improvement in the bandwidth comes at the cost of
reduced sensitivity. Whereas the coherence-transfer pathway in
the conventional PASS/MAT sequence is the only one produced

Fig. 12.56. Illustration of echo formation in, and shear of, a two-dimensional FID. A two-dimensional FID sðt1; t2Þ is shown in (a), sampled on a Cartesian grid ðt1; t2Þ. The red
arrow indicates the formation of an echo of a particular interaction with spin-order a1 and a2 in t1 and t2. After an active shear, where the time domain data rather than the
coordinate axes are transformed, parallel to t2 with shear ratio j2 ¼ a1=a2 we obtain the FID sðt01; t02Þ in (b), in which the Cartesian grid of sample points is distorted into a
parallelogram. The green area has been sheared out of the original sampling grid. In (c) the shear has been calculated from the inverse Fourier transform of
exp þix2j2t1ð ÞSðt1;x2Þ. Here the Cartesian grid is preserved, and the green area is folded back into the original acquisition window.
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under ideal conditions, in the MAS-PASS sequence the coherence-
transfer pathway shown is only one of the four possible pathways
that are generated by the pulses. Hence the overall sensitivity is
reduced by a factor of four compared to conventional PASS; one
reduction by two is due to the transfer p ¼ þ1 ! 0 ! þ1 by the
combination of the second and third pulses, the second factor of
two is due to the transfer p ¼ þ1 ! 0 ! �1 by the combination
of the fourth and fifth pulses. A second disadvantage is that the
evolution block does not have a fixed duration, and but increases
by one rotor period from 11sr=3 to 14sr=3. For materials with large
PREs this leads to a measurable difference in coherence dephasing
for different increments, and hence a coherent linewidth in the

indirect dimension, and therefore an imperfect separation of the
spinning-sideband manifolds [431].

Nevertheless the sequence has been used successfully in sepa-
rating the spinning-sideband manifolds of multiple sites in param-
agnetic battery materials. An example of such an application is the
application of MAT-PASS to the 31P MAS NMR of Li3Fe2(PO4)3, as
shown in Fig. 12.47 [434]. The one-dimensional spectrum in
Fig. 12.47(a) comprises overlapping resonances from three distinct
local environments. These three environments are fully separated
in the two-dimensional MATPASS spectrum shown in Fig. 12.47
(b). Whilst this pulse sequence does have a greater bandwidth than
conventional PASS or MAT, it should be noted that here the

Fig. 12.57. Pulse sequences and symmetry-transfer pathways for correlating the paramagnetic shift anisotropy and quadrupolar lineshapes for spin I ¼ 1 nuclei. Also shown
are the transfer pathways for the coherence order p and satellite order d. The sequence in (a) is for the shifting p-echo experiment of Antonijevic and Wimperis in which the
first-order quadrupolar interaction is refocussed at the end of t1 [394]. The sequence for the shifting d-echo experiment of Walder et al. is shown in (b) [200]. Here the SA is
refocussed at the end of t1. The time points at which the shift and shift anisotropy, and the quadrupolar interaction are refocussed are indicated on the relevant symmetry
pathways with arrows. Filled rectangles indicate pulses with a nominal flip angle of 90� and unfilled rectangles indicate pulses with a nominal flip angle of 180� . All pulses
have phase x.

Fig. 12.58. Illustration of the single shear parallel to t1 with ratio j1 ¼ �1 required for the separation of the paramagnetic shift and shift anisotropy from the first-order
quadrupolar interaction in (a) the shifting p-echo of Antonijevic and Wimperis [394], and (b) the shifting d-echo sequence of Walder et al. [200].
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MAT-PASS spectrum had to be acquired as two sub-spectra, using
the frequency-stepping method [396]. This issue of broadband
NMR is addressed in the following Section 12.5.7. A second com-

pelling example of MAT-PASS is its use in monitoring the change
in the multiple 7Li sites in the Na-ion cathode material P2–Na0.8
[Li0.12Ni0.22Mn0.66]O2 during the first electrochemical cycle [56].

Fig. 12.60. Experimental 2H spectra acquired using the shifting p-echo and shifting d-echo experiments on polycrystalline CuCl2�2D2O. The experimental shifting p-echo
spectrum and best-fit simulated spectrum are shown in (ia) and (ib), with the best-fit residuals in (ic). Note that the experimental spectrum contains a sharp spike at zero
frequency in the quadrupolar dimension. The experimental shifting d-echo spectrum and best-fit simulated spectrum are also shown in (iia) and (iib), with the best-fit
residuals in (iic). Here there is no zero-frequency spike, and the experimental shifting d-echo spectrum has a signal-to-noise ratio that is larger by a factor of two. Reproduced
from [200], with the permission of AIP Publishing.

Fig. 12.59. Simulated spectra of the shifting p-echo and shifting d-echo experiments, illustrating the effect of changing the relative orientation of the PAFs of the
paramagnetic shielding and quadrupolar interaction tensors for an I ¼ 1 nucleus. The Euler angles ða; b; cÞ define the coordinate transformation from the PAF of the
quadrupolar interaction tensor to the PAF of the paramagnetic shielding tensor. Other simulation parameters include x0=2p ¼ 61:496022 MHz, CQ ¼ 120 kHz, gQ ¼ 0:8,
DrS ¼ 150 ppm, and gS ¼ 0:8. Note that the projection onto each axis remains unchanged as the relative orientation changes. Reproduced from [200], with the permission of
AIP Publishing.
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Fig. 12.48 shows isotropic slices taken from MAT-PASS spectra
recorded on the pristine material, and at three different stages
along the electrochemical cycle.

12.5.7. Broadband NMR methods for spin-1=2 nuclei
12.5.7.1. Adiabatic pulse schemes. The methods for solid-state para-
magnetic NMR have hitherto focussed on the pulse sequences that
can be used to obtain the desired information about the system
under study, such as isotropic shifts, heteronuclear correlations
etc. However the discussion has focussed only on the sequence
and, with the exception of the section on frequency stepping, not
on how may we achieve a broadband spectrum in the case where
the spread of the resonances is substantially larger than the prac-
ticable RF field amplitude. When this is the case, conventional

pulses are not suitable for excitation and alternative schemes are
needed. The frequency-stepping scheme that has already been dis-
cussed has proved useful for obtaining one-dimensional spectra,
but is not a universal solution to the problem of broadband NMR
as (1) there is a substantial increase in the experiment time
required to acquire all the sub-spectra, and (2) this increase limits
the practical application to one-dimensional spectroscopy. There is
a requirement for pulse schemes that can acquire a broadband
spectrum in a single experiment, and which can be easily incorpo-
rated into the more sophisticated multi-dimensional experimental
pulse sequences that we have presented here.

One broadband pulse scheme that has been used widely in both
solution NMR and MRI is the swept-frequency adiabatic pulse
[435]. The important defining feature of all adiabatic pulses is that
they are designed to have a transmitter offset which sweeps
through the spectrum, rather than being fixed at a predefined fre-
quency. The pulse is defined by a pulse length sp, a time-dependent
RF field amplitudex1ðtÞ and a time-dependent phase /pðtÞ that are
both symmetric about the mid-point of the pulse. The RF field
amplitude is designed so that it increases smoothly from zero at
the start of the pulse to a maximum value of xmax

1 , and then
decreases back to zero at the end of the pulse. The time-
dependent phase is designed so that it induces a time-dependent
sweep of the transmitter offset, xrfðtÞ ¼ d/pðtÞ=dt, which covers
a range of frequencies Dx, and that is approximately linear at
t ¼ sp=2. Many such pulse schemes have been designed, including
the hyperbolic secant [436], tanh/tan [437], and WURST [438]
pulses. The expressions for the RF field amplitude, phase, and
induced transmitter offset are given in Table 12.2. These ampli-
tude, phase, and frequency profiles are plotted in Fig. 12.49. The
profiles for the tanh/tan pulse are shown in Fig. 12.49(a)–(c), for
the WURST pulse in Fig. 12.49(d)–(f), and the hyperbolic secant
pulse in Fig. 12.49(g)–(i).

The theory by which these pulses achieve inversion of a spin has
been described in detail for isotropic systems in solution [435,439],
and for solids under MAS [35], and so we give only the salient

points here. The rotating-frame Hamiltonian bHðtÞ describing an
adiabatic pulse applied to a spin with a time-dependent shift fre-
quency XðtÞ due to, for example, an SA under MAS, is given by

bHðtÞ ¼ XðtÞbIz þx1ðtÞbRzð/pðtÞÞbIxbRzð/pðtÞÞ�1
: ð12:26Þ

We can also define this Hamiltonian in the frequency-modulated
frame, where the phase modulation of the pulse is converted into

the modulation of the transmitter offset to give bH0ðtÞ:

bH0ðtÞ ¼ bRzð/pðtÞÞ�1 bHðtÞbRzð/pðtÞÞ �
d/pðtÞ
dt

bIz ð12:27Þ
¼ XðtÞ �xrfðtÞð ÞbIz þx1ðtÞbIx: ð12:28Þ

We can now define an effective field of magnitude xð0Þ
eff ðtÞ and angle

of tilt from z hð0ÞðtÞ, which are given by

xð0Þ
eff ðtÞ

h i2
¼ XðtÞ �xrfðtÞð Þ2 þx1ðtÞ2; ð12:29Þ

tan hð0ÞðtÞ
h i

¼ x1ðtÞ
XðtÞ �xrfðtÞ ; ð12:30Þ

and rewrite bH0ðtÞ as

bH0ðtÞ ¼ xð0Þ
eff ðtÞbRy hð0ÞðtÞ

� 	bIzbRy hð0ÞðtÞ
� 	�1

: ð12:31Þ

For the schemes shown in Table 12.2 and Fig. 12.49 we see that the
effective field is aligned along þz at the beginning of the pulse. Dur-
ing the pulse, the RF field amplitude increases to its maximum
value, the transmitter offset increases from a negative value to a

Fig. 12.61. Pulse sequence and symmetry-transfer pathways for the COASTER
experiment, which correlates the paramagnetic shift anisotropy and quadrupolar
lineshape for half-integer-spin quadrupolar nuclei under sample rotation [395]. The
spinning axis of the sample is orientated at 70.12� to the external field. In this
sequence we correlate a signal due to a multiple-quantum coherence in t1 (in this
case the p ¼ þ3 coherence) against the observable (p ¼ �1) CT coherence in t2. The
sets of symmetry pathways in (a) and (b) show the p-, c0-, and c2-order during
experiments for I ¼ 3=2 and 5=2 respectively. The arrows on the symmetry
pathways indicate the time points at which the relevant interactions are refocussed.
Both pulses have phase x.
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positive value, and the effective field is rotated about the y-axis
from þz to �z, and is therefore inverted.

If we are describing population inversion of a nuclear spin with

initial density operator bIz, the magnetization at the start of the
pulse is aligned parallel to the effective field, and so is spin-

locked to it. If the effective field inverts sufficiently slowly, the
magnetization remains spin-locked throughout the pulse, and so
is also inverted. If on the other hand we are describing refocusing
of coherences, as occurs during a spin echo, the initial magnetiza-
tion is orthogonal to the effective field at the start of the pulse.

Fig. 12.62. Illustration of the double shear and scaling transformations applied to a two-dimensional FID acquired using the COASTER experiment. The first shear is parallel to
t2 and maps the c2-echo of the rank-two second-order quadrupolar interaction onto the t01 axis. The second shear is parallel to t01 and maps the p-echo of the rank-two SA
interaction onto the t002 axis.

Fig. 12.63. Comparison of simulated two-dimensional COASTER spectra showing the effect of changing the quadrupolar interaction and chemical shielding asymmetry
parameters in the case where the two tensors have the same PAF. Other simulation parameters included I ¼ 3=2,x0=2p ¼ 100 MHz, CQ ¼ 3 MHz, riso ¼ 0 ppm, and DrS ¼ 33
ppm. The one-dimensional projections onto the quadrupolar anisotropy axis x0

2ðQÞ are the same for each gQ value. Similarly the one-dimensional projections onto the
shielding anisotropy axis x0

1ðrÞ are the same for each gS value. Reproduced from [320], with permission from Elsevier.

Table 12.3
The shear ratios and scaling factors j2 and f01, and j0

1 and f002 required for the COASTER experiment that correlates the p1 ¼ þ3 coherence jI þ 3=2ihI � 3=2j with the observable CT
coherence with p2 ¼ �1, jI � 1=2ihI þ 1=2j, for different nuclear spins I.

I c2;1 c2;2 j2 f01 p2/p02 p1 p01 j0
1 f002

3=2 0 �12 0 1 �1 3 3 �1=3 4=3
5=2 60 �32 �15=8 23=8 �1 3 9=23 �23=9 32=9
7=2 144 �60 �12=5 17=5 �1 3 3=17 �17=3 20=3
9=2 252 �96 �21=8 29=8 �1 3 3=29 �29=3 32=3
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Here it is the plane in which the magnetization evolves during the
pulse that is tilted as the effective field inverts, and which leads to
refocussing.

The question is, what do we mean by ‘‘if the effective field
inverts sufficiently slowly”? This question can be answered by
transforming the frame of reference of the adiabatic pulse from
the frequency-modulated frame to the first adiabatic frame as fol-

lows, to give the Hamiltonian bH1ðtÞ [435]:

bH1ðtÞ ¼ bRy hð0ÞðtÞ
� 	�1 bH0ðtÞbRy hð0ÞðtÞ

� 	
� dhð0ÞðtÞ

dt
bIy ð12:32Þ

¼ xð0Þ
eff ðtÞbIz � _hð0ÞðtÞbIy; ð12:33Þ

in which the effective field is now alongþz, and we have introduced
the transverse field _hð0ÞðtÞ along �y to account for the motion of the

first adiabatic frame relative to the frequency-modulated frame. To
achieve perfect inversion or refocussing we require the total field in
the first adiabatic frame to remain along z throughout the pulse,

which is achieved if jxð0Þ
eff ðtÞj � j _hð0ÞðtÞj throughout the pulse. This

is quantified via the quality factor Q ð1Þ, which is defined by

1

Q ð1Þ ¼ max
_hð0ÞðtÞ
xð0Þ

eff ðtÞ

�����
����� ð12:34Þ

¼ max
_x1ðtÞ XðtÞ �xrfðtÞ½ � �x1ðtÞ _XðtÞ � _xrfðtÞ

h i
xð0Þ

eff ðtÞ3

������
������: ð12:35Þ

For good inversion or refocussing behaviour we require Q ð1Þ � 1;
this is the so-called adiabatic condition.

In an isotropic solution, where the shift offset is time-
independent and equal to zero, and for typical values of the sweep
width Dx and RF field amplitude, the adiabatic condition is weak-
est at t ¼ sp=2 where the transmitter is resonant with the spin.

Here x1ðsp=2Þ ¼ xmax
1 , xrfðsp=2Þ ¼ 0, xð0Þ

eff ðsp=2Þ ¼ xmax
1 , and the

adiabatic condition simplifies to xmax
1


 �2 � j _xrfðsp=2Þj. Therefore
it can be seen that if a particular pulse is not adiabatic, it can be
made so simply by raising the RF field amplitude.

For solid samples under MAS the application of adiabatic pulses
is generally very difficult since the modulation of the SA leads to
rapid oscillations in both the size and tilt angle of the effective
field, and hence a weakening of the adiabatic condition. This is par-
ticularly problematic for paramagnetic species where the combina-
tion of large SAs and fast spinning results in quality factors that are
typically much lower than unity for typical pulse schemes. There-
fore special measures need to be taken in order for adiabatic pulses
to work properly [35]. Two such methods have been developed,
which are referred to as short high-power adiabatic pulses (SHAPs)

Fig. 12.64. Comparison of simulated COASTER spectra showing the effect of the relative orientation of the quadrupolar and chemical shielding anisotropy tensors on the two-
dimensional spectrum. Other simulation parameters included I ¼ 3=2, x0=2p ¼ 100 MHz, CQ ¼ 3 MHz, gQ ¼ 0:25, riso ¼ 0 ppm, DrS ¼ 33 ppm, and gS ¼ 0:5. Note that the
projection onto each axis remains unchanged as the relative orientation of the quadrupolar coupling and chemical shielding tensors changes. Reproduced from [320], with
permission from Elsevier.

Fig. 12.65. Sheared 59Co COASTER spectrum of K3[Co(CN)6] at 9.4 T (left), with a
simulation (right) using the parameters CQ ¼ 6:2 MHz, diso ¼ 14 ppm, gQ ¼ 1:0,
Dr ¼ �62 ppm, g ¼ 0:25, and Euler angles describing the relative orientation of the
two tensors a ¼ 90� and b ¼ c ¼ 0� . Reproduced with permission from [395].
Copyright (2008) American Chemical Society.
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Fig. 12.66. Two-dimensional 13C-detected solid-state NMR spectra of the paramagnetic metalloprotein [U-13C,15N]-(Cu2+,Zn2+)-SOD. The assigned NCACB double-quantum
spectrum is shown in (a). The black contours correspond to positive cross peaks indicating one-bond 15NA13C correlations, and red contours indicate negative cross peaks due
to two-bond 15NA13C correlations. Extracts from the 13CA13C PDSD correlation spectrum are shown in (b) and (c). The MAS frequency is 15 kHz. Reproduced with permission
from [452]. Copyright John Wiley and Sons.

Table 12.4
Two-dimensional 13C-detected solid-state NMR experiments for establishing the sequential assignment of the
protein backbone. The sequence of spins indicates the order, from left to right, in which the coherences are
transferred. Heteronuclear transfers are performed using CP, and homonuclear 13C–13C transfers are
performed via the J-coupling. An atomic label in parentheses indicates that the coherence is transferred to
the corresponding spin, but does not evolve during the evolution period or acquisition. An atomic label
without parentheses indicates that the chemical shift of that nuclear spin evolves during either the evolution
period or acquisition. For each experiment the correlations observed are given, where the subscript refers to
the residue number in the sequence.

Experiment Correlations Ref.

2D
(H)NCA-S3E NiACAi [456]
(H)N(CA)CO-S3E NiACOi [457]
(H)NCO-S3E Ni+1ACOi [456]
(H)N(CO)CA-S3E Ni+1ACAi [457]
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[29], and single-sideband-selective adiabatic pulses (S3APs)
[31–34].

12.5.7.2. Short, high-power adiabatic pulses (SHAPs). The first, and
currently most successful, adiabatic pulse scheme for paramag-
netic systems is the short high-power adiabatic pulse (SHAP)
[29]. These pulses are designed with a large sweep width to give
a large bandwidth, and a short duration to minimize signal losses
due to the PRE. In order to compensate for the weakening of adia-
bicity due to the modulation of the SA during MAS, we also use an
RF field amplitude that is significantly larger than would be needed
for isotropic spin systems. The SHAP represents a ‘‘brute force”
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Fig. 12.67. Two-dimensional solid-state NMR spectra at 60 kHz MAS of the paramagnetic metalloprotein [U-2H,13C,15N]-(Cu2+,Zn2+)-SOD. The (H)N(CO)CA-S3E spectrum is
shown in (a). The expansion shown is reproduced in (b) (red contours) superimposed upon the NC projection of the three-dimensional (H)CA(CO)NH spectrum (grey
contours). Reproduced with permission from [457]. Copyright John Wiley and Sons.

Table 12.5
Two- and three-dimensional 1H-detected solid-state NMR experiments for establish-
ing the sequential assignment of the protein backbone and sidechains. The sequence
of spins indicates the order, from left to right, in which the coherences are transferred.
Heteronuclear transfers are performed using CP, and homonuclear 13C–13C transfers
are performed via the J-coupling. An atomic label in parentheses indicates that the
coherence is transferred to the corresponding spin, but does not evolve during an
evolution period or acquisition. An atomic label without parentheses indicates that
the chemical shift of that nuclear spin evolves during either an evolution period or
acquisition. For each experiment the correlations observed are given, where the
subscript refers to the residue number in the sequence.

Experiment Correlations Refs.

2D
(H)NH NiAHN

i
[463,465]

(H)CH CAiAHCA
i , CAH sidechains [466]

3D
(H)NCAH NiACAiAHCA

i
[466]

(H)CANH CAiANiAHN
i

[463,465]

(H)CO(CA)NH COiANiAHN
i

[463,465]

(H)N(CO)CAH Ni+1ACAiAHCA
i [466,548]

(H)COCAH COiACAiAHCA
i [466,548]

(H)(CA)CB(CA)NH CBiANiAHN
i

[464,465]

(H)CO(N)CAH COiACAi+1AHCA
iþ1

[466,548]

(H)CA(CO)NH CAiANi+1AHN
iþ1

[463]

(H)(CO)CA(CO)NH CAiANi+1AHN
iþ1

[464,465]

(H)CONH COiANi+1AHN
iþ1

[463,465]

(H)(CA)CB(CA)(CO)NH CBiANi+1AHN
iþ1

[465]

(H)N(CA)(CO)NH NiANi+1AHN
iþ1

[466,549]

(H)N(CO)(CA)NH Ni+1ANiAHN
i

[466,549]

(H)CCH TOCSY sidechains [466,548]

Table 12.6
Three-dimensional 1H-detected solid-state NMR experiments for measuring dipolar-
coupling-based distance restraints between protons on the protein backbone and
sidechains. The sequence of spins indicates the order, from left to right, in which the
coherences are transferred. Heteronuclear transfers are performed using CP, and
homonuclear 1H–1H through-space transfers are performed using the RFDR pulse
sequence. An atomic label in parentheses indicates that the coherence is transferred
to the corresponding spin, but does not evolve during an evolution period or
acquisition. An atomic label without parentheses indicates that the chemical shift of
that nuclear spin evolves during either an evolution period or acquisition. For each
experiment the correlations observed are given, where the subscript refers to the
residue number in the sequence.

Experiment Contacts Ref.

3D
H(H)NH RFDR HNAHN, HCAAHN [466]
H(H)CH RFDR HCAAHCA, sidechains [466]
H(H)CH aromatic RFDR sidechains [466]
(H)NHH RFDR HHAHH, HNAHCA [463]

(H)CHH RFDR HCAAHCA, sidechains [466]

Fig. 12.68. Solid-state (H)NH spectra of SOD acquired at 60 kHz MAS. The spectrum
in (a) is of the diamagnetic reference protein (Cu+,Zn2+)-SOD, and in (b) is shown the
corresponding spectrum of the paramagnetic form (Cu2+,Zn2+)-SOD.
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solution to obtaining an adiabatic response for a system with a
large SA under MAS. The class of pulse that is used to satisfy these
requirements is the tanh/tan, which is used in MRI to obtain a large
bandwidth [437]. The expressions for the amplitude, phase, and
frequency-sweep profiles are given in Table 12.2. When designing
a pulse suitable for paramagnetic MAS NMR the following opti-
mization protocol should be followed:

1. The dimensionless parameters n and j are set to n ¼ 10 and
j ¼ tan�1 ð20Þ, and are not varied.

2. The sweep width Dx is set so that it is greater than the
expected width of the spectrum. Typically we choose 5 MHz
as an initial value, and may increase this if necessary.

3. The pulse length sp is chosen to be as short as possible, whilst
still maintaining the adiabatic condition; typical values are
50–100 ls. For inversion and the spin-echo experiment it is
not necessary for the pulse length to be an integer number of
rotor periods. However this restriction does apply to more com-
plex experiments such as MAT.

4. Once the pulse has been created, the RF field amplitude is opti-
mized. This is done either by optimizing the spectral intensity
in a spin-echo experiment, or the inversion performance, by
increasing the RF power.

In addition to broadband inversion, SHAPs can also be incorpo-
rated into a spin-echo experiment using the pulse sequence in
Fig. 12.50(a). This sequence, referred to as the double-SHAP-spin-
echo experiment, comprises two echoes the separation between
the starting points of which is an integer number of rotor periods.
The reason why two echoes are required is that the first SHAP
imparts a frequency-dependent phase error to the coherences
which leads to a dephasing of the signal in the powder. However
the second SHAP refocusses this phase error, leading to a complete
refocussing of both the shift and SA at the end of the second echo.
This refocussing property of the double echo is referred to as the
excitation-sculpting principle [440–442,35].

The inversion and refocussing performance are illustrated
experimentally on the cathode material LiFe0.5Mn0.5PO4 at
11.74 T and 60 kHz MAS in Fig. 12.51 [35]. A comparison between
the 7Li conventional spin-echo and double-SHAP-echo experiments
is given in Fig. 12.51(a) and (c). The two spectra appear to be iden-
tical, which is due to the small range of isotropic shifts of 90 ppm,
and the relatively long relaxation times of approximately 1 ms
[31]. However the 31P double-SHAP-echo in Fig. 12.51(d) shows a
significant improvement in the broadband excitation bandwidth
compared to the conventional spin-echo spectrum in Fig. 12.51
(b). This is due to the 32 distinct local 31P environments having
an isotropic shift dispersion of 4000 ppm (800 kHz at 11.74 T)
which is too large for the practicable RF field amplitude of
417 kHz [31]. This improvement in bandwidth comes at the
expense of reduced sensitivity due to the larger PRE losses during
the two SHAPs which have a combined length of 100 ls, which is
comparable to the range of 31P T 0

2 times of 130–330 ls.
The inversion performance is also given for both 7Li and 31P

with varying RF field amplitude in Fig. 12.51(e) and (f). For 7Li
we obtain complete inversion of the spectrum for a range of MAS
frequencies and sweep widths with RF field amplitudes above
350 kHz. We note that higher RF field amplitudes are required at
higher MAS rates, as the faster modulation of the SA leads to a
greater weakening of the adiabatic condition. For 31P we obtain
75% inversion at an RF field amplitude of 400 kHz. In this case
higher RF fields may only give a moderate increase in performance
as there are intensity losses due to the short T1 and T 0

2 times.
One advantage of SHAPs is that they are easily incorporated into

more sophisticated experimental pulse schemes to give a more
broadband spectrum. Fig. 12.52 illustrates the use of a tanh/tan
SHAP in the CPMG experiment at 66 kHz MAS. The system is the
lanthanide-binding organometallic complex Tb[C5H3N(COO)2Na]3,
which gives a broad 1H spectrum with a large SA, and has substan-
tial inhomogeneous broadening of the sidebands due to the ABMS
[30]. The 1H spectra acquired using the double-SHAP-echo experi-
ment at 20, 33, and 66 kHz MAS are shown in Fig. 12.52(a)–(c).
Here we again see the benefit of applying fast MAS to a system
with a very large SA. We see that the sidebands are broadened con-
siderably, with baseline resolution only being obtained at 66 kHz
MAS. Incorporating the SHAPs into the CPMG sequence gives the
SHAP-CPMG experiment in Fig. 12.52(d), which was used to
acquire the FID in Fig. 12.52(e). This FID exhibits a relatively slow
decay corresponding to a T 0

2 of 1.68 ms. This indicates that the
losses due to T 0

2 to be expected in longer pulse sequences are not
as severe as from the large inhomogeneous line broadening in
the conventional spectra would suggest. The SHAP-CPMG spectra
are shown in Fig. 12.52(f) and (g). They have a higher sensitivity
than the double-SHAP-echo spectra, and a homogeneous linewidth
of 190 kHz.

A second striking application of SHAPs to paramagnetic NMR is
in the two-dimensional MAT experiment used to separate overlap-
ping spinning-sideband manifolds. The resulting adiabatic magic-
angle turning (aMAT) sequence is shown in Fig. 12.50(b). Here a

Fig. 12.69. Measurement of the PCS values of the protein SOD at 60 kHz MAS. The
two-dimensional (H)NH spectra of Co2+-SOD (magenta) and Zn2+-SOD (black) are
superimposed in (a). The magnetic susceptibility tensor of Co2+ in SOD is
represented in (b) as a set of PCS isosurfaces with positive (blue) and negative
(red) values of 	1, 	0:25, and 	0:1 ppm. The spectrum in (c) is taken from the
three-dimensional (H)CONH spectrum and exhibits a PCS in the 1H, 15N, and 13CO
dimensions. The spectra in (d)–(g) are taken from the NH planes in the (H)CONH
spectrum, and show the shift of the peak due to a PCS in both the 1H and 15N
dimensions. Reproduced with permission from [46]. Copyright (2012) American
Chemical Society.
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sixth pulse q ¼ 0 is inserted immediately after the first excitation
pulse in order to complete the refocussing of the phase errors from
the other SHAPS, and remains fixed in this position for all incre-
ments. The other five SHAPs are inserted with timings that are
the same as those in the conventional MAT sequence. Fig. 12.53
shows the experimental 31P aMAT spectrum acquired on LiFe0.5-
Mn0.5PO4 at 11.74 T and 60 kHz MAS [31]. The 32 local 31P environ-
ments each have a broad spinning-sideband manifold with
isotropic shifts covering a range of 4000 ppm. These resonances
overlap in the one-dimensional spectrum, as illustrated in
Fig. 12.51(d), but have been partially separated into eight distinct
groups of resonances in the aMAT spectrum, thus allowing the
assignment and interpretation [31].

The SHAP is both effective and versatile, and has been
successfully applied to a range of paramagnetic systems
[30,72,10,31,443,56,57,444,445,60,446]. However the main weak-
ness in the SHAP scheme is that the RF field amplitude required
increases with faster MAS rates Therefore it may not be possible
to obtain complete inversion at very fast MAS, such as 100 kHz,
especially for nuclei of low gyromagnetic ratio where the RF field
amplitude is limited. This issue is addressed by the second adia-
batic pulse scheme.

12.5.7.3. Single-sideband-selective adiabatic pulses (S3APs). The
single-sideband-selective adiabatic pulse S3AP employs a lower-
power pulse in which the transmitter frequency is swept through
a single sideband [32]. The basic method had been previously used
to invert the broad spinning-sideband manifolds of ST resonances
of quadrupolar nuclei in diamagnetic systems, where it was shown
that both the hyperbolic secant and WURST pulse schemes are
suitable for single-sideband irradiation [447–450]. The theory of
broadband inversion by single-sideband adiabatic was then devel-
oped by employing a formalism from Caravatti et al. [451], and
combining this with a Floquet-theory description of the resulting
effective Hamiltonian [316–319] to provide a complete description
of the S3AP [31,33].

The basic idea behind a S3AP is that the bandwidth of the pulse
is limited so that it affects only the irradiated sideband. The reso-
nance of the SA is modulated by the MAS, and so shifts in and
out of the effective pulse bandwidth during the course of the pulse,
with the result that the spin is only resonant for a fraction of the
total irradiation time. An alternative view is that the pulse is reso-
nant for the whole of the irradiation time, and it is the RF field
amplitude that is scaled down. If the pulse irradiates the mth-

order sideband, the effective Hamiltonian bHð1Þ
eff ðtÞ for a single crys-

tallite is [32]:

bHð1Þ
eff ðtÞ ¼ x1ðtÞAðmÞ

c
bRz /p � /ðmÞ

c ðcPRÞ
� 	bIxbRz /p � /ðmÞ

c ðcPRÞ
� 	�1

;

ð12:36Þ
which corresponds to a pulse with an effective RF field ampli-

tude x1ðtÞAðmÞ
c that is scaled down by the sideband intensity,

and an effective phase /p � /ðmÞ
c ðcPRÞ that is offset by minus

the sideband phase. This Hamiltonian describes the part of the
spin dynamics that gives rise to adiabatic inversion and refo-
cussing, provided the RF field amplitude is sufficiently high to
offset the weakening of the condition by the scaling down of

the effective RF field amplitude by AðmÞ
c . There is also a contribu-

tion to the spin dynamics from the rapidly-oscillating SA which
is not included in this effective Hamiltonian. However this oscil-
lation is averaged out over the course of a rotor period, and has
no overall effect [32].

The advantage of the S3AP over the SHAP is that the typical RF
field amplitudes are equal to or lower than the spinning frequency,
and so broadband inversion can be achieved using much lower

power. This is shown by the simulations in Fig. 12.54 [35], where
the inversion performance of a spin subject to an SA of 200 kHz
with a WURST-20 S3AP of duration 1 ms is compared at 20, 40,
60, 80, and 100 kHz MAS. The extent of inversion is plotted against
both the RF field amplitude and carrier frequency in Fig. 12.54(a).
We see that the performance of the S3AP increases with MAS fre-
quency, as a greater proportion of the sideband intensity is then
concentrated in the centreband m ¼ 0, and the weakening of the
adiabatic condition is reduced. Additionally the one-dimensional
plots of inversion as a function of carrier frequency in Fig. 12.54
(b) indicate that a larger spinning frequency allows the use of a lar-
ger sweep width without irradiating the neighbouring sidebands,
thus increasing the bandwidth of isotropic shifts over which we
invert. Finally the use of faster MAS also increases the range of
RF field amplitudes (up to the MAS frequency) over which we
obtain complete inversion, as shown by the one-dimensional RF
field profiles in Fig. 12.54(c). The disadvantage of the S3AP is that
the pulses are longer by at least an order of magnitude, and so sig-
nificant signal losses due to the short relaxation times are
expected.

The general recommendations for implementing an S3AP are:

1. Select either the hyperbolic-secant or WURST waveform. For
the hyperbolic secant set the amplitude truncation factor to

1%, and therefore b ¼ sech�1ð0:01Þ ¼ 5:2983. For the WURST
set n ¼ 20. For both waveforms set the sweep width to the
MAS frequency.

2. Set the pulse length between 0.5 and 5 ms. Longer pulse lengths
result in greater relaxation losses during the pulse, but an adi-
abatic condition that is more easily satisfied.

3. Optimize the peak RF field amplitude from 0 kHz to the spin-
ning frequency.

Fig. 12.55 shows two experimental examples of S3AP inversion
at slow and fast MAS. Fig. 12.55(a)–(c) show the 77Se NMR spec-
tra of the diamagnetic compound 1 at 11 kHz MAS. The conven-
tional 1H–77Se CP spectrum in (a) was inverted both with a
high-power conventional 180� pulse (b) and with a low-power
(10 kHz), 5 ms WURST-20 S3AP tuned to the centreband (c). Here
the S3AP gives complete inversion, which matches the theoretical
prediction from the simulated inversion profiles as a function of
RF field amplitude in Fig. 12.55(d). The second example is the
paramagnetic compound 2 at 60 kHz MAS which presents a more
exacting test. The one-dimensional 1H double-SHAP-echo spec-
trum is shown in Fig. 12.55(e). Inversion with a conventional
pulse at the high RF field amplitude yields a poor performance
as shown in Fig. 12.55(f). A hyperbolic secant S3AP applied to
the centreband of length 495 ls and RF field amplitude 60 kHz
performs considerably better, delivering 75% inversion, as shown
in Fig. 12.55(g). The simulated inversion performance as a func-
tion of RF field amplitude is shown in Fig. 12.55(h), which
includes the effects of T1 relaxation and T 0

2 dephasing. The imper-
fect inversion performance is attributable mainly to relaxation
losses. This method is expected to be more widely used with
the advent of faster MAS, where shorter S3APs with larger isotro-
pic bandwidths can be used.

12.5.8. Separation of shift-anisotropy and quadrupolar interactions
In this section we present experimental schemes that are

designed to separate the contributions to the spectral lineshape
from the paramagnetic SA and quadrupolar interactions. The moti-
vation for developing experiments of this type is that quadrupolar
nuclei in paramagnetic systems have complicated spectra, as seen
in Fig. 11.5 for I ¼ 1 and Fig. 11.8 for I ¼ 3=2, from which the
information about the two interactions cannot easily be extracted.
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Nevertheless the tensor parameters are useful indicators of the
structural and electronic properties. We present the current
state-of-the-art schemes that are applicable to integer and half-
integer spins. We recall that there is a fundamental difference
between the two types of quadrupolar nucleus, with half-integer
spins having a CT but not the integer spins. Therefore the two types
of spin can have different symmetry pathways, and so need differ-
ent, specifically-tailored, pulse sequences. We therefore treat inte-
ger and half-integer spins differently. For the former we review
two experimental methods for static conditions [394,200], and
for the latter we present a technique for a powder spinning at
70:12� to the field [395]. Before exploring these methods in detail
we first introduce the idea of a two-dimensional echo, which is a
concept used to understand the time points in a pulse sequence
where a particular interaction is refocussed, and then discuss
shearing and scaling transformations, which are processing opera-
tions used to convert a two-dimensional FID into a spectrumwhere
different interactions are separated along different principal fre-
quency axes.

12.5.8.1. Two-dimensional echoes. The experimental schemes pre-
sented here are based on two-dimensional pulse sequences in
which the evolutions due to the shift/SA and quadrupolar interac-
tions are refocussed at different points in the sequence. Therefore
the two interactions give rise to resonance broadening along differ-
ent dimensions in the two-dimensional spectrum, thus leading to
their separation. We begin by illustrating the concept of a general
N-echo in two-dimensional spectroscopy, where N is the spin-
order parameter that defines the frequency of evolution of the
interaction in question, and how the corresponding tensor param-
eters can be extracted. The discussion here is limited to frequency
components of interactions that are time-independent, such as iso-
tropic interactions, all interactions in static solids, or the residual
components of anisotropic interactions that remain time-
independent under MAS such as the residual rank-four second-
order quadrupolar interaction which broadens the resonance.

The two-dimensional experiments presented here are designed
so that different coherences jM1ihM2j and jM3ihM4j evolve during t1
and t2. Under a particular interactionK, the two coherences evolve

at different frequencies XðKÞ
l0;M1M2

and XðKÞ
l0;M3M4

in t1 and t2, and so the

total phase acquired in the FID UðKÞ
l0 ðt1; t2Þ is given by

UðKÞ
l0 ðt1; t2Þ ¼ XðKÞ

l0;M1M2
t1 þXðKÞ

l0;M3M4
t2: ð12:37Þ

We are already familiar with the concept of refocussing in a spin-
echo experiment, where the total phase accrued due to evolution
of the chemical shift is equal to zero at the end of an echo. We can
generalize this concept and define an echo in a two-dimensional

FID to be the time points at whichUðKÞ
l0 ðt1; t2Þ ¼ 0 [320]. The two evo-

lution frequenciesXðKÞ
l0;M1M2

andXðKÞ
l0;M3M4

differ only in their spin-order
parameters, which we here refer to as a1 and a2. Therefore the refo-
cussing condition can be expressed succinctly as [320]

a1t1 þ a2t2 ¼ 0: ð12:38Þ
Therefore the refocussing of the interaction K occurs at all time
points that lie on a straight line in ðt1; t2Þ that is inclined at a gradi-
ent of �a1=a2 from the t1-axis and passes through the origin, as
shown in Fig. 12.56(a). This line is referred to as an echo ridge. In
principle we can perform a skew projection of the two-
dimensional FID onto this line to obtain a one-dimensional FID in
which there is no evolution of this interaction K, and which can
be Fourier transformed to give a one-dimensional spectrum in
which the spectral features due to this interaction are not present.
Hence we have separated the interaction K from any others that
may be present, therefore leading to a simpler spectrum. However

skew projections are difficult to perform in practice, and we prefer
instead to shear the FID so that the echo ridge is transformed to lie
along either the t1- or t2-axis [320].

12.5.8.2. Shearing and scaling transformations. A shear transforma-
tion is characterized by both a ‘‘direction” and ‘‘size”. The former
is defined by the axis along which the transformation takes place,
and the latter by the shear ratio j. We have two obvious choices of
axis, namely the two principal axes t1 and t2. If we perform an
active shear parallel to t2, as shown in Fig. 12.56(b), we transform
the rectangular sampling grid of the FID into a parallelogram. The
time points of the sheared spectrum are measured relative to a
new coordinate system ðt01; t02Þ which is calculated from the old
coordinate system ðt1; t2Þ by

t0 ¼ T j2t: ð12:39Þ

The matrix T j2 defines the mapping due to the shear, and is given
by

T j2 ¼ 1 0
j2 1

� �
; ð12:40Þ

where j2 is the shear ratio for the shear parallel to t2. The explicit
expressions relating ðt01; t02Þ to ðt1; t2Þ are

t01
t02

� �
¼ 1 0

j2 1

� �
t1
t2

� �
¼ t1

t2 þ j2t1

� �
: ð12:41Þ

The result of the shear is to shift the orientation of the echo ridge so
that it lies closer to the new t01 axis. If we set the shear ratio to

j2 ¼ a1
a2

; ð12:42Þ

then we can see that after the shear the echo ridge is parallel to t01,
as shown in Fig. 12.56(b). The extraction of the slice of the two-
dimensional FID along this axis yields a one-dimensional FID in
which there is no evolution of the interaction at any time point,
and the resulting spectrum contains no spectral features due to this
interaction. However before extracting the slice we should note that
the apparent evolution frequencies of the other interactions along t01
are not necessarily equal to the nominal frequencies we would
expect from a conventional one-dimensional spectrum. In general
these remaining frequencies are scaled up or down by some factor.
Therefore in order to recover the correct frequencies we need to
scale the t01 time by some scaling factor f01. The coordinate transfor-
mation matrix is T f01

, and is given by

T f01
¼ f01 0

0 1

� �
: ð12:43Þ

Hence the total transformation comprises a shear parallel to t2 with
a ratio j2, followed by a scaling of the new t01 axis by a factor f01. The
coordinate system resulting from both transformations is then
related to the old system by

t0 ¼ T f01
T j2t ð12:44Þ

¼ f01 0
j2 1

� �
t1
t2

� �
¼ f01t1

t2 þ j2t1

� �
: ð12:45Þ

The illustration of the shear in Fig. 12.56(b) is as a simple trans-
lation of the rows parallel to t2 by a distance that is defined by the
shear ratio. Whilst this is conceptually the simplest way to imple-
ment a shear, it is also inconvenient in practice since the Cartesian
grid of sampling points in Fig. 12.56(a) is distorted into a parallel-
ogram, and part of the FID (in green) is transformed outside the
original sampling window. A more convenient method for
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performing the shear is to first compute the Fourier transform of
the FID with respect to t2 to give the mixed time–frequency
domain function Sðt1;x2Þ:

Sðt1;x2Þ ¼
Z 1

0
sðt1; t2Þ exp �ix2t2ð Þdt2: ð12:46Þ

We thenmultiply each point in this domain by a complex phase fac-
tor exp þix2j2t1ð Þ. The result can be shown to be equal to the Four-
ier transform of the sheared FID sðt1; t2 þ j2t1Þ [190]:
sðt1; t2 þ j2t1Þ $ exp þix2j2t1ð ÞSðt1;x2Þ: ð12:47Þ

Hence the inverse Fourier transform of exp þix2j2t1ð ÞSðt1;x2Þ
with respect to x2 yields the sheared FID, which is shown in
Fig. 12.56(c). This method has the advantage over the simple trans-
lation that now the Cartesian grid of sampling points is preserved,
and the green region of points which was sheared outside the grid
in Fig. 12.56(b) is folded back inside to the rectangular sampling
space in Fig. 12.56(c).

Finally we can calculate the evolution frequencies of an arbi-
trary interaction following the combined shear and scale. The orig-
inal evolution frequencies during t1 and t2, which are X1 and X2,
are transformed into X0

1 and X0
2 in the new coordinate system.

These frequencies are calculated from:

X0
1 X0

2

� � t01
t02

� �
¼ X0

1 X0
2

� � f01 0
j2 1

� �
t1
t2

� �
ð12:48Þ

¼ X1 X2ð Þ t1
t2

� �
; ð12:49Þ

and are given by the following expressions:

X0
1 X0

2

� � ¼ X1 X2ð Þ f01 0
j2 1

� ��1

ð12:50Þ

¼ X1�j2X2
f01

X2

� 	
: ð12:51Þ

We note that the two evolution frequencies X0
1 and X0

2 are associ-
ated with new effective spin-order parameters a0

1 and a0
2 in the

new coordinate system.
Alternatively we can shear the FID parallel to t1 to map the echo

ridge onto the new t02 axis and scale then scale t02. The coordinate
transformation is

t0 ¼ T f02
T j1 t; ð12:52Þ

where T j1 is the shear matrix characterised by the shear ratio j1,
and T f02

represents the subsequent scaling of t02 by the factor f02:

T f02
¼ 1 0

0 f02

� �
; T j1 ¼

1 j1

0 1

� �
: ð12:53Þ

The explicit expressions for the new time coordinates are:

t0 ¼ 1 j1

0 f02

� �
t1
t2

� �
¼ t1 þ j1t2

f02t2

� �
: ð12:54Þ

In order to map the echo ridge onto t02 we require the shear ratio to
be equal to

j1 ¼ a2
a1

: ð12:55Þ

In analogy with the shear parallel to t2 it is more convenient in
practice to implement the shear parallel to t1 by first computing
the mixed frequency–time domain Sðx1; t2Þ by Fourier transforma-
tion with respect to t1 and then multiplying each point by the phase
factor exp þix1j1t2ð Þ. The inverse Fourier transform of the result is
then the sheared FID sðt1 þ j1t2; t2Þ:
sðt1 þ j1t2; t2Þ $ exp þix1j1t2ð ÞSðx1; t2Þ: ð12:56Þ

Finally we can calculate the evolution frequencies relative to the
transformed coordinate system to be:

X0
1 X0

2

� � ¼ X1 X2ð Þ 1 j1

0 f02

� ��1

ð12:57Þ

¼ X1
X2�j1X1

f02

� 	
: ð12:58Þ

Here the slice of the sheared FID along t02 is a one-dimensional FID
in which the interactionK does not evolve. The Fourier transform of
this slice is therefore a one-dimensional spectrum with no spectral
features due to this interaction.

We now use these shearing methods in combination with state-
of-the-art pulse sequences to obtain two-dimensional separation
of the paramagnetic SA and quadrupolar interactions for both
integer-spin [394,200], and half-integer-spin nuclei [395].

12.5.8.3. Integer-spin quadrupolar nuclei. Two related experimental
methods have been developed for separating the spectral broaden-
ing from the SA and first-order quadrupolar interactions of nuclear
spins I ¼ 1 in static solids. Under static conditions we can in prin-
ciple measure the effects on the spectrum of two different interac-
tions: the isotropic shift and SA both evolve in the same way with
frequencies that are proportional to the coherence order p, and the
first-order quadrupolar interaction evolves with a frequency that is
proportional to the satellite order d.

The first pulse sequence that was developed to separate these
two interactions is the shifting p-echo experiment of Antonijevic
and Wimperis, and is shown in Fig. 12.57(a) [394]. The p- and d-
symmetry pathways are also shown. The former is explicitly
selected unambigously by phase cycling [321], whereas the latter
is only selected implicitly. This means that the d-symmetry path-
ways shown are those that correspond to the p-symmetry pathway
that is explicitly selected. The sequence contains a solid echo dur-
ing the evolution period t1=2–90�–t1=2 in which the pulse does not
change the sign of p, but does change the sign of d. This means that
the shift and SA evolve uninterrupted throughout t1, whereas the
quadrupolar interaction is refocussed at the end of t1. Prior to
acquisition there is a second solid echo which refocusses the evo-
lution of both interactions during the two delays s, and leads to the
formation of a p-echo during acquisition. Therefore there are two
echoes formed during the pulse sequence: the p-echo is formed
at points where t1 ¼ t2, and the d-echo is formed at t2 ¼ 0. This
is shown in the representation of the two-dimensional FID in
Fig. 12.58(a). The quadrupolar interaction echo ridge is therefore
aligned along the t1-axis, whereas the shift/SA ridge echo is along
t1 ¼ t2. In order to complete the separation of the evolution of
the two interactions in the FID we map the shift/SA echo ridge onto
t02 by applying a shear parallel to t1 with shear ratio j1 ¼ �1. We
then obtain the correct signs of the frequencies in t01 by applying
a scaling along this axis with factor f01 ¼ �1. The resulting FID is
shown in Fig. 12.58(a), with the quadrupolar and shift/SA ridge
echoes along t01 and t02 respectively. A two-dimensional Fourier
transform therefore yields a spectrum in which the quadrupolar
broadening is present only in the x0

2 dimension, and the shift/SA
appears only in the x0

1 dimension.
There is room for improvement in this experiment as the

coherence-order selection in each solid echo only retains half the
total signal components, and so the sequence gives a maximum
sensitivity that is one quarter of that theoretically attainable in
the one-dimensional experiment. Secondly the selection of the
symmetry pathways as shown, when the RF field amplitude is
not much larger than both the SA and quadrupolar frequencies,
results in a spike appearing at zero frequency in the quadrupolar
frequency dimension.
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An improvement to the shifting p-echo experiment was pro-
posed by Walder et al. who developed the shifting d-echo pulse
sequence shown in Fig. 12.57(b) [200]. Here the solid echo during
the evolution period is replaced with a spin echo, with the result
that the p- and d-symmetry pathways are altered so that it is the
p-echo that is now formed at t2 ¼ 0 and the d-echo that is formed
at t1 ¼ t2. The two-dimensional FID is shown in Fig. 12.58(b). As for
the shifting p-echo experiment, complete separation of the two
interactions is achieved using the same shearing and scaling trans-
formations, with the result that the quadrupolar frequency is pre-
sent only in thex0

1 dimension, and the shift/SA appears only in the
x0

2 dimension.
The use of the spin echo is advantageous for two reasons: firstly

the zero-frequency spike in the quadrupolar dimension is elimi-
nated, and secondly the spin echo does not suffer from the reduc-
tion in signal intensity of the solid echo, with the result that the
shifting d-echo experiment has double the sensitivity of the shift-
ing p-echo experiment. The disadvantage of the shifting d-echo
sequence is the lower bandwidth of the 180� pulse compared to
the 90� pulse.

Simulated two-dimensional spectra generated using these
methods are shown in Fig. 12.59, showing the effect of the relative
orientation between the PAFs of the two tensors ða; b; cÞ [200]. It
should be noted that for all spectra the projections are the same.
An experimental example is given in Fig. 12.60, which shows the
2H shifting p-echo and shifting d-echo spectra of solid CuCl2�2D2O
in (ia) and (iia) respectively. In both cases a clean separation of the
shift/SA and quadrupolar spectra is achieved, with the shifting d-
echo spectrum in Fig. 12.60(iia) giving the superior result, with
suppression of the zero-frequency spike and a signal-to-noise ratio
that is higher by a factor of two. In both cases it is possible to
extract unambiguous shift/SA and quadrupolar tensor parameters,
which would be difficult to do from the one-dimensional spectrum
only. The simulated spectra from the best-fit tensor parameters are
shown in Fig. 12.60(ib) and (iib) respectively, with the best-fit
residuals shown in Fig. 12.60(ic) and (iic).

This experiment is extremely useful for extracting the tensor
parameters in paramagnetic systems containing a single I ¼ 1
nuclear site. However for more complex materials there are poten-
tial difficulties. Firstly the presence of inhomogeneous broadening
due to BMS effects distorts the spectrum in the shift/SA dimension,
so that it may not be easily interpretable. However it should be
noted that this broadening does not appear in the quadrupolar
dimension, which remains clean, and so we have the intriguing
possibility of being able to extract quadrupolar coupling parame-
ters even when there is severe BMS broadening. A second difficulty
is that in materials with multiple sites there is expected to be con-
siderable overlap in the two-dimensional spectrum and in both
projections. If the number of sites is not already known this may
lead to uninterpretable spectra. Nevertheless this method is extre-
mely powerful, and is expected both to be widely used, and to
inspire other methods for separating two or more large anisotropic
interactions.

12.5.8.4. Half-integer-spin quadrupolar nuclei. A related method for
separating the shift/SA interaction from the quadrupolar interac-
tion for half-integer-spin nuclei, known as the COrrelation of Ani-
sotropies Separated Through Echo Refocusing (COASTER)
experiment, has been presented by Ash et al. [395]. It was initially
designed for separating the CSA from the second-order quadrupo-
lar broadening in diamagnetic materials, and is included in this
survey as it represents an elegant method that is potentially appli-
cable to paramagnetic species, even though there are as yet no
paramagnetic examples. The COASTER pulse sequence is shown

in Fig. 12.61. It is a simple sequence that comprises two pulses,
and is designed to correlate a symmetrical multiple-quantum
coherence jIMihI �Mj, such as the triple-quantum coherence
p ¼ þ3, in t1 with the CT coherence jI � 1=2ihI þ 1=2j with p ¼ �1
in t2. The experiment is carried out on a spinning powder, but with
the rotor aligned at 70:12� to the field, rather than at the magic
angle. This choice of angle ensures that the rank-four second-
order quadrupolar broadening is completely removed by the sam-
ple rotation. It we assume that the increments in both t1 and t2 are
rotor-synchronised, so that the sidebands are folded onto the cen-
treband, the remaining interactions that evolve are those that are
time-independent. They include the isotropic shift and residual
SA remaining due to spinning off the magic angle, both of which
evolve at frequencies proportional to p, the rank-zero second-
order quadrupolar shift, the frequency of which is proportional to
c0, and the rank-two second-order quadrupolar anisotropy the fre-
quency of which is proportional to c2. We can define a symmetry
pathway for all three symmetry-order parameters, which are also
shown in Fig. 12.61 for I ¼ 3=2 (a) and I ¼ 5=2 (b). Each of these
interactions is refocussed along a distinct echo ridge. For the shift
and SA this echo ridge is

p1t1 þ p2t2 ¼ 0; ð12:59Þ

where for all spins p1 ¼ þ3 for the triple-quantum experiment and
p2 ¼ �1. For the rank-zero and rank-two quadrupolar interactions
the echo ridges are:

c0;1t1 þ c0;2t2 ¼ 0; ð12:60Þ
c2;1t1 þ c2;2t2 ¼ 0: ð12:61Þ
We note that both of these echo ridges are different for different
spins and, for the coherence-transfer pathway in Fig. 12.61(a) there
is no c0 echo. Both the residual SA and rank-two second-order
quadrupolar interaction are manifested as spectral broadening
and therefore require separation in the two-dimensional experi-
ment. By contrast the rank-zero second-order quadrupolar interac-
tion does not broaden the spectrum and only shifts the resonances,
and so we do not consider it further.

A schematic of the FID showing both the p and c2 echo ridges is
shown in Fig. 12.62. Here we have two echo ridges which require
mapping onto the two principal time axes, which we achieve with
two combined shear and scale transformations. Firstly we apply a
shear parallel to the t2 axis to give a new coordinate system ðt01; t02Þ,
followed by a scaling of the t01 axis. If we set the shear and scaling
parameters to

j2 ¼ c2;1
c2;2

; f01 ¼ 1þ jj2j; ð12:62Þ

the result is the FID shown in Fig. 12.62 in which the c2-echo is now
along the t01 axis. The result of this first transformation is to change
the p echo ridge so that it is aligned in the ðt01; t02Þ coordinate system
so that

p0
1t

0
1 þ p0

2t
0
2 ¼ 0; ð12:63Þ

where p0
1 and p0

2 are given by

p0
1 ¼ p1 � j2p2

f01
; p0

2 ¼ p2: ð12:64Þ

We now need a second shear parallel to t01, giving a new coordinate
system ðt001; t002Þ, to map the p-echo onto the t002 axis followed by a scal-
ing of this axis. The shearing and scaling parameters are:

j0
1 ¼ p0

2

p0
1
; f002 ¼ 1þ jj0

1j: ð12:65Þ
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The final FID, shown in Fig. 12.62, exhibits a c2 echo along t002 and a
p-echo along t001. In the resulting two-dimensional spectra, the shift/
SA and second-order quadrupolar interactions appear in thex00

1 and
x00

2 dimensions respectively. The shearing ratios and scaling param-
eters required for the triple-quantum COASTER experiment are
given for nuclear spins I ¼ 3=2 to 9=2 in Table 12.3.

Simulated examples of sheared COASTER spectra are given in
Figs. 12.63 and 12.64 [320]. Figs. 12.63 shows the effect on the
two-dimensional lineshape of varying both the SA and quadrupolar
asymmetry parameters, whilst Fig. 12.64 shows the effect of vary-
ing the relative orientation of the two tensors ða; b; cÞ and keeping
other parameters constant. We see that the two one-dimensional
projections can be used to obtain DrS, gS, CQ , and gQ and that the
relative orientation of the two PAFs can be obtained from the
two-dimensional lineshape.

An experimental COASTER spectrum is shown in Fig. 12.65
along with a simulation taken from the best-fit tensor parameters
[395]. The spectrum is of the 59Co resonance in low-spin (diamag-
netic) K3[Co(CN)6], and is indispensable for obtaining unambigu-
ous tensor parameters.

The main disadvantages of COASTER are the same as for the
shifting p- and d-echo experiments. Whilst high-quality spectra
can be obtained for single-site materials, more complex systems
containing multiple sites will be more difficult to interpret. In addi-
tion the use of sample spinning at 70:12� means that this experi-
ment cannot be easily implemented with commercial MAS
probes. Nevertheless we expect this method to be of interest to
paramagnetic solid-state NMR.

12.6. Solid-state NMR of paramagnetic proteins

The solid-state NMR of proteins has experienced significant
advances in recent years, having moved from a position where very
few previously-unknown structures had been solved, to the point
where systems of significant complexity and interest to the field
of biology are being studied. The driving force behind these
advances has been twofold. Firstly developments in fast-spinning
probe technology, allowing up to 100 kHz MAS and beyond, have
improved the spectral resolution and allowed the second advance,
which is the development and application of more sophisticated
pulse sequences for obtaining sequential resonance assignments
and distance restraints. One crucial aspect of these advances is
the employment of 1H-detection, which improves sensitivity and
allows us to obtain unambiguous distance restraints more rapidly.
Here we focus on the application to paramagnetic proteins, high-
lighting experimental schemes that have either been already
applied, or otherwise have significant potential.

12.6.1. General strategy
In solid-state NMR of proteins, the extensive network of large

1H–1H dipolar couplings results in very short 1H coherence life-
times T 0

2 at moderate MAS rates. The peaks in the 1H spectrum
are therefore very broad, and coherence-transfer blocks involving
1H are often very inefficient, with the result that direct 1H-
detection is not used routinely. Therefore 13C detection is normally
used, as part of pulse sequences that correlate resonances of NH,
CO, CA, and CB. In addition to the large coherence broadening,
the solid-state spectra also exhibit substantial inhomogeneous
broadening due to structural disorder and, in the case of paramag-
netic proteins, the ABMS. The result is that, even employing 13C
detection, small proteins give broader lines than in solution. How-
ever one advantage of solid-state NMR for large, paramagnetic pro-
teins is that in the solid state there is no overall slow rotational
diffusion, with rotational dynamics due only to the internal
motions of the protein, and so the Curie broadening is substantially

reduced for large systems compared to solution. This indicates that
solid-state NMR can potentially be used to study large systems
which in solution would have peaks broadened beyond detection
due to the slow rotational diffusion.

As in solution NMR, the solid protein can be divided into regions
in which the nuclear spins exhibit different effects due to the para-
magnetic centre, as shown in Fig. 12.19. As in solution there is a
blind sphere centred on the metal ion, in which the nuclear spins
cannot be observed using conventional experimental methods.
Beyond the blind sphere is a region which can be observed using
these methods, and in which the nuclear spins are subject to mea-
surable long-range paramagnetic effects, such as the PCS and PRE.
The outermost region was characterized in solution NMR as show-
ing no measurable paramagnetic effects. However in the solid state
this description is not completely accurate. This is because the
extended network of 1H–1H dipolar couplings allows polarization
to be transferred from one nuclear spin in this region, to another
nuclear spin closer to the metal ion, and vice versa. For example
one consequence of spin diffusion is that the measured T1 relax-
ation times of a particular spin are the average of the T1 values
of the spins from which polarization has been transferred. This is
not because the true relaxation times have changed, but rather
the polarization spends only a fraction of the total time on any par-
ticular spin, due to rapid spin diffusion. Hence the nuclear spins in
this outermost region are expected to exhibit T1 times that are
shorter than their true values, due to the exchange of polarization
with nuclear spins that are closer to the metal ion, and exhibit a
measurable PRE. Hence the two outermost regions in Fig. 12.19
can be more accurately labelled as follows when discussing solid
proteins. The inner of the two can be labelled as ‘visible with mea-
surable direct paramagnetic effects’, as the nuclear spins exhibit a
direct long-range interaction with the paramagnetic centre. The
outermost region can then be labelled as ‘no measurable direct
paramagnetic effects, but shows indirect paramagnetic effects due
to spin diffusion’. As discussed, one such indirect paramagnetic
effect would be a relayed longitudinal PRE. The precise distances
from the metal ion that define the boundaries between these dif-
ferent regions depend upon the nuclear species that are excited
and observed, for example 1H or 13C, whether the proton concen-
tration is diluted by deuteration, the MAS frequency, and the types
of experiments that are used, for example utilizing scalar- or
dipolar-based coherence transfers.

If we employ fast MAS (in the 60 kHz regime and above) and
proton dilution by deuteration, we weaken the coherent effect of
the dipolar coupling network, which has the effect of slowing spin
diffusion sufficiently to suppress this relayed transfer. Under such
conditions we approach the situation encountered in solution
NMR, and Fig. 12.19 resumes its original interpretation.

12.6.2. 13C-detection
Historically the solid-state NMR of proteins has been performed

under moderate MAS of 20 kHz and employing 13C-detection. The
experimental schemes used include two- or three-dimensional
correlation experiments to establish the connectivity between
the NH and the CO, CA, or CB resonances along the backbone, and
spin-diffusion to measure 13C–13C distance restraints between C
resonances on the backbone and sidechains. These methods have
been used on paramagnetic proteins for the assignment [452]
and the measurement of paramagnetic restraints [45]. They mainly
concern two enzymes in microcrystalline form, human superoxide
dismutase (SOD) and the catalytic domain of matrix-
metalloproteinase-12 (MMP-12), two proteins with high-affinity
binding sites for divalent paramagnetic cations such as Cu2+

(SOD) or Co2+ (MMP and SOD). Example spectra are shown in
Fig. 12.66 [452] for a paramagnetic metalloprotein [U-13C,15N]-
Cu2+–Zn2+ superoxide dismutase (SOD). The NCACB and 13C–13C
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through-space correlation spectra acquired using proton-driven
spin diffusion (PDSD) are shown in Fig. 12.66(a), and Fig. 12.66
(b) and (c) respectively. Here resonances as close to the paramag-
netic Cu2+ ion as 5 Å are observed. An additional notable example is
the study of the reactive state of a copper-binding misfolded amy-
loid b (Ab) fibril [453]. Proton relaxation data lead to the conclu-
sion that the Cu2+/+ ions are bound to histidine amino acid
residues, and act as reaction centres for the redox reaction with
ascorbate and oxygen to produce H2O2. This cycle was followed
by measuring 1H T1 data to monitor the interconversion between
the Cu2+ and Cu+ oxidation states.

In addition to studying metalloproteins, paramagnetic effects
have been used to accelerate acquisition of NMR spectra of low
concentrations of diamagnetic proteins following doping with a
paramagnetic agent [454]. For diamagnetic proteins the total
experiment time required to obtain a spectrum is limited by the
relatively long recycle delays of 1–4 s required for complete longi-
tudinal relaxation. This so-called T1 barrier often means that data
cannot be acquired on low concentrations of protein in a practica-
ble time. To address this problem Wickramasinghe et al. proposed
a method in which the protein sample is prepared so that it is
doped with a paramagnetic complex which enhances the relax-
ation rates of the 1H nuclei, resulting in a shorter recycle delay,
and thus allowing accelerated acquisition even for nanomolar con-
centrations of protein [454]. The protein sample studied was a fib-
rillized and uniformly 13C- and 15N-labeled Ab peptide of 87 nM
concentration, which had been doped with a 200 mM concentra-
tion of Cu2+-binding EDTA. The PRE was transmitted directly to
the surface-exposed 1H of the protein, and then transferred
throughout the protein via 1H spin diffusion. This enabled the
acquisition of a 13C–13C correlation spectrum in a time of 2.7 h with
a recycle delay of 55 ms.

The combined use of faster spinning (initially between 40 and
60 kHz) and lower-power decoupling reduces the coherent broad-
ening, leading to both longer coherence lifetimes T 0

2, and reduced
linewidths in the spectrum [9]. The lengthening of the coherence
lifetimes is a particularly important advantage as it increases the
efficiency of coherence transfer blocks, and thus allows the use
of longer and more sophisticated pulses sequences for sequential
assignment [455]. Experiments were developed employing 13C-
detection and fast MAS at 60 kHz for sequential assignment of
the backbone resonances, in analogy to the protonless experiments
employed in solution [362]. These experiments, which are listed in
Table 12.4, were designed to correlate the amide N resonance to
either the CO and CA resonances in either the same or preceding
amino acid residue in a two-dimensional spectrum. In all cases
the S3E block was used in the direct 13C dimension in order to
decouple the COACA one-bond J-coupling.

The (H)NCA-S3E pulse sequence works as follows [456]. We
begin with excitation of all the 1H nuclei, and then transfer the
coherence to the amide N via CP. The N chemical shifts are then
encoded during the evolution period, forming the indirect dimen-
sion of the FID and spectrum. Following this there is a second CP
transfer from N to the closest CA nucleus (corresponding to the
directly-bonded CA), after which we detect the CA directly with
S3E. The (H)NCO-S3E sequence works in the same way, and corre-
lates the directly-bonded N and CO resonances [456]. The remain-
ing two sequences (H)N(CA)CO-S3E and (H)N(CO)CA-S3E are more
complicated, as they both include a J-based coherence-transfer
block to transfer unambiguously between the directly-bonded CO
and CA resonances of the same amino acid residue [457]. Here, fol-
lowing the CP transfer from N to CO/CA, the J-based sequence
transfers the coherence to the other carbon immediately prior to
acquisition. The assigned (H)N(CO)CA-S3E spectrum of
[U-2H,13C,15N]-(Cu2+,Zn2+)-SOD is shown in Fig. 12.67(a) [457]. In

this sample of SOD the protons were uniformly deuterated, and
the exchangeable amide deuterons were 100% back-exchanged
for protons in H2O. In this 13C-detected experiment resonances
up to 8 Å in proximity to the Cu2+ ion are observed. This is an
improvement on the corresponding three-dimensional 1H-
detected experiment (H)CA(CO)NH, the NC plane of which is super-
imposed upon the (H)N(CO)CA-S3E spectrum in Fig. 12.67(a), and
which has peaks within 11 Å of the Cu2+ ion missing.

12.6.3. 1H-detection
More recently, with the availability of faster-spinning probes,

13C-detection in solid-state protein NMR has been superseded by
1H-detection. The advantages of the latter include increased sensi-
tivity, and the ability now to measure dipolar-based distance
restraints between protons.

In order to obtain useful resolution in the 1H-dimension of spec-
tra, initial strategies employed the complete deuteration of the
amino acid residues in order to weaken the dipolar coupling net-
work, followed by either complete [458,459] or partial reprotona-
tion at the exchangeable amide sites [460–462]. The choice of the
level of reprotonation is a compromise between sensitivity and
resolution: higher reprotonation levels give greater sensitivity,
but also reintroduce more 1H–1H dipolar couplings that lead to
shorter coherence lifetimes and lower resolution. At moderate
MAS frequencies of 10–20 kHz, 10%–30% reprotonation is typically
used.

At faster MAS frequencies of 60 kHz, the spinning is able to sup-
press the coherent decay and broadening sufficiently to allow us to
use 100% amide reprotonation in a deuterated background [463].
The sensitivity is increased due both to the higher concentration of
amide protons, and to the longer coherence lifetimes due to fast
spinning and perdeuteration, which allow J-based 13C–13C transfer
to be used in combination with heteronuclear coherence transfers.
This allows theapplicationofpulse sequences for sequentialbackbone
assignment, such as the two-dimensional (H)NH sequence [463], and
the three-dimensional (H)CONH, (H)CANH, (H)CO(CA)NH, (H)CA(CO)
NH [463], (H)(CO)CA(CO)NH, (H)(CA)CB(CA)NH [464], and (H)(CA)
CB(CA)(CO)NH [465] sequences. Furthermore, the increased amide
concentration gives increased sensitivity in the measurement of
1H–1H distance restraints using three-dimensional sequences such
as the (H)NHH RFDR experiment [463].

Whilst this method provides us with a complete backbone
assignment and with information about the protein fold, it does
not give us an unambiguous and high-precision structure as we
have used neither the HA protons nor the sidechains to provide
distance restraints. In order to detect these resonances we need
to use fully-protonated proteins with a more extensive dipolar-
coupling network. Recently the advent of very-fast spinning probes
capable of 100 kHz MAS has enabled high-resolution 1H-detected
spectra with sufficiently long coherence lifetimes to be acquired
on such fully-protonated systems [466]. This in turn has led to
the suite of experiments for backbone and sidechain assignment
being greatly expanded with the complete set of experiments
given in Table 12.5. In turn the assignment of the CA and sidechain
protons allows us to interpret the distance restraints measured
between these protons, using the set of experiments in Table 12.6.
It is anticipated that 100 kHz MAS and 1H-detection will provide
invaluable tools for the study of paramagnetic proteins in the solid
state.

12.6.4. Paramagnetic restraints
In complete analogy with solution NMR, paramagnetic

restraints have also been used in solid-state NMR to give infor-
mation on the position of an observed nucleus with respect to
the paramagnetic centre. Pseudo-contact shifts have been
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measured, using 13C-detection and MAS frequencies between 8
and 12 kHz, for the protein matrix metalloproteinase (MMP)
[45]. The 13C PCS values were determined by comparing the
Co2+-substituted protein CoMMP with the diamagnetic Zn2+-
substituted protein ZnMMP. Here dilution of the paramagnetic
protein into a diamagnetic sample, or vice versa, prior to crystal-
lization was needed to suppress the intermolecular or
intramolecular PCSs respectively from the total contributions.
While intramolecular PCSs allowed the refinement of the three-
dimensional structure in combination with spin-diffusion and
chemical shift data, the intermolecular PCSs allowed the determi-
nation of the relative orientations of neighbouring molecules in
the crystals. Longitudinal amide N PREs have also been used as
structural restraints for the B1 immunoglobulin-binding domain
of protein G (GB1) by utilizing six cysteine–EDTA–Cu2+ mutants
[102]. The relaxation rates were measured using 13C-detected
S3E experiments at 40 kHz MAS.

Measurements of both PREs and PCSs have been performed on
SOD using perdeuteration and 100% back-exchange of the amide
protons, fast MAS at 60 kHz, and 1H-detection. This experimental
setup allows the rapid measurement of hundreds of site-specific
paramagnetic effects, as discussed in Section 13.8. Relaxation rates
were measured on the Cu-Zn2+-SOD protein with the Cu ion in both
the diamagnetic þ1 and paramagnetic þ2 oxidation states [11].
The two assigned two-dimensional (H)NH spectra are shown in
Fig. 12.68(a) and (b) respectively. For both proteins, amide 15N T1

and T1q relaxation times and 13CO T1 and T1q relaxation times were
measured. The PCS values for 1HN, amide 15N, 13CO, and 13CA were
measured by comparing the shifts obtained in the three-
dimensional (H)CONH and (H)CANH spectra of the diamagnetic
reference (Zn2+-SOD) with a paramagnetic protein Co2+-SOD. The
two (H)NH spectra exhibiting PCS are shown in Fig. 12.69. Both
sets of structural restraints were used in combination with RFDR
distance restraints obtained between the amide protons to provide
structural refinement.

12.7. Key concepts

� Small paramagnetic molecules in solution can be studied using
homonuclear through-bond correlation experiments COSY,
DQF-COSY, TOCSY, through-space correlation experiments such
as 1D saturation-transfer NOE and 2D NOESY, and the heteronu-
clear correlation experiments HSQC and HMQC. Exchange pro-
cesses can be measured using EXSY.

� Conventional 1H-detected methods for paramagnetic proteins
in solution can be used to observe nuclei far (>5–8 Å) from
the paramagnetic centre. Nuclei closer to the paramagnetic cen-
tre cannot generally be observed with these methods, and so are
in the so-called blind sphere.

� The use of protonless 13C experiments enables observation clo-
ser to the metal, and can reduce the radius of the blind sphere to
5 Å in some cases.

� For proteins in solution, PCS, PRE, CCR, and RDC measurements
can be used for structural restraints.

� Solid-state NMR of paramagnetic materials is best performed
using very fast MAS, short recycle delays, and no 1H-
decoupling even in 1H-containing systems. Cross polarization
is rarely useful for obtaining a sensitivity enhancement or
establishing heteronuclear correlations.

� Low external magnetic fields, or the use of nuclei with low gyro-
magnetic ratios give smaller paramagnetic shifts and shift ani-
sotropies, but inevitably result in sensitivity losses. In
particular, if isotopic enrichment to improve sensitivity (e.g.,
with 6Li) is possible, this is a useful and simple strategy for spec-
tral simplification.

� Care should be used in interpreting a spectrum acquired with a
spin-echo sequence, as the band width excited with a 180�
pulse is much narrower than that excited with a shorter (less
than or equal to 90�) pulse.

� Frequency-stepping experiments or shaped RF pulses may be
required to excite the full spectrum.

� Solid-state homonuclear correlation spectra can be acquired
using RFDR and EXSY. Heteronuclear correlations can be
acquired using TEDOR sequences. Quadrupolar nuclei can be
studied using signal-enhancement methods such as RAPT, and
two-dimensional techniques to separate the quadrupolar and
SA interactions such as shifting d/p-echo experiments (for
I ¼ 1) and COASTER (for half-integer spins).

� Solid-state NMR of proteins can be performed using both 13C
and 1H-detected experiments.

� For proteins in the solid state, PCS and PRE measurements can
be used as structural restraints.

Chapter 13: Case studies in paramagnetic NMR

13.1. Introduction

The presentation of the theory of paramagnetic NMR in the first
part of this review aimed to do two things. Firstly we attempted a
completely general description of the paramagnetic properties that
affect the NMR spectrum and its interpretation. The result was a
full, if sometimes complicated, formulation. Secondly we adapted
the resulting formulations to different situations such as different
types of metal ion, and molecules in solution vs solid state materi-
als, showing how the general treatment may be simplified or mod-
ified to provide a more accessible explanation of the features in the
NMR spectrum for different systems. In this chapter we now see
how these theoretical ideas are translated into practice by present-
ing some specific case studies in paramagnetic NMR from the liter-
ature. The examples comprise studies of small molecules in
solution, solid materials such as battery cathodes, metalloproteins
both in solution and the solid state, lanthanide-containing systems
with interesting luminescent properties, actinide-containing sys-
tems, and multi-domain polymers used in pharmaceutical
controlled-release formulations. In addition the case studies pre-
sent the different paramagnetic effects arising from different types
of paramagnetic centres, including isolated 3d transition-metal
ions, coupled clusters of such metal ions, lanthanide ions, actinide
ions, and organic radicals.

We attempt to answer questions such as the following: When
should we use the EPR and susceptibility formalisms for the para-
magnetic shift? In which situations do we need to consider rela-
tivistic effects, and which particular relativistic effects are
important? What is the relative importance of the contact and
pseudo-contact shifts, under what circumstances do we only need
to consider one of these contributions, and how do we use them to
obtain information on the structure and/or electronic properties?
What is the impact of the paramagnetic relaxation enhancement,
how does the consequent broadening compare with bulk suscepti-
bility contributions, and how may these effects be used to obtain
structural information? How do all these different effects vary with
the metal ion or organic radical, and the type of system? This chap-
ter is not intended to be a comprehensive review of the literature.
Rather, the examples presented have been chosen to highlight how
these specific paramagnetic effects vary depending on the nature
of the paramagnetic centre and the system as a whole.

The following sections in this chapter are organized to separate
the case studies according to the nature of the paramagnetic
centre. Sections 13.2–13.8 describe systems containing 3d metal
ions, Sections 13.9–13.11 lanthanide-containing systems,
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Sections 13.12 and 13.13 recent work on actinide systems, and Sec-
tion 13.14 the paramagnetic effects due to organic radicals, such as
those used for DNP.

Section 13.2 summarizes the experimental and theoretical work
performed in the EPR-formalism calculation of the paramagnetic
shifts of metallocene complexes [40,42]. Here the shifts are dom-
inated by the Fermi-contact contribution, and it is shown how the
magnitude and size of the shift vary considerably with the elec-
tronic configuration of the 3d metal ions. This work provided a val-
idation of the EPR formalism for the paramagnetic shift of 3d-block
metal ions, and the contact shifts provided an experimental probe
of the electronic structure.

In Section 13.3 we examine the theoretical study of cobalt
pyrazolylborates in solution [467]. In contrast to the metalloce-
nes it is shown here that the larger SO coupling effects of the
Co2+ ion induce large SO coupling contributions to the total param-
agnetic shift, including contact and pseudo-contact shifts due to
the ZFS. The calculated shifts were used to correct an error in the
original assignment of the experimental NMR spectra, demonstrat-
ing the importance of such computations.

In Section 13.4 the focus changes to solid materials, with the
specific case of layered LiMO2 Li-ion cathode materials [49,55].
Here the 3d metal ions induce large shifts at the Li sites that are
dominated by the contact interaction, and which vary with the
metal ion and coordination geometry of the MAOALi bonding. It
is highlighted how the pathway contribution model can be used
to rationalize the shifts in terms of the delocalization and polariza-
tion spin-transfer mechanisms. We also see how the combined
NMR/DFT study of these materials was used to investigate dynamic
distortions in the local structure of the metal binding site due to
the dynamic Jahn–Teller effect.

The next Section 13.5 presents a study on a different class of
solid materials, the Prussian blue analogues [4,8]. These examples
provide a particularly elegant illustration of the polarization mech-
anism of spin transfer using the observation of contact shifts.

The final case study involving 3d metal ions in solid materials is
presented in Section 13.6, and focusses on Li-ion cathode materi-
als based on LiFePO4 [468,31,55]. Here it is shown how the differ-
ent metal ions induce very different paramagnetic effects in the
NMR spectrum, such as variations in the contact shifts, relaxation
enhancements, and inhomogeneous broadening. As in Section
13.4 it is shown how the total shifts can be decomposed into dis-
tinct pathway contributions which reveal the nature of the spin-
transfer mechanism over each bonding pathway. It is also shown
how the pathway model can be used to rationalize the NMR spec-
tra for LiMPO4 materials with mixed metal compositions [31]. By
simulating the spectra of these materials and assigning all of the
multiple and overlapping resonances, it was shown that these
materials form a random distribution of transition metal ions in
the metal sites. Finally we describe the first application of the
EPR formalism to a solid material, focusing on the pure-
composition materials LiMPO4.

The next two sections describe case studies of proteins that
bind 3d metal ions. Section 13.7 describes a solution NMR study
of a ferredoxin protein comprising Fe4S4 clusters [365]. We focus
on the contact shifts of the amino-acid residues that bind directly
to the cluster. In particular we examine how the exchange interac-
tions between the metal ions affects the temperature dependence
of the shifts, and how the geometry of the bonding between the
observed nucleus and the cluster influences the signs and sizes of
the contact shifts. In particular the temperature dependence was
used to gain insight into the electronic structure of the Fe4S4
cluster.

The second biological example is the use of long-range param-
agnetic distance restraints for determining the structure of a met-
alloprotein in the solid state, as described in Section 13.8 [463,46].
Here pseudo-contact shifts and paramagnetic relaxation enhance-
ments are used to refine the three-dimensional structure of super-
oxide dismutase (SOD).

The next three studies concern the paramagnetic shifts in sys-
tems containing lanthanide ions. Section 13.9 presents a case study
of the shifts in solid lanthanide stannates [65,69]. It is shown that
they are dominated by contact shifts, and that the lanthanide-
dependent trends are described well by the Golding–Halton the-
ory. This study therefore provided evidence for a covalent interac-
tion between the 5d orbitals of the lanthanide ion and the
coordinated ligands.

Section 13.10 presents the study of a lanthanide complex with
interesting luminescent applications in bio-imaging [469]. The
system forms a supramolecular complex with the guanidinium
cation in solution. The shifts of the cation have a paramagnetic
contribution that is due to the pseudo-contact shift, and which is
accurately described by the Bleaney theory.

Section 13.11 presents a detailed study of the effects of different
lanthanide ions when incorporated into a metal-binding site of the
protein calbindin D9k [75]. The measured pseudo-contact shifts
due to 11 out of 13 of the paramagnetic lanthanides are used to
calculate the susceptibility anisotropy parameters, which are
shown to agree well with the Bleaney theory. The use of the Blea-
ney theory then allows the crystal-field splitting parameters to be
extracted.

The next two sections concern recent contributions to the use of
paramagnetic NMR spectroscopy to study actinide systems.
Section 13.12 presents computational work on rationalizing the
shifts obtained in three actinyl tris-carbonate complexes in
solution. The calculations are a sophisticated application of rela-
tivistic quantum chemistry to NMR and EPR parameters [92,93].

Section 13.13 describes an experimental study of five actinide
oxides by 17O MAS solid-state NMR [13]. This work demonstrated
the first acquisition of high-resolution MAS NMR for these highly
radioactive materials, and opened the door to obtaining a better
understanding of the behaviour of actinides in solid-state chem-
istry and materials science. In particular it was used to measure
and rationalize trends in the actinide electronic magnetic
moments.

Finally we present a recent contribution which describes and
applies a new method for measuring domain sizes in materials
comprising multiple components, such as pharmaceutical
controlled-release formulations, in Section 13.14 [470]. Here
selective doping of the material with a solution of an organic birad-
ical induces a paramagnetic relaxation enhancement which, when
combined with spin diffusion, can be used to measure domain sizes
on the nm–lm length scale. This work provided a direct measure-
ment of the domain sizes in these materials, of direct relevance to
the pharmaceutical industry.

13.2. Transition-metal metallocenes M(C5H5)2

13.2.1. Background
Transition-metal metallocene complexes are classic examples

of molecular magnetic materials. They adopt the sandwich struc-
ture shown in Fig. 13.1 in which one divalent d-block metal ion
bonds to two cyclopentadienyl anions (C5H�

5 , or Cp�) via an g5

covalent interaction with the conjugated p-orbitals. The nominal
forms of the 3d orbitals are also shown, along with their energy
splitting as predicted from ligand-field theory. More details about
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the molecular orbitals, including energy level diagrams calculated
from hybrid-functional DFT, are given by Xu et al. [471]. Discussions
about the metallocenes usually consider the two Cp� ligands to
adopt either an eclipsed conformation (point group D5h), or to be
staggered (D5d). Energy calculations of the two conformations indi-
cate that the eclipsed forms are energetically more stable for fer-
rocene, nickelocene, and vanadocene [472]. However the energy
differences between the two conformers are very small, being 3.0,
0.4, and 0.7 kJ mol�1 for ferrocene, nickelocene, and vanadocene
respectively, and at room temperature, where kT corresponds to
2400 kJ mol�1, the Cp� ligands rotate freely. Thus, it makes little dif-
ference which conformation we examine, and so here we consider
the staggered conformation.

Here we compare the experimental 13C and 1H shifts of the fam-
ily of metallocene complexes Cp2V, Cp2Cr, Cp2Mn, Cp2Fe, Cp2Co,
and Cp2Ni, and show that they can be used, in combination with
hybrid DFT calculations, as an experimental probe of the electronic
structure. The electronic configurations of the d-orbitals in the six
metallocene complexes are shown in Fig. 13.2. These diagrams are
helpful aids for counting the number of unpaired electrons. How-
ever, when a system contains unpaired electrons, it is not correct
to assume that the energies of the up- and down-spin (a and b)
electrons are the same, as implied by these diagrams. We see that

Cp2Fe has a low-spin d6 configuration, which gives a closed-shell
diamagnetic compound. Hence the shifts in this molecule are due
entirely to the orbital (i.e. chemical shift) contribution. However
the other five compounds are all paramagnetic, and the orbital
angular momentum is quenched to first order as the electronic
states are either singly or doubly degenerate (i.e. are A or E states).
The Mn2+ has a half-filled d-shell, and behaves as a spin-only ion,
but for the other compounds we expect second-order SO coupling
effects to be present due to the mixing of the electronic excited
states with the ground state. Furthermore, due to the axial symme-
try of the complex, the hyperfine, g-, and ZFS tensors are axially
symmetric, i.e. the asymmetry parameters of the hyperfine and
g-tensors, gA and g g , and the rhombic ZFS parameter E are all zero.

The rationalization of the metallocene shifts has a long history
in the literature, beginning with the work of McConnell and Holm
who offered two different explanations for the observed proton
shifts in nickelocene. They initially suggested that a electronic spin
density is transferred from the Ni d-orbitals into the ligand p orbi-
tals [473], and later reversed this argument to propose a mecha-
nism where b spin density (i.e., spin density of the opposite sign)
is instead transferred from the ligand to the partially-occupied

d-orbitals [474]. This proposal has since been corroborated with
the aid of hybrid DFT calculations [475].

13.2.2. Paramagnetic shifts
There have been numerous NMR studies of metallocene com-

plexes over the years, both in solution [476–481] and in the solid
state [3,482–484]. A 1H spectrum of a solution of a mixture of
the five metallocene compounds Cp2V, Cp2Cr, Cp2Fe, Cp2Co, and
Cp2Ni is shown in Fig. 13.3 [42]. The variation of the chemical shift
with the metal ion, 600 ppm, is very large compared to the stan-
dard 10 ppm range of diamagnetic 1H shifts. The only compound
with a shift that falls into this standard region is the diamagnetic
Cp2Fe, which exhibits both a small shift and narrow line. The large
value of the shifts from the other compounds, which has recently
been discussed by Kaupp and Köhler [42], is due to unpaired elec-
tron density that is transferred between the metal ion and the Cp�

ligands. The 13C and 1H orbital shifts are both approximately con-
stant across the series of compounds, with the result that the trend
in the total chemical shift matches that of the Fermi-contact shift.
One striking feature that is immediately apparent is that in the
compounds Cp2V and Cp2Cr, the unpaired electrons of which
occupy the e2g and a1g orbitals, both give large positive paramag-
netic shifts, whereas Cp2Co and Cp2Ni, the unpaired electrons of
which reside in the e1g orbitals, both give large negative shifts.

The isotropic paramagnetic shift is calculated from Eq. (4.109)
to be

Fig. 13.1. The structure and d-orbital splitting of the 3d metallocene complexes.
The nominal forms of the 3d orbitals are also shown. Two sets of symmetry labels
are given for each orbital set, corresponding to those appropriate for the point
group of the staggered conformation (D5d : a1g , e1g , and e2g), and for the symmetry of
the orbitals relative to the fivefold rotation axis (dr , dp , and dd).

Fig. 13.2. The d-orbital splitting and electronic configurations of the metallocene
compounds Cp2M in D5d symmetry. The corresponding electronic terms are 4A2g (V),
3E2g (Cr), 6A1g (Mn), 1A1g (Fe), 2E1g (Co), and 3A2g (Ni).

Fig. 13.3. Solution 1H spectrum of a mixture of Cp2V, Cp2Cr, Cp2Fe, Cp2Co, and
Cp2Ni in toluene-d8 at 305 K. The peaks labelled S are due to the residual protonated
solvent. Reproduced from [42], with permission from Elsevier.
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dSiso ¼
lB

3�hcI
Tr g � Z � A½ �; ð13:1Þ

where the cross-terms between the different components of g, Z,
and A are given in Table 5.1. In total there are nine contributions
to the total shift, of which four are a contact shift and four a
pseudo-contact (dipolar) shift, with the remaining term being the
orbital shift. The values of the different terms have been calculated
[485,40], and tabulated by Kaupp and Köhler [42], and the results
are presented here in Fig. 13.4. The terms are grouped together as
follows. Firstly the orbital shift is separated from the other terms,
in order to isolate the effect of the unpaired electrons. Secondly
three of the contact-shift terms are separated into two groups, cor-

responding to the NR Fermi-contact shift proportional to geA
FCZ,

and an SO contribution geA
FC;2Z þ DgisoA

FCZ, where AFC is given by
Eq. (2.171), which are non-zero even in the absence of the ZFS.
Thirdly there is a single term in the PCS which is non-zero in the

absence of a ZFS: Dg � Z � ASD, where ASD is given by Eq. (2.172).
Finally the remaining four terms are grouped together. In general
whilst all the paramagnetic terms change in size with the introduc-
tion of the ZFS, the defining feature of the last group is that all the
terms in it are only non-zero if the ZFS is also non-zero. The shift
contributions were all computed using calculated values for the
ZFS anisotropy D and g-shift tensor, and it is these values that are
presented in Fig. 13.4 [485,40]. However there are two exceptions.
The calculated values of the ZFS anisotropy for both Ni and Cr, 104.4
and �2:0 cm�1, were shown to be far from the experimental values
of 30 and �15:1 cm�1, being severely over- and underestimated

respectively. For this reason the corresponding ZFS contributions
to the paramagnetic shift for both 13C and 1H were recalculated
accordingly [42]. Whilst the presentation of these ‘mixed results’
appears to be inconsistent, we should remind ourselves that the
ZFS contributions to the shift, which are only non-zero ifwe include
the ZFS, are generally affected to a proportionately greater extent
than the other contributions in the high-temperature limit
jDj < kT (kT is approximately 200 cm�1 at the temperatures under
consideration). Therefore we gain a better picture of the relative
importance of the different contributions if we adjust the ZFS con-
tributions accordingly.

Inspection of Fig. 13.4 immediately shows that the only signif-
icant contributions to both the 13C and 1H chemical shifts are the
orbital and NR Fermi-contact terms, with the latter being domi-
nant, i.e. the effect of the SO coupling, via the g-shift, ZFS, and
hyperfine tensor, is negligible. This is also reflected in the compar-
atively small values observed experimentally for the g-shift and
ZFS tensor parameters, which are given in Table 13.1. The g-shift
and ZFS tensor parameters are particularly small for Cp2Mn, due
to the d-shell being half filled resulting in the quenching of the
SO coupling to second-order. The largest ZFS contribution is for
Cp2Ni, as the Ni2+ ion has the largest D value, and the smallest is
for Cp2Co, where the electronic spin S ¼ 1=2 results in the com-
plete absence of the ZFS interaction.

13.2.3. Interpretation
We have seen that the Fermi-contact coupling constant is pro-

portional to the unpaired electronic spin density in the s-orbital

Fig. 13.4. Breakdown of the contributions to the total 13C and 1H chemical shifts of selected metallocenes determined by first-principles calculations (with PBE0), and
comparison with the experimental shifts, at 298 K. The 13C shift contributions are shown in (a), and the 1H shifts are shown in (b). The calculated shift contributions for Cp2V,
Cp2Cr, Cp2Mn, and Cp2Ni are taken from Refs. [39,42], and the calculated shifts for Cp2Co are taken from Refs. [485,42]. The experimental 13C chemical shifts in solution are
taken from Ref. [477] (Ni), [479] (Co), [478] (Mn), [476] (Cr), and [481] (V). The experimental 1H chemical shifts in solution are taken from Refs. [476] (Ni), [479] (Co), and
[480] (Mn, Cr, V). All solid-state chemical shifts are taken from Ref. [483], with the exception of the 13C shift for Cr which is taken from Ref. [485].

Table 13.1
Experimental principal values of the g- and ZFS tensors for selected metallocene complexes.

Compound g-tensor ZFS tensor

gk g? Refs. D/cm�1 Refs.

Cp2Ni 2.00 2:06	 0:10;2:11	 0:03 [486,487] 25.6–33.6 [486–488]
Cp2Co 2.012 1.981–1.994 [489] – –
Cp2Mn 1.99–2.01 1.99–2.01 [490] 0.25–0.50 [491]
Cp2Cr 2.012 1.988 [492] �15:1 [493]
Cp2V 2.002, 2:002	 0:001 1.99, 1:990	 0:002 [494,495] 0.83–2.7 [494–496]
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of the nucleus N qða�bÞðNÞ, and so the Fermi-contact shift has a size
that is also proportional to qða�bÞðNÞ and has the same sign. This is
seen in Table 13.2, where the Fermi-contact shifts and the associ-
ated electronic spin densities are given. Visual representations of
the electronic spin density are also shown for Cp2Ni and Cp2V in
Fig. 13.5(a) and (b) respectively [485]. Here we can see immedi-
ately that for both complexes the spin densities at the 13C and 1H
nuclei have opposite sign. This effect is reproduced for all the para-
magnetic metallocene complexes, and results in the signs of the 1H
Fermi-contact coupling constants (and shifts) having opposite
signs to the 13C coupling constants (and shifts). This change in sign
is due to spin polarization of the CAH r bond by the unpaired elec-
tron density in the p orbital [497].

We now focus on rationalizing the 13C Fermi-contact shifts, con-
centrating on the two particular cases of Cp2Ni and Cp2V. The 13C
Fermi-contact shift of Cp2Ni is large and positive, whereas the cor-
responding shift for Cp2V has smaller magnitude and is negative.
The corresponding opposite sign in the 13C spin densities, which
is clearly seen in Fig. 13.5 [485], can be explained by decomposing
total Fermi-contact coupling constants into contributions from the
individual molecular orbitals, to determine which of the two spin-
transfer mechanisms proposed by McConnell is correct [475]. This
analysis also explains why Cp2V has a smaller shift than Cp2Ni,
despite having more unpaired electrons.

In Cp2Ni the two e2g orbitals (of dd symmetry) and the single a1g
orbital (of dr symmetry) are fully occupied, and each of the two e1g
orbitals (of dp symmetry) has a single unpaired electron, as shown
in Fig. 13.2. Aquino et al. showed that the two dp orbitals do indeed
donate a electron spin density into unoccupied orbitals of the Cp�

ligands according to McConnell’s first mechanism, resulting in a
positive spin density at 13C and a positive Fermi-contact shift
[475]. However this mechanism only accounts for approximately
15% of the total 13C Fermi-contact shift, and so is not the dominant

effect. The more important contribution is the donation of b spin
density from the occupied ligand p orbitals into the dp of the
Ni2+, according to McConnell’s second mechanism. The corre-
sponding reduction in b spin density in the ligand p system leaves
an excess of a spin density, which in turn polarizes the r orbitals,
giving a positive 13C Fermi-contact shift. This second effect
accounts for the remaining 85% of this shift.

There is an alternative description of the electron transfer due
to McConnell’s second mechanism in terms of the difference
between the molecular orbitals (MOs) containing the a and b elec-
tron spins. Although this description gives us a superficially differ-
ent explanation of the process, the underlying chemistry is the
same. The important idea is that the MOs containing the a and b
electrons are not the same, and have different energies. As we have
already remarked, this is a feature of the electronic structure that is
missing from the simplified d-orbital splitting diagrams shown in
Fig. 13.2. Of particular relevance to metallocenes, the metal d-
orbitals lie close in energy to the p-orbitals of the Cp� ligands.
For Cp2Ni, the lower energy, bonding, and occupied (formally
ligand-based) b e1g MOs lie close in energy to the a d-orbitals (for-
mally the Ni d-orbital-dominated MOs). The coefficient of the occu-
pied e1g dap orbital (containing the a electron) in the e1g MO

wavefunction is different to that of the db
p orbital, and it is this

inequality that results in the difference in a and b electronic spin
densities on both Ni2+ and the ligand. A similar explanation is
invoked to explain the polarization mechanism involving O 2p
orbitals in Section 13.4.2.

The case of Cp2V is much more complex. Here, as seen in
Fig. 13.2, the V2+ ion formally has three unpaired 3d-electrons,
one each in the two e2g (dd) orbitals and single a1g (dr) orbital.
Aquino et al. showed that the contribution from the two dd orbitals
to the Fermi-contact coupling constant is very small, with a mag-
nitude of 7% of the total [475]. In order to properly understand
the negative shift, we need to include a number of contributions.
Firstly there is some transfer of a electron spin from the V2+ dr into
the ligand r orbitals, according to McConnell’s first mechanism,
giving a positive Fermi-contact coupling constant and shift. Sec-
ondly donation of b spin density from the ligand to the metal dr
results in excess a spin density in the r valence orbitals at the
13C, which in turn polarizes the 13C 1s orbitals with b spin density.
This gives a large negative contribution to the Fermi-contact shift.
Thirdly there are further negative contributions from non-nearest-
neighbour r orbitals and polarization of the p orbitals [475]. The
overall Fermi-contact shift is a sum of these contributions, and
turns out to be negative overall. We can also rationalize the smaller
magnitude of the shift relative to that of Cp2Ni. In Cp2V only one
unpaired electron (the dr) contributes to the Fermi-contact inter-
action, and there is signicant cancellation of the different contribu-
tions, in Cp2Ni there are two unpaired electrons (the dp) and the
two main contributions to the shift reinforce each other.

13.2.4. The delocalization error
The final point that we make here concerns a practical point in

the calculation of the Fermi-contact shift. Accurate values of the

Table 13.2
Calculated Fermi-contact shifts and transferred electronic spin densities for 13C and 1H in selected metallocenes [42].

Compound dFCð13CÞ/ppm qða�bÞð13CÞ/10�3 a.u. dFCð1HÞ/ppm qða�bÞð1HÞ/10�3 a.u.

Cp2Ni 1537.1 9.73 �239:7 �1:52
Cp2Co 602.9 5.09 �38:9 �0:33
Cp2Mn 1706.1 6.17 �0:8 0.00
Cp2Cr �342:9 �2:17 302.1 1.91
Cp2V �537:2 �2:72 333.4 1.69

Fig. 13.5. The unpaired electronic spin density in (a) Cp2Ni and (b) Cp2V. Red and
blue isosurfaces indicate positive and negative spin density respectively, and are
evaluated at 	10�4 a.u. Adapted from [485], with the permission of AIP Publishing.
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Fermi-contact shift can only be obtained if we calculate the trans-
fer of the electronic spin density correctly, i.e. if we treat the delo-
calization of the electrons properly. Failure to do so results in a so-
called delocalization error.

In practice calculations of the paramagnetic shift employ some
formulation of DFT to describe the spin densities. The spin densi-
ties can vary strongly with the choice of exchange–correlation
functional, potentially leading to a large range of Fermi-contact
shifts! The resulting delocalization errors are well known, and
have been observed in a range of systems including metallocenes
[498], acetylacetonato complexes [499,498], and solid Li-ion bat-
tery materials [54,31,57–59,500,501,60].

In particular the calculation of the spin density donated from
the ligand to the metal, such as that observed in metallocene com-
plexes, is particularly sensitive to delocalization errors [502]. The
general trend is that this electron transfer is underestimated when
calculated using pure Hartree–Fock methods, which result in elec-
trons that are too strongly localized, and is overestimated when
calculated with non-hybrid functionals, which result in electrons
that are too extensively delocalized. The use of hybrid functionals
results in a situation that is between these two extremes, and their
use is therefore very important in DFT calculations of Fermi-
contact shifts, as described in Section 13.4.

13.3. Co(II) pyrazolylborate complexes in solution

13.3.1. Background
The paramagnetic NMR properties of the metallocene com-

plexes in the previous section are dominated by non-relativistic
effects, with the isotropic shift being dominated by the Fermi-
contact interaction. However this is not a general observation for
all small molecular complexes. We illustrate this point here by pre-
senting a combined experimental and theoretical study of three
Co2+ complexes, the structures of which are shown in Fig. 13.6.
These three molecules are referred to as systems 1 (a), 2 (b), and
3 (c). The 1H shifts of these complexes have been measured in solu-
tion by Długopolska et al. [503], and more recently calculated by
Rouf et al. [467].

The Co2+ ion is in a slightly-distorted octahedral coordination
environment, and has a high-spin electronic configuration which
can be approximated by the orbital splitting diagram shown in
Fig. 13.7. The electronic ground state therefore has spin S ¼ 3=2,
and can be labelled using the term 4T1g . In this distorted coordina-
tion environment the Co2+ is expected to have larger SO coupling
effects than seen in the metallocenes, which in turn lead to greater
SO coupling contributions to the paramagnetic shifts.

13.3.2. The EPR tensor parameters
Rouf et al. calculated the total hyperfine tensor using DFT, and

the g- and ZFS tensors using the ab initio CASSCF and NEVPT2
methods [467]. Both the g-shift and ZFS tensor parameters are lar-
ger than for the metallocenes, with system 1 giving a total isotropic
g-value of 2.119, and ZFS anisotropies of D ¼ �112:3 cm�1 and
E ¼ �15:7 cm�1. In particular the large D value is expected to give
a substantial contribution to both the contact and pseudo-contact
shift.

13.3.3. Paramagnetic shifts
The paramagnetic shift is given by Eq. (13.1), with the compo-

nents listed in Table 5.1. The total calculated shifts of the three sys-
tems are compared with the experimental values in Fig. 13.8, along
with the breakdown of the former into the different components.
There is a large degree of variation between the systems, and for
the individual 1H sites within each complex, but there are some
general trends that we can establish. Firstly there are generally
only three significant contributions to each paramagnetic shift,

which are the contact-shift term geA
FCZ, and the two PCS contribu-

tions geZ � ASD and Dg � Z � ASD. The two PCS terms are particularly
significant in gauging the contribution of the SO coupling, as both

are only non-zero if we account for the ZFS or, for Dg � Z � ASD
; g-

anisotropy. The relatively large values of the ZFS parameters can
therefore be attributed to the significant PCS.

The variation of the shifts immediately illustrates the difficul-
ties of assigning NMR spectra of paramagnetic molecules without
using calculations. If we examine the contact shifts for system 1
in more detail (Fig. 13.8(a)), we see that the values for 3-H, 4-H,
and 5-H are similar, falling in the range 30–40 ppm. This cannot
be intuitively explained simply by reference to the structure in
Fig. 13.6(a), as 3-H is nominally three bonds from the Co2+ ion,
whereas 4-H and 5-H are both four bonds away. This observation
emphasizes that the size of the unpaired electron transfer depends
on more complicated factors than simply the number of bonds
involved, but also depends on the coordination geometry, as all

Fig. 13.6. Structures of the high-spin Co2+ pyrazolylborate complexes. The three complexes are referred to as (a) system 1, (b) system 2, and (c) system 3. For each complex
the chemically distinct 1H environments are labelled. Reproduced with permission from [467]. Copyright (2015) American Chemical Society.

Fig. 13.7. Splitting and occupancy of the Co2+ d-orbitals in an octahedral coordi-
nation site.
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these factors influence the overlap between the relevant orbitals.
The overall shifts cannot be assigned correctly by considering only
the contact shift, as the two PCS contributions are significant. This
is particularly important for 5-H in system 1, as the negative PCS is
larger in magnitude than the positive contact shift, resulting in an
overall shift that is negative.

System 2 is a modification of system 1 where the 3-H has been
replaced by a methyl group, which is labelled 3-Me. If we compare
the chemical shifts obtained from system 2, in Fig. 13.8(b), with
those in system 1 we see some interesting similarities and differ-
ences. The total shift, and associated contributions, for 4-H and
B-H have similar values in the two systems, although the experi-
mental shift of the latter is significantly less positive in system 2.
These observations indicate that 4-H and B-H have similar chemi-
cal environments in the two complexes, and that the two protons
occupy similar spatial positions with respect to the Co2+ ion. How-
ever we see significant differences for 5-H in the two complexes. In
system 2, there is a comparatively poor agreement between exper-
iment and calculation, but the significant reduction in the magni-
tude of the experimental shift compared to system 1 indicates
that the two environments are significantly different. According
to the calculations this is because the PCS is now positive, rather
than negative, indicating that the spatial geometry of the ring con-
taining 5-H is different.

System 3 is a significantly larger complex in which the 3-Me is
replaced by a AC4H3S ring. The three protons 3-H0, 4-H0, and 4-H0

all have smaller shifts than the other protons, which is due to the
greater distance and bond separation of the former from the metal
ion. Nevertheless we see that both the contact shift and PCS are still
significant, which in the case of the former indicates that the spin
transfer still persists over more than five bonds. The significant
PCS is due to the long-range nature of the dipolar coupling.

13.4. Layered transition-metal oxides LiMO2

13.4.1. Background
Paramagnetic materials are of particular interest in the field of

energy storage as, for example, they form key constituents of many
Li-ion battery electrodes. The electrochemical properties of a bat-
tery are driven by the redox processes of the metal ions in the elec-
trodes, and so understanding the changes to the local structure of
metal ion and the electron-spin transfer to the surrounding atoms
is key to gaining insight into the mechanisms of charge and dis-
charge, and how these processes both function and fail. Many of
these materials are either paramagnetic in their pristine phases,
or become paramagnetic on electrochemical cycling, and so para-
magnetic solid-state NMR is an indispensable method for studying
them.

Layered lithium transition-metal oxide materials of the form
LiMO2 are a promising class of cathode materials. The diamagnetic
material LiCoO2, which was first used as a cathode by Goodenough
et al. [504], has been used since 1991 in commercial Li-ion batter-
ies originally developed by Sony. Considerable effort has been
invested in using other metal ions in these materials which have
lower toxicity and are cheaper than the Co3+ ion, or that improve
electrochemical properties such as the capacity. These materials
adopt a layered ‘‘O3” (ordered rock salt) structure comprising
alternating layers of edge-sharing LiO6 and MO6 octahedra, as
shown in Fig. 13.9(a) [49]. Although there is only one crystallo-
graphically distinct Li site in between the MO6 layers, cation subsi-
tution of the M sites creates a series of different local
environments. Here we present the influence of three species of
metal ion on the 7Li chemical shifts, namely Cr3+, Co3+, and Ni3+,
as initially described by Carlier et al. [49] and later elaborated on
by Middlemiss et al. [55]. The electronic configurations of these

Fig. 13.8. Breakdown of the contributions to the total 1H chemical shifts of the three Co(II) pyrazolylborate complexes determined by first-principles calculations, and the
comparison with the experimental shifts. The shifts for system 1 are shown in (a), system 2 in (b), and system 3 in (c). The calculated and experimental shifts are taken from
Refs. [503,467].
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three metal ions in an octahedral environment are given in
Fig. 13.10. The Cr3+ ion has a paramagnetic term 4A2g correspond-
ing to a quenched singly-degenerate orbital state with spin
S ¼ 3=2, and the Co3+ ion has a low-spin diamagnetic configuration
of 1A1g . In both cases the non-degenerate spatial configurations
result in no significant distortions from the nominal octahedral
symmetry. The Ni3+ ion, on the other hand, has a doubly-
degenerate spatial term of 2E2g , which we expect to result in a
Jahn–Teller distortion parallel to the C4 rotation axis of the metal
site. It will be seen that the 7Li solid-state NMR combined with
hybrid DFT calculations can be used to detect such a distortion.

13.4.2. Spin-transfer pathways in LiMyCo1�yO2

In the oxide materials with a single transition-metal species the
total paramagnetic shift is dominated by the contact interaction
with the six nearest-neighbour (nn) metal ions via a 90� MAOALi
electron transfer, and the six next-nearest-neighbour (nnn) metal
ions via 180� MAOALi electron transfers, the bonding geometries
of which are shown in Fig. 13.9(b). Carlier et al. [49] and Middle-
miss et al. [55] investigated these individual pathways by DFT cal-
culations on the mixed-metal species LiCr1/8Co7/8O2 and
LiNi1/8Co7/8O2, in which the concentration of the metal ion is

diluted. This dilution enables us to obtain experimental shifts from
each of these individual isolated pathways, which can then be
compared to the calculated values. We can then rationalize these
individual contributions directly according to the Goodenough–
Kanamori rules. For both materials the 7Li solid-state NMR spec-
trum contains three peaks with distinct shifts, which are given in
Table 13.3. Both mixed materials have a shift at 0 ppm which can
be assigned by comparison with the diamagnetic LiCoO2 as being
due to the Li(1) site (or local environment) for which all the nn
and nnn metal ions are Co3+. Each mixed material also has two
additional shifts, one positive and one negative, which are due to
the Li(2) and Li(3) sites illustrated in Fig. 13.9(b). Density-
functional theory calculations were helpful in confirming the
assignments of these shifts.

The dominant contributions to the chemical shifts in these
materials is the contact shift. The important contributions in the
EPR formalism are expected to be those that are proportional to

the NR Fermi-contact coupling constant, namely geA
FCZ,

DgisoA
FCZ, and AFCDg � Z with the term due to AFC;2 being negligible.

However it is more convenient to express the contact shift dcon in
terms of the susceptibility formalism in Eq. (7.126),

dcon ¼ v
l0lBge�hcI

AFC

2S

 !
; ð13:2Þ

where AFC ¼ AFC=ð2SÞ, and the SO coupling effects giving rise to the
g-shift and ZFS, as well as the exchange interactions, are contained
in the isotropic magnetic susceptibility v. Assuming a Curie–Weiss
temperature expression for the susceptibility we obtain

dcon ¼ l2
eff

3lBge�hcIkðT �HÞ
AFC

2S

 !
: ð13:3Þ

Hence the size of the contact shift is proportional to the size of
the unpaired electronic spin density transferred to the Li 2s orbital,
and both quantities have the same sign. When more than one
metal ion i transfers spin density to the nucleus N via a pathway
Pi, the total spin density qða�bÞðNÞ is the sum of the individual con-

tributions qða�bÞ
Pi

ðNÞ [55]:

qða�bÞðNÞ ¼
X
i

qða�bÞ
Pi

ðNÞ; ð13:4Þ

which in turn means that the total contact shift can be written as
the sum of the individual pathway contributions dconPi

as follows:

dcon ¼
X
i

dconPi
; ð13:5Þ

where each contribution is given by an expression such as in Eq.
(13.2) or (13.3).

In Section 7.9 we saw that the sign of the transferred electronic
spin density, and therefore the sign of the contact shift, can be

Fig. 13.9. Structure of the O3-LiMO2 materials. The alternating LiO6 and MO6 layers
are shown in (a). In (b) are shown the two Li local environments Li(2) and Li(3) in
the dilute materials LiMyCo1�yO2 that exhibit large contact shifts. Reproduced with
permission from [49]. Copyright (2003) by the American Physical Society.

Table 13.3
Experimental 7Li shifts observed in three LiMyCo1�yO2 layered oxides, with
assignments.

Material Shift/
ppm

Sign of calculated spin
density

Assignment Ref.

LiCr0.10Co0.90O2 35 + Li(3) [505]
0 Li(1)

�70 – Li(2)

LiCoO2 0 All [506]

LiNi0.30Co0.70O2 110 + Li(2) [507]
0 Li(1)

�15 – Li(3)

Fig. 13.10. The d-orbital splitting and occupancy of the Cr3+, Co3+, and Ni3+ metal
ions in the octahedral coordination sites of LiMyCo1�yO2.
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deduced from the Goodenough–Kanamori rules for 90� and 180�
MAOALi bonding geometries. Here we must distinguish between
electron delocalization and polarization transfer mechanisms. In
the former the metal 3d-orbital containing the unpaired electron
overlaps with the Li 2s via an O 2p-orbital, resulting in a positive
electron density at Li, whereas in the latter the metal 3d and Li 2s
overlap with different orthogonal O 2p-orbitals, which results in a
polarization of negative electron density at Li. These two mecha-
nisms are illustrated in Fig. 13.11 for both 90� and 180� MAOALi
bonding geometries. The two delocalization mechanisms shown
in Fig. 13.11(a) occur for the 90� geometry when the unpaired elec-
tron is in the metal t2g , and the 180� geometry when the unpaired
electron is in the metal eg orbital. The two polarization mechanisms
shown in Fig. 13.11(b) are operative for the 90� geometry when the
unpaired electron is in the metal eg , and the 180� geometry when
the unpaired electron is in the metal orbital t2g .

In the case of LiCr1/8Co7/8O2 the unpaired electrons reside only
in the t2g orbitals, which indicates that the 90� CrAOALi results
in spin delocalization, and the 180� CrAOALi mechanism in spin
polarization. The delocalization and polarization mechanisms can
be readily interpreted by using simple MO theory [5]. The delocal-
ization mechanism for the Cr3+ ion results from the anti-bonding
MO formed from the half-occupied t2g d-orbital and the nearby
(overlapping) O 2p-orbital, which results in a direct transfer of spin
density to the 2p-orbital, and thus into the adjacent Li 2s orbital.
The polarization mechanism results from a bonding MO involving
the overlap of the empty eg orbital with the relevant (overlapping)
filled O 2p-orbital. The spin density in this case results from the dif-
ferent coefficients of the atomic orbitals in the a and b MOs, with
an increased contribution of the coefficient of the eg orbital to
the a MO being driven by the exchange interaction, which serves

Fig. 13.11. The different MAOALi spin-transfer mechanisms in LiMyCo1�yO2. The delocalization mechanisms for the 90� and 180� pathways are shown in (a), and the
corresponding polarization mechanisms are shown in (b), involving direct overlap with partially filled and empty t2g/eg orbitals in (a) and (b) respectively.

Fig. 13.12. Calculated spin-density transfer map in a MAOALi plane in the LiMy-
Co1�yO2 materials, for Cr3+ (a) and Ni3+ (b). The DFT calculations were performed
using the generalized gradient approximation (GGA) in the Vienna ab initio
Simulation Package (VASP). Positive and negative contours are shown with solid
and dashed lines respectively. Reproduced with permission from [49]. Copyright
(2003) by the American Physical Society.
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to lower the overall energy of the system. Hence the spin density
transferred to the two lithium sites Li(2) and Li(3) is negative
and positive respectively. This is indeed the case as shown by the
electron spin density map calculated by Carlier et al. in Fig. 13.12
(a) [49]. The exact orbitals involved for each transfer are shown
in Fig. 13.13. Hence the shifts of 35 ppm and �70 ppm can be
assigned to Li(3) and Li(2) respectively, as shown in Table 13.3.

In LiNi1/8Co7/8O2 the unpaired electron resides in the eg orbital,
and so we expect the spin-transfer mechanisms to be different. For
the 90� bonding geometry the half-filled eg polarizes the t2g orbi-

tals, resulting in negative spin density on the Li 2s as shown in
Fig. 13.11(b), which now gives a negative contact shift for Li(3).
For the 180� bonding geometry the situation is more complicated,
as there are two competing transfer mechanisms. Firstly the half-
filled eg delocalizes positive spin density into the Li 2s, as shown
in Fig. 13.11(a). However this same eg orbital also polarizes the
other unfilled eg orbital, resulting in an additional transfer of neg-
ative spin density to Li, as shown in Fig. 13.11(b) (albeit for an anal-
ogous case where the 1/2-filled t2g orbital polarizes the eg orbital).
The overall spin density is due to the combination of these two

Fig. 13.13. Illustration of the orbitals involved in the spin-transfer mechanisms in LiMyCo1�yO2 for the specific cases of Cr3+ and Ni3+. Reproduced with permission from [49].
Copyright (2003) by the American Physical Society.
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transfers. It turns out that the electron delocalization is the domi-
nant process, giving a positive spin transfer and therefore a posi-
tive contact shift for Li(2), as shown by the spin-density map in
Fig. 13.12(b) [49]. The relevant orbital interactions are summarized
in Fig. 13.13.

13.4.3. 7Li contact shifts in LiMyCo1�yO2

The spin-density calculations of Carlier et al. established the
link between the electronic spin transfer and the NMR shifts
observed in the spectrum, via the contact interaction. However
they did not obtain the actual values of the interaction, and nor
was the effect of the expected Jahn–Teller distortion of the metal
coordination sites accounted for. Both of these issues were
addressed in a DFT study by Middlemiss et al. [55]. The first prin-
ciples solid-state DFT calculations were performed using the CRYS-
TAL09 linear combination of atomic orbitals code, with two hybrid
exchange correlation functionals. Firstly the B3LYP functional
incorporating 20% Hartree–Fock exchange (Hyb20) was employed,
as this is known to perform well in the calculation of the electronic
structure and band gaps of a range of materials, particularly those
with transition-metal ions. Secondly a related functional with 35%
Hartree–Fock exchange (Hyb35) was used as this gives values of
magnetic coupling constants that are in good agreement with
experiment. In particular the Hyb20 and Hyb35 calculations pro-
vide a range of values of the contact shift that are in good agree-
ment with the experimental values.

The Hyb20 structural optimization of the two mixed transition-
metal oxides confirms the presence of a Jahn–Teller elongation
along one of the pseudo-C4 rotation axes, resulting in two long
(L) MAO bonds and four short (S) MAO bonds, the values of which
are given in Table 13.4. No Jahn–Teller distortion is expected for
LiCr1/8Co7/8O2 due to the non-degenerate orbital ground state of
the octahedral configuration, as shown by the negligible difference
in calculated bond lengths, whereas there is a substantial distor-
tion for LiNi1/8Co7/8O2. One effect of these distortions is to lift the
chemical equivalence of the Li sites, so that instead of the three
sites expected from the octahedral environment we obtain five,
which are shown in Fig. 13.14 [55]. The Li(1) site with only Co3+

in the nn and nnn remains distinct, and is now labelled Li(b). The
Li(2) with the 180� MAOALi bonding geometry is now split into
two distinct sites Li(c) and Li(d) in the ratio 1:2, which are defined
by a long (L) and short (S) MAO bond respectively. Finally the Li(3)
site with the 90� MAOALi bonding geometry is split into two dis-
tinct sites Li(a) and Li(e). Site Li(a) is defined by a spin transfer via
two short MAO and OALi bonds (SS) bonds, whereas for Li(e) the
transfer is via two long and two short (SL) bonds.

The contact shifts were obtained from the Fermi-contact cou-
pling constant from Eq. (13.2) using the values of leff and H in
13.4. The two effective magnetic moments correspond to elec-
tronic configurations with quenched orbital angular momenta
and S ¼ 3=2 and S ¼ 1=2 respectively. It was assumed that there
are no measurable exchange interactions between the dilute para-
magnetic metal ions, giving Weiss constants of zero. The results of
the calculations of the contact shifts using the Hyb20 and Hyb35

functionals are given in Table 13.5 [55]. The results for LiCr1/8Co7/8-
O2 are in agreement with the prior calculations of Carlier et al.,
namely that the 90� MAOALi sites correspond to the positive shift,
and the 180� MAOALi sites to the negative shift. Examining the
calculated values in more detail we see that the small Jahn–Teller
elongation gives a negligible difference between the shifts of the
two Li(3) sites, Li(a) and Li(e), with both functionals, and also a
negligible difference between the shifts of the two Li(2) sites Li
(c) and Li(d). In addition the small shift for Li(b) confirms the prior
assertion that MALi spin transfer beyond next-nearest neighbour
is negligible.

As expected, the Jahn–Teller distortion in LiNi1/8Co7/8O2 results
in a greater shift difference between Li(a) and Li(e), and also
between Li(c) and Li(d). This highlights the sensitivity of the con-
tact shift to such structural distortions. Therefore, if the distortion
is static, as assumed in the calculations, we would expect to see
five distinct resonances in the NMR spectrum instead of three. In
particular we would be able to distinguish between the two shifts
for Li(c) and Li(d). However the observation of only three distinct
shift indicates that the Jahn–Teller distortion is not static, but
rather is dynamic in nature. If we assume rapid dynamics on the
NMR timescale this process can be accounted for simply by averag-
ing the shifts of the Li(a) and Li(e) sites to give a single axial aver-
age, and equivalently for Li(c) and Li(d). The values obtained for
both LiCr1/8Co7/8O2 and LiNi1/8Co7/8O2 are in excellent agreement
with experiment.

The results of the combined NMR and DFT approach of Middle-
miss et al. present a compelling body of evidence for the observa-
tion of a dynamic Jahn–Teller distortion in the Ni3+-containing
materials, and highlight the power of paramagnetic NMR to distin-
guish between static and dynamic structural distortions [55].

13.5. Prussian blue analogue materials AnM
0
x[M(CN)6]y�zH2O

13.5.1. Background
Prussian blue analogues (PBAs) constitute one of the most

important families of inorganic polymer materials. The original
Prussian blue, ferric ferrocyanide Fe4[Fe(CN)6]3�zH2O, is a synthetic
dye that was discovered by the Berlin dye maker Diesbach in 1703

Table 13.4
The MAO bond lengths obtained from the Hyb20 DFT calculations, and magnetic
parameters for LiMyCo1�yO2 with M = Cr3+ and Ni3+, and y ¼ 1=8. The effective
magnetic moments were calculated from the spin-only values, and it was assumed
that the Weiss constants are zero.

Material MAO bond lengths/Å leff=lB H/K

Short (S) Long (L)

LiCr1/8Co7/8O2 1.96 1.97 3.87 0
LiNi1/8Co7/8O2 1.89 2.02 1.73 0

Fig. 13.14. Local coordination environment for the Cr3+ and Ni3+ metal ion in the
LiM1/8Co7/8O2 structure subject to a Jahn–Teller distortion. Shown are the four short
(S) and two long (L) MAO bonds to the equatorial and axial oxygens O and O0 , and
four of the five Li sites. The Li(b) site with no M nn or nnn interactions is not shown.
Reproduced with permission from [55]. Copyright (2013) American Chemical
Society.
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[508]. More recently a large variety of PBAs have attracted interest
in diverse fields such as hydrogen gas storage [509], biosensors
[510], waste recovery [511], molecular sieves [512], and battery
electrode materials [513].

The formula for a general PBA is AnM
0
x[M(CN)6]y�zH2O, where A

an alkali metal cation, and M and M0 are six-coordinate octahedral
transition-metal cations. The structure, shown in Fig. 13.15, is a
cubic lattice comprising alternating M(CN)6 octahedra and A/M0

metal ions, which are linked by the CN� ligands [8]. Only a certain
proportion of the M(CN)6 sites are occupied (as low as 60%), with
each resulting vacancy being filled with z0 ‘structural’ H2O mole-
cules that coordinate to the nearest z0 M0 metal ions, and additional
‘crystallization’ interstitial H2O molecules. This results in PBAs
readily absorbing water from the air.

The bonding interactions in PBAs can be understood as follows.
Firstly each metal ion M coordinates to six CN� anions in an octa-
hedral complex. The molecular orbital energy diagram of a CN�

ligand is shown in Fig. 13.16. The highest-occupied molecular orbi-
tal (HOMO) is the 3r, which is mainly formed from the C 2pr orbi-
tal. The electron pair is therefore aligned along the CAN axis

pointing away from N. The six 3r orbitals of the six ligands interact
with the eg set of metal 3d-orbitals. Since the electrons in each 3r
are predominantly located on C, this results in the formation of six
MAC r-bonds. If we only consider these r-bonds the t2g set of
metal 3d-orbitals remains non-bonding. However the six 2p lowest
unoccupied molecular orbitals (LUMOs) of the six ligands do have
symmetry that is compatible with an interaction with the t2g .
These anti-bonding orbitals are mainly formed from the C 2pp.
The interaction stabilizes the t2g containing the d-electrons relative
to the eg , resulting in an increase in the ligand energy splitting
parameter Doct, and thus a low-spin electronic configuration. A
simplified molecular orbital diagram for Fe(CN)63� that accounts
for the important interactions is shown in Fig. 13.17, in which
1t2g HOMO and 2eg LUMO are highlighted [514]. When incorpo-
rated into the cubic lattice of the PBA the M(CN)6 octahedra alter-
nate with the A/M0 metal ions, so that the latter interact with the N
atoms of the CN� ligands.

The magnetic exchange interactions between the paramagnetic
centres result in magnetic ordering at low temperatures, which
may persist up to room temperature. For example the PBA V[Cr
(CN)6]0.86�2.8H2O exhibits magnetic ordering with a Curie temper-
ature of 315 K [515]. However many other PBAs are in the high-
temperature paramagnetic regime at room temperature, many of
which have been studied extensively with solid-state NMR by
Köhler et al. [4,8,516,517,218]. Here we present a case study com-
prising two particular examples, namely the materials Cs2K[Fe
(CN)6] [4], and Cd3[FexCo1�x(CN)6]2�15H2O [8], in which the Fe3+

and Co3+ ions are low-spin, with S ¼ 1=2 and S ¼ 0 respectively.

Fig. 13.16. Molecular orbital energy diagram for the CN� ligand in PBAs.

Table 13.5
Computed 7Li contact shifts for the different sites in LiCr1/8Co7/8O2 and LiNi1/8Co7/8O2 using Hyb20 and Hyb35 functionals. Axial average values (assuming fast dynamic Jahn–
Teller distortion) of the 90� nn shifts are equal to dconðaÞ þ 2dconðeÞð Þ=3, and of the 180� nn shifts are equal to dconðcÞ þ 2dconðdÞð Þ=3. Values taken from Ref. [55].

Pathways LiCr1/8Co7/8O2 LiNi1/8Co7/8O2

Li site Bond lengths Hyb20/ppm Hyb35/ppm Expt/ppm Hyb20/ppm Hyb35/ppm Expt/ppm

90� nn pathways
a SS 46.0 29.8 4.2 10.0
e SL 44.3 26.6 �23:1 �21:6

Axial average 44.9 27.7 35 �14:0 �11:1 �15

180� nnn pathways
d S �81:2 �79:4 34.4 21.2
c L �87:4 �84:7 314.8 259.2

Axial average �83:3 �81:2 �70 127.9 100.6 110

No nn or nnn pathways
b – 1.5 �0:4 0 �2:2 �2:0 0

Fig. 13.15. The ideal cubic structure for a PBA AnM
0
x[M(CN)6]y�zH2O. The grey

octahedra indicate the M(CN)6 units; large light grey spheres are A/M0 metal ions;
small black spheres are structural H2O molecules; small dark grey spheres are C
atoms; and small light grey spheres are N atoms. The interstitial H2O is omitted.
Reproduced with permission from [8]. Copyright John Wiley and Sons.
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13.5.2. Solid-state NMR spectra
The 13C and 15N solid-state MAS NMR spectra of Cs2K[FeIII(CN)6]

acquired at 326.4 K are shown in Fig. 13.18 [4]. In the 13C spectrum,
acquired at 15 kHz MAS, we can resolve two spinning-sideband
manifolds with negative isotropic chemical shifts of �3269 and
�3295 ppm which are ascribed to CN� ligands in the axial and
equatorial positions. The orbital contributions to these shifts are
assumed to be equal to those of the diamagnetic analogue Cs2K
[Co(CN)6]. Following subtraction of the orbital shifts, we obtain
paramagnetic shifts of �3134 and �3160 ppm for the axial and
equatorial positions. As for the transition-metal oxide materials
of the previous section, these paramagnetic contributions are dom-
inated by the contact shift, which indicates that the Fe3+ ion trans-
fers a negative spin density to C. The spinning-sideband manifolds

are mainly due to the NR spin-dipolar interaction. A fit of the side-
band intensities yields anisotropy parameters of 603 and 628 ppm
for the axial and equatorial C.

The 15N spectra were acquired at 5 kHz MAS, and also exhibit
two spinning-sideband manifolds due to axial and equatorial N
with chemical shifts of 727 and 704 ppm respectively. Following
adjustment by subtracting the orbital shifts we obtain positive
paramagnetic shifts of 810 and 783 ppm respectively, which are
also dominated by the contact contribution, and indicate that the
spin density transferred to both N 2s orbitals is positive. The shift
anisotropy values, again dominated by the NR spin-dipolar interac-
tion, are 1073 and 1023 ppm for axial and equatorial N.

To aid in the interpretation of the NMR shifts observed for 13C
and 15N it would also be instructive to be able to monitor the trans-
fer of unpaired electronic spin density to the metal ions in the A/M0

positions. However neither Cs nor K has favourable nuclear spin
properties for NMR, and so a different PBA analogue with a differ-
ent metal ion in this position is needed. Flambard et al. studied a

series of PBAs CdII
3[Fe

III
x Co

III
1�x(CN)6]2�15H2O, with x = 0, 0.25, 0.5,

0.75, and 1, using 113Cd solid-state MAS NMR [8]. The 113Cd
nucleus has spin I ¼ 1=2, sufficient sensitivity, and a diamagnetic
shift range of 500 to �125 ppm, and so the authors were able to
determine the spin-transfer mechanism to this metal position for
the first time.

From the stoichiometry of these PBAs it can be seen that only
two thirds of the M(CN)6 sites are occupied, leaving one third
vacancies (vac), each of which contains six ‘structural’ water mole-
cules coordinated to the nearest Cd2+ metal ion, and a variable
quantity of ‘crystallization’ water. The unit cell formula is therefore

[CdII
4{M

III(CN)6}8/3(vac)4/3]�xH2O with x = 12–20, and the coordina-

tion of the Cd2+ metal ion can be described as CdII(NCM)6�a(OH2-
vac)a. One important question that can be answered by solid-
state NMR is whether the vacancies are ordered in the lattice, with
limits on the values of a, or distributed randomly, with a taking all
possible values from 0 to 6.

The solid-state 113Cd NMR spectrum acquired at 15 kHz MAS

and 310 K of the diamagnetic material CdII
3[Co

III(CN)6]2�15H2O
(with x ¼ 0) is shown in Fig. 13.19 position 1 [8]. Two peaks are
observed in the paramagnetic region at 63 and 81 ppm, which
can be ascribed to the cis and trans isomers of the Cd sites

Fig. 13.18. 15N and 13C solid-state MAS NMR spectra of Cs2K[Fe(CN)6] at 326.4 K.
The 15N and 13C spectra were acquired at 5 and 15 kHz MAS respectively. The
centrebands of the resonances due to axial and equatorial CN� ligands are indicated
with a � and � respectively. Adapted with permission from [4]. Copyright John
Wiley and Sons.

Fig. 13.19. 113Cd solid-state MAS NMR spectra of Cd3[FexCo1�x(CN)6]2�15H2O
acquired at 310 K and 15 kHz MAS. The Fe3+ contents are x = (1) 0, (2) 0.25, (3)
0.5, (4) 0,75, and (5) 1. Dashed lines indicate the shifts at which 113Cd experiences a
contact shift pathway contribution from 0, 1, 2, 3, 4, and 5 Fe3+ ions. Reproduced
with permission from [8]. Copyright John Wiley and Sons.

Fig. 13.17. Simplified molecular orbital energy diagram for the Fe(CN)63� octahedral
unit in PBAs, showing the most important contributions to the r- and p-bonds
between the Fe3+ ion and CN� ligands. The 1t2g and 2eg orbitals that are
predominantly due to the metal 3d orbitals are highlighted by the dashed box.
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CdII(NCCo)4(OH2vac)2, suggesting some ordering of the vacancies.

By contrast the all-Fe material CdII
3[Fe

III(CN)6]2�15H2O (with
x ¼ 1) gives a 113Cd spectrum with four distinct sites, as shown
in Fig. 13.19 position 5. All four peaks are shifted to large negative
values centred on �1300 ppm, which immediately suggests a con-
tact interaction due to a transfer of negative electronic spin density
along FeACANACd to the Cd s-orbital, i.e. of the same sign as for C
and opposite to N. The two most intense peaks at �1275 and
�1327 can be attributed to the cis and trans isomers of

CdII(NCFe)4(OH2vac)2, with each shift being the sum of four path-
way contributions FeACANACd. Taking the average of the two
contact shifts (i.e. the average deviation from the diamagnetic
shifts from the all-Co compound) allows us to compute an average
contribution from each pathway of �343 ppm. Immediately this
allows us to assign the two lower-intensity peaks at �1000 ppm

and �1537 ppm to the CdII(NCFe)3(OH2vac)3 and CdII (NCFe)5(OH2-
vac) sites, where the Cd2+ ion is connected to Fe3+ by three and five
pathways respectively. We note that there is no peak at

�1880 ppm, which would be due to CdII(NCFe)6, again indicating
that the vacancies are not randomly distributed.

The pathway contribution model of the contact shifts is further
supported by the 113Cd spectra of Cd3[FexCo1�x(CN)6]2�15H2O with
x = 0.25, 0.5, and 0.75, which are shown in Fig. 13.19 positions 2–4.
A total of six distinct Cd environments is observed, in which the
shifts are equally spaced by 300–350 ppm, which correspond to
Cd sites coordinating to between zero and five Fe3+ ions via similar
pathways. The sites can be written explicitly as Cd(para)6�a(dia)a,
with para corresponding to NCFe and dia to either OH2vac or NCCo.
Within each resonance multiple peaks can be resolved, which cor-
respond to different cis/trans or mer/fac isomers of the different Cd
(para)6�a(dia)a sites. Once again the non-observation of the Cd site
with a ¼ 6 indicates that the vacancies are partially ordered in the
lattice [8].

13.5.3. Interpretation of the contact shifts
The NMR data can be used to elucidate a mechanism for the

unpaired electronic spin transfer from the Fe3+ ion throughout
the lattice to the s-orbitals of the other atoms. The measured chem-
ical shifts are dominated by the contact shift, and are negative for
both 13C and 113Cd, and positive for 15N. This can be explained by
the polarization mechanism as follows. Firstly the unpaired elec-
tron in the Fe3+ t2g orbital is delocalized into an anti-bonding p
orbital of the CN� ligand. However this p-orbital has a node along
the CAN axis, and is therefore of incompatible symmetry for over-
lap with the C 2s. Therefore this unpaired electron polarizes the eg
orbital of the Fe3+ with a positive density. The result is negative
electron density polarized in the C 2s, and a negative 13C contact
shift. This negative density then polarizes the N 2s orbital with
electron density of the opposite sign, i.e. positive, leading to a pos-
itive 15N contact shift. Finally the s-orbital of the Cd is polarized by
the N 2s, resulting in negative electron density and a negative con-
tact shift. This ‘relay’ of the polarization effect through the lattice is
shown in Fig. 13.20. We expect the electron transfer to become
weaker as we move further from the Fe3+ ion, which is why the
13C contact shifts have a greater magnitude than the 15N contact
shifts (�3100 vs 800 ppm). For Cd that receives electron density
along a single pathway the magnitude of the transfer is smaller
still, giving a relatively small contact shift of �343 ppm. However
for Cd sites with multiple transfer pathways, the individual trans-
ferred densities and pathway contributions are additive giving rel-
atively large negative shifts up to �1900 ppm.

On a final point we note that the spin-polarization transfer has
the effect of aligning the electronic spins of the Fe3+ ions, and so we
might expect the materials Cd3[FexCo1�x(CN)6]2�15H2O to exhibit

ferromagnetic ordering at low temperature. However magnetic
susceptibility measurements indicate that there is no such effect,
suggesting that the polarization mechanism is inefficient at order-
ing metal ions that are separated by six bonds [8].

13.6. Olivine-type lithium transition-metal phosphate cathode
materials LiMPO4

13.6.1. Background
The olivine class of materials LiMPO4 with M = Mn2+, Fe2+, Co2+,

and Ni2+ has attracted a lot of interest in recent years as providing
potential candidates for cathode materials in Li-ion batteries [518].
The pure-Fe phase, which is used commercially, has a Fe2+/Fe3+

couple of 3.4 V vs Li+/Li. However this is not high enough for many
applications, and so higher-voltage materials, such as with
M = Mn2+ and Co2+ for which the corresponding redox couples
are of 4.1 V and 4.8 V vs Li+/Li respectively, have been extensively
studied. Whilst these metal ions have been exploited both in pure
Mn and Co phases, the mixed phases LiFexM1�xPO4, where M is in a
solid solution with Fe, tend to have better electrochemical perfor-
mance, which in part is attributed to the local and long-range dis-
tortions of the lithiated and partially delithiated phases caused by
cation substitution. Understanding these local structural effects is
therefore key to understanding the electrochemistry.

The olivine structure of LiMPO4 is shown in Fig. 13.21. The
material has Pbnm symmetry, and comprises edge- and corner-
sharing MO6 octahedra and PO4 tetrahedra. There are three
crystallographically distinct O positions O1, O2, and O3 that have
occurences in the ratio 1:1:2. The Li ions occupy the octahedral

Fig. 13.20. Diagram indicating the sign of the transferred electronic spin density in
Cd3[Fe(CN)6]2�15H2O. The atoms are denoted as follows: Cd, large white circle; Fe,
large light grey circle; N, small white circle; C small dark grey circle. The arrows
represent both the magnitude of the transferred density, via their length, and the
sign, with up indicating positive spin, and down indicating negative spin.
Reproduced with permission from [8]. Copyright John Wiley and Sons.

Fig. 13.21. Crystal structure of the olivine LiMPO4 materials showing the MO6

(yellow) and PO4 (grey) polyhedra, and the Li sites (blue). The [010] channels with
high Li mobility are vertical. Reproduced with permission from [55]. Copyright
(2013) American Chemical Society.
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LiO6 sites in the [010] channels, along which they have greater
mobility compared to other directions. On delithiation the Li ions
are removed from the channels, with the connectivity of the other
structural units remaining largely unaltered. This accounts for the
favourable electrochemical performance of the material. In the
lithiated phases LiMPO4 the octahedral transition metal sites are
slightly distorted, but the splitting of the d-orbitals is neverthe-
less accurately described by the idealized splitting in the Oh point
group. As shown in Fig. 13.22 the four metal ions Mn2+, Fe2+, Co2+,
and Ni2+ all have a high-spin electronic configuration.

In order to understand the effect of the local structure of the
metal ions on the NMR properties in the mixed phases, it is neces-
sary to fully understand the pure phases. We therefore present the
combined NMR/DFT case studies of Middlemiss et al. [55], and
Pigliapochi et al. to describe the form of the shifts and SAs in these
materials in both the 7Li and 31P NMR spectra. In the former study
we employ the scaling-factor model, and describe the shift and SA
in terms of the Fermi-contact and spin-dipolar hyperfine interac-
tions, using the values for the effective magnetic moment and
Weiss constant in Table 13.6. The total shift is the sum of multiple
pathways from more than one metal ion, and so in order to isolate
the different pathway contributions a spin-flip approach was
employed, as is described in detail in the next section. In the latter
study the EPR formalism is used to investigate the explicit effect of
the g-shift tensor on the shift and SA. Additionally we present some
trends for the longitudinal relaxation times T1, coherence lifetimes
T 0
2 and total sideband linewidths in order to show the different

effects the different metal ions have on these quantities. Finally
the single-phase results can be exploited to investigate the
multi-phase materials [31].

13.6.2. 6/7Li NMR shifts and relaxation properties
The 7Li NMR spectra of the full series of pure-phase LiMPO4

acquired by Tucker et al. are shown in Fig. 13.23 [468]. The spectra
were recorded at an external field corresponding to a 7Li Larmor
frequency of �38:9 MHz and under 10 kHz MAS. An initial inspec-
tion indicates that the isotropic chemical shifts for the four mate-
rials fall in the range 70 ppm to �100 ppm. Whilst this is outside
the standard diamagnetic range we will see that the isotropic shifts
are comparatively smaller than those measured in similar systems
with a dense network of paramagnetic metal ions. The shift aniso-
tropy DdS is given in the scaling-factor formalism by an expression
analogous to the isotropic shift in Eq. (13.3), which is proportional
to the total spin-dipolar anisotropy DASD, and the asymmetry
parameter gS is equal to that of the spin-dipolar interaction

DdS ¼ l2
eff

3lBge�hcIkðT �HÞ
DASD

2S

 !
; ð13:6Þ

gS ¼ gSD: ð13:7Þ

We expect this to be the dominant contribution to the spinning-
sideband intensities, with an additional contribution to the appar-

ent anisotropy due to the BMS effects and in particular the IBMS.
The envelope of the sideband intensities in Fig. 13.23 indicates that
the effective anisotropies for LiMnPO4, LiFePO4, and LiCoPO4 have
similar magnitudes, which are significantly larger than for LiNiPO4.
Furthermore the ‘slant’ of the intensities around the centreband
indicates that the asymmetry parameters for all the systems have
similar values, and that the SAs have the same sign. Finally we note
that the individual spinning sidebands have considerably larger
linewidths for LiFePO4 and LiCoPO4 than for LiMnPO4 and LiNiPO4.
This is ascribed to the larger ABMS broadening due to the magnetic
anisotropy of the Fe2+ and Co2+ metal ions which have electronic
ground states 5T2g , 4T1g respectively, compared to Mn2+ and Ni2+

(6A1g , and 3A2g) in which the orbital angular momentum is
quenched to first order. This is discussed in more detail later in this
section.

13.6.2.1. Contact shifts. We can try to rationalize the form of the
paramagnetic shifts using DFT calculations. Middlemiss et al. com-
puted the total 6/7Li Fermi-contact shifts for LiMnPO4, LiFePO4, and

Fig. 13.22. The idealized d-orbital splitting and electronic configurations of Mn2+, Fe2+, Co2+, and Ni2+ in LiMPO4. The corresponding electronic states are denoted by the terms
6A1g , 5T2g , 4T1g , and 3A2g .

Table 13.6
The magnetic parameters defining the magnetic susceptibility and contact shifts of
LiMPO4. Data taken from Refs. [468,519,520].

Material leff=lB H/K

LiMnPO4 5.4 �58
LiFePO4 5.3 �72:5	 0:2
LiCoPO4 4.578 �77
LiNiPO4 3.1 �60

Fig. 13.23. The 7Li MAS NMR spectra of LiMPO4 with M = Mn2+, Fe2+, Co2+, and Ni2+.
The centrebands are marked with an . The Larmor frequency is �38:9 MHz, and the
MAS frequency is 10 kHz. Adapted with permission from [468]. Copyright (2002)
American Chemical Society.
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LiCoPO4 using the CRYSTAL09 code [55]. The total electronic spin

density at the Li site qða�bÞ
sat ðLiÞ was computed in the fictitious ferro-

magnetic, or saturated, state in which all the effective electronic
spins on the metal ions are aligned, giving the total Fermi-
contact coupling constant AFC. This result was then scaled into
the paramagnetic regime using Eq. (13.3), and the magnetism
parameters in Table 13.6 used to give the total shift dcon. In addition
the individual pathway contributions were also calculated using
the spin-flip approach. Here, in order to calculate the contribution
from a metal ion i along pathway Pi we flip the electronic spin of
one metal ion within the supercell used in the calculations, and
repeat the calculation to give a new electronic spin density

qða�bÞ
flip;Pi

ðLiÞ, and hence a new contact shift dconflip;Pi
ðLiÞ. The difference

between the initial density qða�bÞ
sat ðLiÞ and the new density gives

the contribution to the electronic spin density from metal ion i

along pathway Pi, i.e. qða�bÞ
Pi

ðLiÞ ¼ qða�bÞ
sat ðLiÞ � qða�bÞ

flip;Pi
ðLiÞ

� 	
=2. This

spin-flip approach is then repeated for all the metal ions within
the cell. Since the same scaling factor parameters are applied to
all the metal ions, the pathway contribution to the contact shift
can be calculated from the difference in the corresponding shifts:

dconPi
ðLiÞ ¼ dconðLiÞ � dconflip;Pi

ðLiÞ
� 	

=2.

In practice, the periodic boundary conditions used in the DFT
calculation mean that a spin-flip applied to a particular metal ion
is also applied to all the other metal ions at symmetry-related posi-
tions outside the supercell. Therefore in order to isolated a single
pathway with each spin flip, it is necessary to use a supercell that
is significantly larger than the basic unit cell.

Fig. 13.24 shows the local Li environment with the short-range
pathways identified by Middlemiss et al. [55]. For Li there are six
pathways in total that fall into three crystallographically distinct
pairs for LiMnPO4 and LiFePO4 that are labelled P1, P2, and P3. For

LiCoPO4 the situation is more complex, since there is a sponta-
neous lowering of the symmetry of the supercell which is charac-
terized by the O3 sites splitting into two sub-groups O3H and O3L

which have higher and lower transferred spin densities than the
average. This structure is stabilized relative to the more symmetric
space group by 8 kJ mol�1. This results in the equivalence being
lifted within pairs of pathways, resulting in six distinct pathways
in total. The lower symmetry also results in the Li sites no longer
being equivalent, but rather splitting into two distinct sub-sites
with distinct total contact shifts. However there is no conclusive
evidence of two distinct sites in the 7Li NMR spectrum, suggesting
that the lower-symmetry structure does not persist at the temper-
atures at which the data were acquired. In addition there are sev-
eral longer-range (distant) pathways that are not shown. The
different pathway contributions calculated from the Hyb20 and
Hyb35 functionals are also given in Fig. 13.24.

The individual short-range pathway contributions are all small,
with values between �20 ppm and þ40 ppm depending on the
pathway and functional used. Therefore it is necessary to include
the more distant contributions in order to reproduce the total con-
tact shift. We should also bear in mind that, given the small contact
shifts, the PCS may now represent a larger relative contribution to
the total paramagnetic shift. This is discussed later in the context
of the EPR formalism.

The results for the contact shift are summarised in Table 13.7.
The shifts calculated directly (‘Direct’) are compared to the sums
of the pathway contributions including and excluding the longer-
range pathway contributions. Whilst the general agreement is
good, there are discrepancies between the calculated shifts and
the experimental values, in some cases with the errors being of
approximately the same order of magnitude as the shifts them-
selves. This may be due to the basis set not being adequate in this
case, or to the neglect of the PCS.

13.6.2.2. Linewidths and PREs. The variation of the sideband line-
width, coherence lifetimes, and longitudinal relaxation times is
also worth discussing in detail. It is apparent that there is an
increase in linewidth on replacing Mn2+ with either Fe2+ or Co2+,
the source of which it is instructive to elucidate. Fig. 13.25(a)
shows both the 7Li T1 and T 0

2 time constants for LiMnPO4 and
LiFePO4 acquired at a different field of 11.74 T at 60 kHz MAS. Both
time constants are longer for the latter material than for the for-
mer. The PREs of the longitudinal and transverse relaxation rates
can each be modelled as a sum of contributions from the different
metal ions, each of which is given by the Solomon–Bloembergen–
Morgan equations in 8.185 and 8.186. The trend can explained by a
combination of the reduction of S from 5=2 to 2 on going from
Mn2+ to Fe2+, and possible changes in the electronic relaxation
times T1e and T2e. The values of T1e and T2e are both unknown,
but it is likely that the interactions between the electronic spins
of the network of metal ions have the effect of accelerating elec-
tronic relaxation so that it is faster than in complexes in solution
that contain a single metal ion. If the T1e and T2e are sufficiently
short for the nuclear relaxation to be in the extreme-narrowing

Fig. 13.24. The Fermi-contact pathways and contributions for 6/7Li in LiMPO4. For
Co2+ the values marked a correspond to Li neighbouring O3H, and those marked b
are Li neighbouring O3L. Reproduced with permission from [55]. Copyright (2013)
American Chemical Society.

Table 13.7
Comparison of the experimental shifts and calculated contact shifts of 6/7Li in LiMPO4. See text for details. The calculated shifts are from Ref. [55], and the experimental shifts are
from Refs. [468,521].

Material 6/7Li shifts Hyb20/ppm 6/7Li shifts Hyb35/ppm Expt/ppm

Direct
P

iPi total
P

iPi short-range only Direct
P

iPi total
P

iPi short-range only

LiMnPO4 116.6 123.3 116.6 73.0 70.3 69.3 57, 68
LiFePO4 38.4 40.1 31.5 �0:2 �7:4 �8:1 �8; �15
LiCoPO4 7.6 7.7 0.3 �19:1 �19:2 �22:8 �86; �92

�39:7 �38:0 �41:2 �52:7 �52:8 �53:9
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limit, this means that longer electronic relaxation times result in
larger PREs. Generally we expect the half-filled d-shell of Mn2+ to
have longer T1e and T2e times than the T-term of the Fe2+ ion,
due to the SO coupling strength in the latter, which would
explain why the PREs in LiMnPO4 are longer. Strictly speaking
the coherence lifetimes also depend on the coherent dephasing,
but we would also expect a lower transverse PRE to give a
longer T 0

2.
The total sideband linewidth can be decomposed into a homo-

geneous part, equal to 2=T 0
2 rad s�1, and an inhomogeneous part

which is equal to the difference between the total and homoge-
neous parts. The sideband linewidths in the 7Li spectrum are
shown in Fig. 13.25(b), and clearly indicate that the increase on
going from LiMnPO4 to LiFePO4 is due entirely to an increase in
the inhomogeneous part, and occurs in spite of an accompanying

decrease in the homogeneous linewidth. In fact for LiMnPO4 the
total linewidth is almost entirely homogeneous and due to trans-
verse relaxation and a residual coherent dephasing. The absence
of any significant inhomogeneous broadening is due to the Mn2+

ions having no bulk susceptibility anisotropy. On the other hand,
for LiFePO4 the line broadening is due almost entirely to the inho-
mogeneous contribution due to the ABMS of the magnetically ani-
sotropic Fe2+ ion.

13.6.3. 31P NMR shifts and relaxation properties
The 31P NMR spectra of LiMnPO4, LiFePO4, and LiCoPO4 acquired

in a field of 11.74 T at 60 kHz MAS are shown in Fig. 13.26. An ini-
tial inspection shows a decrease in the isotropic shift on going from
Mn2+ to Fe2+, and again from Fe2+ to Co2+, from 7866 ppm to
3558 ppm to 2926 ppm. This is accompanied by a decrease in the
width of the spinning-sideband manifold, indicating a reduction
in the SA. Interestingly the change in the slant of the sidebands
around the centreband for LiFePO4 and LiCoPO4 compared to
LiMnPO4 indicate a change in the sign of the anisotropy. This fea-
ture is discussed later in the context of the EPR formalism. Finally
we observe an increase in the sideband linewidth, which we can
again ascribe to a larger ABMS effect on going across the series.

13.6.3.1. Contact shifts. Compared to the 6/7Li shifts, it is noticeable
that the 31P shifts are significantly larger, indicating a stronger
orbital overlap along the MAOAP pathways than for the MAOALi
pathways, and therefore a larger Fermi-contact interaction. The
calculation of the total contact shifts, and the individual pathways,
proceeds using the same method as for the 6/7Li shifts. There are
five short-range pathways in total, which are shown in
Fig. 13.27. For LiMnPO4 to LiFePO4 two of the pathways, denoted
P2, are equivalent and give the same contribution to the shift. How-
ever for LiCoPO4 the lower symmetry which lifts the equivalency of
the two O3 sites, as described for 6/7Li, also lifts the equivalence of
the two P2 pathways, with one transfer going via an O3H and the
other via an O3L. However the P sites remain equivalent, and there-
fore still give a single distinct total contact shift, and in any case it
should be reiterated that there is no evidence for the lower-
symmetry structure persisting at higher temperatures. The values
of the different pathway contributions are also given in
Fig. 13.27. They have a larger magnitude than the short-range
MAOALi pathway contributions, up to 2000 ppm, with the result
that longer-range pathways can be neglected. For each pathway
the MAOAP coordination angles are approximately 120�, with
the exception of P1 where the angle is 94�, and so it is difficult to
rationalize the sign of the electron-spin transfer. All the contribu-
tions are positive indicating a dominance of the delocalization
spin-transfer mechanism, with the exception of P3 for LiFePO4

which is small, and changes sign depending on the amount of Har-
tree–Fock exchange used, and P1 for LiCoPO4 which is strongly neg-
ative indicating polarization. Generally it is likely that both
delocalization and polarization mechanisms are active.

The total calculated and experimental contact shifts are sum-
marised in Table 13.8. We see that since the contact interaction
is larger, the agreement between experiment and theory is better
for 31P than for 6/7Li. This may be partly because the PCS is now
insignificant. Furthermore, if we compare the results of the directly
calculated contact shift with the sum of the pathways we see that
the longer-range pathway contributions are negligible, and the
shifts are dominated by the five nearest-neighbour interactions.

13.6.3.2. Linewidths and PREs. The 31P longitudinal relaxation time
constants T1 and coherence lifetimes T 0

2 for LiMnPO4, LiFePO4,
and LiCoPO4 acquired at 11.74 T and 60 kHz MAS are plotted in
Fig. 13.25(a). Generally speaking the time constants are shorter

Fig. 13.25. Longitudinal relaxation time constants, coherence lifetimes, and line-
widths in the 7Li and 31P NMR spectra of LiMPO4 acquired at 11.74 T and 60 kHz
MAS. The 7Li and 31P T1 and T 0

2 time constants are shown in (a). In (b) and (c) are
plotted the contributions to the total sideband linewidth in the 7Li and 31P spectra
respectively. The total linewidth was measured from the average FWHM of the
sidebands. The homogeneous linewidth was computed from the coherence lifetime,
and is equal to 2=T 0

2 rad s�1. The inhomogeneous linewidth is estimated as the
difference between the total and homogeneous linewidths.
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than the corresponding values for 7Li, but exhibit the same trend,
increasing from LiMnPO4 to LiFePO4; the values for LiCoPO4 are
longer still. The reason for this trend is the same as for 7Li, a com-
bination of the reduction in S from 5=2 to 2 to 3=2, and a possible

reduction in the electronic relaxation times on going from Mn2+ to
Fe2+ to Co2+.

The trend in the linewidths shown in Fig. 13.25(c) is analogous
to that for 7Li. The major difference is that the linewidths for all
three materials are now dominated by the inhomogeneous contri-
bution, which increases across the series, dominating over an
accompanying decrease in the homogeneous linewidths. For
LiFePO4 and LiCoPO4 the inhomogeneous line broadening can be
attributed to the ABMS effect, whilst for LiMnPO4 it is due to a tem-
perature gradient across the spinning sample [31].

13.6.4. Shifts and shift anisotropies in the EPR formalism
The previous discussion of the paramagnetic shift employs the

susceptibility (i.e. scaling factor) formalism, which is the conven-
tional approach for solid materials such as LiMPO4 and LiMO2.
However it should also be possible to describe the shift in terms
of the EPR formalism, which is an approach that has recently been
adopted by Pigliapochi et al. [500], and Mondal et al. [501,522].
Here the EPR tensors for each distinct metal ion A are calculated,
with each giving a contribution to the paramagnetic shielding ten-
sor in Eq. (7.147). For solid-state systems, there are currently no
reported SO hyperfine tensor calculations, and until the very recent
contribution from Mondal and Kaupp [522], there were no similar
schemes for calculating the ZFS tensor. The work by Pigliapochi
et al. therefore restricted the SO coupling calculation to the g-
tensor. The total shift tensor s in the EPR formalism is then

dS ¼ lBSðSþ 1Þ
3�hcIkðT �HÞ

X
A;i

gðAÞ � AðA;iÞ

2S

 !
; ð13:8Þ

where the sum is taken both over the distinct metal ions A in the
supercell, and over the supercells i.

In LiMPO4 there is one crystallographically distinct M2+ ion per
unit cell. However this does not mean that the sum over A com-
prises a single term. Whilst the M2+ ions are indeed symmetry-
related, and have the same principal g-tensor components, there
are actually four metal ions that are distinguished by having differ-
ent PAF orientations relative to the crystal frame of reference. This
means that the four g-tensors have the same principal compo-
nents, and PAFs that are related to each other by the symmetry
operations describing the Pnma space group. This has profound
consequences for calculating the effect of the g-anisotropy on the
shift tensor, which are described below.

In the absence of the ZFS tensor there is a total of six terms in
the EPR formalism that contribute to either the isotropic shift,
SA, or both. The isotropic shift comprises two contact terms,

geA
FC and DgisoA

FC, and a single pseudo-contact term, Dg � ASD. The
two contact terms have a direct correspondence with the suscepti-
bility formalism, since the total isotropic g-tensor ge þ Dgiso is hid-
den inside the effective magnetic moment leff which is used in the

factor that scales the Fermi-contact coupling constant. The AFC con-
stant can be calculated in the same way as previously described,
either directly or using the pathway-decomposition approach.

The PCS term Dg � ASD is a new contribution that is not accounted
for in the scaling-factor formalism, and the calculation of this term

Fig. 13.26. The 31P MAS NMR spectra of LiMPO4 with M = Mn2+, Fe2+, and Co2+. The
centrebands are marked with an . The magnetic field is 11.74 T, and the MAS
frequency is 60 kHz.

Fig. 13.27. The Fermi-contact pathways and contributions for 31P in LiMPO4. For
Co2+ the P2 values marked a correspond to P interacting via O3H, and those marked b
are P interacting via O3L. Adapted with permission from [55]. Copyright (2013)
American Chemical Society.

Table 13.8
Comparison of the experimental shifts and calculated contact shifts of 31P in LiMPO4. See text for details. The calculated shifts are from Ref. [55], and the experimental shifts are
from Ref. [521].

Material 31P shifts Hyb20/ppm 31P shifts Hyb35/ppm Expt/ppm

Direct
P

iPi total
P

iPi short-range only Direct
P

iPi total
P

iPi short-range only

LiMnPO4 8650 8704 8661 7250 7225 7235 7296
LiFePO4 4361 4385 4385 3500 3451 3517 3352
LiCoPO4 3720 3755 3766 3054 3063 3069 2756

230 A.J. Pell et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 111 (2019) 1–271



requires more care. The PCS contribution for each metal ion A is a
matrix product of the site-specific g-tensor gðAÞ and the total hyper-
fine tensor due to the metals A from all the supercells,P

iA
ðA;iÞ=ð2SÞ. This latter quantity can be calculated using a spin-

flip approach in an analogous way to obtaining the pathway contri-
butions to the Fermi-contact coupling constant. The supercell is
selected so that it contains one each of the distinct metal ions A,
the spins of which are aligned so that they are parallel. The result-
ing electron spin density is then used to calculate the total hyper-
fine spin-dipolar tensor. Following this each metal ion is spin-
flipped in turn, and the new hyperfine coupling tensor calculated.
If the supercell contains only one metal ion of each distinct type,
then the periodic boundary conditions ensure that the flipping of
A causes the same flipping of all the spins A in all the supercells.
Therefore the difference between the two electron spin densities
gives us the total though-space ‘pathway’ contribution from

A;
P

iA
ðA;iÞ=ð2SÞ.

The calculated 7Li and 31P paramagnetic shift contributions for
the full series of LiMPO4 materials are shown in Fig. 13.28 [500].
The 7Li shifts in Fig. 13.28(a) indicate that, of the terms calculated,
the two contact shifts are generally dominant, with the exception
of LiCoPO4 where there is an appreciable PCS. Regarding the con-

tact terms, for LiMnPO4 only the NR Fermi-contact shift geA
FC con-

tributes, due to the zero SO coupling strength in the half-filled d-
shell. For the other systems the SO contribution to the contact shift

DgisoA
FC is important due to the significant isotropic g-shift of 0.17–

0.35. The differences between the calculated and experimental
shifts in Fig. 13.28(a) may be partly due to the neglect of the ZFS,
and so it would be of considerable interest to include this
contribution.

The dominance of the contact shift for Mn2+ and Fe2+ indicates
that the scaling-factor formalism described in the previous section
should give an accurate description of the shift, as is indeed shown
in Table 13.7. Furthermore for Co2+ the neglect of the PCS is one
factor that explains the significant deviation of the calculated
and experimental shifts in Table 13.7. It has been recently shown
by Mondal and Kaupp that the ZFS interaction also introduces a
substantial contribution to the PCS [522].

The 31P shifts in Fig. 13.28(b) are easier to rationalize. In all
cases the PCS is negligible, and the total shift is dominated entirely

by contact contributions. Once again only the term geA
FC is impor-

tant for Mn2+, with the SO part becoming more important across
the series. The overall agreement between theory and experiment
is better, with the calculated shifts tending to slightly overestimate
the experimental values.

We now turn to a feature of paramagnetic solid-state NMR that
is all too often neglected in these studies, which is the measure-

ment and interpretation of the shift anisotropy. Part of the reason
for the neglect of the SA is the difficulty in measuring accurate val-
ues, since the intensity distributions of the spinning-sideband
manifolds are perturbed by BMS effects. Nevertheless it is still pos-
sible to obtain a reasonable estimate of the SA DDS from a fit of the
sideband manifolds, and it proves instructive to compare these val-
ues to calculation. The experimental and fitted 7Li and 31P
spinning-sideband manifolds of LiMnPO4 and LiFePO4, acquired
at 11.74 T and 60 kHz MAS, are shown in Fig. 13.29 [500]. There
are some deviations between the experimental and fitted sideband
intensities, due to the neglect of BMS effects in the latter, but the
quality of the fit is sufficient to extract a good estimate of the ani-
sotropy. The comparison between the fitted values and the calcu-
lations is shown in Fig. 13.30 for 7Li (a) and 31P (b). The
agreement is remarkably good, given the difficulty of obtaining
good experimental values. One noteworthy point is that the calcu-
lations manage to reproduce the change in sign of the 31P SA in
LiFePO4 relative to the other SAs.

The breakdown of the total calculated SAs into the individual
terms is also given in Fig. 13.30. There are four contributions to

the SA, comprising one contact term AFCDg and three spin-dipolar

terms geA
SD
;DgisoA

SD, and Dg � ASD. For the material LiMnPO4 only

the NR dipolar term geA
SD contributes to both the 7Li and 31P SA.

For LiFePO4 there are significant contributions from the other dipo-

lar terms DgisoA
SD and Dg � ASD. However the most interesting fea-

ture is the large contact SA AFCDg contribution to the 31P SA of
LiFePO4, since it is this term that results in the negative overall
SA. The importance of this term stems from the fact that the total
Fermi-contact interaction with 31P is large compared to 7Li. This
result demonstrates that it is not only the isotropic shift that pro-
vides information on the bonding environment of the metal ion
and the nucleus, but also the SA. The measurement and interpreta-
tion of the SA in these systems points the way forward to the use of
the SA as a structural restraint in the NMR of paramagnetic
materials.

13.6.5. Experiments and calculations on LiFexMn1�xPO4

The final topic in this case study is the use of paramagnetic
solid-state MAS NMR and DFT calculations in the investigation of
the mixed-metal-ion olivine phosphates LiFexMn1�xPO4 with
x ¼ 0:25, 0.5, and 0.75. These materials have the same basic struc-
ture as shown in Fig. 13.21, and the same local Li and P environ-
ments as in Figs. 13.24 and 13.27. However the metal-ion sites
are occupied by a solid-solution of the metal ions Mn2+ and Fe2+.
One consequence of this is that there are nowmultiple local P envi-
ronments, as the chemical environment of these sites is dominated
by the short-range contact interactions between the five metal

Fig. 13.28. Breakdown of the contributions to the total 7Li and 31P chemical shifts in the EPR formalism for the series of olivine phosphate materials LiMnPO4, LiFePO4,
LiCoPO4, and LiNiPO4 determined by DFT calculations, and the comparison with the experimental shifts. The 7Li shifts are shown in (a), and the 31P shifts are shown in (b).
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ions. Hence there are 25 ¼ 32 P sites in the material, the popula-
tions of which are given by the probability of a random distribution
of Mn2+ and Fe2+ resulting in the corresponding occupancies of the
five metal sites.

The NMR spectra of LiFexMn1�xPO4 with x ¼ 0, 0.25 0.5, 0.75,
and 1 were acquired at 11.74 T and 60 kHz MAS [31] using the
double-adiabatic spin-echo pulse sequence in Fig. 12.50(a) [35],
and are shown in Fig. 13.31(a). The spectra of the three mixed
phases are very complicated, as each is a superposition of 32
spinning-sideband manifolds with different isotropic shifts. As
such it is impossible to obtain any detailed information from these
spectra, and we can simply note that at lower values of x the over-
all spectral intensity is biased towards the all-Mn shift of
7866 ppm due to the higher statistical probability of more metal
sites being occupied by Mn2+ than Fe2+. Similarly at higher Fe2+

content the spectral intensity is biased more towards the all-Fe
shift of 3558 ppm.

The lack of resolution between the different resonances is due
in large part to the overlap between the different spinning-
sideband manifolds. This overlap was removed using the aMAT
experiment in Fig. 12.50(b), giving a set of two-dimensional corre-
lation spectra such as that for LiFe0.5Mn0.5PO4 shown in Fig. 12.53.
The complete set of isotropic projection spectra is shown in
Fig. 13.31(b). The beauty of this experiment is that it enabled the
resolution of eight distinct groups of isotropic resonances, in which
are located the resonances of the 32 local environments.

The total contact shifts for each site can be calculated from the
pre-existing pathway contributions given in Fig. 13.27, which
saves effort otherwise required to calculate the shifts for each
extended structure. The calculated shifts were compared with

Fig. 13.29. Comparison of the experimental and fitted spinning-sideband manifolds of the 7Li and 31P MAS NMR spectra of LiMnPO4 and LiFePO4. The 7Li and 31P spectra of
LiMnPO4 are shown in (a) and (c), and the corresponding spectra of LiFePO4 are shown in (b) and (d). The field is 11.74 T, and the spectra were acquired at 60 kHz MAS. The
centreband is marked with an . Adapted with permission from [500]. Copyright (2017) by American Physical Society.

Fig. 13.30. Breakdown of the contributions to the total 7Li and 31P shift anisotropies in the EPR formalism for the olivine phosphate materials LiMnPO4 and LiFePO4

determined by DFT calculations, and the comparison with the experimental SAs. The 7Li SAs are shown in (a), and the 31P SAs are shown in (b). The experimental SAs were
taken from the fitted spectra in 13.29(a)–(d).
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the values obtained from a fit of the three spectra of the mixed
phases using the same pathway-contribution model in order to
obtain a full assignment, as shown in Fig. 13.32. The full set of
32 sites is given in (a), and the experimental and fitted spectra
are compared in (b) labelled with the assignments [31]. In this
investigation, pathway contributions for the two metal ions were
also calculated for different coordination geometries in order to
model the effects of structural disorder due to the substitution of
one metal ion for another.

To summarize, this study concerns one of the most complex
paramagnetic materials that has been investigated with solid-
state NMR to date, and provides a notable benchmark for future
NMR studies of paramagnetic systems. It was successfully repeated
on the mixed-phase LiCo1�xFexPO4 materials [57], and the aMAT
experiment has also been applied to other battery materials
including P2–Nax[LiyNizMn1�y-z]O2 with ð0 < x; y; z < 1Þ [56].

13.7. Contact shifts in ferredoxins due to coupled Fe4S4 clusters

13.7.1. Background
Ferredoxins are proteins containing iron–sulphur cores that

mediate electron transfers in metabolic processes [523]. The key
constituent of a ferredoxin is a FexSy unit, which can either donate
or accept electrons causing a change in the oxidation state of the Fe
ions, and catalysing biological redox reactions. We therefore pre-
sent an example of a solution paramagnetic NMR study here as it
forms a link to the previous discussion of battery materials.

The particular example we present is that of Bertini et al. [365],
which includes the assignment and interpretation of the 1H and 13C
contact shifts in the cysteine residues of ferredoxin from Clostrid-
ium acidi urici, which catalyzes the reduction of CO2 to formate

[524]. This and similar studies are notable as they are interesting
examples of the application of solution NMR to observe nuclear
spins from residues that directly coordinate to a metal ion. Ferre-
doxin from Clostridium acidi urici, the structure of which is shown
in Fig. 13.33(a), contains two Fe4S4 cores, each one of which can
either exist in an oxidized state [Fe4S4]2+ or a reduced state
[Fe4S4]+. In the oxidized state each cluster formally contains two
Fe3+ ions and two Fe2+ ions, and has a diamagnetic electronic spin
ground state of S ¼ 0 indicating some antiferromagnetic alignment
of the spins. However some temperature-dependent paramag-
netism arises from the population of the excited electronic spin
states. The reduced-state cluster contains one Fe3+ ion and three
Fe2+ ions, and has an electronic spin ground state of S ¼ 1=2. Each
Fe4S4 cluster binds to four cysteine amino acid residues, with each
Fe ion forming a bond to the S of the ACBH2ASH sidechain, as
shown in Fig. 13.33(b). The bonding between the cluster and the
cysteine residue can therefore be represented as FeASACB(HB1,
HB2)ACA(HA1)A. The nuclear spins of the cysteine sidechain and
backbone are therefore expected to experience large paramagnetic
shifts with a large contact contribution. In addition the exchange
coupling constants within the cluster are of the same order of mag-
nitude as kT at room temperature, and so we expect a non-Curie
temperature dependence of the paramagnetic shifts of the type
shown in Section 7.5.2 [47].

Bertini et al. investigated both the oxidized form of the protein,
with both clusters in the state [Fe4S4]2+, and a partially reduced
form [365]. Partial reduction gives the complex mixture of species
shown in Fig. 13.34, which are in exchange. There are two
partially-reduced species, in which one cluster is oxidized and
the other reduced, which are in fast exchange on the NMR time-
scale. Both species are also in slow exchange with both the fully-
oxidized and fully-reduced species.

13.7.2. NMR spectroscopy and assignment
Fig. 13.35(a) shows the one-pulse 1H solution NMR spectrum of

ferredoxin from C. acidi urici taken from Bertini et al. [365]. Eight
resonances are resolved above 10 ppm (labelled A–H). These sig-
nals exhibited short relaxation times and temperature-dependent
shifts, and so were ascribed to 1Hs of the coordinated cysteine resi-
dues. These signals were assigned using COSY and NOESY, which
identified AAH as the CB protons HB1 or HB2, and established cor-
relations to the other geminal HB nuclei A0AH0. In addition correla-
tions to the CA protons HA were also observed in the NOESY
spectrum. These were assigned using a structural model of the
related ferredoxin from Clostridium pasteurianum [365]. This
resulted in the identification of eight groups of two HB and one
HA protons, each corresponding to a single cysteine residue. How-
ever this was insufficient to assign each cysteine to a particular
cluster, and so further experiments were performed on a
partially-reduced sample of ferredoxin from C. acidi urici.

Fig. 13.35(b) shows the 1H spectrum of the partially-reduced
ferredoxin. We note that the resonances are broader than for the
oxidized sample, which is due to the ground spin state of the clus-
ter no longer being diamagnetic, but paramagnetic with S ¼ 1=2.
The cross-peaks between these broad signals in the COSY and
NOESY spectra were expected to be weak, and so the assignment
was performed using EXSY to identify correlations between the
slowly-exchanging oxidized and intermediate species. Comparison
of the spectra in Fig. 13.35(a) and (b) and subtraction results in two
further spectra of the fully-reduced species (c), and the two inter-
mediate species (d). The full set of chemical shifts for the oxidized,
intermediate, and reduced ferredoxin species allowed the assign-
ment of each set of cysteine 1H signals to either cluster I or II, i.e.
the eight groups of signals could now be assigned to specific
clusters.

Fig. 13.31. 31P NMR spectra of the five LiFexMn1�xPO4 materials (x ¼ 0, 0.25, 0.5,
0.75, 1), all of which occur in the olivine-type structure. The one-dimensional
spectra containing overlapping sideband patterns are shown in (a), and the
projections of the aMAT spectra containing just the isotropic shifts are shown in (b).
Adapted with permission from [31]. Copyright (2012) American Chemical Society.
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Fig. 13.32. Results of the fitting of the isotropic projections of the aMAT spectra. Pathway contributions of the Mn2+ and Fe2+ ions to the total contact shift were varied to fit
the isotropic projections of the experimental 31P NMR spectra. The MAOAP pathway labels are shown in (a) together with the 32 possible configurations in the mixed Mn2+/
Fe2+ phases. The comparison of the experimental and fitted isotropic spectra is shown in (b) for the x ¼ 0:75, 0.5, and 0.25 phases. The contact shifts and relative intensities of
the 32 peaks occurring in each spectrum are shown in the absence of line shape effects in (c), with labelling as in (a). The intensities shown in (c) take into account both the
stoichiometry-dependent probability of the configuration and the T 0

2 dephasing effects. Adapted with permission from [31]. Copyright (2012) American Chemical Society.

Fig. 13.33. Structure of a ferredoxin and the Fe4S4 cluster. The protein is shown in (a), and the Fe4S4 cluster is shown in (b). The cluster is coordinated to four cysteine
residues, with each Fe ion bonding to a S atom of a cysteine sidechain. The Fe ions are coloured pink, the S atoms are yellow, and the CB atoms are coloured black.
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The final step in the assignment process was to identify the resi-
due number of each of the eight cysteines by establishing correla-
tions to other residues in the amino acid sequence. This was
achieved using a combination of NOESY and TOCSY on the fully-
oxidized ferredoxin species. The full sequence-specific assignment
of HB1, HB2, and HA is given in Table 13.9.

Following the complete 1H assignment, a 1H–13C HMQC spec-
trumwas acquired to identify the 13CA and 13CB resonances in each
cluster, which was the first time this had been achieved at natural
abundance on a paramagnetic protein [365]. From the HMQC spec-
trum all eight 13CB resonances and six out of eight 13CA resonances
were assigned.

13.7.3. Temperature dependence of the contact shifts
Having obtained the assignment of the cysteine resonances, the

paramagnetic shifts were extracted in order to gain insight into

Fig. 13.34. Representation of the equilibrium between the oxidation states of the
two Fe4S4 clusters in a ferredoxin following the addition of a reducing agent to the
fully-oxidized protein. The two intermediate-reduced species are in fast exchange
with each other, and in slow exchange with both the fully-oxidized and fully-
reduced species. Fast-exchange processes are indicated by thick solid arrows, and
slow-exchange processes are indicated by thin dashed arrows.

Fig. 13.35. The 1H NMR spectra acquired at 600 MHz and 298 K of the ferredoxin
from C. acidi urici. The spectrum of the fully-oxidized species is shown in (a).
Following partial reduction the spectrum in (b) was obtained. The spectra in (c) and
(d) are of the fully-reduced species, and the two intermediate reduced species
respectively. Spectrum (d) was obtained by acquiring a spectrum of a 90%/10%
oxidized/partially-reduced species and subtracting from it spectrum (a). Spectrum
(c) was obtained by subtracting (d) from the spectrum of a sample containing both
partially- and fully-reduced ferredoxin. The reported assignment is given in
Table 13.9. Adapted with permission from [365]. Copyright (1994) American
Chemical Society.

Fig. 13.36. The experimental temperature dependence of the chemical shifts of the
cysteine 1HB signals of fully-reduced ferredoxin from C. acidi urici. The data were
obtained from EXSY spectra acquired at temperatures between 282 K and 300 K.
The dashed lines give the estimated values of the angle-independent shifts for each
CBH2 pair. Reproduced with permission from [365]. Copyright (1994) American
Chemical Society.

Table 13.9
Assignment of the 1H NMR spectrum in Fig. 13.35(a) of the oxidized ferredoxin from C.
acidi urici.

Cluster I Cluster II

Residue Atom Assignment Residue Atom Assignment

Cys11 HB1 B0 Cys40 HB1 A0

HB2 B HB2 A
HA B00 HA A00

Cys14 HB1 D Cys43 HB1 C
HB2 D0 HB2 C0

HA D00 HA C00

Cys47 HB1 E0 Cys18 HB1 F0

HB2 E HB2 F
HA E00 HA F00

Cys8 HB1 G Cys37 HB1 H
HB2 G0 HB2 H0

HA G00 HA H00
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both the electronic structure of the Fe4S4 cluster, and the mecha-
nism of unpaired spin-transfer from the Fe to the nuclear spins.
As discussed in Section 12.3.3 it is necessary to have a complete
assignment of a diamagnetic analogue of the paramagnetic system
of interest in order to subtract the orbital chemical shifts, and this
strategy relies on the orbital contributions to the shifts not chang-
ing significantly on substitution of the paramagnetic ion for the dia-
magnetic one. In the present case the reference system was a zinc-
finger protein, where the orbital shifts were taken to be the chem-
ical shifts of the nuclei in the cysteine residues bound to Zn [365].

The temperature dependence of the paramagnetic shifts due to
a coupled cluster of paramagnetic ions may be diagnostic of the
spin state of the whole cluster and give estimates of the exchange
coupling constant, as shown in Section 7.5.2. With this aim in mind
the chemical shifts of the CB protons in the fully-reduced protein
were obtained from the EXSY spectrum over a range of tempera-
tures between 282 and 300 K. The results are shown in Fig. 13.36
[365]. Although the temperature range is too narrow to obtain a
detailed picture of the electronic structure of the Fe4S4 cluster,
the temperature dependence does offer some insight, and b indi-
cates that the Fe ions are at least pairwise inequivalent [365]. Nota-
bly, for each cluster, two pairs of HB protons have chemical shifts
that increase with temperature, and two pairs have shifts that
decrease with temperature. This behaviour has been referred to
as anti-Curie and Curie respectively. However we avoid the use
of such terminology here as it oversimplifies the true temperature
dependence, which we have seen may be considerably more com-
plicated. The fact that half of the HB proton shifts increase with
temperature indicates the presence of at least one antiferromag-
netic coupling, so that the increase in temperature leads to a larger
thermal population of a spin state with a larger spin S, and hence a
greater magnetic moment.

13.7.4. Angular dependence of the contact shifts
The CB nuclei are separated from the coordinating Fe by two

bonds, the CA and HB by three bonds, and the HA by four bonds.
We expect the shifts of these nuclear spins to be dominated by the
Fermi-contact interaction, which we have seen depends on the
bonding geometry relative to the metal ion. Hence we can obtain
information on the spin-transfer mechanism from the dependence
of the paramagnetic shift on the geometry of the cysteine relative
to the Fe4S4 cluster. Here we focus on the contact shifts of the HB
and CA spinswhich, due to the three-bond separation, have a geom-
etry relative to the Fe that can be described by reference to Fig. 13.37
(a). Here the geometry is specified by a dihedral angle h which
describes the angular separation between the planes defined by
the FeASACB linkage and the SACBAHB linkage. If the unpaired
electron density from the Fe resides mainly in the FeAS r bond,
the contact shift drcon can be shown to obey a Karplus relation of
the form:

drcon ¼ a0 cos2ðhÞ þ b0 cosðhÞ þ c0; ð13:9Þ

where a0, b0, and c0 are coefficients [527]. Eq. (13.9) follows from the
fact that the overlap of the FeAS r bond with the HB s-orbital is at a
maximum when FeAS and CBAHB bonds are either co- or anti-
parallel, corresponding to h ¼ 0 and p, and a minimum when they
are orthogonal with h ¼ p=2. The magnitude of the contact shift
varies accordingly. On the other hand, if the unpaired electron den-
sity is mainly located in a FAS p bond, a different Karplus relation is
needed to give the contact shift dpcon:

dpcon ¼ a00 sin2ðhÞ þ c00; ð13:10Þ
where a00 and c00 are different coefficients [528,529]. Here the max-
imum overlap between the orbital containing the electron density

and the HB s-orbital occurs when the FeAS and CBAHB bonds are
orthogonal. In the general case both transfer mechanisms may con-
tribute to the overall contact shift dcon, which is then a sum of Eqs.
(13.9) and (13.10):

dcon ¼ a sin2ðhÞ þ b cosðhÞ þ c; ð13:11Þ

where a ¼ a00 � a0, b ¼ b0, and c ¼ a0 þ c0 þ c00. The relative magni-
tudes of a and b indicate whether the dominant electron transfer
is via the p or r bonds. The same considerations also apply to the
CA contact shift, with the difference that the dihedral angle is
defined between the FeASACB and SACBACA planes.

The Karplus hypothesis was tested by plotting the contact shifts
against the observed dihedral angle for a range of systems, includ-
ing the 1HB and 13CA shifts of oxidized ferredoxin from C. acidi urici
in the present case study [365], and the 1HB contact shifts from
oxidizied C. pasteurianum ferrdoxin [354], reduced C. vinosum
high-potential protein (HiPIP) [525], and reduced E. halophila HiPIP
II [526]. The plot is reproduced in Fig. 13.37(b). The data generally
follow the trend in Eq. (13.11). We firstly notice that all the contact
shifts are positive, which indicates that the electron delocalization
mechanism dominates the contact interaction. When fitted to the
HB shifts from C. acidi urici ferredoxin, we obtain the following
parameters for the Karplus relation: a ¼ 11:5, b ¼ �2:9, and
c ¼ 3:7 ppm. Both the positive value of a and the observation that
jaj > jbj indicate that the electron transfer mechanism is domi-
nated by delocalization from the FeAS p bond.

13.8. Paramagnetic distance restraints in the metalloprotein
superoxide dismutase (SOD)

13.8.1. Background
We now change to a paramagnetic NMR study of a different

protein sample, with a case study that illustrates the use of long-
range paramagnetic structural restraints to determine the struc-
ture of a protein in the solid state. The chosen study is that by
Knight et al. on the metalloenzyme superoxide dismutase (SOD)
[463,11,46]. Superoxide dismutase is a dimer comprising 2
 153
amino-acid residues, each unit of which binds to two metal ions
M1

m+ and M2
n+ [530,531]. The enzyme has the physiological function

of oxidizing the superoxide anion O2
�, which is produced as a by-

product of metabolic processes and can cause cell damage if not
regulated. The form of the protein which binds one Cu and one
Zn ion, (Cunþ,Zn2+)-SOD, catalyses the removal of superoxide via
the following two reactions:

Cu2þ-SODþ O�
2 ! Cuþ-SODþ O2 ð13:12Þ

Cuþ-SODþ O�
2 þ 2Hþ ! Cu2þ-SODþH2O2: ð13:13Þ

We see that the Cu ion is essential to the process, as the reactions
are driven by the redox between the paramagnetic Cu2+ and dia-
magnetic Cuþ oxidation states.

One advantageous aspect of SOD for the application of param-
agnetic restraints is that different metal ions can be incorporated
into the binding sites depending on which restraints we wish to
measure, as shown in Fig. 13.38 [532]. For example the (Cunþ,
Zn2+)-SOD form was used to measure PREs as the long electronic
relaxation times of 2.5 ns in the Cu2+ ion in the paramagnetic form
resulted in large induced nuclear relaxation rates [11]. A section of
the (H)NH spectrum is shown in Fig. 13.38(a) [532]. Here the dia-
magnetic reference protein was the reduced form (Cuþ,Zn2+)-SOD.
However the Cu2+ ion has a small magnetic anisotropy, as defined
by the axial and rhombic susceptibility anisotropies, and so gives
only small PCSs as seen in the (H)NH spectrum of Fig. 13.38(a)
[532]. For this reason PCS values were measured on (E,Co2+)-SOD,
where E indicates that the second binding site is empty, as the lar-
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ger magnetic anisotropy of the Co2+ ion gives larger PCSs that are
more easily measurable, as shown by the (H)NH spectrum of this
protein in Fig. 13.38(b) [46,532]. The electronic relaxation times
of the Co2+ ion are shorter than for Cu2+, taking typical values of
1–10 ps. The coherence lifetimes are therefore longer, which
allowed for more sensitive acquisition of PCS values closer to the
metal ion. In this case the diamagnetic reference was (E,Zn2+)-SOD.

In this study all the NMR data for the assignment, measurement
of PCSs and PREs, and the 1H–1H distance restraints were acquired
under 60 kHz MAS on a sample that was perdeuterated with the
exchangeable amide protons 100% back-exchanged. Triple-
resonance proton-detected three-dimensional HCN experiments
were acquired using a subset of the pulse sequences summarized
in Tables 12.5 and 12.6.

13.8.2. Resonance assignment and structure calculation using non-
paramagnetic 1H–1H distance restraints

The sequential assignment of the backbone amide 15N, 1HN, 13CO,
and 13CA was performed using the two-dimensional
(H)NH sequence and the three-dimensional (H)CANH, (H)CONH,
(H)CA(CO)NH, and (H)CO(CA)NH pulse sequences. For the diamag-
netic reference protein (E,Zn2+)-SOD all these resonances were
assigned for 145 out of a total of 147 non-proline amino acid
residues [463]. The assignment of the two Cu-bound proteins was
performed using the same set of experiments, from which 136

amide resonances were assigned for (Cuþ,Zn2+)-SOD, and 116 for
(Cu2+,Zn2+)-SOD respectively.

Paramagnetic distance restraints alone are insufficient to gener-
ate a three-dimensional structure of a protein, and must be com-
bined with conventional restraints used for diamagnetic proteins.
Therefore 1H–1H distance restraints between the backbone 1HN

were also measured on (Cuþ,Zn2+)-SOD. Using the (H)NHH-RFDR
sequence 297 such distance restraints were obtained. These were
combined with dihedral angle restraints and ambiguous
hydrogen-bond restraints in a simulated annealing routine. In the
absence of any paramagnetic restraints, the structure calculation
yielding the bundle of structures shown in Fig. 13.39(a). The preci-
sion of the structure is comparatively low, having a root-mean-
square deviation (rmsd) from the mean of 3.1 Å.

13.8.3. Paramagnetic relaxation enhancement as structural restraints
The precision of the calculated structure was improved by the

inclusion of PREs from (Cu2þ=þ,Zn2+)-SOD. The resolution necessary
to measure the relaxation rates was obtained from the two-
dimensional (H)NH spectra of the two proteins, which are shown
in Fig. 12.68. Here 103 resonances were resolved, indicating that
the (H)NH pulse sequence (shown in Fig. 13.40(a)) could be mod-
ified to include the necessary relaxation-measurement elements.
The 15N R1 relaxation rates were measured by incorporating an
inversion–recovery block after the first CP step in the (H)NH

Fig. 13.37. Plots of the contact shifts of the nuclei three bonds away from a Fe ion against the dihedral angle h. In (a) is shown the dihedral angle h between the two planes
defined by the FeASACB atoms on the one hand, and the SACBAHB atoms on the other. The HB contact shift depends strongly on h via a Karplus relation. There is also an
analogous dependence for the CA contact shift on the dihedral angle between the planes containing the FeASACB and SACBACA. The plot in (b) shows the 1H contact shifts
from the CBH2 protons (left-hand axis) from the following proteins: oxidized ferredoxin from C. acidi urici (�) [365]; oxidizied ferredoxin from C. pasteurianum (s) [354];
reduced HiPIP from C. vinosum (4) [525]; and reduced HiPIP II from E. halophila (O) [526]. Here the dihedral angle is between the two planes defined by FeASACB and
SACBAHB. The 13CA contact shifts in oxidized ferredoxin from C. acidi urici (right-hand axis) are also plotted (�). Here the dihedral angle is between the planes defined by
FeASACB and SACBACA. The curve is the best fit of Eq. (13.11) to the 1H shifts from oxidized ferredoxin from C. acidi urici (�) with a ¼ 11:5; b ¼ �2:9, and c ¼ 3:7 ppm.
Adapted with permission from [365]. Copyright (1994) American Chemical Society.

Fig. 13.38. Two-dimensional (H)NH solid-state MAS NMR spectra of two forms of SOD. The spectra of paramagnetic (Cu2+,Zn2+)-SOD and its diamagnetic reference (Cu+,Zn2+)-
SOD, which are shown in (a), were used to measure PREs due to the Cu2+ ion. In (b) are shown the spectra of paramagnetic (E,Co2+)-SOD and its diamagnetic reference (E,
Zn2+)-SOD, with the former showing PCSs in both frequency dimensions. Reproduced with permission from [532]. Copyright (2013) American Chemical Society.
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sequence as shown in Fig. 13.40(b). Measurements of the 13CO R1

values were performed using the sequence in Fig. 13.40(d), which
is based on the (H)CONH sequence (shown in Fig. 13.40(c)) in
which the 13CO evolution time is replaced with an inversion–re-
covery block. The site-specific relaxation rates are shown in
Fig. 13.41. It should be noted that the measurement of these rates
benefitted substantially from 60 kHz MAS and perdeuteration, as
the weakening of the 1H dipolar-coupling network reduced any
coherent effects. This is particularly important for the measure-
ment of the 13CO R1 rate constants shown in Fig. 13.41(g) and (h).

The PREs were calculated by subtracting the (Cuþ,Zn2+)-SOD
relaxation rates constants from the corresponding (Cu2+,Zn2+)-
SOD rate constants. This resulting in a total of 90 15N PREs and
85 13CO PREs being obtained from spins between 10 Å and 24 Å
from the Cu2+ ion. These PREs were ascribed to the Solomon mech-
anism with the correlation time dominated by the electronic relax-
ation time, which was given the literature value of 2.5 ns [15]. The
PRE varies with the distance R from the Cu2+ ion as 1=R6, enabling a
distance to be calculated. In the structure calculation these dis-
tances were included with the other distance restraints, but were
allowed to vary by 3 Å either side of the predicted value. In addi-
tion 25 1H–15N cross peaks that were observed in the (H)NH of

the diamagnetic protein, but not the paramagnetic protein, were
assumed to be broadened beyond detection by a PRE due to the
close proximity to the Cu2+ ion, and so were assigned an upper dis-
tance R of 10 Å. The corresponding structure bundle is shown in
Fig. 13.39(b). It shows an increase in precision compared to the
bundle in (a), with a lower rmsd of 1.6 Å, and particularly good def-
inition around the metal binding sites.

This case study illustrates the utility of paramagnetic distance
restraints in refining the structure of a protein. These restraints
are extremely useful both in solution studies [45], and particularly
in the solid state, where lower resolution and other difficulties
often result in insufficient diamagnetic restraints being available
for a high-precision structure calculation.

13.8.4. Pseudo-contact shifts as structural restraints
To further improve the precision of the calculated structure, PCS

values from (E,Co2+)-SOD were measured and used. The initial
assignment of the resonances of (E,Co2+)-SOD was achieved by
comparing the (H)CANH and (H)CONH spectra with those acquired
for (E,Zn2+)-SOD, and assigning those resonances that were easily
identifiable, as shown in Fig. 12.69(d)–(g). From these assigned res-
onances PCS values were extracted by subtracting the chemical

Fig. 13.39. Structure bundles of SOD calculated from solid-state NMR data using different types of restraint. The bundle in (a) was calculated with no paramagnetic restraints,
and has an rmsd of 3.1 Å. The structures in (b) were calculated using PREs, using an initial trial magnetic susceptibility tensor fitted from the mean structure in (a). Here the
rmsd is 1.6 Å. In (c) is shown the structure bundle calculated using PCSs, with an rmsd of 1.7 Å. The final structure bundle, shown in (d), was calculated using both PCSs and
PREs and has an rmsd of 1.4 Å. The Co2+ and Cun+ ions are shown in pink and violet respectively, and the aquamarine ribbon is the mean NMR structure for each case.
Reproduced with permission from [532]. Copyright (2013) American Chemical Society.

Fig. 13.40. Pulse sequences used to measure relaxation rate constants of the backbone amide 15N and 13C spins in solid-state proteins. Measurement of the 15N R1 rate
constants was performed using a sequence based on the standard (H)NH experiment shown in (a). To measure the 15N R1 values an inversion–recovery element was
incorporated to give the sequence in (b). The 13CO R1 rate constants were measured using a modification of the (H)CONH pulse sequence in (c). Here the t1 evolution time was
replaced by an inversion–recovery element, giving the sequence in (d). Narrow rectangles indicate 90� pulses, and broader rectangles are 180� pulses.
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shifts of (E,Zn2+)-SOD from those of (E,Co2+)-SOD. These PCSs were
then used in combination with the low-resolution structure in
Fig. 13.39(a) to fit an approximate magnetic susceptibility tensor,
from which the PCSs of all hitherto unassigned resonances were
predicted. The determination of the susceptibility tensor required
a total of eight parameters to be fitted, namely the axial and rhom-
bic anisotropies, the three Euler angles specifying the orientation,
and the three Cartesian coordinates of the Co2+ ion, with the initial
position estimated from the positions of the amino acids with res-
onances broadened by the PRE. If the predicted shifts matched
those observed in the spectra, the corresponding resonances were
assigned. The susceptibility tensor was then refitted until all the

visible peaks were assigned and a consistent susceptibility tensor
obtained. The final susceptibility tensor that was obtained had
axial and rhombic anisotropies of ð1:03	 0:03Þ 
 10�32 m3 and
ð0:91	 0:02Þ 
 10�32 m3, and a total of 445 PCSs were assigned
comprising 111 1HN, 223 13C, and 111 15N PCSs.

The structure calculation then proceeded by combining the 445
PCSs with the 297 1H–1H contacts and other diamagnetic restraints
to obtain the structure shown in Fig. 13.39(c). The overall precision
was significantly improved, as indicated by the reduction in the
rmsd from 3.1 Å to 1.7 Å. In particular a substantial improvement
was seen in the definition of the backbone in the vicinity of the
Co2+ binding site.

The simultaneous use of the PRE and PCS paramagnetic
restraints in combination with the 1H–1H contacts was also evalu-
ated. The final structure, which is shown in Fig. 13.39(d), showed a
further increase in resolution with an rmsd that dropped to 1.4 Å.
Once again particularly high definition was observed in the vicinity
of the binding site of the paramagnetic metal ion.

To conclude this section we note that the work on the structure
refinement of SOD described here made the assumption that the
PRE and PCS structural restraints were intramolecular only. To
describe it another way, the assumption was made there were no
PRE or PCS effects from the metal ions of neighbouring dimers in
the crystal, and that the measured restraints could therefore be
interpreted as being due solely to the metal ion in the same dimer
as the observed nucleus. In the case of SOD this assumption is valid,
since the metal binding sites are sufficiently far from the protein
surface to make any intermolecular spin-dipolar interactions negli-
gible. However for a general microcrystalline protein the total PCS
measured is the sum of the intermolecular and intramolecular
parts, and it is usually necessary to account for both [533]. The con-
cept is illustrated in Fig. 13.42 [534]. It is possible to separate the
intermolecular PCS from the intramolecular PCS using paramag-
netic dilution, as has been demonstrated for the protein Co-MMP
[12]. In order to isolate the intramolecular part one crystallizes a
dilute, uniformly 13C and 15N labelled, paramagnetic protein in
the presence of a greater concentration of the diamagnetic refer-
ence protein which has natural abundance 13C and 15N, as shown
in Fig. 13.42 [534]. The NMR spectra are therefore dominated by
the labelled paramagnetic protein molecules which, for a suffi-
ciently high degree of dilution, experience a negligible intermolec-
ular PCS. The PCS values that are measured can therefore be
ascribed entirely to the intramolecular part, and can be used to
refine the tertiary structure of the protein as described in this sec-
tion. If on the other hand we wish to measure the intermolecular
PCSs we can adopt an alternative dilution scheme, illustrated in
Fig. 13.42, in which only the diamagnetic reference protein is uni-
formly 13C and 15N labelled, and is diluted in the presence of a
greater concentration of the paramagnetic protein which has 13C
and 15N at natural abundance levels. Here we observe only the dia-
magnetic protein molecules in the NMR spectrum, and so there are
no intramolecular PCSs. The total PCSs that we do measure are
entirely intermolecular, and can be used to determine the crystal
structure [534]. Finally it is also possible to use PCSs containing
both inter- and intramolecular contributions for structure determi-
nation without the need for dilution, as shown by Luchinat et al.
[12].

13.9. Lanthanide stannates Ln2Sn2O7 in the solid state

13.9.1. Background
Lanthanide ions have unique luminescent properties which

make them promising candidates for new materials for including
solid-state lighting, sensing, and imaging applications [535–538].
A full understanding of their paramagnetic NMR properties is cru-
cial both for assigning the NMR spectra, and for extracting details

Fig. 13.41. The relaxation rate constants measured for microcrystalline (Cun+,Zn2+)-
SOD. Four examples of 15N and 13CO longitudinal relaxation decay curves are shown
in (a)–(d). In all four cases the red curves are from the diamagnetic reference
protein (Cu+,Zn2+)-SOD, and the blue curves showing the enhanced relaxation decay
are from the paramagnetic form (Cu2+,Zn2+)-SOD. The plots in (e)–(h) show the 15N
and 13CO R1 values for each residue for the two proteins. The shown data are: (e)
15N R1 of (Cu+,Zn2+)-SOD, (f) 15N R1 of (Cu2+,Zn2+)-SOD, (g) 13CO R1 of (Cu+,Zn2+)-
SOD, and (h) 13CO R1 of (Cu2+,Zn2+)-SOD. The secondary structure, in which the Cu-
coordinating histidine residues are marked with an , is shown above panel (e). The
parts highlighted in grey indicate where the residues are within 12 Å of the Cu
metal ion. Reproduced with permission from [532]. Copyright (2013) American
Chemical Society.
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about the electronic structure pertaining to the unpaired electrons.
As has been discussed, the understanding of the paramagnetic
shifts due to lanthanide ions is less advanced than for d-block
transition-metal ions. However the simplified theories of Golding
and Halton for the contact shift [61], and Bleaney for the PCS
[62], have proved very useful in this regard.

Here we present an early case study by Grey et al. who investi-
gated a series of lanthanide stannate compounds Ln2Sn2O7 incor-
porating different lanthanide ions with different concentrations
[65,66]. The contact shifts were probed by studying the composi-
tions Ln2Sn2O7 with 100% lanthanide content, where the paramag-
netic shifts are dominated by the short-range contact interaction in
the first coordination shell. In addition the effects of lower lan-
thanide contents were also studied in the solid-solution composi-
tions Y2�xLnxSn2O7, in which shifts due to the longer-range PCS
from ions in more distant coordination shells could be probed.
Here we focus on the former materials, and defer a discussion of
the PCS to different systems in subsequent sections.

All the compounds Ln2Sn2O7 adopt the pyrochlore structure
with space group Fd3m. These stannates are known for all

lanthanides ions, with the exception of Ce3+, and also for Y3þ. The
Sn4þ ion is located at the B site of the structure, which is at the
centre of an octahedral SnO6 coordination environment, which is
shown in Fig. 13.43. The Ln3+ ions have a larger radius, and so
occupy the larger A site which is coordinated to a distorted cubic
environment of eight O ions. The SnO6 is coordinated to six Ln3+

ions, which are expected to dominate the contact shift of the
119Sn resonance.

13.9.2. Paramagnetic shifts
Grey et al. measured the 119Sn solid-state MAS NMR spectra of

the diamagnetic materials with Ln3+ = La3þ and Lu3þ, and of the

paramagnetic materials with Ln3+ = Nd3þ, Sm3+, Eu3+, and Yb3+

[69]. The spectra are shown in Fig. 13.44. It can be seen immedi-
ately that the isotropic chemical shift is highly dependent on the

nature of the lanthanide ion, varying from �4000 ppm for Nd3þ

to 5000 ppm for Eu3+. The variation of the width of the spinning-
sideband manifold is also striking, with a comparatively small SA
being observed for Sm3+, and a particularly large value for Yb3+.

The two diamagnetic materials La2Sn2O7 and Lu2Sn2O7 have
similar isotropic chemical shifts of �642 and �641 ppm respec-
tively, which are due entirely to the orbital contribution. The fact
that there is negligible difference between these two orbital shifts
indicates that there is little variation across the entire lanthanide
series, and suggests that we can obtain the paramagnetic shifts
simply by subtracting the average of �641:5 ppm from the total
chemical shifts. In addition both La2Sn2O7 and Lu2Sn2O7 have a
negligible SA, which we can see from their spectra given that only
the centreband is present under slow MAS of 3–4 kHz. This indi-
cates that the SA observed for the paramagnetic materials is due
entirely to paramagnetic effects.

We now turn to the question as to the nature of the paramag-
netic shift, and whether it is dominated by the contact or pseudo-
contact contributions. Close examination of Fig. 13.44 indicates that
shifts are mainly due to the contact interaction, as the variation of

Fig. 13.42. Illustration of the intra- and intermolecular contributions to the PCS in a microcrystalline protein, and how they may be separated using two different dilution
schemes. Paramagnetic metal ions are indicated by the small PCS plots, and the diamagnetic reference ions are indicated by small red circles. Reproduced from Ref. [534] with
permission of The Royal Society of Chemistry.

Fig. 13.43. Local environment of the Sn4+ ion in Y2Sn2O7. The SnO6 octahedron of
the B site coordinates to six nearest-neighbour Y atoms. The same coordination
environment is expected in the lanthanide-substituted materials Ln2Sn2O7.
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the chemical shifts relative to the mean orbital shift better matches
the Golding–Halton contact coefficients in Table 6.5 than the Blea-
ney coefficients in Table 6.4, as noted by Grey et al. [66]. This can be
seen particularly for Eu3+, which has the largest shift measured
here, and which is predicted to have a small PCS and a large contact
shift. The match is seen better in Fig. 13.45, which plots the mea-
sured paramagnetic shift against the theoretical Golding–Halton
contact coefficients in Table 6.5. We observe a trend that is approx-
imately linear as expected, and so the paramagnetic shifts are dom-
inated by the contact shift. As for the solid materials with
transition-metal paramagnetic centres, we expect the contact shift
to be mainly due to the short-range contact interactions from the
nearest-neighbour Ln3+ ions in the first coordination shell. From
reference to Fig. 13.44 we see that there are six such contributions
to the contact shift, along six pathways LnAOASn. Deviations from
the ideal linear trend in Fig. 13.45 can be ascribed to shortcomings
in the Golding–Halton theory of contact shifts.

If the spin-dipolar interaction were the sole contribution to the
SA, we would expect the measured SA to correlate with the coeffi-

cients CSA ¼ g2
J JðJ þ 1Þ in Table 6.4. This provides a qualitative

explanation for the increase in the SA on going from Sm3+ to

Nd3þ and then to Yb3+, but does not explain the very large SA seen
for Eu3+. It is clear that we also have to consider other contributions
to the spinning-sideband manifold, such as the contact shift aniso-
tropy and BMS effects.

13.9.3. The Y2�xLnxSn2O7 materials with mixed composition
Grey et al. also studied the solid-solution compositions

Y2�xSmxSn2O7 [65,66]. Several isotropic resonances were observed
in the 119Sn NMR spectra, including those with paramagnetic shift
contributions from the second and third coordination shells.
Fig. 13.46 shows a series of 119Sn MAS NMR spectra for
Y2�xSmxSn2O7 of different compositions [65]. The material with
x ¼ 0 gives a single sharp peak at �575 ppm (position A in
Fig. 13.46). This is simply the orbital contribution to the total shift,
and takes a similar value to the shift for the diamagnetic materials
La2Sn2O7 and Lu2Sn2O7 in Fig. 13.44. Additionally the material with
x ¼ 2 has a single resonance with a broad spinning-sideband man-
ifold and an isotropic shift of �100 ppm, which we have seen is
mainly a contact shift (position G in Fig. 13.46). In the mixed com-

positions we see additional resonances centred at positions B–F
which are discretely spaced. In the light of the previous discussion
of pathway contributions in Sections 13.4,13.5,13.6 we can inter-
pret the contact contributions to the shifts at positions A and G
as being due to zero and six nearest-neighbour Sm3+ ions respec-
tively. Therefore the other resonances observed at B–F have con-
tact contributions from between one and five nearest-neighbour
Sm3+ ions. From these spectra we are able to calculate the average
pathway contribution to be 79 ppm.

In addition to the dominant contact contributions the observed
shifts are likely to have a substantial PCS part, giving rise to split-
tings in the isotropic resonances at each of the seven main posi-
tions, and which can be rationalized by the Bleaney theory.
However in order to study the PCSs due to a series of lanthanide
ions, we turn our attention to a different system.

13.10. The interaction between guanidinium and tris-dipicolinate
lanthanide ions in solution: (Gua)3[Ln(DPA)3]

13.10.1. Background
The optical spectroscopy of lanthanide complexes is character-

ized by excited states with comparatively long lifetimes, which
may be of the order of ls to ms. These long lifetimes open up
the possibility of using these systems for sensitivity-enhanced
bio-imaging [539]. One interesting feature of the spectroscopy of
some lanthanide-containing complexes is the ability to excite an
electronic transition by the simultaneous absorption of two pho-
tons, whose energies sum to the required energy of transition.
The technique of two-photon absorption-induced fluorescence
represented a major breakthrough in bio-imaging [540].

One class of interesting biological systems is that of anionic lan-
thanide tris-dipicolinate complexes Ln(DPA)33� co-crystallized with
proteins such as hen egg-white lysozyme, thaumatin, and urate
oxidase. There is an intermolecular interaction which is particu-
larly favourable with the guanidinium part of the amino acid argi-
nine [541]. The nature of this interaction, and the luminescent
properties of the complexes, were investigated in some detail by
D’Aléo et al. who prepared a series of Ln(DPA)33� complexes in
aqueous solution with guanidinium cations (Gua+) [469]. The sto-
ichiometric composition of (Gua)3[Ln(DPA)3] is shown in
Fig. 13.47. The interaction between Ln(DPA)33� and Gua+ was
probed with 15N solution NMR of the Gua+ cation isotopically
enriched with 15N. The spectra were dominated by the paramag-
netic effects of the unpaired 4f electrons of the lanthanide ions.

13.10.2. Pseudo-contact shifts
D’Aléo et al. acquired the 15N NMR spectra of (Gua)3[Ln(DPA)3]

with seven of the paramagnetic trivalent lanthanide ions, and the
diamagnetic lanthanide ion Lu3+. These spectra are shown in

Fig. 13.44. Solid-state 119Sn NMR spectra of the pyrochlores Ln2Sn2O7 at a field of
4.7 T and MAS frequencies of 3–4 kHz. The paramagnetic shifts are calculated by
subtracting the chemical shifts of one of the diamagnetic systems, La2Sn2O7 or
Lu2Sn2O7. Adapted with permission from [69]. Copyright (1989) American Chemical
Society.

Fig. 13.45. Plot of the experimental 119Sn paramagnetic shifts of Ln2Sn2O7 against
the theoretical relative contact shift coefficients Ccon in Table 6.5, calculated by
Golding and Halton [61]. The experimental shifts are taken from Grey et al. [69].
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Fig. 13.48, along with the spectrum of Gua�HCl for comparison. The
Gua+ cation can either be bound to the Ln(DPA)33� anion through an
ionic intermolecular interaction, or unbound as a free cation. We
expect the Gua+ to chemically exchange between these two envi-
ronments, a hypothesis that is confirmed by all the 15N NMR spec-
tra where the presence of a single peak further indicates that we
are in the fast-exchange limit and observe the average of the bound
and unbound states. The substantial range of chemical shifts, from
64 to 70 ppm, is attributed to the different paramagnetic shifts of
the lanthanide ions. The solution of Gua�HCl gives a shift at
68.5 ppm, attributed to the orbital contribution, which can be used
as a diamagnetic reference to be subtracted from the other shifts to
give the paramagnetic contributions. This choice is supported by
the observation that the shift of (Gua)3[Lu(DPA)3] is only
0.04 ppm higher than that of Gua�HCl, which is a negligible differ-
ence and within the experimental linewidth. The linewidths are
fairly uniform across the series, with the obvious exception of
Gd3+ where the peak is broadened considerably. Therefore it
appears that the transverse PRE does not add significantly to the
observed broadening in the diamagnetic complexes, apart for
(Gua)3[Gd(DPA)3] where the long electronic relaxation times of
the Gd3+ ion, due to the half-filled 4f shell and subsequent zero
SO coupling strength, result in a short T2.

As stated above the supramolecular interaction is ionic in nat-
ure, and so we would expect the contact interaction between the
15N and the Ln3+ ion to be zero, with the result that the shifts are
entirely PCSs. One initial observation suggesting that this is indeed
the case is the very small paramagnetic shift of 0.14 ppm due to
Gd3+. According to Golding and Halton the contact shift for Gd3+

is expected to be one of the largest in the lanthanide series [61],
whereas the PCS according to Bleaney is zero [62]. We therefore
ascribe the shift of 0.14 ppm to either a variation in the orbital
shift, or an error that is within the experimental linewidth.

A more complete analysis is presented in Fig. 13.49, in which
the experimental paramagnetic shifts are plotted against the Blea-
ney coefficients Cpcs

J from Table 6.4. There is an excellent linear
trend, which is expected for shifts that are entirely pseudo-
contact. The one significant discrepancy is for Eu3+, which is
expected as the populations of the excited J-levels are neglected
in the plot. Nevertheless the correlation is striking, and provides
experimental evidence for the validity of the Bleaney theory in this

particular case. It would be satisfying to be able to calculate the
crystal-field splitting parameters from this correlation. However
the slope of the line contains contributions from the crystal-field
splitting, the spin-dipolar interaction, and indeed the rate of chem-
ical exchange, which cannot be separated here. To do so would
require additional information about the relative position of the
15N to the metal ion and the exchange properties. This is explored
in the following section.

13.11. Paramagnetic effects of lanthanide ions in the dicalcium protein
calbindin D9k

13.11.1. Background
In our final case study of the paramagnetic shifts due to lan-

thanide ions we present the work of Bertini et al. who measured
the PCSs due to a series of lanthanide ions incorporated into the
protein dicalcium calbindin D9k, which is denoted Ca2Cb [75].
The PCSs were used to refine the calculated structures, and the
extracted susceptibility anisotropy parameters for each lanthanide

Fig. 13.46. Solid-state 119Sn MAS NMR spectra of Y2�xSmxSn2O7 with different
compositions x. The six spectra collectively reveal the presence of seven main
resonances at positions A–G, which are due to a number of nearest-neighbour Sm3+

ions that increases from zero to six, with an average contact-shift pathway
contribution of 79 ppm. Adapted with permission from Springer Nature [65],
copyright 1987.

Fig. 13.47. Chemical structure of the (Gua)3[Ln(DPA)3] complexes. Adapted with
permission from [469]. Copyright John Wiley and Sons.

Fig. 13.48. Solution 15N NMR spectra of a series of (Gua)3[Ln(DPA)3] complexes
with different lanthanide ions in D2O at 16.44 T. The spectra each contain a single
peak due to the 15N-enriched guanidinium cation. The notation [Ln] is a shorthand
for the [Ln(DPA)3]3� anion. Reproduced with permission from [469]. Copyright John
Wiley and Sons.
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ion were studied in order to gauge the quality of the agreement
with the Bleaney theory.

Dicalcium calbindin D9k binds two Ca2+ ions [542]. It is found in
mammalian intestinal epithelial cells where it mediates the trans-
port of Ca2+. In the present case study the Ca2+ ion in the C-terminal
binding site was replaced by the full series of lanthanide ions from
La3+ to Lu3+, with the exceptions of Pm3+ and Gd3+, to give a series
of 13 protein derivatives that are denoted CaLnCb. The chemical
shifts for each amide 1HN and 15N were measured for all the deriva-
tives, and the paramagnetic shifts were obtained by subtracting
the corresponding shifts of either the CaLaCb or CaLuCb protein.

The advantages of using a protein such as D9k to measure these
paramagnetic shifts are twofold. Firstly as the NMR was performed
using conventional pulse sequences the nuclei were observed out-
side the blind sphere, the radius of which is dependent on the par-
ticular lanthanide ion in the binding site. This means that the
paramagnetic shifts could be ascribed entirely to PCSs, as the con-
tact shifts drop to zero outside the blind sphere. Secondly the large
number of PCSs available can be used to determine both the orien-
tation and anisotropy parameters of the magnetic susceptibility
tensor to a high degree of precision. Both of these points enabled
a comprehensive evaluation of the Bleaney theory, which we
described in Section 6.5 [75].

13.11.2. Pseudo-contact shifts
The chemical shifts of the amide 1HN and 15N resonances were

measured by acquiring a 1H–15N HSQC spectrum for each CaLnCb
derivative. Four representative spectra are shown in Fig. 13.50

[75]. The spectra shown are of (a) diamagnetic CaLaCb (4f 0), (b)

an example with an early paramagnetic lanthanide (4f 2) CaPrCb,

(c) a ‘mid’ lanthanide (4f 8) CaTbCb, and (d) a late lanthanide

(4f 12) CaTmCb. The procedure for assigning the PCSs and calculat-
ing the magnetic susceptibility tensor was similar to that described
in Section 13.8.4 [46]. The PCSs themselves were calculated from
the chemical shifts of each resonance by subtracting the corre-
sponding shifts of a suitable diamagnetic reference protein. Two
diamagnetic derivatives were available here, namely CaLaCb and
CaLuCb, which were found to have measurably different sets of
orbital shifts. It was found that a better fit of the PCSs was obtained
if the former derivative CaLaCb was chosen as the reference for the
early lanthanides Ce, Pr, Nd, Sm, and Eu, and if the latter reference
CaLuCb was chosen as the reference for the late lanthanides Tb, Dy,
Ho, Er, Tm, and Yb. This observation is consistent with the decrease
in the ionic radius of the lanthanide ion across the series resulting
in minor changes in the protein structure [75]. For each sample a
set of about 1000 1HN and 15N PCSs were measured. For each of
these sets the susceptibility tensor was fitted to the PCS values
using an initial trial structure of CaCeCb determined in solution
by NOEs, using the following expression for the PCS:

dpcsiso ¼ 1
12pR3 Dvax 3cos2ðhÞ�1

� �þ3
2
Dvrhsin

2ðhÞcosð2/Þ
� 

; ð13:14Þ

where R, h, and / define the position of the nuclear relative to the
PAF of the susceptibility tensor, and Dvax and Dvrh are the axial
and rhombic anisotropies of the tensor. Finally the protein structure
and tensor parameters were simultaneously calculated by combin-
ing the total of 1097 PCSs for all lanthanides simultaneously with
1539 NOEs and 39 3J-coupling constants.

The axial and rhombic susceptibility anisotropy parametersDvax

and Dvrh, and the three axes specifying the orientation of the PAF,
were determined for all 11 paramagnetic derivatives. It was found
that all the axis orientations were within 15� of the average for all
the derivatives, with the exception of CaSmCb for which a larger
deviation of 20� was found. This indicates that the coordination
environments for all the ions are broadly similar, with the small
variations reflecting minor short-range structural changes. The val-
ues of the axial and rhombic anisotropy parameters are plotted
against the Bleaney coefficients Cpcs

J from Table 6.4 in Fig. 13.51
(a) and (b). An approximately linear correlation, indicated by the
dashed best-fit lines, is observed for both anisotropy parameters.
A perfect correlation would indicate firstly that the Bleaney theory
is good description of the PCS of these systems, and secondly that

the crystal-field splitting parameters hr2iA0
2 and hr2iA2

2 are the same
for all the paramagnetic derivatives CaLnCb. Whilst there are some
deviations from the ideal case, the data in Fig. 13.51 nevertheless
allowed the determination of the average crystal-field splitting
parameters for the series of proteins [75].

13.11.3. Extracting the crystal-field splitting parameters
From Fig. 13.51 we are in a position to calculate the average

crystal-field splitting parameters. As discussed in Section 6.5, the
Bleaney theory gives the following expressions for the axial and
rhombic susceptibility anisotropies in terms of the energy coeffi-

cients hr2iA0
2 and hr2iA2

2 of the crystal-field interaction Hamiltonian
in Eq. (6.51):

Dvax ¼ � l0l2
B

30ðkTÞ2
Cpcs
J hr2i3A0

2; ð13:15Þ

Dvrh ¼ � l0l2
B

30ðkTÞ2
Cpcs
J hr2i2A2

2: ð13:16Þ

Hence the slopes of the best-fit lines to the plots of Dvax against C
pcs
J

and Dvrh against C
pcs
J in Fig. 13.51(a) and (b) yield hr2iA0

2 ¼ 179 cm�1

and hr2iA2
2 ¼ 143 cm�1. The corresponding crystal-field splitting

parameters for each protein were found to vary within 	30% of
these averages.

Bertini et al. performed a more sophisticated analysis than that
above, from which a refined value of the axial crystal-field splitting
parameter was obtained. In summary both the excited-state con-
tributions to the PCSs in CaSmCb and CaEuCb were taken into
account, and the Bleaney expression was extended to third order
in 1=ðkTÞ. The result was an improved agreement between the
experimental and calculated axial susceptibility anisotropy for
each lanthanide, as shown in Fig. 13.52 [75]. The average parame-

ter hr2iA0
2 was refined to 169 cm�1, with a variation of 	15% for dif-

ferent lanthanide ions.
This case study represents the most compelling evidence to date

for the validity of the Bleaney theory for the PCS due to lanthanide
ions. The reasons for this are that 11 out of 13 of the paramagnetic
lanthanide ions could be incorporated into the C-terminal Ca2+

binding site, that a large number of PCSs that could be measured,
and that the observed nuclei are sufficiently far from the lanthanide
ion that only the PCS contributes to the isotropic paramagnetic
shift. This study was also able to quantify the variation of the orien-

Fig. 13.49. Plot of the experimental 15N paramagnetic shifts of (Gua)3[Ln(DPA)3]
taken from Fig. 13.48 against the theoretical relative PCS coefficients Cpcs

J in
Table 6.4, calculated by Bleaney [62].
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tation of the PAF of the magnetic susceptibility tensor across the
lanthanide series and the variation in the crystal-field splitting
parameters, and account for higher-order terms in the Bleaney the-
ory. These are factors that are sometimes erroneously cited as fun-
damental shortcomings of the Bleaney theory.

13.12. Actinyl tris-carbonate complexes in solution

13.12.1. Background
Studies of actinide complexes and materials by NMR are cur-

rently very sparse, mainly due to the radioactivity of such systems
making it difficult to obtain experimental data. Additionally, com-
putations of the paramagnetic shifts are difficult to perform, as the
heavy open-shell actinide ions require a full relativistic treatment
[213]. Nevertheless such calculations have been performed very
recently by Gendron et al. on small actinyl complexes containing
either one or two 5f electrons [92,93]. Although there are many
issues still to be addressed, this work is of profound interest to the-
oreticians and experimentalists alike, and opens a new frontier in
paramagnetic NMR.

The compounds we examine in this section are the actinyl tris-
carbonates UO2(CO3)35�, NpO2(CO3)34�, and PuO2(CO3)34�, all of
which adopt axial symmetry within the point group D3h, and for
which experimental 13C NMR spectra have been obtained
[230,231]. The paramagnetic centres in the first two complexes
are U5+ and Np6+ respectively, each with the same open-shell con-

figuration 5f 1. The metal ion in the third complex is Pu6+, with con-

figuration 5f 2.

13.12.2. Paramagnetic shifts
One point of interest for the original experimental studies of

these complexes was to establish information about the kinetics

of these complexes in solution. The general actinyl tris-carbonate
complexes are known to exchange bound carbonate with free car-
bonate in aqueous solution according to the following scheme:

AnO2ðCO3Þn�3 þ CO2�
3 � AnO2ðCO3Þ2ðCO3Þn� þ CO2�

3 : ð13:17Þ

The experimental 13C NMR spectra of the three complexes
UO2(CO3)35�, NpO2(CO3)34�, and PuO2(CO3)34� in aqueous solution
are shown in Fig. 13.53(a)–(c). In all three spectra we observe a sin-
gle peak due to the paramagnetic species AnO2(CO3)3n� which is
generally broad, with the exception of NpO2(CO3)34�, and distinct
from an additional resonance due to the CO3

2�/HCO3
� species. The

spectra indicate that the exchange of carbonate bound to the com-
plex with free carbonate is in the slow exchange limit, whereas the
additional exchange between the CO3

2� and HCO3
� ions is in the fast-

exchange limit. As was noted during the discussion on CEST and
PARACEST in Section 12.4.1, the larger chemical shift dispersion of
paramagnetic species in solution allows us to obtain distinct chem-
ical shifts for such species exchanging with larger rate constants
than is possible for diamagnetic complexes. Two additional peaks
in the spectrum in Fig. 13.53(b) are due to the additional complex
(NpO2)3(CO3)66�.

The paramagnetic shifts of the three actinyl tris-carbonate com-
plexes were calculated by Gendron et al. [92,93]. They employed
the general formula for the paramagnetic shielding tensor of van
den Heuvel and Soncini given in Eq. (4.103), which is reproduced
below for convenience:

rS
ij ¼

2
�hcIQ0

X
n

expð�bEnÞ
X
m–n

X
m;l

hnmjm̂ijmlihmljF̂ jjnmi
Em � En

þ b
�hcIQ0

X
n

expð�bEnÞ
X
m;m0

hnmjm̂ijnm0ihnm0jF̂ jjnmi: ð13:18Þ

Fig. 13.50. Four examples of solution 1H–15N HSQC spectra of different CaLnCb derivatives acquired at 18.79 T and 300 K. The four derivatives are (a) diamagnetic CaLaCb, (b)
CaPrCb, (c) CaTbCb, and (d) CaTmCb. Reproduced with permission from [75]. Copyright (2001) American Chemical Society.
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They divided the shielding tensor in Eq. (13.18) into two parts, with
the first referred to as linear-response (LR) contribution, and the
second as the Curie contribution. Here the sums are over all the
electronic states, which in practice include both the ground state
and any low-lying excited states. When the only significant contri-
bution is from the electronic ground state, the shielding tensor can
be written using Eq. (6.24) in terms of the EPR parameters for that
manifold. Gendron et al. employed that form of the EPR formalism,
using the lowest-order tensor components for the g-, hyperfine, and
ZFS tensors and neglecting the higher-order terms. In this case the
paramagnetic shielding comprises only the Curie contribution, and
the resulting shift dCurie is calculated from Eq. (4.109), giving

dCurie ¼ lB

3�hcI
Tr g � Z � A½ �; ð13:19Þ

where the g-, hyperfine, and ZFS tensors g; A, and D refer to the
pseudo-spin of the electronic ground state. The components of the
tensor Z are given by Eq. (4.113), which is reproduced here:

Zkl ¼ 2
Q0

X
n

expð�bEnÞ
X
m–n

X
m;l

hnmjbSkjmlihmljbSljnmi
Em � En

þ b
Q0

X
n

expð�bEnÞ
X
m;m0

hnmjbSkjnm0ihnm0jbSljnmi: ð13:20Þ

Fig. 13.51. The axial and rhombic susceptibility anisotropies, and associated errors,
calculated for the CaLnCb derivatives from PCSs, plotted against the theoretical
relative PCS coefficients Cpcs

J in Table 6.4, calculated by Bleaney [62]. The axial and
rhombic anisotropies are plotted in (a) and (b). The susceptibility anisotropies were
calculated by Bertini et al. [75].

Fig. 13.52. Experimental (filled circles) and calculated (open squares) axial
susceptibility anisotropy values for the series of CaLnCb derivatives. The calculated
values used an axial crystal-field splitting parameter of A0

2hr2i ¼ 169 cm�1 as
determined by Bertini et al. [75], and a correction for temperature up to terms in
1=T3. The right-hand vertical axis shows the expected RDC at 18.79 T and 298 K in
Hz. Reproduced with permission from [75]. Copyright (2001) American Chemical
Society.

Fig. 13.53. 13C NMR spectra of a series of actinyl tris-carbonate complexes acquired
in aqueous solution. In (a) are shown the spectra of a 4:598
 10�2 M solution of
UO2(CO3)35� mixed with 1 M Na2CO3, acquired at �75:45 MHz. The spectra were
acquired at a series of temperatures between 273 and 313 K. The spectra of a 0.05 M
solution of NpO2(CO3)34� mixed with Na2CO3 acquired at �62:9 MHz, 273 K, and
variable pH are shown in (b). The inset shows the resonances due to (NpO2)3(CO3)66�

at 303 K. The spectra in (c) are of a 0.2 M solution of PuO2(CO3)34� mixed with 1 M
Na2CO3 and 1 M NaClO4 acquired at �62:9 MHz, a pH of 9.5, and variable
temperatures between 277 and 350 K. Adapted with permission from [230,231].
Copyright (1995 and 2005) American Chemical Society.
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Finally, the description of the shift is completed by noting that if the
electronic ground state has pseudo-spin 1=2, the shift simplifies to
the form calculated from Eq. (4.118):

dCurie ¼ lBSðSþ 1Þ
9�hcIkT

Tr g � A½ �; ð13:21Þ

where S ¼ 1=2. The contributions to the shifts were separated into
the Curie and LR contributions, with each contribution further sep-
arated into the parts due to the Fermi-contact shift, PCS (due to the
spin-dipolar interaction), and PSO shift.

The calculations of the paramagnetic shifts were performed
using the CASSCF and RASSCF methods. The results quoted here
are from calculations comprising 12 occupied orbitals and 100
unoccupied orbitals in addition to the active space, and include
corrections for solvent effects.

13.12.3. Interpretation
The total calculated shifts were calculated using Eq. (13.18) and

are plotted, along with their individual contributions and the
experimental shifts, for the three actinyl tris-carbonate complexes
in Fig. 13.54. For all three compounds the orbital shift was assumed
to be equal to the chemical shift of 168.22 ppm of the diamagnetic
isostructural analogue UO2(CO3)34� (containing U6+ ions with no 5f
electrons). The experimental shifts shown in Fig. 13.54 were there-
fore re-referenced to UO2(CO3)34�, and therefore comprise only the
contributions from paramagnetic effects. For all three complexes, it
can be seen that the Curie terms are the dominant contributions to
the total shift, with the LR parts representing only minor
corrections.

For the two complexes with a single 5f electron, UO2(CO3)35�

and NpO2(CO3)34�, the single largest contribution to the shift is
from the PSO part of the Curie shift, with the next largest terms
being the Curie PCS and LR PSO. Interestingly, we see that the con-
tact shifts are negligible in UO2(CO3)35�. Gendron et al. also

employed the EPR representation of the shift. For these two 5f 1

complexes both the ground state and lowest-lying excited state
are doublets, and can be modelled with pseudo-spin 1=2. Their
Curie contributions to the shift were therefore calculated from
Eq. (13.21). The results are given in Table 13.10 [93]. The paramag-
netic shift is therefore well approximated in the EPR formalism,
here considering only the two lowest-lying electronic states.

In the case of PuO2(CO3)34�, the addition of the second 5f elec-
tron has the effect of increasing the paramagnetic shift substan-
tially. Here the Curie contact shift and Curie pseudo-contact shift
are significant, but are also of opposite sign and largely cancel,

leaving the Curie PSO shift as the remaining dominant contribu-
tion. All the LR terms were found to be negligible.

The lowest-lying excited state was calculated to be 3580 cm�1

above the ground state, and so could be neglected in the EPR rep-
resentation of the shift. The EPR parameters of the ground state
were calculated twice, once assuming a pseudo-spin of 1=2 and
once assuming a pseudo-spin of 1, and are tabulated in Table 13.11.
We see that all the EPR parameters vary depending on which
model we use for the ground state. In particular we see that the
inclusion of ZFS in the pseudo-spin-1 model has the effect of reduc-
ing the magnitude of all the other parameters relative to their val-
ues in the pseudo-spin-1=2 model, as expected. Nevertheless, the
two pictures give the same values for the shift in each case, and
the same contributions at this temperature. However we should
note that the temperature dependence of the shift, within the
range where only the groundmanifold is occupied, will be different
for the two models. This is due to the inclusion of the tensor Z in
the pseudo-spin-1 model, which does not have a simple Curie tem-
perature dependence.

For these carbonate systems, the accurate reproduction of the
experimental paramagnetic shifts sets a benchmark in computa-
tional paramagnetic NMR of actinide systems. The general trends
identified for these systems suggest that (1) the Curie terms dom-
inate the LR contributions, and (2) the most important of the Curie
terms is that due to the PSO contribution. However it is currently
unclear whether these trends are in fact general, or only specific
to these particular types of complex. Nevertheless, it is expected
that calculations of this type will become more widely employed
in paramagnetic NMR of actinide complexes in the future.

13.13. Solid actinide oxides

13.13.1. Background
The second case study of paramagnetic actinide systems we

present is the 17O MAS solid-state NMR study of cubic actinide oxi-
des by Martel et al. [13]. Solid actinide systems have remained elu-
sive to NMR due both to their well-known high radiotoxicity, and
to the technological challenges associated with fast spinning. This
study therefore represents an impressive contribution to our
understanding of the NMR properties of such solids.

13.13.2. Paramagnetic shifts
Five actinide oxides were enriched with 17O, and studied with

17O NMR at fast MAS of 55 kHz. The chosen oxides were ThO2

(5f 0, diamagnetic), UO2 (5f 2), NpO2 (5f 3), PuO2 (5f 4), and AmO2

Fig. 13.54. Breakdown of the contributions to the total 13C chemical shifts of the three actinyl tris-carbonate complexes determined by first-principles calculations, and the
comparison with the experimental shifts. The quoted shifts are for experimental temperatures of 273 K (UO2(CO3)35� and NpO2(CO3)34�), and 295 K (PuO2(CO3)34�). The
calculated shifts are taken from Ref. [93], and the experimental shifts from Ref. [231] (UO2(CO3)35�), and [230] (NpO2(CO3)34� and PuO2(CO3)34�). All shifts have been referenced
relative to the orbital shift of the diamagnetic complex UO2(CO3)34�.
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(5f 5). The spectra acquired under both static and MAS conditions
are shown in Fig. 13.55. In the spectra of the static powders we
see that the measured shifts cover a large range, from þ800 ppm
to �800 ppm, and depend strongly on the actinide ion. We also
see that the diamagnetic oxide ThO2 has a comparatively large shift
of 576 ppm, indicating that all the oxides have substantial orbital
shifts which may themselves vary considerably with the actinide
ion, and which therefore complicate the interpretation of the
NMR spectra. In addition, the resonances of the paramagnetic oxi-
des are broad, each having linewidths in the range of 100–
500 ppm. Since the oxides have a long-range structure that is
cubic, there is no contribution from the quadrupolar interaction
to the line broadening, and so the linewidths can be ascribed
mainly to paramagnetic effects.

When MAS is applied, the most striking change to the spectra is
the narrowing of these resonances to a few ppm, with the excep-
tion of that of AmO2. For the other oxides the broadening observed
from the static samples was therefore ascribed to the spin-dipolar
shift anisotropy. The different behaviour seen for AmO2 was shown
to be due to a combination of more than one disordered phase, and
oxide vacancies [13]. A second consequence of MAS is the shifting
of all the resonances, with the exception of the peak from ThO2,
closer to zero. This is expected, since the increased temperature
of the sample due to frictional heating reduces the Curie spin,
and therefore reduces the paramagnetic contribution to the shift.

As we saw in Section 13.12, the interpretation of the paramag-
netic shifts due to actinide ions is complex. However in the present
study, it was assumed that the cubic structure of the oxides results
in a magnetic anisotropy that is zero, and as a consequence there is
no contribution from the PCS. Additionally, contributions from the
PSO were neglected, and the paramagnetic contribution to the shift
was interpreted as a contact shift. This shift dS was calculated from
the Curie spin using the expression in Eq. (3.68):

dS ¼ �hbSziAFC

�hcIB0
: ð13:22Þ

However we note that the expression for the Curie spin is more
complicated than that used for 3d-metal ions, in which only the
electronic Zeeman interaction, and possibly the ZFS, is included.

Martel et al. computed the Curie spin using a Hamiltonian bH that
is given by [13]bH ¼ bHFI þ bHCF þ bHZ: ð13:23Þ

Here bHFI is the Hamiltonian representing all the free-ion interac-
tions such as Coulomb repulsion, and SO coupling which was here

determined in the regime intermediate between the Russell–Saun-

ders and jj schemes. The crystal-field interaction Hamiltonian bHCF

was written in the form of Eq. (6.6). For the cubic structure of the
oxides, the rank-two tensor components are zero, and we retain
only a subset of the rank-four and rank-six tensors, giving a Hamil-
tonian of the form:

bHCF ¼ B4
bC ð4Þ
0 þ

ffiffiffiffiffiffi
5
14

r bC ð4Þ
þ4 þ bC ð4Þ

�4

� 	" #
þ B6

bC ð6Þ
0 �

ffiffiffi
7
2

r bC ð6Þ
þ4 þ bC ð6Þ

�4

� 	" #
:

ð13:24Þ

The interaction is described by the operators bC ðkÞ
q of rank k and order

q, and the two crystal-field splitting parameters B4 and B6, which
indicate the strengths of the rank-four and rank-six contributions
respectively. The final term is the electronic Zeeman interaction
comprising both the spin and orbital parts, given by Eq. (4.11).bHZ ¼ lBB0

bLz þ 2bSz

� 	
; ð13:25Þ

Table 13.10
Comparison of the Curie shifts obtained from the two lowest-lying doublet states of UO2(CO3)35� and NpO2(CO3)34� at 273 K. The corresponding relative energies of the states and
their populations (at 273 K) are also given relative to the ground state of each molecule. Data computed by Gendron et al. [93].

Complex State Energy/cm�1 Population/% dCurie/ppm Total dCurie/ppm

UO2(CO3)35� Ground, E3=2 0 79 �94:0 �99:5
Lowest-lying excited, E1=2 132 21 �121:2

NpO2(CO3)34� Ground, E3=2 0 87 �106:5 �110:4
Lowest-lying excited, E1=2 356 13 �136:6

Fig. 13.55. Solid-state 17O NMR spectra acquired on a series of five enriched
actinide oxides, at a Larmor frequency of �54:25 MHz, under both static conditions
and 55 kHz MAS. Adapted with permission from [13]. Copyright (2014) American
Chemical Society.

Table 13.11
EPR parameters and Curie shifts calculated for the electronic ground state of PuO2(CO3)34� at 295 K. Two sets of parameters were computed, assuming an electronic manifold of
either pseudo-spin 1=2 or pseudo-spin 1. Both the hyperfine constants and their Curie shifts are also broken down into their Fermi-contact, spin-dipolar (PCS), and PSO
contributions. In all cases the rhombic EPR parameters (g? , A

total
? , AFC

? , ASD
? , APSO

? , and E) are zero. Data computed by Gendron et al. [93].

Pseudo-spin gk Atotal
k /MHz AFC

k /MHz ASD
k /MHz APSO

k /MHz D/cm�1
dCurie dCurieFC dCuriePCS dCuriePSO

1=2 �5:687 3.76 �1:40 1.56 3.60 – �379:0 141.6 �157:6 �363:0
1 �2:843 1.88 �0:70 0.78 1.80 3974 �379:0 141.6 �157:6 �363:0
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where it is assumed that ge � 2. The total Hamiltonian bH was diag-
onalized, and the Curie spin calculated. Assuming that the Fermi-
contact coupling constant is the same for all the actinides,

�3hbSzikT=lBB0 is proportional to the experimental shift. Both quan-
tities are plotted in Fig. 13.56. We see that, as an initial approxima-
tion, the variation of the Curie spin does account for the underlying
trend in the variation of shift along the series of these actinides.
However the quantitative agreement is comparatively poor, for
example with the Curie spin alone unable to account for the
observed changes in sign of the shift on moving from PuO2 to
AmO2. The agreement can presumably be improved by including
other relevant terms in the shift, such as the orbital contribution,
which we can see is substantial for the diamagnetic oxide ThO2,
the PSO, and higher order terms describing the magnetic anisotropy
in a cubic system.

Nevertheless this study is a very interesting milestone in para-
magnetic NMR of actinide materials, and is expected to encourage
more work in this area. In particular, given the work described in
Section 13.12, it is expected that calculations of the shift in this
type of solid will evolve in parallel to the experimental techniques,
and provide a useful tool in the study of actinide chemistry.

13.14. Probing the nanostructure of composite materials using relayed
paramagnetic relaxation enhancement

13.14.1. Background
In the final case study of this review we consider a topic that is

different to those we have studied in previous sections. Previously
we have highlighted studies where the system of interest
contained isolated paramagnetic metal ions, or where such ions
could be easily introduced, and used the paramagnetic effects to
obtain both local- and long-range structural information. The
effects considered were principally the paramagnetic shifts, but
some insight was also obtained from measurements of the PREs.
In this final study however we highlight the work of Schlagnitweit
et al., who developed a new method to investigate the sizes of dif-
ferent domains of nm–lm length scale in multi-component mate-
rials using a paramagnetic dopant [470].

Multi-component materials are defined as comprising two or
more particles or domains with different properties such as struc-
tural order and dynamics. Examples include multi-phase systems
such as alloys, composites, and mixtures of polymers. The bulk
properties of such systems depend on the sizes of the domains
and particles, and can be altered accordingly. For this reason it is
important to be able to characterize the range of size and shape
of the domains in situ. Schlagnitweit proposed an NMR method
for doing this utilizing the PRE of a paramagnetic dopant combined
with spin diffusion [470]. This method was applied both to a model
system comprising a suspension polymer nanoparticles, and then
to a polymer mixture of ethyl cellulose (EC)/hydroxypropyl cellu-
lose (HPC) in a film. This latter system is of particular interest as
a coating of the film on pellets is used as a pharmaceutical
controlled-release formulation.

The following two sections outline the basic method for mea-
suring the domain sizes, and describe the application to the EC/
HPC film.

13.14.2. The relay of the paramagnetic relaxation enhancement by
spin diffusion

Here we briefly describe the method to measure the domain
sizes of a two-component material, comprising domains A and B.
Schlagnitweit et al. suggested that in order to measure the length
scale of domain A we can dope the second domain B with a solu-
tion of a paramagnetic molecule of known concentration. The dop-
ing procedure is illustrated in Fig. 13.57 (left panel), where the

surface of an EC nanoparticle is impregnated with a solution con-
taining an organic radical [470]. The paramagnetic centres impreg-
nate both domain B and the surface of domain A, and therefore
induce a large PRE throughout the former and at the latter. The lon-
gitudinal relaxation time of a particular nuclear site in domain A
T1ðrÞ becomes position dependent, decreasing as we approach
the surface of A with a distance dependence 1=r6. We have seen
that this direct PRE can be used to probe distances from the metal
ion up to 100 Å, and so is not able to probe longer length scales of
the order nm–lm, with the large region of the domain that is far
from the surface not experiencing a measurable PRE. However spin
diffusion transfers longitudinal magnetization from the centre of
the domain A to the surface, where it experiences enhanced relax-
ation, which is referred to as a relayed paramagnetic relaxation
enhancement (R-PRE). The key to the method is that in smaller
undoped domains spin diffusion transfers the magnetization to
the surface more rapidly, thus resulting in a greater decrease in
the apparent T1 relaxation time from the whole domain. Hence a
comparison of the longitudinal relaxation behaviour of the domain
A in the impregnated sample and the undoped sample reveals
information about the size and shape of domain A. In addition mul-
tiple measurements can be performed with different concentra-
tions of paramagnetic molecules in domain B, allowing an
evaluation of the uncertainty of the measurements.

The longitudinal relaxation can be measured using a satura-
tion–recovery experiment, where the longitudinal magnetization
is saturated and allowed to recover during a variable delay s. This
is followed by a 90� pulse which converts the recovered polariza-
tion into observable coherences. The signals measured during this
experiment in the undoped and doped samples are denoted ScoreðsÞ
and SdopedðsÞ respectively, and the comparison between the two
used to determine the domain size and shape is quantified with
a R-PRE enhancement factor that is defined as
eðsÞ ¼ SdopedðsÞ=ScoreðsÞ.

In the undoped sample the longitudinal relaxation time con-
stant is assumed to be uniform throughout the domain A, and is
referred to as Tcore

1 . In the doped sample T1ðrÞ is position depen-
dent, and takes boundary values of Tcore

1 in the centre of domain

A, which is far from the surface, and a short value Tsurface
1 at the sur-

face due to the direct PRE. In practice the value of Tsurface
1 can be

taken to be the same as the corresponding value measured in the
solvent in the doped domain B. Elsewhere in domain A we can cal-
culate T1ðrÞ since the direct PRE decreases with the distance r from
the surface as 1=r6.

Fig. 13.56. Plot of �AhbSzi and the isotropic 17O shifts against the number of 5f
electrons for the five actinide oxides. The constant A is given by A ¼ �3kT=lBH0.
Adapted with permission from [13]. Copyright (2014) American Chemical Society.
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Spin diffusion in an extended domain is a complicated process
to model rigorously using a full quantum–mechanical treatment.
Fortunately it can be modelled classically using a diffusion equa-
tion which incorporates a longitudinal relaxation sink [425]. The
polarization Izðr; tÞ at position r and time t in domain A evolves as

@Izðr; tÞ
@t

¼ Dr2Izðr; tÞ � Izðr; tÞ � Iz;0
T1ðrÞ ; ð13:26Þ

where D is the spin-diffusion coefficient, and Iz;0 is the equilibrium
polarization normalized to Iz;0ðrÞ ¼ 1. The total polarization from
the whole domain A Iz;AðtÞ is found by integrating Izðr; tÞ over all dis-
tances r within the domain for each time point, i.e.

Iz;AðtÞ ¼ V�1 R
V Izðr; tÞd3r. If the domains A are present with a distri-

bution of sizes and shapes, it is necessary to compute the average
value of Iz;AðtÞ in order to obtain the total polarization from the
whole sample.

In the study of Schlagnitweit et al. the computation of the spin-
diffusion dynamics was simplified by assuming that the domains A
were spherical [470]. The spin-diffusion equation in Eq. (13.26)
was simplified by replacing r with the distance r, whose origin is
located at the centre of the sphere. The longitudinal relaxation
time constants at the surface and centre of the sphere were set

to T1ðrmaxÞ ¼ Tsurface
1 and T1ð0Þ ¼ Tcore

1 respectively, where rmax is
the radius of the sphere, and the variation of T1ðrÞ at intermediate

radii was modelled using the 1=ðr � rmaxÞ6 distance dependence of
the PRE. We expect that there is a thin surface layer of domain A, of
a thickness dr, which cannot be observed using conventional NMR
pulse sequences and so occupies a so-called ‘blind zone’. In this
study dr was assumed to be 2 Å [470]. With this condition we
can write down an expression for the longitudinal relaxation time
constant at arbitrary radius inside the domain as

1
T1ðrÞ ¼

1
Tcore
1

þ 1

Tsurface
1

 !
dr

r � rmax � dr

� �6

: ð13:27Þ

Finally the solution to the diffusion equation requires two boundary
conditions, which were set to

Izðr;0Þ ¼ 0;
@Izðrmax; tÞ

@t
¼ 0; ð13:28Þ

which are interpreted as follows. The first boundary condition indi-
cates that the polarization at time t ¼ 0 is zero throughout the
entire domain following saturation. The second condition indicates

that the rate of change of the polarization at the domain surface is
zero, so that no polarization leaves the domain.

13.14.3. Measurement of domain sizes in ethyl cellulose/hydroxypropyl
cellulose film coatings in pharmaceutical controlled-release
formulations

The R-PRE method was applied to a polymer mixture of EC/HPC
in a film, which is used as a pharmaceutical controlled-release for-
mulation [470]. The doping procedure is illustrated in Fig. 13.57
(right panel). The paramagnetic molecule that was chosen is the
organic biradical AMUPol, the structure of which is also shown in
Fig. 13.57. This organic molecule contains two NO� radical func-
tional groups, which have comparatively long electronic relaxation
times [167], and therefore are suitable for inducing large direct
PREs. Two aqueous solutions of the biradical were prepared with
concentrations of 15 mM and 30 mM, which were used to impreg-
nate the water-soluble HPC domain (B). The method was then used
to determine the sizes of the EC domains (A).

The 1H–13C CP spectrum of a doped sample acquired at 8 kHz
MAS is shown in Fig. 13.58. The spectrum exhibits a well-
resolved methyl peak at 15 ppm from the EC domain, which was
used to monitor the relaxation behaviour in this domain. Also
shown in the spectrum is the expected position of the correspond-
ing resonance in the doped HPC domain. The peak is absent due to
the fast relaxation due to the direct PRE induced throughout this
domain.

The longitudinal relaxation of the methyl 13C in the EC domain
was monitored by applying a saturation–recovery sequence fol-
lowing the 1H–13C CP transfer. The recovery curves were measured
for the undoped sample, and samples where the HPC domain was
doped with the two radical solutions of 15 mN and 30 mM, and are
shown in Fig. 13.59(a). The R-PRE enhancement curves for the two
concentrations were also calculated, and are shown in Fig. 13.59
(b). The spin-diffusion equation was solved for the two radical con-
centrations using a diffusion coefficient of 0.8 nm2 cm�1, values of

Tsurface
1 that were measured to be 19 ms and 13 ms for the concen-

trations of 15 mM and 30 mM respectively, and a value of Tcore
1 that

was extracted from the saturation–recovery curve of the undoped
sample. This left rmax as the only variable parameter in the diffu-
sion equation to be fitted. Following the fitting procedure the EC
domain sizes dEC was found to be 90	 10 nm and 70	 10 nm
when calculated from the data of the samples doped at concentra-
tions of 15 mM and 30 mM respectively [470]. Furthermore, using
the EC/HPC volume ratio of 70/30 in these films and assuming
spherical HPC domains allowed the determination of the HPC
domain sizes dHPC of 182	 10 nm and 142	 10 nm respectively.

In summary this technique represents a powerful method for
measuring domain sizes of multi-component materials in situ.
Although a simple spherical model for the EC domains sizes was
used in this study, the method can easily be extended to more
sophisticated models for the shape. Therefore this approach is
expected to be widely applicable to other multi-component
systems.

13.15. Key concepts

� Paramagnetic NMR is widely applicable to systems in solution
or the solid state, including small molecules, proteins, and solid
materials.

� Both the paramagnetic centre and the system in which is it
located profoundly change the paramagnetic effects that are
measured, including the shifts, shift anisotropies, paramagnetic
relaxation enhancements, and inhomogeous broadening.

� Contact shifts provide short-range structural information about
the system close to a paramagnetic centre.

Fig. 13.57. Illustration of the selective doping of a particular domain in bi-domain
samples. On the left is shown a water-based suspension of EC nanoparticles. The
radical is impregnated in the solution (light blue), and dopes the surface of the EC
nanoparticles (red). On the right is shown a composite system containing domains
of EC (red) and HPC (blue) in films covering pellets in controlled-release
formulations. The radical solution impregnates the water-soluble HPC domain.
This induces a PRE at the surface of the EC domains. Reproduced with permission
from [470]. Copyright (2015) American Chemical Society.
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� Pseudo-contact shifts and dipolar-based paramagnetic relax-
ation enhancements provide long-range structural information.

� The shift anisotropy generally contains long-range information
from the spin-dipolar interaction, and short-range information
from the contact interaction.

� In small molecules both non-relativistic and spin-orbit coupling
effects can be important contributions to the paramagnetic
shifts, resulting in both contact and pseudo-contact
contributions.

� In proteins contact shifts are important for nuclei separated
from the paramagnetic centre by only a few bonds. For reso-
nances located outside the ‘blind sphere’ the shifts are domi-
nated by pseudo-contact shifts.

� In solid materials, such as battery electrodes, the contact inter-
action provides information about the bonding and electron
transfer between the paramagnetic centre and the observed
nucleus. The shift anisotropies are dominated by the spin-
dipolar interaction, but may also have an important part due
to the contact interaction.

� The paramagnetic relaxation enhancement extends over a range
of the order of 10–20 Å, but when combined with spin diffusion
can be used to probe length scales of the order nm–lm inmulti-
component materials.

Chapter 14: Concluding remarks and the future of
paramagnetic NMR

To conclude this review we summarize the current state of the
art in the theory and practice of paramagnetic NMR spectroscopy,
as described in the earlier chapters, and outline some of the ongo-
ing research in these areas. In recent years the amount of activity in
development of theory and methods in the field of paramagnetic
NMR spectroscopy has increased considerably, as has the complex-
ity of the systems under study. The field is poised for some very
exciting developments in the future, in the development of both
the theory and methods, and in extending the fields of application.
Improved understanding of the spin physics of these systems will
also be important as the applications of dynamic nuclear polariza-
tion to an increasingly large range of systems grow, exploiting both
organic and inorganic radicals.

Solution NMR studies have been conducted for several years,
both on small molecules and large paramagnetic proteins. Whilst
theoretical formalisms for the paramagnetic shielding tensor have
also been known for many years, it has not been until relatively

recently that completely general formalisms have been developed,
such as those by Pennanen and Vaara, and van den Heuvel and
Soncini (see Chapters 3–6). These models have, in turn, opened
the door to calculations of paramagnetic shielding tensors due to
first-row d-block metal-ions from first principles using quantum
chemistry and DFT, which incorporate SO coupling effects on the
hyperfine, g-, and ZFS tensors. In addition the PREs due to these

[ppm]120 001  80  60  40  20

HPC  EC

Fig. 13.58. 1H–13C solid-state CP MAS NMR spectrum of the composite EC/HPC cellulose film coatings, where the HPC domain is impregnated with a 30 mM aqueous solution
of AMUPol. The spectrum was acquired at 11.74 T and 8 kHz MAS. The methyl resonance at 15 ppm is from the EC domain, and was used to measure the relaxation rates in
this domain. The dashed line labelled HPC marks the expected position of the corresponding HPC resonance. Here it is not observable due to the large PRE from the
paramagnetic dopant. Reproduced with permission from [470]. Copyright (2015) American Chemical Society.

Fig. 13.59. The build-up and relaxation enhancement factor curves due to the
longitudinal R-PRE in the EC domain of the composite EC/HPC cellulose film coating
following a saturation–recovery sequence. The curves in (a) show the build-up of
the signal SðsÞ as a function of the recovery delay s of the sequence. The curves are
measured from the integral of the EC methyl peak at 15 ppm in the spectrum in
Fig. 13.58. Three recovery curves are shown that were measured without
paramagnetic doping ScoreðtÞ (grey), and following impregnation with 15 mM
AMUPol (blue) and 30 mM AMUPol (black). In (b) are shown the relaxation
enhancement curves eðsÞ ¼ SdopedðsÞ=ScoreðsÞ. The dashed lines indicate the margin
of error. Adapted with permission from [470]. Copyright (2015) American Chemical
Society.
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metal ions can be interpreted under different experimental condi-
tions and motional dynamics. These models have increased in
sophistication from incorporating only a phenomenological treat-
ment of electronic relaxation (Chapter 8) to explicit treatments
(Chapter 9).

Studies of paramagnetic proteins in solution have reached a
high level of sophistication in terms of both the methods used,
and the interpretation and use of the paramagnetic effects to
obtain structural information. In the latter case it has been demon-
strated that PCSs, PREs, RDCs, and CCRs can all be used to supple-
ment other distance restraints in order to obtain increasingly
accurate and precise structures (Chapters 12 and 13).

In the field of solid-state NMR recent progress has been sub-
stantial. The systems being studied today cover a diverse range
of fields including battery materials, surface catalysts, inorganic
phosphors, pharmaceutical systems, and metalloproteins (Chapter
13). The ability to study systems of increasing complexity, includ-
ing compositional disorder, has been enabled by the current drive
in developing new solid-state NMR methods to achieve broadband
excitation and separation of the different available NMR parame-
ters (Chapters 11 and 12). The theory of the paramagnetic shield-
ing tensor for first-row d-block metal-ions in the solid state has
evolved in parallel to that in solution (Chapter 7). Initially these
methods included the effects of SO coupling and magnetic ordering
in an empirical way, but more recently these properties have also
been calculated from first principles. For example, the data
obtained from ab initio calculations, which generate 0 K hyperfine
(Fermi contact and spin dipolar) information, can be used to pre-
dict room-temperature properties via a variety of methods, from
the use of calculated spin-only magnetic susceptibilities or the
direct use of experimental data such as magnetic susceptibility
curves, to direct calculations of magnetic couplings and their use
in mean field (Ising) models or Monte Carlo simulations [543],
the latter proving extremely useful in disordered systems.
Although by no means routine, it is now relatively straightforward
to rationalize the spectra of paramagnetic materials, starting by
using the often intuitive Goodenough-Kanamori rules to predict
the size of the Fermi contact shifts from the nature of the overlap
between metal and ligand orbitals. The shifts of the individual
MALAN sites (M = paramagnetic metal, L = ligand, N = nucleus
under observation) can then be readily calculated from first princi-
ples calculations. Here, the use of a clever ‘‘flipping” method allows
the contributions from different metals (and pathways) to be easily
separated [55]. Although the calculations are not exact, with errors
coming from the choice of functionals used and the scaling factors
employed to convert 0 K data into the paramagnetic regime, they
provide considerable insight into the signs and magnitudes of the
shifts. Given the inherent assumptions, further inclusion of addi-
tional terms (such as the pseudocontact shifts/spin–orbit cou-
plings) are often not warranted, unless examining systems with
very small Fermi-contact shifts. This can arise in cases where the
paramagnetic ions are more than two bonds away from the NMR
nucleus, in systems with competing and opposing Fermi contact
shift contributions, or where the shifts are inherently small due
to very weak and largely ionic bonds.

In comparison with solution NMR the PRE in the solid state is
poorly understood, and this has hindered its use for extracting
structural and dynamic information. Similarly, BMS effects in
solid-state NMR spectra have been studied, but have yet to be rou-
tinely exploited, for example to obtain information on crystallite
shape and packing (Chapter 10). They have been shown to play
an extremely important role in determining the shifts of reso-
nances in solid samples, particularly those with unusual geome-
tries such as the planar geometries of pouch cell batteries [155].
However it remains a challenge to model the effects of magnetic
inhomogeneities on, for example, sideband intensities in MAS

NMR. Nonetheless, analysis of the intensities of the sideband man-
ifolds provides a relatively straightforward way to extract struc-
tural information. Sometimes the information can be extremely
simple to extract, for example, the sign of the asymmetry of the
tensor being used to determine whether Li and Na ions are located
within Li/Na or transition-metal layers of (Li/Na) MO2 battery elec-
trode materials [55,543].

The interpretation of the shifts due to lanthanides and actinides
is less advanced, with the former generally relying on theories
developed in the 1970s by Golding and Halton, and by Bleaney
(Chapter 6). Because the ratio of the pseudo-contact to the
Fermi-contact shift is generally larger than for transition metal
ions, it is often more straightforward to use the PCS to extract
structural information. Despite some recent progress in calcula-
tions of paramagnetic shifts of actinide complexes [213,92,93],
actinide NMR is at a relatively early stage of development, with
the experimental NMR being hampered by practical considerations
(beyond those of the paramagnetism) associated with the radioac-
tivity and toxicity of the metal ions.

The broad scope of the application of paramagnetic NMR to a
number of systems in chemistry, materials science, and biology
has been due to the advances in all these different areas of theory
and application. In particular, developments in paramagnetic
solid-state NMR have opened up the field to systems in chemistry
and materials science where complex compositional disorder is a
key component of the properties of many materials. Further
developments in NMR methods, calculations of paramagnetic shift
tensors and PREs, and their implementation in extracting struc-
tural and dynamic information will further increase the ability of
NMR to study more complex systems in a wider range of
disciplines.
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Appendix A. The Wigner–Eckart theorem

The appendices in this review make extensive use of the evalu-
ation of the matrix elements of spin operators in manifolds of par-
ticular spin states. This evaluation is greatly facilitated by use of
the Wigner–Eckart theorem, which gives an expression for the
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matrix element of the irreducible spherical tensor operator of rank

k and order q; bTkq, that connects the states jJ0M0i and jJMi, where J
and J0 are the (spin, orbital, or total) angular momentum quantum
numbers, and M and M0 are the corresponding azimuthal quantum
numbers. The version of the theorem used here employs the con-
vention of Brink and Satchler [191], but not, for example, that of
Edmonds [227]. The expression can be given either in terms of
the Clebsch–Gordan coefficient hJMjJ0kM0qi or the Wigner 3j sym-
bol as:

hJMjbTkqjJ0M0i ¼ ð�1Þ2khJkbTkkJ0ihJMjJ0kM0qi ðA:1Þ

¼ ð�1ÞJ0þkþMhJkbTkkJ0i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jþ1

p J J0 k

�M M0 q

� �
: ðA:2Þ

The theorem effectively separates the matrix elements into a part
that is orientation-independent, and contains all the physics of
the situation, and a second part that contains all the information
pertaining to the orientation of the system. On the first line the
Wigner–Eckart theorem is quoted in terms of the Clebsch–Gordan

coefficient hJMjJ0kM0qi. The quantity hJkbTkkJ0i is a reduced matrix

element of the rank-k tensor bTk, which depends only on the rank
k, and the quantum numbers J and J0 that define the sizes of the
angular momenta of the states. It therefore contains all the informa-
tion about the system independent of orientation. The orientation

dependence of the total matrix elements hJMjbTkqjJ0M0i depends on
the magnetic quantum numbersM andM0, and the order of the ten-
sor q, which information is contained entirely in the Clebsch–
Gordan coefficient. On the second line is given the same expression
in terms of theWigner 3j symbol, which is the quantity in parenthe-
ses. The second expression is equivalent to the first, with the orien-
tation dependence now being encoded in the 3j symbol.

A.1. The projection theorem

A special case of the Wigner–Eckart theorem is the projection
theorem for vector operators, which pertains to the matrix ele-
ments of irreducible spherical tensor operators of rank one that
are evaluated between states with the same value of J. For a vector

operator V̂ the projection theorem is [191]

hJMjV̂ jJM0i ¼ 1
JðJ þ 1Þ hJMjbJ bJ � V̂� 	

jJM0i ðA:3Þ

¼ aJðV̂ÞhJMjbJ jJM0i; ðA:4Þ

where aJðV̂Þ is a scalar coefficient that depends on the reduced

matrix element of V̂:

aJðV̂Þ ¼ hJkV̂kJiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp : ðA:5Þ

This theorem can be interpreted as follows using a classical vector
model. We note that the classical equivalent of the operator in Eq.
(A.3), J J � Vð Þ=ðJðJ þ 1ÞÞ, is simply the projection of V along the unit
vector J=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp

. According to the vector model V is precessing
about J, with the result that the component of V that is perpendic-
ular to J averages to zero, leaving only the component that is paral-

lel to J. In the quantum mechanical picture the vector operator V̂

evolves under the action of a Hamiltonian defined by bJ . The parts

of the matrix elements originating from V̂ that do not commute

with bJ then average to zero.

A.1.1. Magnetic moments due to ions subject to Russell–Saunders
spin–orbit coupling

The projection theorem for vector operators is important when
considering the electronic magnetic moment and the correspond-
ing Zeeman interaction of electronic spins subject to SO coupling.
In the case where both S and L are non zero, the properties of
the electrons are defined by the total angular momentum J, which
is given by the following expression in the Russell–Saunders cou-
pling scheme:

J ¼ Lþ S: ðA:6Þ
The total magnetic moment lJ is the sum of the electronic orbital
and spin magnetic moments lL and lS:

lJ ¼ lL þ lS ðA:7Þ
¼ �lB Lþ geSð Þ: ðA:8Þ

Clearly J and lJ are not collinear. However we can apply the projec-
tion theorem to the vector operators corresponding to the total

angular momentum and magnetic moment, bJ and l̂J , which relates
the matrix elements of the two as follows:

hJMjl̂J jJM0i ¼ �lBgJhJMjbJ jJM0i; ðA:9Þ
where gJ is the Landé g-factor. It is for this reason that the magnetic
moment operator m̂, as defined by van den Heuvel and Soncini via

the expression �B0 � m̂, is taken to be m̂ ¼ �lBgJ
bJ , and the elec-

tronic Zeeman Hamiltonian isbHZ ¼ lBgJB0 � bJ : ðA:10Þ

Appendix B. Relativistic corrections to the hyperfine coupling
tensor

In this appendix we give expressions for the NR and SO contri-
butions to the hyperfine coupling tensor that may be used in
quantum-chemical and DFT calculations. The treatment here fol-
lows that of Arbuznikov et al., who adopt the SI convention for
atomic units, and extends the presentation of the hyperfine tensor
in Section 4.1 [211].

B.1. The vector potential

In atomic units, the vector potential AðAÞðriÞ describing the
interaction between a point-like nucleus A at position RA and an
electron i at position ri is given by:

AðAÞðriÞ ¼ a2cðAÞI
ÎðAÞ 
 riA

r3iA
; ðB:1Þ

where ÎðAÞ and cðAÞI are the nuclear spin operator and gyromagnetic
ratio of nucleus A, and riA ¼ ri � RA is the position of the electron i
relative to the nucleus.

B.2. The non-relativistic hyperfine interaction

The lowest-order contributions to the hyperfine interaction
Hamiltonian are the Fermi-contact and spin-dipolar terms, which
were discussed in Section 2.8, and are of order Oða2Þ in the fine-
structure constant. The corresponding hyperfine interaction

Hamiltonians bHðAÞ
FC and bHðAÞ

SD describing the coupling between
nucleus A and all the electrons i have the following expressions
in atomic units:
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bHðAÞ
FC ¼ 4p

3
a2gec

ðAÞ
I

X
i

dðriAÞŝi � ÎðAÞ; ðB:2Þ

bHðAÞ
SD ¼ 1

2
a2gec

ðAÞ
I

X
i

ŝi � 3riAriA � r2iA1
r5iA

� ÎðAÞ: ðB:3Þ

If we expand the total electronic wavefunction as a superposition of
molecular orbitals and the a and b spin functions: j�i
jwðrÞi ¼

X
�

ca� j�ijai þ cb� j�ijbi; ðB:4Þ

where ca� and cb� are the coefficients giving the a and b spin in each
orbital, we obtain the following expressions for the Fermi-contact

coupling constant AFC and spin-dipolar coupling tensor ASD
uv :

AFC ¼ 4p
3
a2gec

ðAÞ
I

1
2S

X
�;s

Pa�b
�s h�jdðrAÞjsi; ðB:5Þ

ASD
uv ¼ 1

2
a2gec

ðAÞ
I

1
2S

X
�;s

Pa�b
�s �

3rA;urA;v � r2Aduv
r5A

0
���� ����s� �

: ðB:6Þ

Here Pa�b
�s ¼ c�acas � c�bcbs is the spin density matrix.

B.3. The spin–orbit-coupling correction to the hyperfine interaction

We consider second-order perturbation corrections to the
hyperfine interaction from the one- and two-electron SO interac-

tions with Hamiltonian bHSO:

bHSO ¼ 1
4
a2ge

X
B

ZB

X
i

ŝi � l̂iB
r3iB

�
X0

i;j

ŝi þ 2ŝj
� � � l̂ij

r3ij

" #
: ðB:7Þ

The first term represents the one-electron interaction, and com-
prises a sum over all nuclei B, which have charges ZB, and electrons
i. The second term represents the two-electron SO interaction, and
comprises a sum over pairs of electrons i and j, and contains both
the spin-same-orbit and spin-other-orbit parts. The two operators

l̂iB and l̂ij are the orbital angular momentum operators of electron
iwith respect to the positions of the nucleus B and a second electron
j respectively. They take the forms:

l̂iB ¼ ri � RBð Þ 
 �i$̂i þAðriÞ
� 	

; ðB:8Þ

l̂ij ¼ ri � rj
� �
 �i$̂i þAðriÞ

� 	
; ðB:9Þ

where $̂i is the gradient operator for electron i.
The field-independent parts of the one- and two-electron orbi-

tal angular momentum operators depend on $̂i. These terms com-

bine with the Hamiltonian bHðAÞ
PSO representing the paramagnetic

spin-orbital interaction (PSO) of nucleus A

bHðAÞ
PSO ¼ a2cðAÞI

X
i

l̂iA
r3iA

� ÎðAÞ; ðB:10Þ

to give the following one-electron ASO-Ið1Þ
uv and two-electron contri-

butions ASO-Ið2Þ
uv to the hyperfine tensor:

ASO-Ið1Þ
uv þASO-Ið2Þ

uv ¼1
2
a4gec

ðAÞ
I

1
2S

XoccðaÞ
k

XvirtðaÞ
a

hkajĥSO
u jaaihaaĵlA;v=r3Ajkai
Eka�Eaa�DExc

k!a

"

�
XoccðbÞ
k

XvirtðbÞ
a

hkbjĥSO
u jabihabĵlA;v=r3Ajkbi
Ekb�Eab�DExc

k!a

#
: ðB:11Þ

Here the sums are over the occupied orbitals k, which are denoted
jkai and jkbi for a and b electrons, and over the virtual orbitals a,
denoted jaai and jabi. These orbitals have energies Eka, Ekb, Eaa,
and Eab respectively. The energy terms DExc

k!a are the Malkin correc-

tion factors, which are used as semi-empirical scalings of the energy

denominators when performing DFT [544]. The operator ĥSO
u

denotes the spatial part of the SO coupling Hamiltonian in Eq.
(B.7). We note that both the SO-I contributions to the hyperfine ten-
sor are of order Oða4Þ, as expected, and that both have spherical
rank contributions of 0, 1, and 2.

The contributions of the magnetic field to the orbital angular
momenta are given by the terms containing the vector potential.
These give one- and two-electron corrections to the hyperfine

Hamiltonian, which are collected together in bHðAÞ
SO :

bHðAÞ
SO ¼ 1

4
a2ge

X
B

ZB

X
i

ŝi � ðriA � riBÞ1� riAriB
r3iAr

3
iB

� ÎðAÞ
"

�
X0

i;j

ŝi þ 2ŝj
� � � ðriA � rijÞ1� riArij

r3iAr
3
ij

� ÎðAÞ
#

ðB:12Þ

In the second-order perturbation expansion Eq. (B.12) gives a one-

electron contribution ASO-IIð1Þ
uv and a two-electron part ASO-IIð2Þ

uv . The
former is given by

ASO-IIð1Þ
uv ¼ 1

4
a4gec

ðAÞ
I

1
2S

X
�;s

Pa�b
�s �j

X
B

ZB
duvðrA � rBÞ � rA;urB;v

r3Ar
3
B

js
* +

;

ðB:13Þ
and the latter is expected to be negligible within the validity of
perturbation theory. We note that the SO-II contribution is of order
Oða4Þ, and has parts of spherical rank 0, 1, and 2.

The total SO coupling correction to the hyperfine coupling
tensor is therefore the sum of the SO-I and SO-II parts:

ASO ¼ ASO-Ið1Þ þ ASO-Ið2Þ þ ASO-IIð1Þ
; ðB:14Þ

which we normally formulate in the following way to aid compar-
ison with experiment:

ASO ¼ AFC;21þ ASD;2 þ Aas
: ðB:15Þ

Appendix C. The Pennanen–Vaara formalism for the
paramagnetic shift

We now describe the Pennanen–Vaara theory for the paramag-
netic chemical shift [40], which is an important recent contribution
to the description of the chemical shifts of systems with SO cou-
pling and an arbitrary electronic spin multiplicity 2Sþ 1, that can
be readily applied to ab initio calculations. The initial part of the
derivation gives an exact expression for the chemical shielding, is
valid for an arbitrary electronic spin S under high-temperature
conditions, and makes no assumptions about the relative orienta-
tions of the tensors in the EPR Hamiltonian. Following this deriva-
tion, a number of assumptions are applied in order to make further
progress. These assumptions are (i) that the effective electronic
spin S is equal to the real spin of the ion, (ii) that the SO coupling
is weak in comparison to the ligand-field interaction, (iii) that the
spin system can be described by the EPR Hamiltonian in Eq. (4.36),
and (iv) that we need only consider contributions from the ground
state spin manifold, i.e. there are no thermally-accessible excited
states. Assumption (iii) effectively means that the final expression
is only exact for electronic spins up to S ¼ 1 and is only an approx-
imation for larger spins, and all four assumptions limit the theory
to 3dmetal ions. Nevertheless the theory has been applied success-
fully to 3d complexes with S > 1 [545].

We start by noting that we can model the spin system as a cloud
of electrons which establish a thermal equilibrium over their states
according to the Boltzmann distribution. The energies of these
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states are modified by the presence of the external perturbations of
the nuclear magnetic moment and the applied magnetic field, and
so we can write the energy of state jni En as a Taylor series in the

components of Î and B0:

En ¼ Eð0;0Þ
n þ

X
a
Eða;0Þ
n B0;a þ

X
j
Eð0;jÞ
n
bIj þX

a;j
Eða;jÞ
n B0;a

bIj
þ 1
2

X
a;b

Eðab;0Þ
n B0;aB0;b þ � � � : ðC:1Þ

In Eq. (C.1) Eð0;0Þ
n is the part of the energy that is independent of B0

and Î, and the coefficients Eðab...;jk...Þ
n are given by

Eðab...;jk...Þ
n ¼ @NEn

@B0;a@B0;b . . . @ Îj@ Îk . . .

 !
B0¼0;̂I¼0

; ðC:2Þ

where N is the total number of times that En is differentiated. There-
fore the coefficients are calculated by differentiating En a certain
number of times with respect to the components of the magnetic
field and nuclear spin, and then setting those quantities equal to
zero. The significance of the terms in the Taylor series can be appre-
ciated by referring to the EPR Hamiltonian. For example the contri-
bution Eð0;0Þ

n can be related directly to the ZFS interaction, which is

independent of both B0 and Î. The term
P

aE
ða;0Þ
n B0;a represents the

energy contribution from the electronic Zeeman interaction as both
elements are proportional to the components of the field and are

independent of the nuclear spin. In addition the terms
P

jE
ð0;jÞ
n
bIj

and
P

a;jE
ða;jÞ
n B0;a

bIj originate from the hyperfine interaction, and
the nuclear Zeeman and chemical shielding interactions
respectively.

As we have already discussed, the electron relaxation in an
open-shell (i.e. paramagnetic) system occurs on a timescale that
is several orders of magnitude shorter than nuclear relaxation,
and so at all relevant times the electron cloud is at thermal equilib-
rium, and the system is described by a Boltzmann distribution over
the energy levels. Using this idea Moon and Patchkovskii stated
that the chemical shielding can be determined from the part of
the Boltzmann average of the energy that is linear in the applied
field and the nuclear spin:

�hc
X
ij

B0;irij
bIj ¼PnEn expð�bWnÞP

n expð�bWnÞ ; ðC:3Þ

where b ¼ 1=kT . Note that we distinguish between the energies that
are averaged in the distribution En, and the energies that are used to
compute the Boltzmann factors Wn. This is because the transitions
that establish the thermal equilibrium of the electron cloud occur
on a shorter timescale than those from which we acquire the
NMR spectrum, and consequently we may omit all the terms from

Wn that have a dependence on Î. We can therefore write Wn as a
Taylor series in B0 only:

Wn ¼ W ð0;0Þ
n þ

X
a
W ða;0Þ

n B0;a þ 1
2

X
a;b

W ðab;0Þ
n B0;aB0;b þ � � � ; ðC:4Þ

i.e. W ða...;j...Þ
n ¼ 0 for j – 0. Because the ZFS is the largest term in the

EPR Hamiltonian, by far the largest term in the expansion of Wn is
W ð0;0Þ

n , and so we can write the exponential Boltzmann factors as

expð�bWnÞ � expð�bW ð0;0Þ
n Þ


 1� b
X
a
W ða;0Þ

n B0;a þ 1
2

X
a;b

W ðab;0Þ
n B0;aB0;b þ . . .

" #(

þ b2

2

X
a
W ða;0Þ

n B0;a þ . . .

" #2
þ . . .

9=;: ðC:5Þ

Substituting the expansions for En and expð�bWnÞ into Eq. (C.3) and
multiplying both sides by the denominator we obtain the following
unwieldy expression:

�hc
X
ij

B0;irij
bIjX

n

expð�bW ð0;0Þ
n Þ


 1� b
X
a
W ða;0Þ

n B0;a þ 1
2

X
a;b

W ðab;0Þ
n B0;aB0;b þ . . .

" #(

þ b2

2

X
a
W ða;0Þ

n B0;a þ . . .

" #2
þ . . .

9=;
¼
X
n

Eð0;0Þ
n þ

X
a
Eða;0Þ
n B0;a þ

X
j
Eð0;jÞ
n
bIj þX

a;j
Eða;jÞ
n B0;a

bIj(

þ1
2

X
a;b

Eðab;0Þ
n B0;aB0;b þ . . .

)

 expð�bW ð0;0Þ

n Þ


 1� b
X
a
W ða;0Þ

n B0;a þ 1
2

X
a;b

W ðab;0Þ
n B0;aB0;b þ . . .

" #(

þ b2

2

X
a
W ða;0Þ

n B0;a þ � � �
" #2

þ � � �
9=;: ðC:6Þ

We obtain the expression for the chemical shielding by collecting

terms of the same order in B0;i and bIj. This gives

rij ¼ 1
�hc

1
Q0

X
n

expð�bW ð0;0Þ
n Þ Eði;jÞ

n � bW ði;0Þ
n Eð0;jÞ

n

n o
ðC:7Þ

¼ 1
�hc

hbEði;jÞi0 � bhcW ði;0ÞbEð0;jÞi0
n o

; ðC:8Þ

where Q0 is the partition function at zero field and nuclear mag-
netic moment,

Q0 ¼
X
n

exp �bW ð0;0Þ
n

� 	
; ðC:9Þ

bE and cW represent the Hamiltonians including and excluding terms
depending on the nuclear magnetic moment respectively, and the

notation hbUi0 refers to a Boltzmann average of the expectation

value of the operator bU carried out at zero field and nuclear mag-
netic moment:

hbUi0 ¼
Tr exp �bcW ð0;0Þ

� 	bUh i
Q0

: ðC:10Þ

So far this expression is exact, but unhelpful. In order to gain
more insight into the factors affecting the chemical shielding we
must now implement the approximations (i)–(iv) above. The dis-

crimination between bE and cW is no longer needed, having served
its purpose, and we can associate both with the EPR Hamiltonian
in Eq. (4.36). The derivatives are given bybEði;jÞ ¼ ��hc dij � rorb

ij

� 	
1̂; ðC:11ÞcW ði;0Þ ¼ lB

X
k

gik
bSk; ðC:12Þ

bEð0;jÞ ¼
X
l

bSlAlj: ðC:13Þ

Substituting these into the expression for rij in Eq. (C.8) we obtain
the Pennanen–Vaara formula for the chemical shielding:

rij ¼ rorb
ij � lB

�hckT
X
kl

gikhbSk
bSli0Alj; ðC:14Þ

which can be written as

r ¼ rorb � lB

�hckT
g � hŜŜi0 � A: ðC:15Þ
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The chemical shielding is the sum of the temperature-independent
orbital shielding and the temperature-dependent paramagnetic
shielding, which is given by

rS ¼ � lB

�hckT
g � hŜŜi0 � A: ðC:16Þ

Eq. (C.16) is the main result of the Pennanen–Vaara theory, in
which the paramagnetic shielding tensor is the product of three
matrices, namely the g-tensor, hyperfine tensor, and the dyadic

hŜŜi0. The information from the g- and hyperfine tensors is
encoded directly, in an analogous way to that for the shielding
for spin-only systems we obtained in Chapter 3. This is because
the g-tensor originates from the electronic Zeeman interaction,
which is proportional to the applied field, and the hyperfine inter-
action is proportional to the nuclear spin. The ZFS tensor does not
enter the expression directly, because it has no direct effect on the
way the electron cloud is modified by the presence of the magnetic
field or nuclear spins, but it is present indirectly in the Boltzmann
average because it is responsible for the splittings of the energy
levels at zero field and zero nuclear magnetic moment. The dyadic

tensor hŜŜi0 comprises both an isotropic part and a symmetric ani-
sotropy, but no antisymmetric part. It is worth noting that the PAF

of hŜŜi0 coincides with the PAF of the ZFS tensor.
One consequence of the splitting of the electronic energy levels

at zero field is to introduce a strong non-Curie temperature depen-
dence in the shielding tensor. This is more easily appreciated by

expanding the dyadic hŜŜi0 as a Taylor series in b ¼ 1=kT:

hbSi
bSj i0 ¼ 1

2Sþ1
Tr bSi

bSj 1�b
X
kl

bSkDkl
bSl

 !" #
þOðb2Þ ðC:17Þ

¼ 1
2Sþ1

X
n

hnjbSi
bSjjni

� b
2Sþ1

X
kl

Dkl

X
n

hnjbSi
bSj
bSk
bSljniþOðb2Þ: ðC:18Þ

The first-order term is simply [184]

SðSþ 1Þ
3

dij; ðC:19Þ

which is the familiar factor we encountered for spin-only systems.
The corresponding first-order term in the shielding tensor is
therefore

rS ¼ �lBSðSþ 1Þ
3�hckT

g � A: ðC:20Þ

Incidentally this is an exact expression for the shielding with zero
ZFS, as was originally derived by Moon and Patchkovskii [39]. Fur-
thermore, if we set the g-tensor equal to ge, we obtain the spin-only
expression in Eq. (3.70). In the presence of the ZFS interaction the
Boltzmann average at zero field and nuclear magnetic moment is
computed with the states jni that are equal to the eigenstates of
the ZFS Hamiltonian, which can be written as linear combinations
of the eigenstates of the Zeeman Hamiltonian jSMSi:
jni ¼

X
MS

cMS jSMSi: ðC:21Þ

The second-order term is the dyadic is more complex, but can be
shown after some tedious algebra to yield

� b
2Sþ 1

X
kl

Dkl

X
n

hnjbSi
bSj
bSk
bSljni ¼ � b

30
DijSðSþ 1Þð2S� 1Þð2Sþ 3Þ:

ðC:22Þ
Note that this term is equal to zero if S < 1, which is a condition for
the absence of the ZFS interaction. The total paramagnetic shielding
tensor up to second order in b is therefore

rS � �lBSðSþ 1Þ
3�hckT

g � Aþ lBSðSþ 1Þð2S� 1Þð2Sþ 3Þ
30�hcðkTÞ2

g � D � A;

ðC:23Þ
which is identical to the expression originally derived by Bleaney
[62]. The deviation from the Curie behaviour can be clearly seen
in the second term, which varies as 1=T2 and is of opposite sign
to the first-order term.

Finally we note that, although we could not in general apply the
high-field approximation to the EPR Hamiltonian because the ZFS
may be the dominant interaction, we can apply it more safely for
typical 3d transition-metal complexes as the interaction due to
the shielding tensor rS is dominated by the nuclear Zeeman
interaction.

C.1. The terms in the paramagnetic shift tensor

We can break down the expression for the paramagnetic shield-
ing tensor in Eq. (C.16) into a sum of individual cross terms by sub-
stituting in the expressions for the g-tensor in Eqs. 4.37, 4.38, and
4.39, and the hyperfine tensor in Eqs. 4.40, 4.41, and 4.42. The
resulting terms are listed in Table C.1, up to fourth order in the
fine-structure constant Oða4Þ. Truncating at Oða4Þ means that we
retain only the terms that contain at most one SO coupling term

in the product g � A. For example term 1 geA
FC is the product of

two NR parts of the g- and hyperfine tensors ge and AFC which
are Oða0Þ and Oða2Þ respectively, and so is Oða2Þ overall, whereas

term 3 geA
FC;2 is the product of the NR part of g with an SO part of A,

and so is Oða4Þ overall. Terms containing the product of two SO

terms, such as Dg � ASD;2 are neglected. Also included in Table C.1
is an assignment of the nine paramagnetic terms according to
the form of hyperfine interaction from which they originate, i.e. a
contact (con), dipolar (dip), or antisymmetric (as) term.

Appendix D. Derivation of the paramagnetic shielding tensor
for arbitrary spin multiplicity to second order

This appendix details the calculation of the paramagnetic chem-
ical shielding tensor up to second order in 1=ðkTÞ in terms of the
tensor parameters in the EPR Hamiltonian generalised for arbitrary
spin multiplicity, starting from both the Pennanen–Vaara and van
den Heuvel–Soncini formulae. The Pennanen–Vaara expression in
terms of the electron magnetic moment m̂ and hyperfine field F̂

operators can be expanded to second order to give:

rS
ij ¼

b
�hcI

hm̂iF̂ ji0 ðD:1Þ

¼ 1
�hcI

b
TrS m̂iF̂ j
� �

2Sþ 1
� b2

TrS m̂iF̂ j
bH0

� 	
2Sþ 1

24 35þOðb3Þ: ðD:2Þ

We denote the trace of a product operator over the entire direct
product spin space as TrS, and the trace of a one-spin operator over
the manifold of states pertaining to that spin simply as Tr. Substi-

tuting in the expressions for m̂; F̂ , and bH0 gives the following
expression

rS
ij ¼ � lB

�hcI
b

2Sþ 1

X
kk0qq0

ð�1Þqþq0gkq;iAk0q0 ;jTrS bSk�q
bSk0�q0

� 	24
� b2

2Sþ 1

X
kk0k00qq0q00

ð�1Þqþq0þq00gkq;iAk0q0 ;jDk00q00TrS bSk�q
bSk0�q0

bSk00�q00

� 	35
þOðb3Þ; ðD:3Þ

A.J. Pell et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 111 (2019) 1–271 255



where the first-order shielding contains terms that are proportional
to the trace of the product of two irreducible spherical tensor spin
operators, and the second-order shielding contains terms propor-
tional to the trace of the product of three such operators.

The van den Heuvel–Soncini expression, when expanded to
second-order in 1=ðkTÞ, is equal to

rS
ij ¼

1
�hcI

Z b

0
dw expðwbH0Þm̂i expð�wbH0ÞF̂ j

� �
0

ðD:4Þ

¼ 1
�hcI

b
TrS m̂iF̂ j
� �

2Sþ 1
� b2

TrS m̂iF̂ j
bH0

� 	
2Sþ 1

þ b2

2

TrS m̂i; F̂ j

 � bH0

� 	
2Sþ 1

24 35þOðb3Þ; ðD:5Þ

which is equal to the Pennanen–Vaara expression with the addition

of a second-order term that depends on the trace TrS m̂i; F̂ j

 �bH0

� 	
.

Substituting in the EPR tensor parameters results in the following
expression:

rS
ij ¼ � lB

�hcI
b

2Sþ 1

X
kk0qq0

ð�1Þqþq0gkq;iAk0q0 ;jTrS bSk�q
bSk0�q0

� 	24
� b2

2Sþ 1

X
kk0k00qq0q00

ð�1Þqþq0þq00gkq;iAk0q0 ;jDk00q00TrS bSk�q
bSk0�q0

bSk00�q00

� 	

þ b2

2ð2Sþ 1Þ
X

kk0k00qq0q00
ð�1Þqþq0þq00gkq;iAk0q0 ;jDk00q00TrS bSk�q; bSk0�q0

h ibSk00�q00

� 	35
þOðb3Þ: ðD:6Þ

Both expressions are the same to first order in 1=ðkTÞ, and can

be computed by calculating the trace of bSk�q
bSk0�q0 . This can be done

easily by using the Wigner–Eckart theorem for the matrix ele-
ments of irreducible spherical tensor operators [191]. The trace is
therefore

TrS bSk�q
bSk0�q0

� 	
¼
X
MM0

hSMjbSk�qjSM0ihSM0jbSk0�q0 jSMi ðD:7Þ

¼ ð�1Þkþk0 ð2Sþ1ÞhSkbSkkSihSkbSk0 kSi



X
MM0

ð�1Þ2SþMþM0 S S k

�M M0 �q

� �
S S k0

�M M0 q0

 !
ðD:8Þ

where the arrays in parentheses are Wigner 3j symbols. We have
written the product of the phase factors from the two matrix ele-

ments as ð�1ÞSþkþMð�1ÞSþk0þM0 ¼ ð�1Þ2Sþkþk0þMþM0
. We could equally

well have written it as ð�1ÞSþkþMð�1Þ�S�k0�M0 ¼ ð�1Þk�k0þM�M0
, and

then simplified by noting that, from the symmetry of the first
Wigner 3j symbol, the only non-zero terms in the sum satisfy

M �M0 ¼ �q. The final phase factor is therefore ð�1Þk�k0�q. The
expression can now be simplified by using the orthogonality prop-
erties of the 3j symbols, and we obtain:

TrS bSk�q
bSk0�q0

� 	
¼ ð�1Þk�k0�qð2Sþ 1ÞhSkbSkkSihSkbSk0 kSi



X
MM0

S S k

�M M0 �q

� �
S S k0

�M M0 q0

 !
ðD:9Þ

¼ ð�1Þq 2Sþ 1
2kþ 1

� �
hSkbSkkSi2dkk0dq�q0 : ðD:10Þ

The operators bSk�q therefore form an orthogonal basis set. The
resulting expression can now be used to give the first-order param-
agnetic chemical shielding, which is the same for both the Penna-
nen–Vaara and van den Heuvel–Soncini formalisms, and is given
in Eq. (6.27).

The second-order shielding tensor in both formalisms contains
a trace of the product of three irreducible spherical tensor spin
operators. This trace can also be computed using the Wigner–Eck-
art theorem:

TrS bSk�q
bSk0�q0

bSk00�q00

� 	
¼
X

MM0M00 hSMjbSk�qjSM0ihSM0jbSk0�q0 jSM00ihSM00jbSk00�q00 jSMi

¼ ð�1Þkþk0þk00 ð2Sþ 1Þ3=2hSkbSkkSihSkbSk0 kSihSkbSk00 kSi



X

MM0M00
ð�1Þ3SþMþM0þM00 S S k

�M M0 �q

 !
S S k0

�M0 M00 �q0

 !


 S S k00

�M00 M �q00

 !

¼ ð�1Þkþk0þk00 ð�1Þ2Sð2Sþ 1Þ3=2hSkbSkkSihSkbSk0 kSihSkbSk00 kSi


 k0 k00 k

S S S

( )
k0 k00 k

�q0 �q00 �q

 !
:

ðD:11Þ

To go to the last line, we have used the fact that the sum of the pro-
duct of three 3j symbols is equal to the product of a Wigner 6j sym-
bol (the array in braces) and a 3j symbol. The computation of this

Table C.1
List of the terms arising in the Pennanen–Vaara expression for the paramagnetic shielding. The terms are numbered 1–9, with their assigned terms (‘orb’ (orbital), ‘con’ (contact),
‘dip’ (dipolar), and ‘as’ (antisymmetric)) and the irreducible spherical tensor ranks with and without the ZFS. Adapted from Pennanen and Vaara [40].

Term Type Order Without ZFS With ZFS

Expression Spherical tensor rank Expression Spherical tensor rank

0 orb Oða2Þ rorb 0, 1, 2 rorb 0, 1, 2
1 con geA

FC 0 geA
FChŜŜi0 0, 2

2 dip geA
SD 2 gehŜŜi0 � ASD 0, 1, 2

3 con Oða4Þ geA
FC;2 0 geA

FC;2hŜŜi0 0, 2

4 dip geA
SD;2 2 gehŜŜi0 � ASD;2 0, 1, 2

5 as geA
as 1 gehŜŜi0 � Aas 1, 2

6 con DgisoA
FC 0 DgisoA

FChŜŜi0 0, 2

7 dip DgisoA
SD 2 DgisohŜŜi0 � ASD 0, 1, 2

8 con AFCDg 1, 2 AFCDg � hŜŜi0 0, 1, 2

9 dip Dg � ASD 0, 1, 2 Dg � hŜŜi0 � ASD 0, 1, 2
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trace completes the expansion of the Pennanen–Vaara expression to

1=ðkTÞ2.
All that remains is to evaluate the final term in the van den

Heuvel–Soncini formula, which depends on the following trace:

TrS bSk�q;bSk0�q0

h ibSk00�q00

� 	
¼TrS bSk�q

bSk0�q0
bSk00�q00

� 	
�TrS bSk0�q0

bSk�q
bSk00�q00

� 	
:

ðD:12Þ
We have already computed the first term on the right-hand side of
Eq. (D.12), and the second term is easily deduced by swapping the
indices kq and k0q0. This is done simply by swapping the first and
second columns in each of the 3j and 6j symbols in Eq. (D.11); the

former acquires a phase factor of ð�1Þkþk0þk00 under such an opera-
tion, whilst the latter is invariant. We therefore obtain

TrS bSk0�q0
bSk�q

bSk00�q00

� 	
¼ ð�1Þkþk0þk00TrS bSk�q

bSk0�q0
bSk00�q00

� 	
: ðD:13Þ

We have seen that, in order to satisfy the constraints of time rever-
sal of the Hamiltonian, the spin operators in both the Zeeman and
hyperfine terms must be of odd rank, i.e. k and k0 must be odd,
and the ZFS spin operators must be of even rank, i.e. k00 must be
even. Therefore kþ k0 þ k00 is an even number, and the trace in Eq.
(D.12) must be zero:

TrS bSk�q; bSk0�q0

h ibSk00�q00

� 	
¼ 0: ðD:14Þ

The Pennanen–Vaara and van den Heuvel–Soncini formalisms

therefore give the same result to 1=ðkTÞ2. The full second-order
term is given in Eq. (6.28).

Appendix E. Derivation of the paramagnetic shielding tensor for
a system containing multiple, coupled paramagnetic centres of
arbitrary spin multiplicity to second order

In this appendix we give the detailed calculation of the param-
agnetic shielding tensor of a nucleus due to its hyperfine coupling
with a cluster of interacting transition-metal ions, to second order

in 1=ðkTÞ2. The final result leads directly to Eq. (7.53) in Chapter 7.
As shown in Appendix D the general van den Heuvel–Soncini

formula of the paramagnetic shielding tensor to Oðb2Þ is

rS
ij ¼

1
�hcI

b
TrS m̂iF̂ j
� �
x

� b2
TrS m̂iF̂ j

bH0

� 	
x

þ b2

2

TrS m̂i; F̂ j

 � bH0

� 	
x

24 35þOðb3Þ;

ðE:1Þ

where m̂ and F̂ are the total electronic magnetic moment and

hyperfine field operators respectively, and bH0 is the Hamiltonian
in the absence of the external magnetic field and nuclear magnetic
moments, and the cluster has a total ofx electronic spin states. The
cluster comprises a set of transition-metal ions A with electronic

spins SðAÞ, and so the electronic magnetic moment and hyperfine
field operators are each a sum of terms, one for each metal ion:

m̂i ¼ �lB

X
A

X
kq

ð�1ÞqgðAÞ
kq;i
bSðAÞ
k�q; ðE:2Þ

F̂ i ¼
X
A

X
kq

ð�1ÞqAðAÞ
kq;i
bSðAÞ
k�q; ðE:3Þ

where gðAÞ
kq;i and AðAÞ

kq;i are the g-tensor and hyperfine tensor compo-

nents, and bSðAÞ
kq is the irreducible spherical tensor spin operator of

rank k and order q for ion A. We recall that the irreducible spherical
ranks of the tensors in Eqs. (E.2) and (E.3) must be odd. The expres-

sion for bH0 contains a part due to the ZFS interactions of each ion,
and a part due to the exchange coupling interactions for all pairs
of ions:

bH0 ¼
X
A

X
kq

ð�1ÞqDðAÞ
kq
bSðAÞ
k�q

þ
X
A>B

X
kq

ð�1ÞqJðABÞkq ðk1k2ÞbT ðABÞ
k�q ðk1k2Þ: ðE:4Þ

The irreducible spherical tensor components of rank k and order q

of the ZFS interaction of ion A are DðAÞ
kq , and the exchange coupling

between ions A and B is represented by the spatial tensor

JðABÞkq ðk1k2Þ, and the spin tensor bT ðABÞ
k�q ðk1k2Þ which is formed by cou-

pling together the two one-spin tensor operators bSðAÞ
k1q1

and bSðBÞ
k2q2

:

bT ðABÞ
k�q ðk1k2Þ ¼

X
q1 ;q2

bSðAÞ
k1q1
bSðBÞ
k2q2

hk1k2q1q2jk� qi ðE:5Þ

¼ ð�1Þk1�k2�q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 1

p X
q1 ;q2

bSðAÞ
k1q1
bSðBÞ
k2q2

k1 k2 k
q1 q2 q

� �
: ðE:6Þ

We note that the ZFS tensor contains only components of even rank,
which for transition-metal ions can take at most only the values

k ¼ 2 and 4, with the maximum value being 2SðAÞ. The conventional
exchange coupling tensor that is formed by coupling together two
rank-one spin operators can take overall ranks k ¼ 0, 1, and 2, which
represent the isotropic exchange, antisymmetric DM, and symmet-
ric dipolar-coupling interactions respectively. If the two spins are
coupled together in the opposite order, so that ðABÞ is replaced by
ðBAÞ, and ðk1; k2Þ by ðk2; k1Þ in Eq. (E.6), the resulting tensorbT ðBAÞ

k�q ðk2k1Þ is given by

bT ðBAÞ
k�q ðk2k1Þ ¼ ð�1Þk1þk2þkbT ðABÞ

k�q ðk1k2Þ; ðE:7Þ

i.e. it acquires a phase factor ð�1Þk1þk2þk due to the symmetry prop-
erties of the 3j symbol. Therefore in order to maintain the same
Hamiltonian, the exchange tensor parameters must satisfy

JðBAÞkq ðk2k1Þ ¼ ð�1Þk1þk2þkJðABÞkq ðk1k2Þ: ðE:8Þ
This implies that swapping the order of the coupled spins results in
a sign change for the antisymmetric DM interaction, but not for the
symmetric isotropic exchange, nor the dipolar coupling
interactions.

The spin operators used in the Hamiltonian are ‘product opera-
tors’ that are defined in a direct product space. Hence for example

the notations bSðAÞ
kq and bSðAÞ

kq
bSðBÞ
k0q0 are shorthand for the following direct

products:

bSðAÞ
kq � bSðAÞ

kq � bSðBÞ
00 � bSðCÞ

00 � . . . ; ðE:9ÞbSðAÞ
kq
bSðBÞ
k0q0 � bSðAÞ

kq � bSðBÞ
k0q0 � bSðCÞ

00 � . . . ; ðE:10Þ

where bSðAÞ
00 is the irreducible spherical tensor spin operator that is

equal to the identity. The number of spin statesx in Eq. (E.1) is there-
fore given by the product of the numbers of states of each spin:

x ¼
Y
A

ð2SðAÞ þ 1Þ: ðE:11Þ

Using the aforementioned notation for the traces over the electronic
spin states, i.e. that the trace of a product operator over the entire
direct product spin space is denoted as TrS, and the trace of a
one-spin operator over the manifold of states pertaining to that spin
simply as Tr, we can write the traces TrS of the product operatorsbSðAÞ
kq and bSðAÞ

kq
bSðBÞ
k0q0 as the products of the one-spin traces Tr:

TrS bSðAÞ
kq

� 	
¼ Tr bSðAÞ

kq

� 	
Tr bSðBÞ

00

� 	
Tr bSðCÞ

00

� 	
. . . ; ðE:12Þ

TrS bSðAÞ
kq
bSðBÞ
k0q0

� 	
¼ Tr bSðAÞ

kq

� 	
Tr bSðBÞ

k0q0

� 	
Tr bSðCÞ

00

� 	
. . . : ðE:13Þ
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Each one-spin trace Tr bSk�q

� 	
can be evaluated using the

Wigner–Eckart theorem [191]:

Tr bSk�q

� 	
¼ Tr bSk�q

bS00

� 	
¼
X
MM0

hSM bSk�q

��� ���SM0ihSM0 bS00

��� ���SMi ðE:14Þ

¼ ð�1Þk�qð2Sþ 1ÞhSkbSkkSihSkbS0kSi



X
MM0

S S k

�M M0 �q

� �
S S 0

�M M0 0

� �
: ðE:15Þ

Using the orthogonality relations for the Wigner 3j symbols [191]
we can simplify the sum to give the simple identity

Tr Ŝk�q

� 	
¼ ð2Sþ 1ÞhSkŜ0kSi2dk0dq0 ðE:16Þ
¼ ð2Sþ 1Þdk0dq0: ðE:17Þ

The significance of this identity is that the trace of any one-spin

irreducible spherical tensor operator bSk�q is zero unless the rank k
is zero.

The paramagnetic chemical shielding tensor due to a system of
coupled transition-metal ions with arbitrary electronic spins is
given by combining Eqs. (E.1)–(E.6) to give

rS
ij ¼ � lB

�hcI
b
x

P
A;B

P
kk0qq0

ð�1Þqþq0gðAÞ
kq;iA

ðBÞ
k0q0 ;jTrS ŜðAÞk�qŜ

ðBÞ
k0�q0

� 	"
� b2

x

P
A;B;C

P
kk0k00qq0q00

ð�1Þqþq0þq00gðAÞ
kq;iA

ðBÞ
k0q0 ;jD

ðCÞ
k00q00TrS ŜðAÞk�qŜ

ðBÞ
k0�q0 Ŝ

ðCÞ
k00�q00

� 	
� b2

x

P
A;B

P
C>D

P
kk0k00qq0q00

P
k1 ;k2

ð�1Þqþq0þq00gðAÞ
kq;iA

ðBÞ
k0q0 ;jJ

ðCDÞ
k00q00 ðk1k2Þ


TrS ŜðAÞk�qŜ
ðBÞ
k0�q0 T̂

ðCDÞ
k00�q00 ðk1k2Þ

� 	
þ b2

2x

P
A;B;C

P
kk0k00qq0q00

ð�1Þqþq0þq00gðAÞ
kq;iA

ðBÞ
k0q0 ;jD

ðCÞ
k00q00TrS ŜðAÞk�q; Ŝ

ðBÞ
k0�q0

h i
ŜðCÞ
k00�q00

� 	
þ b2

2x

P
A;B

P
C>D

P
kk0k00qq0q00

P
k1 ;k2

ð�1Þqþq0þq00gðAÞ
kq;iA

ðBÞ
k0q0 ;jJ

ðCDÞ
k00q00 ðk1k2Þ


 TrS ŜðAÞk�q; Ŝ
ðBÞ
k0�q0

h i
T̂ðCDÞ
k00�q00 ðk1k2Þ

� 	
:

This expression contains five terms. The first is of orderOðbÞ and con-
tains only the g- and hyperfine tensor components. The remaining
terms are all of order Oðb2Þ, with the second and fourth terms origi-
nating from the ZFS interactions, and the third and fifth terms origi-
nating from the exchange-coupling interactions.Wenowevaluate all
five terms, using the Wigner–Eckart theorem to simplify the traces.

For the first term we have two situations that must be consid-
ered separately: either A ¼ B or A– B. If we set A ¼ B the trace is

TrS bSðAÞ
k�q
bSðAÞ
k0�q0

� 	
¼ Tr bSðAÞ

k�q
bSðAÞ
k0�q0

� 	Y
B–A

Tr bSðBÞ
00

� 	
ðE:18Þ

¼ ð�1Þq 2SðAÞ þ 1
2kþ 1

 !


 hSðAÞkbSðAÞ
k kSðAÞi2dkk0dq�q0

x
2SðAÞ þ 1

� �
ðE:19Þ

¼ ð�1Þq x
2kþ 1

� �
hSðAÞkbSðAÞ

k kSðAÞi2dkk0dq�q0 : ðE:20Þ

On substituting this into the expression for the shielding tensor we
obtain the first-order shift due to a cluster of non-interacting metal
ions that is similar to the expression we derived in Appendix D. If
we instead set A – B the trace becomes

TrS bSðAÞ
k�q
bSðBÞ
k0�q0

� 	
¼ Tr bSðAÞ

k�q

� 	
Tr bSðBÞ

k0�q0

� 	 Y
C–A;B

Tr bSðCÞ
00

� 	
ðE:21Þ

¼ xdk0dk00dq0dq00 ðE:22Þ
¼ 0: ðE:23Þ

This term is equal to zero as the one-spin irreducible spherical ten-
sor operators do not have zero ranks.

The trace of the second term only has one non-zero contribu-
tion, which is with A ¼ B ¼ C. The trace is therefore equal to

TrS bSðAÞ
k�q
bSðAÞ
k0�q0

bSðAÞ
k00�q00

� 	
¼ Tr bSðAÞ

k�q
bSðAÞ
k0�q0

bSðAÞ
k00�q00

� 	Y
B–A

Tr bSðBÞ
00

� 	
ðE:24Þ

¼ ð�1Þkþk0þk00 ð�1Þ2SðAÞ ð2SðAÞ þ 1Þ1=2x

hSðAÞkbSðAÞ

k kSðAÞihSðAÞkbSðAÞ
k0 kS

ðAÞihSðAÞkbSðAÞ
k00 kS

ðAÞi


 k0 k00 k

SðAÞ SðAÞ SðAÞ

( )
k0 k00 k

�q0 �q00 �q

 !
;

ðE:25Þ

which is again reminiscent of the second-order expression we
derived in Appendix D.

We have not hitherto encountered the third term. Setting
A– B; C ¼ A, and D ¼ B: we obtain the following result for the
trace:

TrS bSðAÞ
k�q
bSðBÞ
k0�q0

bT ðCDÞ
k00�q00 ðk1k2Þ

� 	
¼ ð�1Þk1�k2�q00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k00 þ 1

p X
q1 ;q2

k1 k2 k00

�q1 �q2 q00

� �

 Tr bSðAÞ

k�q
bSðAÞ
k1�q1

� 	
Tr bSðBÞ

k0�q0
bSðBÞ
k2�q2

� 	 Y
C–A;B

Tr bSðCÞ
00

� 	
¼ ð�1Þk1�k2�q00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k00 þ 1

p X
q1 ;q2

k1 k2 k00

�q1 �q2 q00

� �


 ð�1Þq 2SðAÞ þ 1
2kþ 1

 !
hSðAÞkbSðAÞ

k kSðAÞi2dkk1dq�q1


 ð�1Þq0 2SðBÞ þ 1
2k0 þ 1

 !
hSðBÞkbSðBÞ

k0 kS
ðBÞi2dk0k2dq0�q2


 x
ð2SðAÞ þ 1Þð2SðBÞ þ 1Þ

¼ xð�1Þk�k0þqþq0�q00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k00 þ 1

p hSðAÞkbSðAÞ
k kSðAÞi2

2kþ 1
hSðBÞkbSðBÞ

k0 kS
ðBÞi2

2k0 þ 1


 k k0 k00

q q0 q00

� �
dkk1dk0k2 :

ðE:26Þ
Alternatively we can also set A – B;C ¼ B, and D ¼ A to obtain a
similar result:

TrS bSðAÞ
k�q
bSðBÞ
k0�q0

bT ðCDÞ
k00�q00 ðk1k2Þ

� 	
¼ xð�1Þk00þqþq0�q00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k00 þ 1

p hSðAÞkbSðAÞ
k kSðAÞi2

2kþ 1
hSðBÞkbSðBÞ

k0 kS
ðBÞi2

2k0 þ 1


 k k0 k00

q q0 q00

� �
dkk2dk0k1 :

ðE:27Þ
These are the only two non-zero contributions to the third term. In
both we notice that ðk; k0; k00Þ must satisfy the triangle condition.
We see that Eq. (E.27) is the same as Eq. (E.26) with an extra phase

factor of ð�1Þkþk0þk00 due to the acyclic permutationof thefirst and sec-
ond columns of the Wigner 3j symbol. The ranks k and k0 are odd, so
that the electronic Zeeman and hyperfine interaction Hamiltonians
satisfy the time-reversal requirements, and so the sign of Eq. (E.27)
is only changed for the terms of the exchange interaction Hamilto-
nian that have odd rank k00, i.e. for the antisymmetric DM term, but
not the isotropic exchange nor the dipolar coupling interactions.
Combining the two contributions gives the overall expression for
the third term:
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�b2 P
kk0k00qq0q00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k00 þ 1

p k k0 k00

q q0 q00

 !


 P
A>B

ð�1Þk�k0gðAÞ
kq;iA

ðBÞ
k0q0 ;j J

ðABÞ
k00q00 ðkk0Þ

hSðAÞkŜðAÞ
k

kSðAÞi2
2kþ1

hSðBÞkŜðBÞ
k0 kSðBÞi2

2k0þ1

�
þP

A<B
ð�1Þk00gðAÞ

kq;iA
ðBÞ
k0q0 ;j J

ðBAÞ
k00q00 ðk0kÞ

hSðAÞkŜðAÞ
k

kSðAÞi2
2kþ1

hSðBÞkŜðBÞ
k0 kSðBÞi2

2k0þ1

 ðE:28Þ

¼ �b2
X

kk0k00qq0q00
ð�1Þk�k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k00 þ 1

p k k0 k00

q q0 q00

 !



X
A;B–A

gðAÞ
kq;iA

ðBÞ
k0q0 ;jJ

ðABÞ
k00q00 ðkk0Þ

hSðAÞkŜðAÞk kSðAÞi2
2kþ 1

hSðBÞkŜðBÞ
k0 kS

ðBÞi2
2k0 þ 1

:

ðE:29Þ
To go to the last line we have used the symmetry property of the
exchange coupling tensor parameters in Eq. (E.8).

To evaluate the fourth term we must calculate the following
trace:

TrS bSðAÞ
k�q;

bSðBÞ
k0�q0

h ibSðCÞ
k00�q00

� 	
¼ TrS bSðAÞ

k�q
bSðBÞ
k0�q0

bSðCÞ
k00�q00

� 	
� TrS bSðBÞ

k0�q0
bSðAÞ
k�q
bSðCÞ
k00�q00

� 	
; ðE:30Þ

where as for term two, the only relevant contributions are those
with A ¼ B ¼ C. We have already computed the first term on the
right-hand side, and the second term is easily deduced by swapping
the indices kq and k0q0. This is done simply by swapping the first and
second columns of the 3j and 6j symbols; the former acquires a

phase factor of ð�1Þkþk0þk00 under such an operation, whilst the latter
is invariant. We therefore obtain

TrS bSðAÞ
k0�q0

bSðAÞ
k�q
bSðAÞ
k00�q00

� 	
¼ ð�1Þkþk0þk00TrS bSðAÞ

k�q
bSðAÞ
k0�q0

bSðAÞ
k00�q00

� 	
: ðE:31Þ

We have seen that, in order to satisfy the constraints of time reversal
of the Hamiltonian, the spin operators in both the Zeeman and
hyperfine terms must be of odd rank, i.e. k and k0 must be odd, and
the ZFS spin operators must be of even rank, i.e. k00 must be even.
Therefore kþ k0 þ k00 is an even number, and the trace must be zero:

TrS bSðAÞ
k�q;

bSðBÞ
k0�q0

h ibSðCÞ
k00�q00

� 	
¼ 0: ðE:32Þ

There is therefore no contribution from the fourth term, and the
second-order shift due to the ZFS interaction is contained wholly
in the second term.

The fifth term contains the trace

TrS bSðAÞ
k�q;

bSðBÞ
k0�q0

h ibT ðCDÞ
k00�q00 ðk1k2Þ

� 	
: ðE:33Þ

As we have seen for the third term, the only contributions that
appear are with A– B, and so must also have C ¼ A and D ¼ B, or

C ¼ B and D ¼ A. The commutator bSðAÞ
k�q;

bSðBÞ
k0�q0

h i
is therefore of two

operators that act on different spins, and so is always zero. Hence
the fifth term is trivially zero, and the effects of the exchange cou-
pling are contained wholly in the third term.

Appendix F. Simplification of the relaxation superoperator and
spectral densities in the stochastic Liouville formalism

In this appendix we provide the full derivation of two particular
features of the stochastic Liouville formalism that were stated in
Section 9.3.1, namely the inclusion of the equilibrium nuclear-
spin density operator in the expression for the relaxation superop-
erator, and an important symmetry property of the spectral density.
The discussion closely follows that provided by Goldman [254].

F.1. The relaxation superopertor

Here we show that the expression for the Stochastic Liouville
equation in Section 9.3.1

dq̂TðtÞ
dt

¼ � 1

�h2

X
m;m0

ð�1Þmþm0
exp i x�m0 �x�mð Þt½ �



Z 1

0

bI1�m0 ; bIy1�m; q̂
TðtÞ

h ih i
TrL bP0

bLT1mðt � sÞybLT1m0 ðtÞ
n oh

� bI1�m0 ;bIy1�m q̂
TðtÞ

h i
TrL bP0; bLT1mðt � sÞy

h ibLT1m0 ðtÞ
n oi


 exp ix�msð Þds; ðF:1Þ

can be simplified to the following

dq̂TðtÞ
dt

¼ � 1

�h2

X
m;m0

ð�1Þmþm0
exp i x�m0 �x�mð Þt½ � bI1�m0 ; bIy1�m; q̂

TðtÞ � q̂0

h ih i


Z 1

0
TrL bP0

bLT1mðt � sÞybLT
1m0 ðtÞ

n o
exp ix�msð Þds; ðF:2Þ

which includes the expression q̂TðtÞ � q̂0 in the double commutator.
Hence we justify the phenomenological inclusion of the equilibrium
nuclear spin density operator in the semi-classical Redfield theory.
In order to prove this correspondence, we need to show that the fol-
lowing expression in the second term of Eq. (F.1) can be simplified
to give

bI1�m0 ;bIy1�m q̂
TðtÞ

h i
TrL bP0; bLT1mðt � sÞy

h ibLT1m0 ðtÞ
n o

exp ix�msð Þ

¼ bI1�m0 ; bIy1�m; q̂0

h ih i
TrL bP0

bLT1mðt � sÞybLT1m0 ðtÞ
n o

exp ix�msð Þ:
ðF:3Þ

Firstly we examine the factor that depends only on the lattice.
We write the trace explicitly in terms of the sum over the lattice

states jLi, which are eigenstates of the lattice Hamiltonian bHL with
energies that are given by

EL ¼ hLjbHLjLi: ðF:4Þ

The matrix representation of the equilibrium lattice density opera-
tor is diagonal in this basis, and has the following matrix elements:

hLjbP0jLi ¼ exp �bLELð Þ
TrL exp �bL

bHL

� 	h i : ðF:5Þ

The trace over the lattice states is therefore equal to

TrL bP0; bLT1mðt � sÞy
h ibLT1m0 ðtÞ
n o

¼
X
LL0

hLjbP0jLihLjbLT1mðt � sÞyjL0ihL0jbLT1m0 ðtÞjLi
h

� hLjbLT1mðt � sÞyjL0ihL0jbP0jL0ihL0jbLT1m0 ðtÞjLi
i

ðF:6Þ

¼
X
LL0

hLjbP0jLihLjbLT1mðt � sÞyjL0ihL0jbLT1m0 ðtÞjLi


 1� hL0jbP0jL0i
hLjbP0jLi

" #
ðF:7Þ

¼
X
LL0

hLjbP0jLihLjbLT1mðt � sÞyjL0ihL0jbLT1m0 ðtÞjLi


 1� exp bL EL � EL0ð Þð Þ½ �: ðF:8Þ
To proceed further we note that Eq. (F.1) contains an integral

over the time variable s, which we now calculate. The dependence
on s is found in two factors, namely the complex exponential
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exp ix�msð Þ, and the lattice operator bLT1mðt � sÞy. The s-dependence
of the matrix element of the latter can be elucidated as follows:

hLjbLT1mðt � sÞyjL0i ¼ hLj exp �ibHLs=�h
� 	bLT1mðtÞy exp ibHLs=�h

� 	
jL0i ðF:9Þ

¼ hLjbLT1mðtÞyjL0i exp i XL0 �XLð Þs½ �; ðF:10Þ
where XL ¼ EL=�h is the angular frequency associated with the lattice
energy EL. The integral over s is simplyZ 1

0
exp iðx�m þXL0 �XLÞ½ �ds ¼ pd x�m þXL0 �XLð Þ; ðF:11Þ

where dðxÞ is the Dirac delta function [190]. This integral is equal to
zero unless x�m ¼ XL �XL0 , and so we can immediately make the
following replacement in Eq. (F.8):

exp bL EL � EL0ð Þð Þ ! exp bL�hx�mð Þ: ðF:12Þ
This Boltzmann factor is now independent of L and L0, and so the
trace in Eq. (F.8) now simplifies to

TrL bP0; bLT1mðt � sÞy
h ibLT1m0 ðtÞ
n o

!
X
LL0

hLjbP0jLihLjbLT1mðt � sÞyjL0ihL0jbLT1m0 ðtÞjLi 1� exp bL�hx�mð Þ½ � ðF:13Þ

¼ TrL bP0
bLT1mðt � sÞybLT1m0 ðtÞ

n o
1� exp bL�hx�mð Þ½ �: ðF:14Þ

We can now partially simplify Eq. (F.3) by making the following
replacement:bI1�m0 ;bIy1�m q̂

TðtÞ
h i

TrL bP0; bLT1mðt � sÞy
h ibLT1m0 ðtÞ
n o

exp ix�msð Þ

! bI1�m0 ;bIy1�m q̂
TðtÞ

h i
TrL bP0

bLT1mðt � sÞybLT1m0 ðtÞ
n o


 1� exp bL�hx�mð Þ½ � exp ix�msð Þ: ðF:15Þ
We see that the trace over the lattice operators has been written in
the same format as in the right-hand side of Eq. (F.3).

In the second stage of the derivation we consider the nuclear-
spin part of Eq. (F.3). We have already seen that the transformation

of the spin operator bIy1�m into the interaction representation is
described by the following expression:bIT1�mðt � sÞy ¼ bIy1�m exp �ix�mðt � sÞð Þ: ðF:16Þ

The corresponding transformation of the matrix elements ofbIy1�m in the eigenbasis jii of bHI is

hijbIT1�mðt � sÞyjji ¼ hij exp ibHIðt � sÞ=�h
� 	bI1�mðt � sÞy exp �ibHIðt � sÞ=�h

� 	
jji ðF:17Þ

¼ hijbI1�mðt � sÞyjji exp �iðxj �xiÞðt � sÞ
 �
; ðF:18Þ

wherexi is the angular frequency associated with the energy �hxi of
state jii. On comparing Eqs. (F.16) and (F.18) we can write x�m as

x�m ¼ xj �xi: ðF:19Þ

We now introduce the formal expression for the equilibrium
nuclear-spin density operator:

q̂0 ¼
exp �bL

bH� 	
TrI exp �bL

bH� 	h i ; ðF:20Þ

where TrI is the trace taken over all the nuclear spin states. The
Boltzmann factor in Eq. (F.15) can now be written as

1� exp bL�hx�mð Þ ¼ 1� exp bL�hðxj �xiÞ
� � ðF:21Þ

¼ 1� hijq̂0jii
hjjq̂0jji ðF:22Þ

¼ hjjq̂0jji � hijq̂0jii
hjjq̂0jji : ðF:23Þ

The product of the matrix element of bIy1�m q̂TðtÞ and the Boltzmann
factor is therefore

hijbIy1�mjjihjjq̂TðtÞjki 1� exp bL�hx�mð Þ½ �

¼ hijbIy1�mjjihjjq̂TðtÞjki hjjq̂0jji � hijq̂0jii
hjjq̂0jji

� 
¼
D
i
��� bIy1�m; q̂0

h i���jEDj���q̂0

���jE�1D
j
���q̂TðtÞ

���kE: ðF:24Þ

Hence we make the following replacement in the nuclear-spin part
of Eq. (F.15):

bI1�m0 ;bIy1�m q̂
TðtÞ

h i
1� exp bL�hx�mð Þ½ �

! bI1�m0 ; bIy1�m; q̂0

h i
q̂�1

0 q̂TðtÞ
h i

: ðF:25Þ

We are almost there. The final step is to apply the high-
temperature limit to the nuclear-spin energy levels, and note that
the nuclear-spin density operator at all times is equal to the sum
of the identity operator and a small deviation with a leading term
of order bL. The result is that q̂�1

0 q̂TðtÞ approximates the identity

operator 1̂I , and we obtain

bI1�m0 ;bIy1�m q̂
TðtÞ

h i
1� exp bL�hx�mð Þ½ � ! bI1�m0 ; bIy1�m; q̂0

h ih i
: ðF:26Þ

Substituting this into Eq. (F.15) we obtain Eq. (F.3), and therefore

dq̂TðtÞ
dt

¼ � 1
�h2

X
m;m0

ð�1Þmþm0


 exp i x�m0 �x�mð Þt½ � bI1�m0 ; bIy1�m; q̂
TðtÞ � q̂0

h ih i


Z 1

0
TrL bP0

bLT1mðt � sÞybLT1m0 ðtÞ
n o

exp ix�msð Þds; ðF:27Þ

as required.

F.2. Symmetry properties of the spectral density

Here we derive a useful ‘symmetry-related’ identity concerning
the spectral density Kmm0 ðxÞ, that is relevant to the application of
the stochastic Liouville formalism for relaxation. We begin by
writing the expression for the time-correlation function Gmm0 ðsÞ
in Eq. (9.43) as a sum over the lattice states jLi:

Gmm0 ðsÞ ¼ TrL bLy1m exp ibHLs=�h
� 	bL1m0 exp �ibHLs=�h

� 	bP0

h i
ðF:28Þ

¼
X
LL0

hLjbLy1mjL0ihL0jbL1m0 jLihLjbP0jLi exp iðXL0 �XLÞs½ �: ðF:29Þ

Using this in the expression for the real part of the spectral density
in Eq. (9.44) we obtain, for x ¼ �x�m:

Re Kmm0 ð�x�mÞ½ �¼Re
Z 1

0
Gmm0 ðsÞexpðix�msÞds

� 
ðF:30Þ

¼Re
X
LL0

hLjL̂y1mjL0ihL0jL̂1m0 jLihLjP̂0jLi
"



Z 1

0
exp iðx�mþXL0 �XLÞs½ �ds


ðF:31Þ

¼pRe
X
LL0

hLjL̂y1mjL0ihL0jL̂1m0 jLihLjP̂0jLi


dðx�mþXL0 �XLÞ: ðF:32Þ
We now write an expression for the time-correlation function

G�m0�mðsÞ:

260 A.J. Pell et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 111 (2019) 1–271



G�m0�mðsÞ ¼ TrL bLy1�m0 exp ibHLs=�h
� 	bL1�m exp �ibHLs=�h

� 	bP0

h i
ðF:33Þ

¼
X
LL0

hL0 jbLy
1�m0 jLihLjbL1�mjL0ihL0 jbP0jL0i exp �iðXL0 �XLÞs½ � ðF:34Þ

¼
X
LL0

hLjbL1�mjL0ihL0jbLy1�m0 jLihL0 jbP0jL0i exp �iðXL0 �XLÞs½ �: ðF:35Þ

The lattice operators satisfybLy1m ¼ ð�1ÞmbL1�m; ðF:36Þ
and so the expression for G�m0�mðsÞ becomes

G�m0�mðsÞ ¼ ð�1Þmþm0 X
LL0

hLjL̂y1mjL0ihL0jL̂1m0 jLihL0jP̂0jL0i


 exp �iðXL0 �XLÞs½ � ðF:37Þ
¼ ð�1Þmþm0 X

LL0
hLjL̂y1mjL0ihL0jL̂1m0 jLihLjP̂0jLi


 exp �iðXL0 �XLÞs½ � hL0jP̂0jL0i
hLjP̂0jLi

( )
ðF:38Þ

¼ ð�1Þmþm0 X
LL0

hLjL̂y1mjL0ihL0jL̂1m0 jLihLjP̂0jLi


 exp �iðXL0 �XLÞs½ � exp bL EL � EL0ð Þ½ �: ðF:39Þ
This gives the following expression for the real part of the spectral
density K�m0�mðþx�mÞ:
Re K�m0�mðþx�mÞ½ �

¼ Re
Z 1

0
G�m0�mðsÞ expð�ix�msÞds

� 
ðF:40Þ

¼ ð�1Þmþm0
Re

X
LL0

hLjbLy1mjL0ihL0jbL1m0 jLihLjbP0jLi exp bL EL � EL0ð Þ½ �
"



Z 1

0
exp �iðx�m þXL0 �XLÞs½ �ds


ðF:41Þ

¼ ð�1Þmþm0
pRe

X
LL0

hLjbLy1mjL0ihL0jbL1m0 jLihLjbP0jLi exp bL EL � EL0ð Þ½ �


 dðx�m þXL0 �XLÞ: ðF:42Þ
The Dirac delta function on the last line indicates that
x�m ¼ XL �XL0 , and therefore the energy difference in the Boltz-
mann factor can be replaced by EL � EL0 ¼ �hx�m. The final expres-
sion for Re K�m0�mðþx�mÞ½ � is therefore

Re K�m0�mðþx�mÞ½ � ¼ ð�1Þmþm0
exp bL�hx�m½ �


 pRe
X
LL0

hLjbLy1mjL0ihL0jbL1m0 jLihLjbP0jLi


 dðx�m þXL0 �XLÞ: ðF:43Þ
On comparing Eq. (F.43) with Eq. (F.32) we obtain the identity

Re K�m0�mðþx�mÞ½ � ¼ ð�1Þmþm0
exp bL�hx�m½ �Re Kmm0 ð�x�mÞ½ �;

ðF:44Þ
i.e. the two spectral densities differ only by a sign and multiplicative
Boltzmann factor. In the high-temperature limit, where
jbL�hx�mj � 1, we can ignore the Boltzmann factor and the relation-
ship between the two spectral densities simplifies to

Re K�m0�mðþx�mÞ½ � � ð�1Þmþm0
Re Kmm0 ð�x�mÞ½ �: ðF:45Þ

In the secular approximation the relevant terms in the relaxation
superoperator have m0 ¼ m. The identity in Eq. (F.45) is then

Re K�m�mðþx�mÞ½ � � Re Kmmð�x�mÞ½ �: ðF:46Þ
Noting that x�m ¼ �xm, we can write Eq. (F.46) in the following
equivalent way:

Re K�m�mð�xmÞ½ � � Re Kmmð�x�mÞ½ �: ðF:47Þ
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ABMS: anisotropic bulk magnetic susceptibility.
aMAT: adiabatic magic-angle turning.
An: actinide.
AO: atomic orbital.
AP: anti-phase.
BMS: bulk magnetic susceptibility.
CA: alpha carbon (protein).
CASSCF: complete active space self-consistent-field method.
CB: beta carbon (protein).
CCR: cross-correlated relaxation.
CEST: chemical exchange dependent saturation transfer.
CO: carbonyl carbon (protein).
COASTER: correlation of anisotropies separated through echo refocusing.
COSY: correlation spectroscopy.
CP: cross polarization.
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CPMG: Carr-Purcell-Meiboom-Gill.
CSA: chemical shift anisotropy.
CT: central transition.
DFT: density functional theory.
DHSQC: dipolar heteronuclear single-quantum correlation.
DINEPT: dipolar insensitive nucleus enhanced by polarization transfer.
DIPAP: double in-phase anti-phase.
DIPSI: decoupling in the presence of scalar interactions.
DM: Dzyaloshinskii-Moriya.
DNA: deoxyribonucleic acid.
DNP: dynamic nuclear polarization.
DQF-COSY: double-quantum-filtered correlation spectroscopy.
EC: ethyl cellulose.
EDTA: ethylenediamine tetraacetic acid.
EFG: electric-field gradient.
EPR: electron paramagnetic resonance.
ESR: electron spin resonance.
EXSY: exchange spectroscopy.
FC: Fermi contact.
FID: free-induction decay.
FWHM: full-width at half-maximum.
GGA: generalized gradient approximation.
HCA: alpha proton (protein).
HN: amide proton (protein).
HETCOR: heteronuclear correlation.
HF: hyperfine.
HMQC: heteronuclear multiple-quantum correlation.
HOMO: highest-occupied molecular orbital.
HPC: hydroxypropyl cellulose.
HS: high-spin.
HSQC: heteronuclear single-quantum correlation.
IBMS: isotropic bulk magnetic susceptibility.
IP: in-phase.
IPAP: in-phase anti-phase.
IS: inner-sphere.
LCAO: linear combination of atomic orbitals.
LF: ligand field.
Ln: lanthanide.
LR: linear-response.
LS: low-spin.
LUMO: lowest-unoccupied molecular orbital.
MAS: magic-angle spinning.
MAT: magic-angle turning.
MATPASS: magic-angle turning phase-adjusted spinning sidebands.
MATPASS: nuclear magnetic resonance dispersion.
MMP: metalloproteinase.
MO: molecular orbital.
MODEFT: modified driven equilibrium Fourier transform.

MRI: magnetic resonance imaging.
NH: amide nitrogen (protein).
NMR: nuclear magnetic resonance.
NOE: nuclear Overhauser effect.
NOESY: nuclear Overhauser effect spectroscopy.
NQR: nuclear quadrupole resonance.
NR: non-relativistic.
OM: oncomodulin.
OS: outer-sphere.
PAF: principal axis frame.
PARACEST: paramagnetic chemical exchange dependent saturation transfer.
PASS: phase-adjusted spinning sidebands.
PBA: Prussian Blue analogue.
PCS: pseudo-contact shift.
PDSD: proton-driven spin diffusion.
PRE: paramagnetic relaxation enhancement.
PSD: proton spin diffusion.
PSO: paramagnetic spin orbital.
R-PRE: relayed paramagnetic relaxation enhancement.
RAPT: rotor-assisted population transfer.
RDC: residual dipolar coupling.
RF: radio-frequency.
RFDR: radio-frequency driven recoupling.
RKKY: Ruderman-Kittel-Kasuya-Yosida.
ROE: rotating-frame Overhauser enhancement.
ROESY: rotating-frame Overhauser effect spectroscopy.
S3AP: single-sideband-selective adiabatic pulse.
S3E: selective-spin-state excitation.
SA: shift anisotropy.
SC: sidechain (protein).
SD: spin-dipolar.
SHAP: short high-power adiabatic pulse.
SHAP-CPMG: short high-power adiabatic pulse Carr-Purcell-Meiboom-Gill.
SO: spin orbit.
SOD: superoxide dismutase.
SS: spin-spin.
ST: satellite transition.
TEDOR: transferred-echo double resonance.
TM: transition metal.
TOCSY: total correlation spectroscopy.
TROSY: transverse relaxation-optimized spectroscopy.
VASP: Vienna ab initio Simulation Package.
VOCS: variable offset cumulative spectroscopy.
WEFT: water eliminated Fourier transform.
WURST: wideband, uniform rate, smooth truncation.
Z: Zeeman.
ZFS: zero-field splitting.
ZQ: zero-quantum.
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1. Introduction
Understanding the function of biological macromolecules

and their complexes at the physicochemical level requires
knowledge of both their structure and dynamics. Conven-
tional biophysical techniques, such as crystallography and
NMR, have yielded incredibly detailed structural information
at the atomic level on highly populated static states.1 In the
context of the energy landscape representation of macro-
molecules, highly populated states are located within the
global free energy minimum region of a relatively rough free
energy hypersurface.2-5 Much less is known, however, about
lowly populated, higher free energy states which cannot be
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trapped and are therefore invisible to conventional structural
and biophysical techniques. Because such lowly populated
states are generally invisible does not mean that they are
not important. Indeed, many biological processes, including
macromolecular recognition and binding, enzyme catalysis,
allostery, and self-assembly, may proceed via intermediates
involving fast but infrequent transitions between the free
energy global minimum state and higher free energy states.
Consider, for example, the process of recognition between
two macromolecules. There are two opposing constraints
governing this process, namely specificity and speed.6 If an
interaction is too specific, the speed of recognition will likely
be slow. If, on the other hand, the speed of interaction is
too fast, specificity will likely be sacrificed. The dilemma,
therefore, is how biological processes manage to achieve both
speed and specificity. Extensive kinetic7-13 and theoretical
work6,14-16 has suggested that one mechanism that can be
used to enhance speed without sacrificing specificity is to
reduce the dimensionality of the search process or more
generally to incorporate a nonspecific attractive potential.6
In the context of protein-DNA interactions, where a

transcription factor must be able to locate its specific DNA
target site within a sea of nonspecific DNA sites, nonspecific
DNA binding can be used to facilitate specific recognition
via a combination of one-dimensional diffusion or sliding
along the DNA, coupled with jumping from one DNA
molecule to another.17-26 Similarly for protein-protein
interactions, nonspecific encounter complexes can be rapidly
formed and subsequently relax to the stereospecific complex
via two-dimensional diffusion on the surface of the proteins
coupled with electrostatic guiding.6,9,27-29 In this review, we
will survey recent developments in paramagnetic relaxation
enhancement (PRE), as measured by NMR spectroscopy, and
show how this technique can provide unique information that
permits one to both detect and visualize lowly populated
states of macromolecules and their complexes.

Macromolecular NMR spectroscopy has seen many de-
velopments over the last two decades. The advent of two-
dimensional NMR led to the first three-dimensional structure
determinations of small (<8-10 kDa) proteins and nucleic
acids.30,31 The introduction of heteronuclear three- and four-
dimensional NMR spectroscopy in the late 1980s and early
1990s32,33 extended the range of applicability of the method
to systems in the 20-30 kDa range.34,35 Subsequently, the
introduction of transverse relaxation optimized spectroscopy
(TROSY)36-40 permitted structures of systems in the 40-80
kDa range to be determined41-46 and supra-molecular com-
plexes in the 500 kDa range to be studied.47-50 Most NMR
measurements, such as the nuclear Overhauser effect (NOE),
which yields short (e6 Å) interproton distance restraints that
provide the mainstay of all NMR structure determinations,
and three-bond scalar couplings that yield torsion angle
restraints, are based on short-range local interactions. The
power of the NOE is that a large number of short-range
interproton distances between residues far apart in the linear
sequence of amino acids are sufficiently constraining to yield
the three-dimensional structure of a protein.51 Nevertheless,
long-range information can still be very helpful. In this
regard, the introduction of residual dipolar couplings (RDCs),
measured on weakly aligned macromolecules dissolved in
dilute liquid crystalline media,52,53 provides long-range
orientational information (relative to an external alignment
tensor) that has led to significant increases in coordinate
accuracy.54-58 Long-range distance information in the 10-35
Å range can also be obtained through the use of paramagnetic
NMR.59-63

For investigations of dynamics by NMR, 2H-, 13C-, and
15N-relaxation measurements have provided a wealth of
information on the pico- to nanosecond time scale. Recent
advances in relaxation dispersion spectroscopy have yielded
insights into processes on the micro- to millisecond time
scale.64-67 Quantitative studies of slower exchange processes
involving macromolecules can be carried out using tech-
niques such as heteronuclear z-exchange spectroscopy25,68-71

and hydrogen/deuterium exchange experiments.72,73

There are two NMR approaches that can be used to study
lowly populated states under equilibrium conditions, namely
relaxation dispersion spectroscopy and paramagnetic relax-
ation enhancement. Relaxation dispersion spectroscopy
provides detailed kinetic information on exchange processes
between major species and lowly populated states on the
micro- to millisecond time scale, providing there are
substantial chemical shift differences between the states. In
the absence of substantial chemical shift differences between
the states, exchange line broadening will not occur and no
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He received his M.D. and Ph.D. degrees at University College Hospital
Medical School and the MRC National Institute for Medical Research in
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relaxation dispersion will be observed. In addition to kinetic
rate constants, relaxation dispersion measurements yield
chemical shifts for the minor species which can be used to
obtain some qualitative structural insight into the nature of
the minor species. More recently, combining relaxation
dispersion with weak alignment has permitted the extraction,
under favorable circumstances, of highly sensitive bond
vector orientation information for the minor species in the
form of RDCs and anisotropic chemical shifts.74,75

Over the past few years, paramagnetic NMR has emerged
as an alternative, orthogonal, and powerful tool to investigate
various dynamic processes involving macromolecules. In
particular, the PRE arising from unpaired electrons with an
isotropic g-tensor (such as a nitroxide spin-label or EDTA-
Mn2+) has proved to be a particularly versatile tool that can
provide information about structural aspects of dynamic
process owing to the 〈r-6〉 distance dependence of the PRE
between the paramagnetic center and the nucleus of interest.
The PRE arises from magnetic dipolar interactions between
a nucleus and the unpaired electrons of the paramagnetic
center which result in an increase in nuclear relaxation rates.
In contrast to the NOE, where the effects are small and
therefore limited to short-range (<6 Å) interactions between
protons, the PRE effect is very large, owing to the large
magnetic moment of an unpaired electron, permitting dis-
tances up to 35 Å (depending on the paramagnetic group)
to be detected. The key for using the PRE to study lowly
populated states resides in the finding that the observed PRE
rates in the fast exchange regime are population weighted
averages of the PREs for the major and minor species.24

Thus, providing the paramagnetic center-proton distances
are shorter in the minor species than in the major one, the
imprint of the minor species will be apparent in the observed
PRE rates, thereby enabling structural information on the
minor species to be extracted.

Despite the long history of the PRE (in fact, Solomon
described the equations for the PRE in his famous paper on
the NOE in 1955),76 application to biological macromolecules
was limited for a long time to metal-binding proteins.60

General use of the PRE for nonmetal binding proteins is
dependent on the introduction of an extrinsic paramagnetic
center via conjugation to a specific, solvent exposed, site.77

Further, quantitative application of the PRE to structure
determination requires the appropriate theoretical and com-
putational framework for refinement directly against PRE
relaxation rates, taking into account the intrinsic flexibility
of paramagnetic centers that are attached to the macromol-
ecule via linkers with several rotatable bonds.78 The first
applications of the PRE involved studies on spin-labeled
lysozyme and bovine pancreatic trypsin inhibitor in the mid-
1980s in which PRE effects were converted to approximate
distance restraints,79,80 but it is only with recent biochemical
and computational advances that the technique has come into
more general use. Using this type of PRE data, macromo-
lecular structures have been characterized for soluble
proteins,81-84 protein-protein complexes,85-89 protein-
oligosaccharide complexes,90-92 protein-nucleic acid com-
plexes,78,93-96 and membrane proteins.97,98 Unfolded or
partially unfolded states of proteins have also been investi-
gated by PRE.99-109 A recent major advance in the field of
dynamics of macromolecular interactions is the finding that
in the fast exchange regime the intermolecular PRE can
provide a powerful probe to detect and characterize lowly
populated intermediates in macromolecular binding events,

thereby providing structural information on encounter com-
plexes that cannot be obtained by any other biophysical
technique.24,27,28,110,111 The same principle can also be applied
to other dynamic processes such as nonspecific protein-DNA
interactions,23,112 interdomain motions,113,114 and transient
protein associations.115-117

The main focus of this review is on the PRE as a tool to
investigate lowly populated states of macromolecules and
their complexes. In section 2, we describe the theoretical
aspects of the PRE and the effects of dynamics on the PRE.
In this context, we explain how the PRE permits amplifica-
tion of information for minor states in exchanging systems.
The advantages of using the PRE on transverse magnetization
arising from unpaired electrons with an isotropic g-tensor
are also discussed. In section 3, we describe the experimental
aspects of the PRE experiment including paramagnetic
probes, pulse sequences, and back-calculation of the PRE,
as well as practical considerations. Finally, in section 4, we
review recent applications of the PRE to investigate various
dynamic processes involving biological macromolecules.

2. Theoretical Aspects

2.1. Paramagnetic NMR Parameters
2.1.1. Isotropic and Anisotropic Unpaired-Electron
Systems

In paramagnetic systems there are three NMR experimental
observables that yield long-range structural information:
PREs, pseudocontact shifts (PCSs), and residual dipolar
couplings (RDCs). The PRE can be detected in any para-
magnetic system, whereas PCSs and RDCs can only be
observed in systems with an anisotropic electron g-factor.
Figure 1 summarizes the major long-range paramagnetic
NMR observables in systems with isotropic and anisotropic
electron g-factors. PCSs and RDCs are dependent on the
magnetic susceptibility tensor (usually referred to as the
!-tensor). The electron g-tensor and !-tensor are closely
related. In general, if the electron g-tensor is anisotropic,
the !-tensor is also anisotropic. If the zero-field-splitting
(ZFS) is negligible compared to the electron spin Zeeman
energy, the relationship between the !- and g-tensors is given
by118

where S is the electron spin quantum number, µ0 is the
permeability of free space, µB is the magnetic moment of
the free electron, NA is Avogadro’s number, kB is the
Boltzmann constant, T is the temperature, and gkk is an
element of the g-tensor (with k ) x, y, or z). Nitroxide spin

Figure 1. Major long-range observables in paramagnetic NMR.

!kk )
µ0NAµB

2 S(S + 1)

3kBT
gkk

2 (1)
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radicals, EDTA-Mn2+, and DTPA-Gd3+ are isotropic electron
systems, whereas Fe3+, Dy3+, and many other paramagnetic
metal ions represent anisotropic systems.

2.1.2. PRE through Direct Dipole-Dipole Interactions

The longitudinal (Γ1) and transverse (Γ2) PRE rates are
conventionally described by the Solomon-Bloembergen
(SB) equations:76,119

where g is the electron g-factor, γI is the proton gyromagnetic
ratio, ωI/2π is the Larmor frequency of the proton, and JSB(ω)
is the generalized spectral density function for the reduced
correlation function, given by

The correlation time, τc, is defined as (τr
-1 + τs

-1)-1, where
τr is the rotational correlation time of the macromolecule
and τs is the effective electron relaxation time. The
Solomon-Bloembergen theory makes the simplifying ap-
proximation that electron relaxation is not coupled to
molecular tumbling. This is reasonable because the electron
relaxation lifetime is comparable to or shorter than the
rotational correlation time of a macromolecule. In the case
of Mn2+ (S ) 5/2), electron relaxation is multiexponential.120

Theoretical considerations, however, have shown that the SB
equation with a single effective electron relaxation rate, τs

-1,
does not introduce any significant errors at high magnetic
field strengths (>10 T).121

TheSolomon-Bloembergentheoryassumesthatdipole-dipole
interaction vectors are rigid in the molecular frame. Since
PRE interaction vectors may be quite long (up to 35 Å for
Mn2+), they are less susceptible to small fluctuations in
atomic positions, making this assumption reasonable in many
cases. However, this approximation will break down if the
ensemble space sampled by the paramagnetic group is quite
large. The extension of the Solomon-Bloembergen equations
to deal with this problem will be described in section 2.2.

2.1.3. PRE through Curie-Spin Relaxation

Curie-spin relaxation arises from dipole-dipole interaction
between a nucleus and the time-averaged magnetization of
the electrons. The Γ2 rate due to Curie-spin relaxation is
given by122

(In some examples in the literature, the last two terms are
neglected, which is only valid when τs , τr). From eq 5 it
follows that the PRE rate for Curie-spin relaxation is

approximately proportional to the square of the magnetic
field. In the case of nitroxide spin radicals, τc ≈ τr, and
therefore, Curie-spin relaxation is negligible. For metal ions
with an anisotropic g-tensor and a very short electron
relaxation time (e.g., Fe3+, Dy3+), Curie-spin relaxation is
the major component of the 1H-Γ2 rates for macromolecules.
For isotropic metal ions such as Mn2+ and Gd3+, Curie-spin
relaxation is almost negligible for medium-size macromol-
ecules (∼40 kDa). For example, in the case of the 20 kDa
SRY/DNA- EDTA-Mn2+ complex, the contribution of Curie-
spin relaxation to the overall Γ2 rates at 308 K is estimated
to be only 2%, even at a 1H-frequency of 800 MHz.123 The
relative contribution of Curie-spin relaxation depends on the
size of the system. For a very large system with τr larger
than 50 ns, corresponding to a molecular weight > 100 kDa,
the contribution could be larger than 20% at 800 MHz.

2.1.4. Pseudocontact Shifts

Pseudocontact shifts (PCSs) are observed only in para-
magnetic systems with anisotropic unpaired electrons such
as those in Dy3+, Tb3+, and Fe3+ ions. The magnitude of the
PCS, δPCS, is given by118

where r is the distance between the metal ion and the nuclear
spin θ and φ are the angles describing the position of the
nuclear spin with respect to the principal axes (with the metal
ion at the origin) of the magnetic susceptibility tensor (!),
and ∆!ax and ∆!rh are the axial and rhombic components,
respectively, of the magnetic susceptibility tensor, defined
as

It should be noted that the PCS displays a r-3 distance
dependence, in contrast to the r-6 dependence for the PRE.
As a result, the distance range for the experimentally detected
PCS is relatively long. For example, the distance range for
the PCS arising from Dy3+ can extend to ∼40 Å, providing
the principal axis of the !-tensor is fixed within the molecular
frame, as is the case for metalloproteins. When an extrinsic
metal ion is attached to a macromolecule using a chelator
with a flexible linker, the magnitude of the PCS is signifi-
cantly reduced, owing to the fact that the principal axes of
the !-tensor fluctuate within the frame of the macromolecule.
Immobilization of the metal chelator, for example by using
bidentate ligands that can be conjugated to two neighboring
sites simultaneously, will increase the observed PCS.124,125

There have been extensive studies in which the PCS has
been used to investigate dynamics in metal binding
proteins.126-128 However, these PCS applications have not
gained widespread popularity outside the area of metal
binding proteins for two main reasons. First, the theoretical
framework required to describe the relationship between PCS
and dynamics has not yet been adequately established.
Second, a practical problem arises from the presence of
enantiomers for many metal chelators, such as EDTA,

Γ1 ) 2
5(

µ0

4π)
2

γI
2g2µB

2 S(S + 1)JSB(ωI) (2)

Γ2 ) 1
15(

µ0

4π)
2

γI
2g2µB

2 S(S + 1){4JSB(0) + 3JSB(ωI)}

(3)

JSB(ω) ) r-6 τc

1 + (ωτc)
2

(4)

Γ2,Curie-spin ) 1
5(

µ0

4π)
2ωI

2g4µB
4 S2(S + 1)2

(3kBT)2r6 (4τr +

3τr

1 + (ωIτr)
2
- 4τc -

3τc

1 + (ωIτc)
2) (5)

δPCS ) 1
12πr-3{∆!ax(3 cos2 θ - 1) +

3
2

∆!rh sin2 θ cos 2φ} (6)

∆!ax ) !zz -
1
2

(!xx + !yy) (7)

∆!rh ) !xx - !yy (8)
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conjugated to macromolecules. Since the enantiomers exhibit
slightly different !-tensors, the corresponding PCSs are also
different, and as a result, multiple sets of crosspeaks
appear.129-131 Metal chelators designed to solve this problem
have been developed.124,125,129,132 With widespread use of
these new compounds, PCS could become a widely used
technique for investigations of dynamical processes.

2.1.5. Residual Dipolar Couplings

A molecule containing a paramagnetic center with an
anisotropic g-tensor will undergo partial alignment in the
magnetic field, giving rise to residual dipolar couplings
(RDCs):118

where DAB is the residual dipolar coupling observed between
nuclei A and B, rABis the distance between nuclei A and B,
θ is the angle between the A-B internuclear vector and the
z axis of the !-tensor, φ is the angle between the projection
of the A-B internuclear vector on the xy plane and the x
axis of the !-tensor, B0 is the static magnetic field strength,
and h is Planck’s constant. Although eqs 6 and 9 are formally
similar, they provide different, albeit complementary infor-
mation, since the variables r, θ, and φ are defined with
respect to a paramagnetic center-nucleus vector in eq 6 and
to an internuclear vector in eq 9.

For naturally occurring metal binding proteins where the
metal ion(s) is at a fixed position in the molecular frame,
the RDCs can be fairly large, especially at a high magnetic
field. For example, in the case of calbindin D9k with a Dy3+

ion bound at the C-terminal metal binding site, the metal-
induced RDCs for backbone amide 15N-1H vectors spanned
from -26 Hz to +19 Hz at 800 MHz and from -11 Hz to
+8 Hz at 500 MHz.133

On the other hand, a Dy3+ ion bound to an extrinsic metal
chelator attached to the macromolecule via a flexible linker
will exhibit much smaller RDCs. This is because the
flexibility of the linker reduces the magnitude of the
molecular alignment of the macromolecule with respect to
the magnetic field even though the alignment for the
conjugated metal chelator may be sizable. In the case of the
Trigger Factor protein with EDTA-Dy3+ conjugated to a
cysteine residue, the largest observed 1DNH RDC was only
8 Hz at 800 MHz.129

2.1.6. Advantages of Paramagnetic Systems with an
Isotropic g-Tensor

As described above, paramagnetic systems with an aniso-
tropic g-tensor can potentially provide three different NMR
observables (PRE, PCS, and RDC) while systems with an
isotropic g-tensor yield only the PRE. However, this does
not necessarily mean that an anisotropic system is more
useful in practice. In fact, there are a number of practical
advantages to using an isotropic system, especially for
dynamic investigations.

One advantage is that separate assignment of resonances
in the paramagnetic state is unnecessary, since there is no
PCS for an isotropic g-tensor. Figure 2 shows an example

for an SRY/DNA-EDTA complex.94 In this case, the
paramagnetic and diamagnetic states consist of Mn2+ and
Ca2+, respectively, chelated to an EDTA group that is
covalently attached to the DNA. The chemical shifts for the
diamagnetic and paramagnetic resonances are identical
because the unpaired electrons of Mn2+ are isotropic. For
an anisotropic electron system, however, resonances need
to be assigned separately for the diamagnetic and paramag-
netic states, owing to the presence of PCS in the latter. From
a practical perspective, the resonance assignment for the
paramagnetic state can be very challenging, because of lower
sensitivity as a consequence of PRE. In favorable cases,
z-exchange spectroscopy can be used for assignment pur-
poses. In this approach, the paramagnetic and diamagnetic
metal ions with the same or near identical affinities are mixed
and exchange crosspeaks are qualitatively used to correlate
signals from the paramagnetic and diamagnetic states.134 For
this method to work, however, the exchange rates for metal
binding should range from approximately 0.1 to 100 s-1.
Alternatively, resonance assignments for the paramagnetic
state can be carried out using so-called “protonless” NMR
spectroscopy that employs 15N/13C heteronuclear correlation
specroscopy in conjunction with direct 13C detection.135-142

Since the magnitudes of Γ2 for 13C and 15N nuclei are
substantially smaller than that for 1H, this type of hetero-
nuclear correlation spectroscopy permits assignment of 13C/
15N resonances in the paramagnetic state. (Note, of course,
that direct detection of 13C instead of 1H reduces the
sensitivity of the experiments owing to the dependence of
the signal-to-noise ratio on γ3/2, where γ is the gyromagnetic
ratio of the detected nucleus.)

DAB )
hB0

2γAγB

240π3kT
rAB
-3{!ax(3 cos2 θ - 1) +

3
2

!rh sin2 θ cos 2φ} (9)

Figure 2. (A) 1H-15N HSQC spectra recorded on SRY/DNA-
EDTA complexes (right, Mn2+-chelated; left, Ca2+-chelated).94 Note
that the crosspeak locations for the diamagnetic (Ca2+) and
paramagnetic (Mn2+) states are identical. (B) 1H transverse relax-
ation for Met-30 in the SRY/DNA-EDTA complexes (red, Mn2+-
chelated; black, Ca2+-chelated). (C) Location of dT-EDTA-Mn2+

in the complex. Protein residues that exhibit a PRE 1HN-Γ2 rate
larger than 15 s-1 are colored in red. Adapted from Iwahara et al.94

published in J. Am. Chem. Soc. (American Chemical Society) while
the authors were U.S. Government employees at the National
Institutes of Health.
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Another advantage of using a paramagnetic system with
an isotropic g-tensor is that the analysis of the PRE is much
more straightforward. For an anisotropic system, the PRE
Γ2 rates are difficult to interpret quantitatively, owing to two
factors. First, Γ2 for an anisotropic system arises principally
from Curie-spin relaxation, for which cross-correlations with
other relaxation mechanisms are significant.143,144 While
cross-correlation could potentially provide an additional
source of information for structural studies on a static
system,143-146 the effect simply complicates the study of
dynamic systems. Second, the exchange contributions arising
from conformational dynamics or molecular interactions to
the transverse relaxation rate, R2, can be substantially
different for the diamagnetic and paramagnetic states, owing
to the presence of PCSs. In such a situation, the PRE Γ2

rate cannot simply be measured as a difference between the
R2 rates for the diamagnetic and paramagnetic states.112

Although the PRE Γ1 rate can be measured for both
anisotropic and isotropic systems, cross-relaxation and
hydrogen exchange with water molecules can, in general,
significantly reduce the accuracy of the Γ1 measurement. For
an isotropic system, on the other hand, the contribution of
Curie-spin relaxation to the PRE Γ2 rate is negligible and
the PRE Γ2 rate is dominated by direct dipole-dipole
interactions between a nucleus and the unpaired electrons
of the paramagnetic center. In this case, the PRE Γ2 relaxation
does not exhibit cross-correlation with other relaxation
mechanisms because of cancellation by rapid electron
relaxation. (Note that Curie-spin relaxation is caused by time-
averaged magnetization and is independent of electron
relaxation). In addition, since there is no PCS for an isotropic
system, the exchange contributions to R2 are identical for
the diamagnetic and paramagnetic states and are therefore
canceled out when Γ2 is measured as Γ2 ) R2

para - R2
dia, where

R2
para and R2

dia are the transverse relaxation rates in the
paramagnetic and diamagnetic states, respectively.

2.2. Effect of Fast Dynamics on the PRE Arising
from a Paramagnetic Probe Conjugated to a
Macromolecule

Artificially introduced paramagnetic groups are generally
attached to the macromolecule of interest through linkers
that have several rotatable bonds. Hence, the paramagnetic
centers are intrinsically flexible. In addition, the observed
1H nuclei may be located in mobile regions of the macro-
molecule. Here, we describe the effect of fast dynamics in
the picosecond to nanosecond time scale on the PRE for
paramagnetic systems with an isotropic g-tensor.

2.2.1. Model-free Extension of the
Solomon-Bloemenbergen Equations

A “model-free” formalism147 can be readily incorporated
into the Solomon-Bloembergen theory to evaluate the
influence of internal motions on the PRE.78 If the internal
motions are not coupled with overall tumbling of the
molecule, the correlation function, CI(t), for internal motion
of the interaction vector within the molecular frame can be
approximated by

where S2 is the square of the generalized order parameter
(not to be confused with the electron spin quantum number

S) and τi is the correlation time for internal motion. Although
the “model-free” formalism is commonly used for fixed-
length interaction vectors such as 15N-1H or 13C-1H bond
vectors, it can also be applied to variable length vectors such
as those for homonuclear 1H-1H dipolar interactions.148,149

In this case, the order parameter is defined as149

where Y2
m(Ω) are second-order spherical harmonics and Ωmol

are Euler angles in the molecular frame. As Brüschweiler et
al.148 demonstrated for 1H-1H dipolar interactions, it is useful
to approximate the order parameter S2 by decomposition into
its radial and angular components:

where the angular (SPRE,angular
2 ) and radial (SPRE,radial

2 ) order
parameters are defined as

It is assumed that the effective electron relaxation rate τs
-1

is not influenced by the correlation times for either overall
or internal motions of the interaction vector. For a transition
metal ion, electron relaxation primarily arises from modula-
tion of the zero-field splitting tensor (as a consequence of
collisions with solvent molecules) and is therefore governed
by a very short lifetime between collisions, τν (∼5 ps for
water at physiological temperature).120 Since internal motion
faster than τν would affect the effective electron relaxation
rate τs

-1, we focus on cases where the correlation time τi

for internal motion is significantly longer than τν. Under these
conditions, incorporation of the correlation function CI(t) for
internal motions into the correlation function for the PRE
transforms JSB(ω) in the SB equation (eq 4) into

where τt is the total correlation time, defined as (τr
-1 + τs

-1

+ τi
-1)-1. When the original SB equations (eqs 2-4) are

expressed in the form

incorporation of the model-free formalism transforms eq 16
into

For simplicity, we refer to the SB equations incorporating
the model-free formalism as the SBMF equations. The SBMF
equations reduce to the SB equations under conditions where
the internal motion is either very slow (and eventually, τt ≈
τc) or highly restricted in space (S2 ≈ 1).

CI(t) ) S2 + (1 - S2) exp(-t/τi) (10)

S2 ) 4π
5
〈r-6〉-1 ∑

m)-2

2 |〈Y2
m(Ωmol)

r3 〉|2 (11)

SPRE
2 ≈ SPRE,angular

2 SPRE,radial
2 (12)

SPRE,angular
2 ) 4π

5 ∑
m)-2

2

|〈Y2
m(Ωmol)〉|2 (13)

SPRE,radial
2 ) 〈r-6〉-1〈r-3〉2 (14)

JSBMF(ω) ) 〈r-6〉{ S2τc

1 + ω2τc
2
+

(1 - S2)τt

1 + ω2τt
2}

(15)

Γm ) r-6fSB,m(τc), (m ) 1 or 2) (16)

Γm ) S2〈r-6〉fSB,m(τc) + (1 - S2)〈r-6〉fSB,m(τt)
(17)
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The SB (eq 16) and SBMF (eq 17) equations are valid
for systems with isotropic tumbling. For nonglobular systems
exhibiting significant diffusion anisotropy, the PRE also
depends on the angles between the principal axes of the
diffusion tensor and the electron-nucleus interaction vector.
The effect of anisotropic tumbling can be readily incorporated
according to previous literature.150,151 However, the impact
of anisotropic tumbling is not significant unless the rotational
correlation time dominates the overall correlation time.

2.2.2. Effect of Fast Internal Motions on PRE 1H-Γ1 and
Γ2

The impacts of motional effects on 1H-Γ1 and 1H-Γ2 rates
are very different. Owing to the large distances involved,
the variation in the values of the order parameters for PRE
interaction vectors is rather small. However, the internal
motion correlation time τi is likely to have a wide range of
values depending on the internal dynamics of individual 1H
nuclei in the macromolecule (e.g., side chain versus back-
bone). The contribution of τi can be evaluated using the
second term of the SBMF equation (eq 17). The dependences
of 1H-Γ1 and 1H-Γ2 rates on τi are shown in Figure 3. In the
case where the order parameters S2 for the PRE interaction
vectors are as small as 0.5, the 1H-Γ1 rate exhibits a strong
dependence on τi (in particular for τi < 1/ωH); indeed, the

value of Γ1 can be up to five times larger than that of Γ1 in
the absence of internal motion, depending on the value of τi

(Figure 3A). The 1H-Γ2 rate, on the other hand, is signifi-
cantly less sensitive to the internal correlation time τi (Figure
3B). Thus, for structure analysis using 1H-PRE data arising
from flexible paramagnetic groups, the analysis of 1H-Γ1

requires accurate information on the values of τi for the
individual PRE interaction vectors, whereas a simple estima-
tion of τi is sufficient for analysis of 1H-Γ2 data. Conse-
quently, 1H-Γ2 data provide far more useful structural
restraints, since they are not affected by the motional effects
within the macromolecule. In addition, proton T1 relaxation
is not a single-exponential process, owing to cross-relaxation
(and water-exchange in the case of amide protons), and hence
the observed 1H-Γ1 values will also be perturbed by such
effects.

2.3. Effect of Slow Dynamics on the PRE
In section 2.2, we described the effect of fast dynamics

(∼10-11-10-8 s time scale) on the PRE where the impact
of dynamics is at the level of the autocorrelation function.
Dynamics more relevant to macromolecular interactions,
however, typically occur on slower time scales. Here we
describe the effects of slower dynamics (∼10-6-10-1 s time
scale) on the PRE. The principle of amplification of
information relating to low population states in an exchanging
system will also be discussed.

2.3.1. PRE Γ2 Rates in an Exchanging System

The effect of slower dynamics on the PRE can be
simulated using the McConnell equations,152 which represent
the most fundamental description of the effects of chemical
exchange in NMR. The matrix form of the McConnell
equations for transverse magnetization is given by

where m is a vector containing the transverse magnetizations
of the exchanging states, R is a relaxation matrix, K is a
kinetic matrix, and W is a chemical shift matrix. In the case
of two-state exchange, A S B, the vector and matrices in
eq 18 are given as follows:

where M+ is a transverse magnetization represented by a
complex variable Mx + iMy, R2 is a transverse relaxation
rate, kAB and kBA are the kinetic rate constants for the A f
B and B f A processes, respectively, and Ω/2π is the
chemical shift frequency. In the paramagnetic state, the
relaxation matrix contains both the intrinsic R2 and the PRE

Figure 3. Influence of the correlation time τi for internal motion
on (A) 1H-Γ1 and (B) 1H-Γ2 rates at 500 MHz. The vertical axis
displays the Γ/Γ0 ratio, where Γ is calculated with the full SBMF
equation (eq 17) and Γ0 with only the first term of the SBMF
equation. Γ0 corresponds to Γ when τif 0. Curves, calculated with
the correlation time τc [)(τr

-1 + τs
-1)-1] set to 3 ns, are shown

with three different values of the order parameter S2 for PRE
interaction vectors: SMn-H

2 ) 0.9 (solid line), 0.7 (dashed line), and
0.5 (long-short dashed line). The dependences of the 1H-Γ1 and
1H-Γ2 rates on τi are field-dependent, and the maximum of the 1H-
Γ1/1H-Γ1

0 curve is located around τi ∼ 1/ωI. Adapted from Iwahara
et al.78 published in J. Am. Chem. Soc. (American Chemical Society)
while the authors were U.S. Government employees at the National
Institutes of Health.

d
dt

m ) -(R + K - iW)m (18)

m ) (MA
+

MB
+ ) (19)

R ) (R2,A + Γ2,A 0
0 R2,B + Γ2,B

) (20)

K ) (kAB -kBA

-kAB kBA
) (21)

W ) (ΩA 0
0 ΩB

) (22)
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Γ2 rates, while in the diamagnetic state the relaxation matrix
contains only the intrinsic R2 rates. Expansion of eqs 19-22
for a three-state (e.g., see Led and Grant153) or general N-state
exchange is straightforward.

Using the McConnell equations, one can simulate apparent
PRE rates for exchanging systems. Numerical solutions of
the McConnell equations can be readily obtained using either
the exponential matrix formalism or by numerical integration.
Simulations require initial conditions determined by the
equilibrium populations of individual states. If the number
of states exceeds two, it is convenient to consider the
equilibrium populations in terms of a partition function, Q.
For example, the partition function Q for a consecutive three-
state exchange A S B S C (with species A as a reference)
system is given by

and the populations of states A, B, and C are calculated to
be 1/Q, (kAB/kBA)/Q, and (kAB/kBA)(kBC/kCB)/Q, respectively.
Solutions of the McConnell equations provide time-domain
data (i.e., free induction decay), and subsequent Fourier
transformation yields an NMR spectrum for the exchanging
system. Line shape fitting against the simulated spectrum
permits analysis of apparent relaxation rates. Two simulations
with and without the PRE Γ2 rate in the R matrix provide
apparent relaxation rates for paramagnetic (R2,para

app ) and
diamagnetic (R2,dia

app ) states, and the apparent PRE rate can be
calculated as Γ2

app ) R2,para
app - R2,dia

app in exactly the same manner
as in an experimental measurement. Strictly speaking, this
corresponds to Γ2

app in the case without a refocusing pulse.
Effects of refocusing pulses can be considered in the context
of the McConnell equations as described by Allerhand.154

However, simulations of apparent PRE rates with and without
refocusing pulses result in virtually identical Γ2 values. This
is due to the fact that the exchange contributions to the R2
rates for the paramagnetic and diamagnetic states are virtually
identical and are therefore canceled in the calculation of Γ2.

2.3.2. PRE-Based Amplification of Information Relating to
Minor States

The PRE provides a unique technique for obtaining
structural information about low population states in an
exchanging system.24 The underlying basis of this phenom-
enon can be ascertained from simulations based on the
McConnell equations. Figure 4 illustrates the impact on the
transverse PRE 1H-Γ2 rate observed on the resonance of a
major species A (population pA, 99%) with a paramagnetic
center-proton distance of rA ) 30 Å on the presence of a
minor species B (population pB, 1%) with a corresponding
distance of rB ) 8 Å. Due to the r-6 dependence of the PRE,
the PRE rates span a very broad range. For this particular
case, with a molecular weight of ∼30 kDa, the PRE 1H-Γ2

rate arising from Mn2+ for species A (Γ2,A) is only 2 s-1,
whereas that for species B (Γ2,B) is 5.6 × 103 s-1. Figure 5
shows the relationship between kex and Γ2

app for this system.
The apparent value of Γ2 (Γ2

app) observed for the resonance
of the major species A is highly dependent on the exchange
rate kex() kAB + kBA) between the major and minor species.
If kex is slow (<50 s-1), the presence of the minor species B
has no effect and the value of Γ2

app is the same as that
expected for the major species A. For larger kex, however,
Γ2

app is highly influenced by the minor species B. When kex

. Γ2,B - Γ2,A (the fast exchange regime on the Γ2 relaxation
time scale), Γ2

app is the weighted population average of the
Γ2 rates for the two species:

It should be noted that even with pB set to as low as 0.01,
Γ2

app is dominated by the term arising from species B under

Q ) 1 +
kAB

kBA
+

kAB

kBA
·
kBC

kCB
(23)

Figure 4. PRE-based amplification of information on low popula-
tion states. (A) Two site exchange system comprising a major
species A (99%) and a minor species B (1%). (B) Line shape
simulation of the resonance of species A illustrating the effect of
exchange on the apparent PRE Γ2

app rate. When the exchange rate
kex is fast, the apparent PRE Γ2

app rate can be dominated by the
invisible minor state even though its population is as small as 1%.
In these simulations, the intrinsic relaxation rates for species A and
B were set to 50 s-1 for the diamagnetic state. The resonances
arising from species A and B are located at -50 and 50 Hz,
respectively. The chemical shifts for the diamagnetic and para-
magnetic are assumed to be identical, since a paramagnetic system
with an isotropic electron g-tensor such as Mn2+ does not generate
a pseudocontact shift. Adapted from Iwahara et al.24 published in
Nature (Nature Publishing Group) while the authors were U.S.
Government employees at the National Institutes of Health.

Figure 5. Relationship between exchange rate kex and apparent
PRE Γ2

app rate for the two-state exchange system shown in Figure
4.

Γ2
app ≈ pAΓ2,A + pBΓ2,B (24)
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these conditions and has a value ∼30-fold larger than Γ2,A

because Γ2,B is so much larger than Γ2,A. As a result, one
can infer the presence of the minor species and, in addition,
obtain some structural information on it because the PRE is
a distance-dependent quantity.

Although amplification of information relating to the minor
state represents a fascinating phenomenon, it is important
to be aware that quantitative analysis is only possible under
conditions where kex . |Γ2,B - Γ2,A|. If kex does not satisfy
this inequality, information on kex and the chemical shift
difference ΩA - ΩB between the corresponding resonances
of the two species are required, as shown in Figure 6. Further,
when |ΩA - ΩB| , kex, |Γ2,B - Γ2,A| holds because of a
very large Γ2,B (i.e. a short rB distance), the apparent PRE
Γ2

app becomes virtually independent of rB.
Apparent PRE Γ2

app rates in exchanging systems comprising
more than two states follow a similar pattern to that for a
two-state exchange system. Figure 7 shows simulations for
a consecutive three-state exchange system A S B S C.

Values of the PRE Γ2 rates for A, B, and C were set to 2,
31, and 5.6 × 103 s-1, respectively, corresponding to
electron-1H distances of rA ) 30 Å, rB ) 19 Å, and rC )
8 Å, respectively. In these simulations, two sets of kinetic
rate constants were used: in the first set, kAB ) 200 s-1 and
kBA ) kBC ) kCB ) 20000 s-1 (Figure 7; top); in the second
set, kAB ) kBC ) kCB ) 200 s-1 and kBA) 20000 s-1 (Figure
7; bottom). For both cases, the populations of A, B, and C
are 98%, 1%, and 1%, respectively. (See the partition
function given by eq 23.) However, the apparent Γ2

app rate is
highly affected by the presence of state C only for the former
set of rate constants, as is easily deduced from the simulations
for a two-state exchange system.

3. Experimental Analysis of 1H PRE Data

3.1. Paramagnetic Probes
Chemical probes used for paramagnetic NMR can be

divided into two classes: (1) nitroxide stable radicals, >N-O•,
and (2) metal chelators (such as EDTA, DTPA, and metal-
binding peptides) that bind paramagnetic metal ions with very
high affinity. These two classes of paramagnetic probes can
be covalently attached to both proteins and nucleic acids and
used for the observation of intramolecular or intermolecular
PREs (Figure 8A and B). Free probes, in the form of
paramagnetic cosolute molecules, are also useful to identify
solvent accessible regions of the molecular surface of a
macromolecule (Figure 8C). In this section, we describe
paramagnetic probes that have gained widespread use in
paramagnetic NMR for structural and dynamic investigations
of macromolecular systems.

Figure 6. Relationships between chemical shift difference |ΩA -
ΩB|/2π and apparent PRE Γ2

app rate for the two-state exchange
system in Figure 4.

Figure 7. PRE simulations for a consecutive three-state exchange
system.

Figure 8. Three types of PRE: (A) intramolecular PREs arising
from the paramagnetic group within the same molecule; (B)
intermolecular PREs arising from the paramagnetic group located
on the interaction partner; (C) solvent PREs arising from random
collisions between a macromolecule and paramagnetic cosolute
molecules.
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3.1.1. Paramagnetic Probes Attached to Proteins

A solvent-exposed cysteine residue, which can be readily
introduced by site-directed mutagenesis, is most commonly
used as the conjugation site for site-specific incorporation
of a paramagnetic probe on a protein. Figure 9 shows several
different types of paramagnetic probes designed for cysteine
modification. Compounds 1-4 are nitroxide stable spin
radicals,81,82,102,114,155,156 while compounds 5-7 are derivatives
of metal chelators.84,124,129,157-159 Most of the nitroxide-
derivatives shown in Figure 9 were originally developed for
EPR spectroscopy.

Conjugation of a paramagnetic probe based on disulfide
chemistry81,82,84 is probably the most commonly used. This
type of reaction is thiol-specific, and virtually no conjugation
reactions other than on cysteine residues are found. Although
this reaction is convenient, the final product is not very stable,
owing to disulfide-exchange reactions causing gradual ac-
cumulation of cross-linked protein dimer in the NMR sample.
For example, in the case of a 6-month-old sample comprising
a cysteaminyl-EDTA-Mn2+ conjugate of 15N-labeled HPr
(E32C), the dimer population was found to be as high as

30%.123 Considering that a relatively small percentage of
diamagnetic contamination can affect the PRE measurements
(see section 3.3.4), NMR experiments on this type of
conjugate should be carried out within a week or two of
sample preparation.

In terms of sample stability, paramagnetic probes conju-
gated with iodo- or bromoacetamide-derivatives102,156 are
advantageous, since they irreversibly form a stable C-S
bond. A drawback is their lower reaction specificity. These
reagents can also react with histidine, methionine, and lysine
residues at a slower rate. Careful optimization of the reaction
conditions to avoid undesired conjugations is therefore
necessary, as described by Gillespie and Shortle.102 Although
cysteine modification by the maleimide-derivative is popular
in biochemistry, Kosen pointed out the instability of the
maleimide conjugate and recommended the use of the other
compounds.77

The presence of multiple cysteine residues in a protein
makes selective incorporation of a paramagnetic group
difficult, especially if such cysteine residues are functionally
important and cannot therefore be mutated to serine or
alanine. Direct incorporation of a spin-labeled amino acid
in solid-phase peptide synthesis is feasible.160-165 The method
is potentially very powerful in that it permits site-specific
incorporation of nitroxide stable radicals at desired positions
even if there are cysteine residues at different locations.
However, application of this method is currently limited to
polypeptides shorter than about 50 residues. Incorporation
of a reactive keto group using the method developed by
Schultz and co-workers166 may provide an alternative ap-
proach to site-directed incorporation of paramagnetic groups
for PRE studies.

A short amino-acid sequence that binds to a paramagnetic
metal ion can be genetically introduced. The ATCUN motif
is a short N-terminal sequence (NH2-X1-X2-His) that binds
paramagnetic Cu2+ with high affinity. In the case of the Cu2+

ion bound to the ATCUN motif, the electron g-tensor is
almost isotropic, and therefore Curie-spin relaxation and
pseudocontact shifts are negligible. PRE 1H-Γ2 rates arising
from ATCUN-Cu2+ can be used for quantitative analysis.
The HHP motif (NH2-His-His-Pro) placed at the N-terminus
of a protein binds Ni2+ and results in the formation of a dimer
in which two molecules of the protein are bound to a single
Ni2+ ion.167 The lanthanide binding motif (Tyr-Val-Asp-Thr-
Asn-Asn-Asp-Gly-Ala-Tyr-Glu-Gly-Asp-Glu-Leu) is a 15-
residue sequence that specifically binds lanthanide ions and
can be incorporated either genetically168 or chemically.125

3.1.2. Paramagnetic Probes Attached to Nucleic Acids

For chemically synthesized nucleic acids the incorporation
of a paramagnetic group is straightforward. Phosphoramidite-
derivatives of nucleotides bearing a paramagnetic group have
been developed, and they can be incorporated at any desired
position of the DNA or RNA during the course of solid-
phase synthesis. Just as for proteins, either a nitroxide spin
radical or a metal-chelator for incorporation of a paramag-
netic metal ion can be covalently attached to nucleic acids.

EDTA-derivatized nucleotides (Figure 10) have been used
most frequently in PRE studies of protein-DNA inter-
actions.23,24,78,94,112,169 The phosphoramidite for dT-EDTA is
commercially available, and dT-EDTA can be incorporated
at any desired position using a normal DNA synthesizer.
Synthesis of a similar EDTA-derivative of the cytosine
nucleotide (dC-EDTA) has also been carried out.170 Although

Figure 9. Paramagnetic probes for protein labeling at a surface
exposed cysteine residue. (1) MTSSL;81,82 (2) iodoacetamido-
PROXYL;102(3)iodoacetamido-TEMPO;(4)maleimide-TEMPO;114,155

(5) S-(2-pyridylthio)cysteaminyl-EDTA;84,157,158 (6) MTS-EDTA;129

and (7) CLaNP-5.2.124,159 These compounds are conjugated to a
cysteine thiol group. (Compounds 2-4 can also react with other
types of amino acids, depending on reaction conditions.) Gray-
colored groups are replaced with a cysteine Sγ atom after
conjugation. For maleimide-TEMPO (compound 4), the CdC
double bond becomes a single bond and the cysteine Sγ atom is
bonded to one of the carbon atoms. Compound 7 is conjugated to
two cysteine residues in close spatial proximity on the surface of
the protein. For the metal chelators (compounds 5-7), atoms
involved in metal coordination are indicated by an asterisk.
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dT-EDTA was originally developed for sequence specific
DNA cleavage via the Fenton reaction with Fe2+ chelated
to the EDTA group,171 cleavage does not occur with either
Mn2+ or Ca2+.94 Since divalent ions bind DNA with a
dissociation constant Kdiss in the 10-4-10-3 M range,172-174

it is important to remove divalent ions at undesired locations
by extensive washing.24,94

Various types of nitroxide-conjugated nucleotides have
been developed mostly for EPR (see review by Keyes and
Bobst175). Some of these derivatives may not be suitable for
NMR purposes because of the requirements of larger
amounts, higher conjugation efficiency, and higher chemical
stability. To date, the nitroxide-labeled bases represented by
compounds 3 and 4 in Figure 11 have been successfully used
for NMR investigations.95,176,177

3.1.3. Paramagnetic Cosolutes for Probing Molecular
Surfaces

Small paramagnetic compounds added to macromolecular
solutions as cosolute molecules provide a unique means of
obtaining information on the molecular surface of macro-
molecules. Random collisions of a macromolecule with the
paramagnetic cosolute at relatively high concentration cause
sizable PREs for 1H nuclei of the macromolecule depending

on their depth from the molecular surface (Figure 8C). For
simplicity and clarification, we refer to such PREs as solvent
PREs.

Three paramagnetic cosolute molecules have gained
popularity: TEMPOL,178,179 O2,180,181 and Gd-diethylenetri-
amine pentacetic acid-bismethylamide (Gd-DTPA-BMA)23,182

(Figure 12). Since these are neutral molecules with no net
charge, their spatial distribution with respect to a macro-
molecule in solution is generally assumed to be uniform.
This approximation appears to be valid for O2 and Gd-DTPA-
BMA, and the resulting PRE patterns can be predicted
reasonably well from the macromolecular structure (see
section 3.4.2). Hydrophobic patches on macromolecular
surfaces, however, tend to bias the spatial distribution of
TEMPOL via preferential hydrophobic interactions. The
solvent PRE is also useful for identifying binding interfaces
in macromolecular complexes.23,181 For the latter application,
the solvent PREs for the free and complexed states are
compared. Since the binding interface is exposed in the free
state but buried in the complex, the solvent PRE rates for
the binding interface decrease upon complex formation.

In some circumstances, probes that exhibit a biased
distribution of collision sites on macromolecules can also
be useful. For example, use of a positively charged para-
magnetic probe (e.g., charged derivatives of TEMPOL) can
permit the identification of negatively charged patches on
the molecular surface.183,184 Another example is the use of
spin-labeled lipids to identify lipid-contacting regions of
membrane proteins.185,186

3.2. Pulse Sequences for the Measurement of
PRE 1H-Γ2 Rates

The PRE rate Γ2 is measured as the difference in transverse
relaxation rates between the paramagnetic (R2,para) and
diamagnetic (R2,dia) states of the macromolecule:

This subtraction cancels out relaxation mechanisms common
to both states such that the only remaining relaxation
mechanism arises from electron-nucleus interactions (i.e.,
the PRE effect). For the case of systems with an isotropic
electron g-tensor, chemical exchange contributions to the
transverse relaxation rate, R2, are also canceled. This is not
the case, however, for systems with an anisotropic electron
g-tensor. In this instance, the exchanging species may
experience different pseudocontact shifts, and therefore, the
exchange contributions can be significantly different in the
paramagnetic and diamagnetic states.

Figure 10. EDTA-derivatized DNA bases.94,170,171 These modified
bases can be incorporated at any desired position by solid-phase
DNA synthesis.

Figure 11. Nitroxide-derivatives of DNA/RNA bases.95,175-177

Figure 12. Cosolute paramagnetic probes for probing molecular
surfaces.

Γ2 ) R2,para - R2,dia (24)
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In many papers in the literature, the ratio Ipara/Idia of the
signal intensities for the paramagnetic (Ipara) and diamagnetic
(Idia) states is inappropriately referred to as the PRE. Such a
ratio is not physically meaningful, because it depends not
only on the PRE 1H-Γ2 rate but also on the corresponding
PRE 1H-Γ1 rate, the delays for coherence transfers, and the
type of data processing. For quantitative PRE investigations
of macromolecules, measurement of actual PRE 1H-Γ2 rates
is required, and for systems with an isotropic electron
g-tensor, such measurements are straightforward.

3.2.1. Γ2 Measurement for 15N-Attached 1H-Nuclei

Figure 13 shows the pulse sequence used to measure 1H-
Γ2 rates on 1H-nuclei directly bonded to 15N.83,123 The period
for the 1H transverse relaxation measurement is incorporated
in the first INEPT scheme. During the 1H transverse period
of T + 2τa, 15N 180 pulses swap the slow and fast relaxing
components (represented by Hy - 2HyNz and Hy + 2HyNz,
respectively) and the contributions from the two components
are identical, making the overall decay a single-exponential
process with an average relaxation rate. The observed
relaxation rate corresponds to 1/T2 for 1H in-phase terms,
since the transverse relaxation rates for the Hy and 2HxNz

terms are expected to be virtually identical for macromol-
ecules. (Note that T1 relaxation of Nz is much slower than
1H-T2 relaxation). Identical experiments are performed for
the paramagnetic and diamagnetic samples to obtain Γ2 (cf.
eq 24).

This pulse sequence can readily be modified to a transverse
relaxation optimized (TROSY) version. In this instance,
Boltzmann 15N-magnetization should be destroyed at the
beginning of the pulse sequence so that all observables are
modulated by 1H transverse relaxation during the time
interval T.

A two-time-point measurement provides a simple means
of obtaining Γ2 rates and their corresponding errors without
making use of any fitting procedures. In this approach, 1H-
Γ2 rates are determined from two time points (T ) 0 and
∆T) for transverse relaxation as follows:

where Idia and Ipara are the peak intensities for the diamagnetic
and paramagnetic states, respectively. It should be noted that
the effects of homonuclear 3JHNHR-modulation during the

delay T are canceled out by using identical times and taking
ratios for the two states. The errors in Γ2 can be propagated
from eq 25 based on partial derivatives with respect to peak
intensities and are given by

where σdia and σpara are the standard deviations of the noise
in the spectra recorded for the diamagnetic and paramagnetic
states, respectively. Figure 14 shows a comparison of PRE
1H-Γ2 rates determined from two- versus eight-time points
for the same overall measurement time, and it can be seen
that agreement is excellent.

3.2.2. Γ2 Measurement for 13C-Attached 1H-Nuclei

Figure 15 shows the pulse sequence used to measure PRE
1H-Γ2 rates for 1HR protons directly bonded to 13C.78 This
experiment is recorded as a 2D 1H-15N correlation experi-
ment with the initial excitation on 1HR nuclei, followed by
coherence transfers to 1HN through 13CR, 13C′, and 15N nuclei.
A scheme for 1H-Γ2 relaxation is incorporated in the first
INEPT transfer step. Since CSA-DD cross relaxation is
negligible for HR, the scheme is simpler than that for the Γ2

measurement on HN. 2D spectra with different T-delays are
recorded in an interleaved manner to determine PRE Γ2 rates.

The same scheme can also be incorporated into a 1H-13C
HSQC experiment to measure PRE 1H-Γ2 for other 13C-
attached protons (Figure 15). Although the T2 process for
methyl CH3 protons is biexponential due to cross-correla-
tion,187 a two-time point measurement using eq 25 still gives
reasonably accurate Γ2 values as long as the PRE affects
both components of the biexponential decay equally. Indeed,
the PRE measured on methyl protons in the SRY/DNA-
EDTA-Mn2+ complex using this method exhibited excellent
agreement with those calculated from the structure.78 In
favorable cases, even two methyl groups in the same Leu or
Val residue can be stereospecifically distinguished based on
the measured 1H-Γ2 rates and the three-dimensional structure.

Figure 13. Pulse sequence for the measurement of PRE Γ2 rates
on HN protons. Details are given in Iwahara et al.123 published in
J. Magn. Reson. (Elsevier) while the authors were U.S. Government
employees at the National Institutes of Health.

Γ2 ) R2,para - R2,dia )
1

Tb - Ta
ln

Idia(Tb) Ipara(Ta)

Idia(Ta) Ipara(Tb)
(25)

Figure 14. Comparison of 1H-Γ2 rates obtained from a simple two-
time point measurement versus a conventional eight-time point
measurement. Adapted from Iwahara et al.123 published in J. Magn.
Reson. (Elsevier) while the authors were U.S. Government em-
ployees at the National Institutes of Health.

σ(Γ2) )
1

Tb - Ta

${ σdia

Idia(Ta)}
2

+ { σdia

Idia(Tb)}
2

+ { σpara

Ipara(Ta)}
2

+ { σpara

Ipara(Tb)}
2

(26)
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3.3. Practical Considerations for Γ2
Measurements
3.3.1. Choice of Time Points

In the context of a two-time point measurement of Γ2, the
time points should be chosen to minimize the errors in the
measured Γ2 rates. Figure 16 illustrates the theoretical
relationship between ∆T and the error in Γ2, obtained using
eq 26 and the following equation:

where τ represents the overall 1H transverse relaxation period
for the coherence transfers (set to 9.9 ms). Equation 27
assumes a Lorentzian line shape in the 1H-dimension, equal
recovery levels during the repetition delay, and the same
concentration and number of scans for both the diamagnetic
and paramagnetic samples. Under these conditions, the error
σ(Γ2) is minimal when Ta ) 0 and Tb ∼ 1.15/(R2,dia+ Γ2).
As can be seen from Figure 16, the larger the value of Γ2,

the narrower the optimal range of ∆T. Therefore, the second
time point should be set to be optimal for a relatively large
Γ2 value expected for the system under study. For example,
if the range of expected Γ2 rates is 0 to 75 s-1, a second
time point Tb at ∼1.15/(R2,dia+ 50) s represents a reasonable
choice. (However, if diamagnetic contamination in the
paramagnetic sample is greater than ∼3%, smaller values
are required for accurate measurement of intramolecular Γ2

rates; see below.)

3.3.2. Undesired Solvent PRE Effects at High Sample
Concentration

For PRE analysis, the sample concentration should be
relatively low (∼0.2-0.5 mM) to avoid contributions from
additional undesired PREs arising from random “elastic”
collisions between a molecule and the paramagnetic group
of another molecule. This effect corresponds to the “solvent
PRE” discussed in section 3.1.3. Whether or not this effect
is significant can be easily ascertained by carrying out PRE
measurements at different sample concentrations, since the
magnitude of the solvent PRE is directly proportional to the
sample concentration. For example, solvent PRE effects were
observed for some residues of ubiquitin tagged with AT-
CUN-Cu2+ at its N-terminus at high sample concentration
(∼2 mM) but were insignificant at lower concentrations (<0.6
mM).83

Due to the requirement of low sample concentration, the
measurement of PRE Γ2 rates can be somewhat time-
consuming in the absence of a cryogenic probe. The total
measurement time (including data acquisition for both
diamagnetic and paramagnetic samples) on a cryoprobe
required to obtain reasonably precise data with errors less
than ∼10% for Γ2 ∼50 s-1 is about two days for a ∼0.3
mM nondeuterated sample comprising a system of ∼20 kDa
in size.

3.3.3. Field Dependence of PRE 1H-Γ2

Since Γ2 for a macromolecule is dominated by the value
of the spectral density function at zero frequency, 1H-Γ2 rates
measured at high magnetic field (B0 > 10 T) should be
dependent on B0 if (a) the PRE correlation time τc is field-
dependent or (b) the contribution from Curie-spin relaxation
(whose rate is proportional to B0

2) is non-negligible.
In the case of the SRY/DNA-EDTA-Mn2+ complex, the

field-dependence of 1H-Γ2 is very weak (Figure 17). The
relative contribution of Curie-spin relaxation depends upon
the size of the system. For a very large system with a
rotational correlation time τr larger than 50 ns (corresponding
to a molecular weight in excess of 100 kDa), the contribution
could be larger than 20% at 800 MHz. In the case of a
nitroxide spin label, the electron spin relaxation time τs

(>10-7 s) is much longer than τr,188,189 and the PRE
correlation time τc, defined as (τr

-1 + τs
-1)-1, is virtually

identical to τr, resulting in a field-independent 1H-Γ2. For a
macromolecular system with conjugated EDTA-Mn2+, for
which τs is comparable to τr,78,94,130 1H-Γ2 could be field-
dependent because of the field-dependence of τs.

3.3.4. Effect of Diamagnetic Impurities on PRE 1H-Γ2

In practice, no matter how carefully a paramagnetic sample
may be prepared, contamination by trace amounts (∼1-5%)
of the corresponding diamagnetic species is almost impos-

Figure 15. Pulse sequences for the measurement of PRE Γ2 rates
on (A) 1HR directly bonded to 13C and (B) all other 13C-attached
protons. Details are given in the Supporting Information of Iwahara
et al.78 published in J. Am. Chem. Soc. (American Chemical Society)
while the authors were U.S. Government employees at the National
Institutes of Health.

Figure 16. Error in PRE Γ2 as a function of ∆T in the two-time
point measurement. Adapted from Iwahara et al.123 published in J.
Magn. Reson. (Elsevier) while the authors were U.S. Government
employees at the National Institutes of Health.

Ipara(0) ) Idia(0)
R2,dia

R2,dia + Γ2
exp(-Γ2τ) (27)
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sible to avoid, owing to several factors: (a) incomplete
conjugation of the extrinsic paramagnetic group and insuf-
ficient purification of the conjugated species; (b) the presence
of diamagnetic impurities in the paramagnetic stock solution
(e.g., trace amounts of diamagnetic metals such as Zn2+ and
Ca2+ in stock solutions of Mn2+ for the EDTA-Mn2+ system;
the reduced species for a nitroxide spin label); (c) chemical
instability of the conjugated states (discussed in a later
section). Thus, it is important to ascertain the impact of
diamagnetic contamination on the measured 1H-Γ2 rates. In
fact, the effect of diamagnetic impurities on PRE measure-
ments can be significant but fortunately can be reduced with
careful setting of experimental conditions, as shown below.123

Under conditions where the chemical shifts for the
diamagnetic and paramagnetic states are identical and they
do not exchange with each other, the signal intensity for the

paramagnetic sample containing a trace amount of the
diamagnetic species with population pd is given by

Figure 18 displays the theoretical relationship between the
true value of 1H-Γ2 and the apparent value (Γ2

app) that would
be obtained from a two-time-point measurement for two
values of ∆T and diamagnetic contaminations ranging from
0 to 5%. Γ2

app is always smaller than the true Γ2 value. For
the case with R2,dia ) 50 s-1, Γ2 ) 60 s-1, and pd ) 2%, the
apparent value of Γ2 from the two-time-point measurement
with ∆T ) 18 ms is 52 s-1. For pd ) 5%, Γ2

app is reduced to
44 s-1. Note that the percentage error in Γ2 is much larger
than pd. This is due to the fact that the PRE significantly
reduces the contribution of the first term in eq 28. The
deviation from the true value of Γ2 can be reduced by using
a relatively small value of ∆T, thereby reducing the relative
contribution from the second term in eq 28. For example,
the apparent values of Γ2 obtained with ∆T ) 6 ms are 55
s-1 for pd ) 2% and 48 s-1 for pd ) 5%.

Figure 19 shows correlations between experimental 1HN-
Γ2 data measured with ∆T ) 4 and 40 ms on 15N-HPr(E32C)
conjugated with EDTA-Mn2+ at Cys32. As expected from
the above considerations, the measured Γ2 values derived
from the experiment with ∆T ) 40 ms are systematically
smaller than those obtained with ∆T ) 4 ms, indicating the
presence of a diamagnetic impurity. From this correlation,
pd was estimated to be 3%. The same population for the
diamagnetic impurity can also be obtained from the intensi-
ties of residual peaks that should be completely broadened
beyond detection yet appear with low intensity because of
the diamagnetic contamination (Figure 19b).

In the case of intermolecular PRE measurements on a
complex where dissociation and association processes are
in the fast exchange regime on the relaxation time scale, the
observed Γ2 is simply scaled down by a factor of (1 - pd)
and the effect of a diamagnetic impurity is much weaker
than that for the intramolecular case considered above.

3.4. PRE Back-calculation from the
Three-Dimensional Structure

In this section, we review the computational methods
required to back-calculate PRE rates from macromolecular
structures. While the back-calculation is straightforward for
a static system, motional effects need to be taken into
consideration for a dynamic system.

Figure 17. Field-dependence of 1H-Γ2 rates arising from dT-
EDTA-Mn2+ in the SRY/DNA-EDTA-Mn2+ complex. Adapted
from Iwahara et al.123 published in J. Magn. Reson. (Elsevier) while
the authors were U.S. Government employees at the National
Institutes of Health.

Figure 18. Theoretical effect of diamagnetic impurities on the measurement of 1H-Γ2 rates. Adapted from Iwahara et al.123 published in
J. Magn. Reson. (Elsevier) while the authors were U.S. Government employees at the National Institutes of Health.

I(T) ) (1 - pd)Ipara(T) + pdIdia(T) (28)
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3.4.1. PRE Arising from Paramagnetic Probes Attached
to Macromolecules

Two averaging techniques have been proposed for back-
calculating NMR parameters in systems with flexibility: time-
averaging of restrained molecular dynamics trajectories190-193

and ensemble-averaging.194-200 To date, the latter approach
has been adopted for PRE back-calculation.78,100,105

The computational method we have developed to back-
calculate 1H-PREs makes use of a multiple conformer
representation for the paramagnetic group.78 This approach
has been implemented as the “prePot” pseudoenergy term
in the macromolecular structure determination software
package Xplor-NIH.201,202 The target function for the PRE
restraints, EPRE, is defined as

where kPRE is a force constant, wi is a weighting factor that
is defined for each restraint, Γ2

obs(i) and Γ2
calc(i) (cf. eq 17 in

section 2.2.1) are the observed and calculated PRE rates,
respectively, and the summation is over individual 1H-Γ2 PRE
data. To account for the finite conformational space occupied
by a flexible paramagnetic group, N different conformers are
used to represent the paramagnetic group in the calculations,
while the remainder of the molecule is represented by a single
structure. Individual conformers are treated independently
under the restraints of the 1H-PRE target function and can
overlap with each other, since interactions between the
conformers are excluded from the nonbonded interaction
energy term. The N conformers represent a discrete jump
model where fractions of individual sites and the transition
probability over a long period of time are uniform and equal
to 1/N. Since members of the ensemble can overlap structur-
ally, this model is also valid for a case with fewer sites and
uneven distributions, providing N is large enough. To obtain
the ensemble average of Γ2, the ensemble-averaged quantity
〈r-6〉 for the electron-proton distance r must be calculated
as follows:

where np is the number of equivalent protons (i.e., 1 for NH
or CH; 2 for equivalent aromatic protons that are degenerate
owing to fast ring flipping; 3 for methyl protons). This
quantity is used to back-calculate the PRE Γ2 rate based on
either the SB (eq 16) or SBMF (eq 17) equations. The direct
application of the SBMF equation requires the explicit use

of order parameters S2 for the PRE interaction vectors as
defined by eq 11. These order parameters are calculated
directly from the N-site discrete jump model of the para-
magnetic group used in the simulated annealing calculations,
assuming that positional fluctuations of the analyzed 1H
nucleus are small compared to the paramagnetic center-1H
distance and hence do not contribute to S2 for the 1H-PRE
interaction vector. For the N-state jump model, the order
parameters can be calculated using eq 12 together with the
following equations:

Owing to increased complexity, the use of the SBMF
equation in the PRE back-calculation is computationally more
expensive. Figure 20 displays correlations between experi-
mental Γ2 data obtained for the SRY-DNA complex with
the dT-EDTA-Mn2+ paramagnetic label located at three
separate sites (one at a time) and the calculated Γ2 rates using
a three-conformer ensemble for the paramagnetic labels.
Quantitative agreement between observed (Γ2

obs) and calcu-
lated (Γ2

calc) rates is given by the PRE Q-factor, calculated
as

For the SRY-DNA complex, the overall Q-factor for a
three-member ensemble representation for the paramagnetic
labels is 0.20 for backbone protons (HN and HR) and 0.26
for side chain protons.

The introduction of a multiple ensemble representation for
the paramagnetic labels results in a substantial decrease in
both the working (i.e., PRE data included in the refinement)
and free PRE Q-factors (i.e., PRE data excluded from
refinement and used for complete cross-validation), indicating
that the back-calculation method results in improved coor-
dinate accuracy without overfitting of the data. Independent
confirmation that the ensemble representation of the para-

Figure 19. Experimentally observed effect of diamagnetic impurities on 1H-Γ2 rate measurements. Adapted from Iwahara et al.123 published
in J. Magn. Reson. (Elsevier) while the authors were U.S. Government employees at the National Institutes of Health.

EPRE ) kPRE∑
i

wi{Γ2
obs(i) - Γ2

cal(i)}2 (29)

〈r-6〉 ) 1
Nnp
∑

h

N

∑
s

np

rhs
-6 (30)

SPRE,angular
2 ) 1

N2np
2

Σ
h, k

N
Σ
s, t

np {3
2( rbhs· rbkt

rhsrkt
)2 - 1

2} (31)

SPRE,radial
2 )

(Σ
h

N
Σ
s

np

rhs
-3)2

Nnp∑
h

N

∑
s

np

rhs
-6

(32)

Q ) $∑
i

{Γ2
obs(i) - Γ2

cal(i)}2

∑
i

Γ2
obs(i)2

(33)
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magnetic label results in a substantial improvement in
coordinate accuracy is provided by cross-validation against
RDCs.78 Indeed, if the paramagnetic label is represented by
only a single species, coordinate accuracy decreases sub-
stantially.78

The method of PRE back-calculation presented in this
section can also be applied to an exchanging system, as
discussed later on in section 4.2, providing that every process
involved is in fast exchange on the PRE time scale.

3.4.2. Otting-LeMaster Approach for Predicting Solvent
PREs

The PRE arising from paramagnetic cosolute molecules
such as those displayed in Figure 12 depends on many
factors, including translational diffusion constants, electron
relaxation time, and rotational correlation time. Hwang and
Freed proposed a general theory to describe the solvent PRE
effect in which pair-correlation functions, related to a
potential of averaged forces between the molecules, are
considered.203,204 Despite its generality, application of the
Hwang-Freed theory to macromolecules is extremely com-
plicated and consequently of no practical use. Although the
hard-sphere model that provides the simplest pair-correlation
functions was found to be effective for systems involving
small molecules, the model was found to be too simple for
macromolecules, and predictions based on the model are in
poor agreement with the experimental data.

An empirical approach to predict solvent PREs from three-
dimensional structure was proposed independently by two

groups.180,182 We refer to this approach as the Otting-LeMaster
approach. In this method, the coordinates of the macromol-
ecule are embedded in a cubic lattice with grid spacing <1.0
Å (Figure 21). For each hydrogen atom of the macromol-
ecule, the following quantity is calculated:

where rgrid-H is a distance between a 1H-nucleus and a grid
point, and where δgrid is 0 for grid points that overlap with
the macromolecule and 1 for the others. All grid points within
the van der Waals radius plus the molecular radius of the
paramagnetic cosolute from any atom in the macromolecule
are regarded as overlapped. Summation is over the entire
lattice. A solvent PRE is predicted to be aAOL, for which a
is a scaling factor common to all protons in the macromol-
ecule. Since the scaling factor a includes the effects of the
concentration of cosolute, correlation-times, etc. and can
therefore not be determined explicitly, its value is obtained
by numerical optimization against the experimental data.
Profiles of solvent PREs predicted with this empirical
approach have been found to be in reasonably good agree-
ment with experimental observations. LeMaster’s group
applied this approach to solvent PRE 1H-Γ1 data arising from
O2 for the backbone amide 1HN protons in rubredoxin
proteins.180 Otting’s group applied the method to solvent PRE
1H-Γ1 data arising from Gd-DTPA-BMA for 13C-attached
1H nuclei in ubiquitin.182 The same approach was also found
to be useful for the prediction of solvent PRE 1H-Γ2 data
arising from Gd-DTPA-BMA for specific- and nonspecific
protein-DNA complexes (Figure 22).23

Since the Otting-LeMaster approach permits back-
calculation of solvent PREs from the structure, solvent PRE
data may potentially be used as restraints in NMR structure
calculations. Such restraints would be unique in that they
constrain depths of observed 1H nuclei from the molecular
surface. Currently, however, two problems need to be
overcome to make this practical. First, back-calculation of
solvent PREs using this approach is computationally too
expensive, owing to the requirement for three-dimensional
integration. Second, the partial derivatives of the back-
calculated solvent PREs with respect to the atomic coordi-
nates, which are essential to build a pseudoenergy potential
for structure calculation, are difficult to compute.

Figure 20. Correlation between observed and calculated PRE 1H-
Γ2 rates for the NMR structure of the SRY-DNA complex. The
experimental data comprise PREs collected for the EDTA-Mn2+

paramagnetic label at three different sites, one at a time. Each
paramagnetic label was represented by a three-conformer en-
semble.78 Adapted from Iwahara et al.94 published in J. Am. Chem.
Soc. (American Chemical Society) while the authors were U.S.
Government employees at the National Institutes of Health.

Figure 21. Otting-LeMaster180,182 approach for predicting solvent
PREs from structure. For the prediction, distances from a 1H nucleus
to grid points that can be occupied by cosolute molecules are
calculated and used in eq 34.

AOL ) ∑
grid

δgridrgrid-H
-6 (34)
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4. Applications
In this section we discuss a series of PRE applications

aimed at studying species involved in rapid dynamic
processes and interconversions at equilibrium. These include
the study of nonspecific protein-DNA interactions, inves-
tigations into the search process whereby a specific DNA-
binding protein locates its target site, the detection and
characterization of encounter complexes in both specific and
nonspecific protein-protein interactions, the probing of large
scale interdomain motions involving lowly sampled states,
and finally investigations aimed at probing the conforma-
tional space sampled by denatured or intrinsically disordered
proteins.

4.1. Investigations of the Target Search Process
in Protein-DNA Interactions
4.1.1. Nonspecific Protein-DNA Interactions

Nonspecific protein-DNA interactions play a crucial role
in increasing the efficiency whereby specific DNA binding
proteins locate their cognate DNA binding site within a sea
of nonspecific DNA sites. Nonspecific protein-DNA inter-
actions, however, are particularly difficult to study since they
are intrinsically dynamic. That is to say, these interactions
involve both one-dimensional diffusion of the protein along
the DNA and hopping of the protein from one DNA molecule
or segment to another.9,20,205 As a consequence, characterizing
nonspecific interactions of a protein with DNA in terms of
both structure and dynamics is highly challenging, since the
experimental observables represent an ensemble average of
many rapidly exchanging states, with the protein moving

between multiple overlapping sites on the DNA. One way
around this problem is to design an experimental system in
which the protein is constrained to only a single location on
the DNA, for example by using a length of DNA that is
exactly equal to the length of the DNA binding site and/or
by making use of cross-linking.206-210 However, the dynamic
nature of the nonspecific interactions is lost, and, further,
the biological relevance is questionable, since it is hard to
exclude that such structures may represent partially specific
complexes or are heavily influenced by extrinsic effects
imposed, for example, by crystal packing forces or cross-
linking agents. An alternative approach is to directly study
nonspecific interactions in a naturally dynamic environment
by means of the PRE.

The first nonspecific protein-DNA interaction we studied
involved the A box of the classical HMG-box protein,
HMGB-1.112 HMGB-1A is an architectural protein that binds
nonspecifically in the minor groove of DNA, causing the
DNA to bend.211,212 The DNA binding domain of HMGB-
1A is highly homologous to that of the male sex-determining
factor SRY, another member of the HMG-box family.213,214

In contrast to HMGB-1A, SRY binds sequence specifically
to DNA with an affinity that is approximately 2 orders of
magnitude higher (KD ∼ 20 nM versus 0.9 µM). The 1H-15N
correlation spectrum of the HMGB-1A/DNA complex with
a 14-bp DNA duplex reveals a single set of well-resolved
narrow cross-peaks (Figure 23A). From such a spectrum it
would be impossible to ascertain whether HMGB-1A was
binding to only a single site on the DNA or to multiple sites
with rapid exchange between the available binding modes
(Figure 23B). Intermolecular PRE data recorded on the
complexes with paramagnetic labels (dT-EDTA-Mn2+) po-
sitioned at either end of the DNA resolve the situation
unambiguously (Figure 24). The intermolecular PRE profiles
obtained with SRY are fully consistent with a single specific
complex, and as expected, the PRE profiles observed for the
two paramagnetic labels are completely different (Figure
24A, lower left-hand panel). In the case of the HMGB-1A/
DNA complex, however, the intermolecular PRE profiles
obtained with the two paramagnetic labels are virtually
identical, and moreover, the magnitude of the PREs is
considerably larger than that observed for SRY (Figure 24A,
upper left-hand panel). The observed PRE profiles for the
HMGB-1A/DNA complex are characteristic of a protein
binding to multiple DNA binding sites in two possible
orientations differing by a 180° rotation (cf. Figure 24 A,
upper right-hand panels).

The intermolecular PRE data for the HMGB-1A complex
can be further analyzed using a semiquantitative approach
to obtain an estimate of the populations of the individual
binding sites.112 With N discrete binding sites in rapid
exchange, the ensemble average 〈Γ2〉 rate is given by a
population weighted average of the Γ2 rates for the individual
states:

where Fk and Γ2,k are the population and Γ2 rate for state k,
respectively. The populations Fk can be obtained by back-
calculating the Γ2 rates from structural models of the 26

Figure 22. Comparison of observed and calculated solvent PRE
profiles for the HoxD9 homeodomain free in solution and bound
to DNA in specific and nonspecific complexes. (A) Experimental
solvent PRE profiles for free HoxD9 (black) and HoxD9 bound
specifically (red) and nonspecifically (green) to DNA. (B) Predicted
solvent PREs ratios for free to specifically bound HoxD9 calculated
using the Otting-LeMaster approach.23 (C) Experimentally ob-
served solvent PRE ratios for free to nonspecifically bound HoxD9.
(D) Experimentally observed solvent PRE ratios for free to
specifically bound HoxD9. Adapted from Iwahara et al.23 published
in Proc. Natl. Acad. Sci. U.S.A. (National Academy of Sciences)
while the authors were U.S. Government employees at the National
Institutes of Health.

<Γ2 > ) ∑
k)1

N

FkΓ2,k (35)
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possible states, 13 in each of the two possible orientations
(Figure 25B), and minimizing the !2 function:

where i is the residue number, Γ2,obs(i) is the observed value
of Γ2 for residue i, Γ2,calc,k(i) is the calculated value of Γ2 for
binding state k, and σ(i) is the experimental error for Γ2,obs(i).
The structural models were generated from the crystal
structure of the HMGB-1A/cisplatin-modified DNA com-
plex.212 Despite the relatively crude nature of the model, the
overall Q-factor after minimization is 0.36 with a correlation
coefficient of 0.71. The occupancy of HMGB-1A molecules
in orientations 1 and 2 is essentially equal, with maximal
occupancy for sites 5-8 in orientation 1 and sites 6-9 in
orientation 2. The site of intercalation of Phe37 is located at
the edge of the DNA binding site, and full coverage of the
DNA binding site (∼7 bp) is obtained at intercalation sites
5-13 in orientation 1 and intercalation sites 1-9 in orienta-
tion 2 (Figure 24B). Thus, one would expect reduced
occupancy of sites 1-4 in orientation 1 and sites 10-13 in
orientation 2, as a consequence of a progressive decrease in
protein-DNA contacts. However, the reduced populations
for sites 9-13 in orientation 1 and sites 1-5 in orientation
2 presumably reflect a subtle degree of sequence preference,
since the distribution is not the same as that expected from
simple statistical considerations if the interaction energy at
a given site was only dependent on base-pair coverage.

The PRE has also been used to characterize diffusion and
hopping of the homeodomain HoxD9 on nonspecific DNA.23

As in the case of HMGB-1A, very similar intermolecular
PRE profiles with large PREs are observed with the
paramagnetic label positioned at either end of the DNA
duplex. Interestingly, the RDCs measured on HoxD9 bound

specifically and nonspecifically to DNA in a dilute liquid
crystalline medium of phage pf1 are virtually identical with
a correlation coefficient of 0.99 and a pairwise rms difference
of only 2.3 Hz. Further, the measured RDCs for both the
specific and nonspecific complexes are in excellent agreement
with those calculated from the crystal structure of the
Antennapedia homeodomain-DNA complex215 with RDC
R-factors56 of 13.7 and 15.2%, respectively. These data
indicate that (i) the binding orientation of HoxD9 with respect
to the long axis of the DNA at each nonspecific site is
effectively identical to that for the specific complex; (ii) end
effects that could potentially result in alternative binding
modes are insignificant; (iii) alignment in the pf1 medium
is dominated by the negative charges on the DNA phosphate
backbone and is minimally sensitive to protein location on
the DNA; and (iv) the DNA is essentially straight.23 (In the
case of the HMGB-1A/DNA complex where HMGB-1A
induces a ∼50° bend in the DNA, the alignment would be
dependent upon protein location, since this determines the
site of the bend on the DNA and, therefore, the overall shape
of the DNA.)

4.1.2. Locating the Cognate Target Site in Specific
Protein-DNA Interactions

A sequence specific DNA binding protein must be able
to locate its specific target site within a sea of nonspecific
sites. Nonspecific DNA binding can facilitate this process
by permitting both intramolecular one-dimensional sliding
on the DNA coupled with intermolecular translocation
involving hopping from one DNA molecule to another or
from one nonspecific DNA site to another.9,20,205 Intermo-
lecular PRE measurements provide a direct means for
investigating these processes.

The HoxD9 homeodomain binds specifically to DNA with
a Kdiss of ∼1.5 nM in 100 mM salt compared to a Kdiss of
0.2-0.4 µM for nonspecific binding.23,24 Intermolecular PRE

Figure 23. NMR characterization of the HMGB-1A/DNA nonspecific complex. (A) 1H-15N correlation spectrum of U-[15N/13C]-HMGB-
1A in the presence of a 14-bp DNA duplex (natural isotopic abundance) at a ratio of 1:1.5 protein to DNA to ensure that all protein is
bound and only a single molecule of protein is bound per 14-bp DNA duplex. (B) The 1H-15N correlation spectrum does not permit one
to distinguish between a single binding mode (top) and multiple binding modes in rapid exchange with one another (bottom). Adapted from
Iwahara et al.112 published in J. Am. Chem. Soc. (American Chemical Society) while the authors were U.S. Government employees at the
National Institutes of Health.

!2 ) ∑
i

{Γ2,obs(i) - ∑
k)1

N

FkΓ2,calc,k(i)}
2

σ(i)2
(36)

Transient Low-Population States of Macromolecules Chemical Reviews, 2009, Vol. 109, No. 9 4125

D
ow

nl
oa

de
d 

by
 N

A
TI

O
N

A
L 

IN
ST

 O
F 

H
EA

LT
H

 o
n 

Se
pt

em
be

r 9
, 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
): 

Ju
ne

 1
2,

 2
00

9 
| d

oi
: 1

0.
10

21
/c

r9
00

03
3p



data were collected for the HoxD9/DNA complex with the
specific DNA site located in the center of a 24-bp DNA
duplex and paramagnetic labels (dT-EDTA-Mn2+) placed at
four different sites (Figure 25A).24 At low salt (20 mM NaCl)
the intermolecular PRE data are completely consistent with
a model derived from the crystal structure of the Antenna-
pedia homeodomain/DNA complex215 with a combined
Q-factor for all four paramagnetic labels of 0.26 (Figure
25C). Thus, large magnitude PREs are only observed for
residues in close proximity to the label in the specific
complex (Figure 25E). As the salt concentration is raised
(100 and 160 mM NaCl), however, the intermolecular PRE
data become completely inconsistent with the structure with
a Q-factor of 0.66 (Figure 25D) and large intermolecular
PREs are observed on regions of the protein far away from
the paramagnetic label in the specific complex (Figure 25F).
Moreover, the PRE data observed with the paramagnetic
label at sites 1 (base pair 2) and 4 (base pair 23) are very
similar, and likewise for the PRE data observed with the
paramagnetic label at sites 2 (base pair 5) and 3 (base pair

18) (Figure 25F). In all cases, however, the residues of
HoxD9 that exhibit large intermolecular PREs are located
close to or at the DNA binding interface and can therefore
readily come close to the paramagnetic labels. The 1H-15N
correlation spectrum of HoxD9 is minimally perturbed by
salt and the RDCs for HoxD9 at low and high salt are highly
correlated. The observed intermolecular PREs at high salt
must therefore reflect the footprint of a stochastic search
process in which there is rapid exchange between HoxD9
bound to nonspecific sites at low occupancy and HoxD9
bound to the specific site. The occupancy of the minor
species can be estimated to be less than 1% based on the
observed Kdiss values for specific and nonspecific DNA
binding of HoxD9.

The intermolecular PRE profiles observed for the HoxD9/
DNA complex at high salt can be attributed to two processes:
intramolecular sliding and intermolecular translocation. From
15Nz-exchange spectroscopy and line-shape analysis along
with the ‘mixture’ approach, the latter is known to occur
rapidly via direct transfer between specific sites, as well as

Figure 24. PRE characterization of HMGB-1A binding nonspecifically to DNA. (A) Comparison of the intermolecular PRE profiles
observed for the nonspecific HMGB-1A/DNA complex (top) and the specific SRY/DNA complex (bottom) with two DNA duplexes bearing
the dT-EDTA-Mn2+ paramagnetic label at the two ends of the DNA. A diagrammatic depiction of the states giving rise to the observed
PREs is shown on the right-hand side of the figure. (B) Semiquantitative analysis of the intermolecular PRE data used to estimate the
distribution and occupancy of HMGB-1A binding sites along a 14-bp DNA duplex. There are a total of 13 potential intercalation sites for
Phe-37 and HMGB-1A binding in two orientations related by a 180° rotation (top left panel), giving rise to a total of 26 states. Minimization
of the !2 function shown in eq 36 results in a PRE Q-factor of 0.36 (top right panel) with optimized distributions for the two orientations
shown in the bottom two panels. Adapted from Iwahara et al.112 published in J. Am. Chem. Soc. (American Chemical Society) while the
authors were U.S. Government employees at the National Institutes of Health.
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nonspecific sites, located on different DNA molecules
without necessitating the dissociation of HoxD9 from its
specific DNA site into free solution, a process that is very
slow (kdiss < 0.01 s-1).23,25 The apparent rate of intermolecular
translocation is dependent on the concentration of free DNA
as well as the salt concentration. To ascertain the relative
contributions of intra- and intermolecular translocation, PRE
measurements were carried out on two samples comprising
equimolar concentrations of specific and nonspecific DNA

duplexes with a ratio of protein/DNAspecific/DNAnonspecific of
1:1.5:1.5.24 In sample 1, the nonspecific duplex bears the
paramagnetic label so that any observed PRE must involve
rapid exchange via intermolecular translocation between the
major specific complex (that is observed in the NMR
spectrum) and lowly populated complexes on the nonspecific
DNA duplex (Figure 26A). In sample 2, the specific DNA
duplex has the paramagnetic label and therefore the inter-
molecular PREs observed on the resonances of the specific

Figure 25. Intermolecular PREs observed for the specific HoxD9/DNA complex in low and high salt corresponding to slow and fast
exchange regimes on the PRE relaxation time scale, respectively, for the interconversion between the specific complex and lowly populated
(<1%) nonspecific complexes. (A) 24-bp DNA duplex with the specific site centrally located (boxed) and the location of the four paramagnetic
labels (one at a time) indicated. (B) Diagrammatic representation of the specific complex (left) and the target search process whereby the
specific complex is located (right). (C) and (D) Correlation between observed and calculated PREs for all four sites at low (20 mM NaCl)
and high (160 mM) NaCl, respectively. The calculated rates are obtained from a model derived from the crystal structure of the Antennapedia
homeodomain/DNA complex. (E and F) Intermolecular PRE profiles observed at low (20 mM NaCl) and high (100 and 160 mM NaCl),
respectively. The PRE data are mapped on the structural model of the specific complex, with the color coding depicting the observed PRE
rates. Adapted from Iwahara et al.24 published in Nature (Nature Publishing Group) while the authors were U.S. Government employees
at the National Institutes of Health.
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complex can arise from both intra- and intermolecular
translocation events. The PRE profiles observed for the two
samples are very similar (Figure 26B). However, the PREs
for residues 24-33 (loop between helices 1 and 2 and
N-terminus of helix 2) and 41-42 (N-terminus of helix 3)
are 30-100% larger for sample 2 than those for sample 1,
whereas the PREs for the N-terminal arm (that binds in the
minor groove of the DNA) are essentially the same for the
two samples (Figure 26B, bottom panel). The data from
sample 1 indicate that intermolecular translocation is a major
contributor to the observed PREs, while the larger effects
for selected regions seen in sample 2 are directly attributable
to intramolecular translocation, which gives rise to bias, since
the orientation of HoxD9 on the specific site will be favored
as the protein slides along the DNA (Figure 26C). The
alternative orientation (180° relative to that at the specific
site) requires at least one intermolecular translocation event
from the DNA bearing the specific site to nonspecific DNA
sites located on another DNA molecule (either the specific
duplex, in which case only one translocation event is needed,
or the nonspecific one, in which case two translocation events
are required from the specific to the nonspecific duplex and
back to the specific duplex).

4.2. Encounter Complexes in Protein-Protein
Association

Transient kinetic studies on many protein-protein interac-
tions suggest that the initial step involves the formation of a
pre-equilibrium encounter complex that subsequently relaxes
to the stereospecific complex. This picture is further sup-
ported by the results of both mutagenesis studies and
Brownian dynamics simulations, which have shown that the
association rate constant can be modulated by charge
alterations on the protein surface distal from the specific
interaction site.10-12,14-16,216 These data suggest that, by
analogy with protein-DNA interactions, nonspecific en-
counter complexes may accelerate the formation of the
stereospecific complex either via a reduction in the dimen-

sionality of the search process, in this instance from three
dimensions to two, or by the presence of a nonspecific
attractive potential.6,217 The presence of an ensemble of
encounter complexes in rapid exchange with the stereospe-
cific complex (Figure 27) can be probed under equilibrium
conditions by means of intermolecular PRE measurements,
providing the stereospecific complex is relatively weak (i.e.,
Kdiss in the micromolar range or higher).

4.2.1. Protein-Protein Complexes from the Bacterial
Phosphotransferase System

The protein-protein complexes of the bacterial phospho-
transferase system (PTS) are relatively weak and in fast
exchange with equilibrium dissociation constants (Kdiss)
spanning the micromolar to millimolar range.218 These
complexes direct phosphoryl transfer from one protein to
the next along the PTS pathway that is coupled to sugar
transport across the membrane and sugar phosphorylation.
We carried out intermolecular PRE measurements on three
complexes involving the interaction of the protein HPr with

Figure 26. Assessing the contributions of intramolecular sliding and intermolecular translocation for the HoxD9/DNA complex. (A) PRE
data were collected on two samples comprising an equimolar concentration of specific and nonspecific DNA duplexes with the paramagnetic
label attached to the end of the nonspecific duplex in sample 1 and to the end of the specific duplex in sample 2. The location of the specific
site and the paramagnetic label are indicated in blue and red, respectively. (B) PRE profiles observed for samples 1 (blue) and 2 (red) are
shown in the top panel, and the ratio of the observed PRE rates for the two samples is shown in the bottom panel. (C) Schematic representation
of sliding along the DNA starting from the specific site with HoxD9 colored according to the Γ2(sample 2)/Γ2(sample 1) ratio. Adapted
from Iwahara et al.24 published in Nature (Nature Publishing Group) while the authors were U.S. Government employees at the National
Institutes of Health.

Figure 27. Schematic representation of protein-protein association
with the initial binding event involving the formation of an ensemble
of encounter complexes that subsequently relax to the stereospecific
complex. The two proteins are displayed in red and blue with the
respective interaction surfaces for the stereospecific complex shown
in white and yellow. Adapted from Suh et al.28 published in J. Am.
Chem. Soc. (American Chemical Society) while the authors were
U.S. Government employees at the National Institutes of Health.
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its upstream partner, the N-terminal domain of enzyme I
(EIN) (Kdiss ∼ 10 µM), and two downstream partners,
enzymes IIAmannitol (IIAMtl) and IIAmannose (IIAMan) (Kdiss )
30-50 µM).27 In all three cases, the structures of the
stereospecific complex had been determined by NMR on the
basis of extensive NOE and RDC data.42,44,219 These struc-
tures were fully consistent with the formation of a pentaco-
ordinate phosphoryl transition state with trigonal bipyramidal
geometry without necessitating any significant displacement
in the backbone coordinates of the residues immediately
adjacent to the active site histidines. To investigate the
presence of nonspecific encounter complexes, HPr was
labeled with EDTA-Mn2+ at three sites (E5C, E25C, and
E32C).27

The intramolecular PRE data for HPr within the EIN-HPr
complex are fully consistent with the structure of HPr, and
the PRE Q-factor for all three paramagnetic sites combined
is only 0.18 (Figure 28A). However, agreement between the
observed intermolecular PRE Γ2 rates measured on 15N-
labeled EIN and those calculated from the structure of the
stereospecific complex shows much poorer agreement with
a Q-factor of 0.61 (Figure 28B). The regions of agreement
and discrepancy are clearly visualized in the PRE profiles
(Figure 28C). For all three paramagnetic labels, there are
clearly regions where there is good qualitative agreement
between observed and calculated Γ2 rates. However, in each
case, there are also regions where large PRE Γ2 rates are
observed but small PRE Γ2 rates are predicted (Figure 28C).
These discrepancies can be attributed to the presence of a
small population of nonspecific encounter complexes in rapid
exchange with the stereospecific complex.27

A semiquantitative description of the encounter complex
ensemble can be obtained by rigid body simulated annealing
refinement202,220 against the PRE data using a representation
comprising the stereospecific complex (whose structure is
known and fixed) with population p in rapid exchange with
an ensemble of encounter complexes comprising N states
with population (1 - p) (Figure 29A).27 These calculations
minimize the difference between observed and calculated Γ2

rates for all three paramagnetic sites simultaneously. The
target function comprises the PRE potential, a quartic van
der Waals repulsion term to prevent atomic overlap between
EIN and HPr, and a very weak radius of gyration restraint
to ensure that each member of the ensemble makes at least
some intermolecular contacts. The paramagnetic groups on
HPr are represented by a three-conformer ensemble to
account for their intrinsic flexibility. The coordinates of the
EDTA-Mn2+ moieties (with atomic overlap of EDTA-Mn2+

groups permitted, since these represent a distribution of
states) were optimized by simulated annealing in torsion
angle space against the intramolecular PRE data for HPr
within the context of the EIN-HPr complex as described in
section 3.4.1. The intramolecular PRE Q-factor was 0.18
(Figure 28A). Calculations were carried out either by keeping
EIN fixed and allowing an ensemble of HPr molecules to
rotate and translate or by the converse (HPr fixed and
ensemble of EIN molecules) with essentially identical results.
Complete cross-validation indicates that the encounter com-
plex ensemble is best represented by an ensemble size of N
) 10-20 at a population of ∼10% (Figures 29B and C),
yielding an overall intermolecular PRE Q-factor of 0.21
(Figure 29D).

Figure 28. PREs observed for the EIN-HPR complex with EDTA-Mn2+ conjugated to an engineered surface cysteine residue at three
separate sites (E5C, E25C, and E32C). (A) Correlation between observed and calculated intramolecular Γ2 rates for HPr within the EIN-
HPr complex. (B) Correlation between observed and calculated intermolecular Γ2 rates measured on EIN arising from paramagnetically
labeled HPr. (C) Intermolecular PRE profiles observed for the three paramagnetically labeled sites, with the experimental Γ2 rates shown
as red circles and the expected Γ2 rates calculated from the structure of the stereospecific complex42 denoted by the black line. The insets
depict ribbon diagrams of the complex showing the paramagnetic label (with the distribution of Mn2+ displayed as an ensemble of three
red balls) on HPr and the location on EIN of intermolecular PREs that display significant discrepancies between observed and calculated
values (with color coding of the difference ∆Γ2 between observed and calculated Γ2 rates shown at the top of the figure). Adapted from
Tang et al.27 published in Nature (Nature Publishing Group) while the authors were U.S. Government employees at the National Institutes
of Health.
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A simple, concise, and informative manner to visualize
the encounter complex ensemble is afforded by a reweighted
atomic probability density map (Figure 29E) in which the
contribution of each atom is rescaled depending on the
distribution of its positions in the ensemble.221 The re-
weighted atomic density F at point q is defined as

where Ns is the number of structures in the ensemble, Na is
the number of atoms in each structure, qkl is the position of
atom l in structure k, Fa(q) is a normalized distribution for a
single atom, and

By this means, for a given atom, the relative probability of
a given position is preserved but the contribution of one atom
relative to another is reweighted such that the maxima of
each contribution are constant, thereby yielding an isosurface
that provides a comprehensive representation of the most
likely structures. In the case of the EIN-HPr complex, the
probability map for the encounter complex ensemble is
constructed from 100 independent calculations, each of
ensemble size N ) 20; that is a total of Ns ) 2000 structures.

Two features of the atomic probability map for the EIN-
HPr encounter complex ensemble stand out (Figure 29E).
First, there is a qualitative correlation between the encounter
complex ensemble distribution and the electrostatic surface
potential, with the positively charged surface of HPr populat-
ing the largely negative surface of EIN. Second, the
occupancy of the encounter complexes in the vicinity of the
stereospecific complex is low, indicating that once HPr
locates this region, formation of the stereospecific complex
occurs with high probability. Thus, binding and specific
recognition occurs within the context of a rough, funnel-
shaped energy landscape29,222 possessing many local minima
comprising the sites occupied by the encounter complexes
and a global minimum occupied by the stereospecific
complex. The characteristics of the nonspecific encounter
complexes are distinct from the stereospecific complex. The
latter possesses a well-defined array of complementary van
der Waals and electrostatic interactions, with the latter being
critical in determining the orientation of binding. In the case
of the nonspecific encounter complex ensemble, the buried
accessible surface area is on average an order of magnitude
smaller and the gap index is much larger, indicating that the
interface is less well packed. In addition, the average fraction
of charged residues at the interfaces of the nonspecific
encounter complexes appears to be somewhat increased
relative to that at the interface of the stereospecific complex.

The salt dependence of the intermolecular PREs, origi-
nating from HPr paramagnetically labeled at E5C and E25C,
reveals that the magnitude of the intermolecular PREs
attributable to the stereospecific complex displays only a
small dependence on salt concentration. This can be fully
accounted for by the dependence of the overall Kdiss on salt
concentration, as determined by isothermal titration calo-
rimetry, resulting in a small decrease in the population of
bound EIN as the salt concentration is increased (Figure 30).
The magnitude of the intermolecular PREs originating from
the ensemble of nonspecific encounter complexes, however,

is much more sensitive to salt concentration, implying that
the population of nonspecific encounter complexes is sig-
nificantly more affected by ionic strength than that of the
stereospecific complex (Figure 30).28 These results demon-
strate the importance of electrostatic interactions in the
formation of the ensemble of nonspecific encounter com-
plexes and are fully consistent with Debye-Hückel theory,
since the less compact interfacial packing for the nonspecific

F(q) ) 1
Ns
∑
l)1

Na

wl∑
k)1

Ns

Fa(q - qkl) (37)

wl
-1 ) max ∑

k
Fa(q - qkl) (38)

Figure 29. Semiquantitative depiction of the nonspecific encounter
complex ensemble of EIN-HPr. (A) The representation used for
rigid body ensemble refinement comprises an equilibrium mixture
of the stereospecific complex (whose structure is known and fixed)
and a nonspecific encounter complex ensemble of size N in rapid
exchange with one another. The overall calculated Γ2 rate is a
population weighted average of the Γ2 rates of the species present
in solution. (B) Dependence of the working (Qe and Qee) and
complete cross-validated (Qfree) PRE Q-factors on ensemble size
N at a population of 10% for the encounter complex ensemble. (Qe
is the average Q-factor for all 100 calculated ensembles, and Qee is
the ensemble of ensembles average Q-factor.) Complete cross-
validation shows that the optimal size of N lies between 10 and
20. (C) Dependence of the working Q factors on the population of
the encounter complex ensemble for an ensemble size of N ) 20.
(D) Correlation between observed and calculated intermolecular
Γ2 rates for N ) 20 and a population of 10% for the encounter
complex ensemble. (E) Two views depicting the atomic probability
distribution of the encounter complex ensemble of HPr (green mesh
plotted at a threshold of 20% maximum and calculated from 100
independent calculations of ensemble size N ) 20 at a population
of 10%) on the molecular surface of EIN (color coded by
electrostatic potential, (8kT) with the location of HPr in the
stereospecific complex shown as a blue ribbon. Adapted from Tang
et al.27 published in Nature (Nature Publishing Group) while the
authors were U.S. Government employees at the National Institutes
of Health.
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encounter complexes relative to the stereospecific complex
permits more effective screening of intermolecular electro-
static interactions by ions in solution.28

Similar results were also observed for the IIAMtl-HPr and
IIAMan_-HPr complexes (Figure 31).27 (Note that IIAMtl and
IIAMan bear no similarity in terms of primary, secondary,
tertiary, or quaternary structure). With the paramagnetic label
(E5C-EDTA-Mn2+) placed on the opposite side of HPr’s
binding site for IIAMtl and IIAMan, there are regions on the
surface of IIAMtl and IIAMan in both complexes that exhibit
intermolecular Γ2 rates that are much larger than those back-
calculated from the respective structures of the stereospecific
complexes (Figure 31A and E). The largest discrepancies
involve regions on IIAMtl and IIAMan rich in acidic residues
(Figure 31B and C and Figure 31 F and G), the distribution
of which correlates qualitatively with the negative electro-
static potential on the surface of these proteins (Figure 31D
and H), suggesting that long-range electrostatic interactions

play an important role in the formation of these particular
encounter complexes.

Recently, replica exchange Monte Carlo simulations using
a coarse-grained energy function have been used to study
the interactions of the EIN-HPr, IIAMtl-HPr, and
IIAMan-HPr complexes from a theoretical perspective.29 The
simulations recover the structures of the stereospecific
complexes together with an ensemble of nonspecific en-
counter complexes at an occupancy of ∼10%, and they
reproduce the overall experimental binding affinities well.
The picture that emerges from both the experimental and
theoretical work is one in which the overall funnel-shaped
energy landscape of complex formation is dominated by the
stereospecific complex, a small number of structured non-
specific encounter complexes, and a diffuse cloud of loosely
bound encounter complexes connecting the stereospecific and
nonspecific binding sites with each other and the unbound
state.29

4.2.2. Encounter Complexes in Protein-Protein Electron
Transfer

In the phosphoryl transfer complexes of the PTS discussed
in the previous section, the configuration of the stereospecific
complex is dictated by rigid constraints imposed by chemistry
with only small variations in the distance between the two
active site histidines depending on whether the phosphoryl
transfer reaction proceeds via an associative or dissociative
mechanism.42,44,219 In the case of electron transfer reactions,
however, which proceed principally via electron tunneling
modulated by the intervening bonding networks, such highly
strict geometric requirements are not present, and hence a
multitude of closely related configurations can still potentially
support electron transfer.223

The crystal structure of the complex between cytochrome
c peroxidase (CcP) and cytochrome c (Cc) provides a static
picture of an electron transfer complex.224 Brownian dynam-
ics simulations, however, suggest a multitude of complexes,
including several discrete and energetically accessible
minima.14 While the most stable minimum corresponds to
the crystal structure, other minima have smaller metal-metal
separations.223 Since the CCp-Cc complex is weak, the PRE
provides an ideal approach to answer these questions
experimentally.110 Using a very qualitative interpretation of
the PRE data in which the PREs were converted to
approximate distance restraints with bounds of (4 Å, Volkov
et al.110 showed that most of the PRE restraints were
consistent with a single structure that is close to the crystal
structure (backbone rms difference of 2.2 Å). However, a
number of nonrandomly distributed PRE restraints were
consistently violated, indicating that the single docked
structure is insufficient to explain all the experimental PRE
data. Volkov et al.110 were able to show that the dominant
protein-protein orientation, corresponding approximately to
the crystal structure, is occupied >70% of the lifetime of
the complex, with the remainder of the time being spent in
an ensemble of encounter complexes. The authors were
further able to deduce that the conformational space explored
by Cc on the surface of CcP in the encounter complexes
constitutes about half the molecular surface of CcP with the
crystal structure configuration located at approximately the
center of this surface.

In the context of electron transfer, the results on the
Cc-CcP complex are relevant not only to the mechanism
of protein complex formation but also to the modulation of

Figure 30. Differential salt dependence of intermolecular PREs
attributable to the stereospecific EIN-HPR complex and the
nonspecific encounter complex ensemble. (A) Correlation of
intermolecular Γ2 rates arising from the stereospecific complex (left-
hand panels) and the ensemble of nonspecific encounter complexes
(right-hand panels) at 0.15 (red), 0.3 (green), and 0.5 (blue) M NaCl
versus the corresponding Γ2 rates at 0 M NaCl for EIN-HPr(E5C)
and EIN-HPr(E25C) paramagnetically labeled with EDTA-Mn2+.
(B) Ionic strength dependence of the Kdiss for the EIN-HPr complex
determined by isothermal titration calorimetry (left-hand panel) and
dependence of the slopes of the Γ2(NaCl) versus Γ2(0 M NaCl)
correlations (from panel A) versus the normalized bound population
pbound(NaCl)/pbound(0 M NaCl) of stereospecific complex. Adapted
from Suh et al.28 published in J. Am. Chem. Soc. (American
Chemical Society) while the authors were U.S. Government
employees at the National Institutes of Health.
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electron transfer rates.110 The observation that the dominant
protein-protein orientation in solution corresponds ap-
proximately to that observed in the crystal structure is
consistent with the finding that electron transfer rates are
similar in solution and in the crystal.225,226 However, forward
and backward electron transfer rates are differentially
modulated by dynamic processes, and forward electron
transfer rates appear to be conformationally gated, implying
that the most stable binding configuration is not necessarily
the most electron transfer active.226

The relevance of encounter complexes to electron transfer
is illustrated even more dramatically in the case of the
adrenoxin (Adx) and Cc.111 Adx and Cc associate to form a
very weak and short-lived complex that is electron transfer
active. In this instance, the PRE data indicate that the Adx-
Cc complex is in fact a pure encounter complex ensemble.

4.2.3. Ultraweak Self-association

Ultraweak macromolecular self-association (Kdiss > 10
mM) is beyond the limit of detection of conventional

biophysical techniques such as sedimentation velocity and
therefore very difficult to study. Such weak interactions,
however, likely play a critical role in the initial nucleation
events involved in spontaneous self-assembly of higher-order
architectures, including viral capsid formation, crystallization,
and amyloid fibril formation.

As an example of ultraweak self-association, we investi-
gated the self-association of HPr using the PRE.116 No
evidence of self-association could be detected by sedimenta-
tion velocity, providing an upper limit of 1-2% for any
higher order soluble species. Intermolecular PRE measure-
ments were carried out using a 1:1 mixture of 15N-labeled
HPr and HPr paramagnetically labeled with EDTA-Mn2+ at
three positions (one at a time): E5C, E25C, and E32C. Large
intermolecular PREs were observed with the paramagnetic
label at E5C and E32C, compared to negligible effects with
the label at E25C, thereby unequivocally demonstrating the
presence of very weak self-association (Figure 32A). Self-
association could be completely eliminated by the addition
of EIN, indicating that the EIN-HPr interface overlaps with

Figure 31. Observed and calculated intermolecular PREs for the IIAMtl-HPr (panels A-D) and IIAMan-HPr (panels E-H) complexes
with HPr paramagnetically labeled with EDTA-Mn2+ at position E5C. A comparison of the observed PRE profiles (red circles) with those
back-calculated from the structures of the stereospecific complexes (black lines) is shown in parts A and E. Structures of the two stereospecific
complexes color coded according to the difference, ∆Γ2, between observed and calculated intermolecular Γ2 rates are shown in parts B and
F. Residues of IIAMtl (C) and IIAMan (G) that display a large ∆Γ2 are colored in cyan on a molecular surface representation, with HPr shown
as a green ribbon; corresponding electrostatic potential isosurfaces ((5kT) are shown in parts D and H, respectively, using the same views.
Adapted from Tang et al.27 published in Nature (Nature Publishing Group) while the authors were U.S. Government employees at the
National Institutes of Health.
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that for self-association of HPr. The PREs are also modulated
differentially by ionic strength, as well as by a surface charge
mutation (S46D), revealing the presence of several clusters
of self-associated species. Using a similar computational
methodology to that employed to explore the distribution of
nonspecific encounter complexes for the interaction of EIN
and HPr (section 4.2.1), it could be shown that the self-
associated state was optimally represented by an ensemble
of species of size N ) 4 at an overall occupancy of ∼1%
(Figure 31B), corresponding to a Kdiss g 15 mM. From the
atomic probability distribution representing the self-associ-
ated species, one can deduce that the ensemble of self-
associated states is driven by both electrostatic and hydro-
phobic interactions (Figure 32C).

4.2.4. Transient Events Involved in N-Terminal
Autoprocessing of HIV-1 Protease

Mature HIV-1 protease is a dimer in which residues from
each subunit contribute to the catalytic active site.227 HIV-1

protease plays a critical role in viral maturation by processing
the Gag and Gag-Pol polyproteins into mature structural and
functional proteins, including itself. The full-length trans-
frame region (TFR)-protease precursor is monomeric but
undergoes maturation by intramolecular N-terminal cleavage
of a putative precursor dimer.228-230 This cleavage event is
associated with the appearance of mature-like catalytic
activity. Cleavage at the C-terminal end of the protease
occurs intermolecularly and involves an active protease
dimer.231 How then does N-terminal cleavage of the HIV-1
protease precursor occur when the N- and C-termini of the
mature protease are part of an intersubunit *-sheet located
distal from the active site? To address this question, we
carried out PRE measurements on a miniprecursor protease
construct, SFNFPRD25N, comprising a four-residue N-terminal
extension derived from the TFR and a D25N mutation to
abolish catalytic activity.117 The four-residue N-terminal
extension is sufficient to result in a monomeric species whose
secondary and tertiary structures are the same as those of
the mature protease, with the exception of the N- and
C-termini, which are disordered and no longer form an
intersubunit *-sheet. The experimental design is similar to
that employed in the study of HPr self-association. The
miniprecursor was spin-labeled at three sites (T12C, E34C,
and V82C, one at a time), and significant intermolecular PRE
effects were observed with the nitroxide label at two of the
three sites (T12C and V82C) (Figure 33A). These data permit
one to reconstruct the probability distribution of very weakly
self-associated states (Figure 33C). The miniprecursor forms
highly transient, lowly populated (3-5%) dimeric encounter
complexes (Kdiss ) 3-5 mM) that involve the mature dimer
interface but occupy a wide range of subunit orientations
relative to the mature dimer. The occupancy of the mature
dimer orientation is extremely low, thereby accounting for
the very low enzymatic activity of the precursor. Additional
PRE measurements with the nitroxide label positioned close
to the N-terminus of the miniprecursor reveal that the
N-terminal extension makes both transient intra- and inter-
subunit contacts with the substrate binding site and cleft
(Figures 33B and D). Thus, the N-terminal extension is
available for autocleavage when the correct dimer orientation
is sampled within the encounter complex ensemble of
miniprecursor self-associated species (Figure 33D).

4.3. Transient Domain-Domain Interactions in
Proteins

Large-scale domain rearrangements are known to play a
critical role in ligand binding, recognition, catalysis, and
regulation. Such motions include transitions between alterna-
tive states (e.g., closed versus open conformations) as well
as transitions from intrinsically disordered states to ordered
ones upon binding.

4.3.1. Interdomain Dynamics in Maltose-Binding Protein

Maltose binding protein (MBP) belongs to a large class
of periplasmic proteins in which ligand binding is associated
with large domain reorientation from an open apo state to a
closed holo state.232 The ligand binding site consists of
residues from the N- and C-terminal domains and is fully
accessible in the apo state; in the holo state, the ligand is
buried by the two domains. For this reason, MBP and related
proteins have been compared to a venus fly trap. The general
question that arises for proteins such as MBP is whether the

Figure 32. Ultraweak self-association of HPr. (A) Intermolecular
PRE profiles with EDTA-Mn2+ at positions E5C (top) and E32C
(bottom panel). The location of the intermolecular PREs is shown
in the insets. (B) Correlation between observed and calculated PREs
with the self-associated state represented by an ensemble of size N
) 4 at a population of 1%. (C) Reweighted atomic probability
density maps (green mesh, plotted at a threshold of 20% maximum)
showing the distribution of 15N-labeled HPr on the surface of
paramagnetically labeled HPr (left panel) and of paramagnetically
labeled HPr on the surface of 15N-labeled HPr (right panel with
residues experiencing large intermolecular PREs colored in red,
green, blue, and yellow using the same color scheme as in part A).
Adapted from Tang et al.116 published in J. Am. Chem. Soc.
(American Chemical Society) while the authors were U.S. Govern-
ment employees at the National Institutes of Health.
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apo state exists as a single species in which the holo
conformation is energetically inaccessible in the absence of
ligand and interdomain rearrangement is induced by ligand
binding, or whether the predominantly open apo state
coexists in rapid equilibrium with alternative lowly populated
species that approximate the closed holo state.

In the case of MBP, domain reorientation upon ligand
binding involves a ∼35° rigid body domain reorientation
between the N- (NTD) and C-(CTD) domains, involving

hinge bending within the linker region connecting the two
domains.233,234 RDCs measured on the apo and holo states
of MBP are fully consistent with the respective crystals
structures (with RDC R-factors of ∼13-14%).235 Since
RDCs are exquisitely sensitive to bond vector orientation,58

it follows that the predominant conformation of the apo and
holo states in solution corresponds to the open and closed
states observed in the apo and holo crystal structures,
respectively. However, RDCs represent a linear weighted
average of the species present in solution and therefore will
not be sensitive to the presence of lowly populated states.114

Thermodynamic and mutagenesis data further indicate that
the upper limit for the occupancy of the holo conformation
in the absence of ligand is only 0.002%.236

PRE measurements on MBP were carried out by placing
a nitroxide label (one at a time) on the surface of the NTD
(D41C) and CTD (S211C).114 In the presence of ligand, the
PRE data from both sites are fully consistent with the holo
crystal structure. In the absence of ligand, however, a
different picture emerges: although the PRE data obtained
for S211C are compatible with the apo crystal structure, the
PRE profile for D41C reveals major discrepancies between
the observed and calculated interdomain PREs observed on
the CTD. Specifically, the magnitudes of the PREs origi-
nating from D41C and observed within the CTD are
considerably larger than expected from the apo crystal
structure (Figure 34A) with an interdomain PRE Q-factor
of 0.49 (Figure 34B). The PRE profiles for MBP in the
absence of ligand cannot be accounted for by a simple
mixture of apo and holo conformations. Further, although
the PRE data can be fit to a single alternative conformation,
this conformation is inconsistent with the RDC data (RDC
R-factor of 24 ( 3% compared to 14% for the apo crystal
structure). One can therefore conclude that apo MBP in
solution exists as a mixture of at least two species, with the
predominant one corresponding to the apo crystal structure.
Simulated annealing refinement against the PRE data using
a two-member ensemble comprising a major open state
(corresponding to the apo crystal structure) and a minor
species in a 95%:5% mixture satisfies the experimental PRE
data with Q-factors of 0.21 and 0.24 for the D41C (Figure
34B) and S211C data, respectively, and is fully consistent
with both RDC and small-angle X-ray scattering data.114 In
this instance, representation of the minor species by a larger
ensemble of states does not result in any significant improve-
ment in agreement with the experimental PRE data and yields
the same physical and structural picture.

The lowly populated species calculated from the PRE data
represents a partially closed state (Figure 34C) that is distinct
from the holo conformation.114 The transition between the
major open and minor partially closed apo species involves
a hinge body rotation of 33°. The minor partially closed apo
state and the holo conformation differ by an 18° rotation as
well as a 6 Å translation (Figure 34D). The latter relieves
electrostatic repulsion in the holo conformation between
negatively charged residues that line the substrate binding
cleft, thereby rendering the holo conformation energetically
inaccessible in the absence of sugar substrate.236 In the
presence of sugar, an array of intermolecular hydrogen bonds
between these residues and the substrate stabilizes the holo
conformation. In the absence of sugar, translation of the CTD
out of the sugar-binding pocket in the partially closed apo
state not only reduces electrostatic repulsion between the
NTD and CTD but also leaves the sugar binding surface on

Figure 33. PRE investigation of transient events involved in
N-terminal autoprocessing of the SFNFPRD25N HIV-1 protease
miniprecursor. (A) Intermolecular PRE profiles observed with
nitroxide labels at positions T12C and V82C located at the periphery
of the substrate binding cleft and dimer interface of the mature
protease. The observed Γ2 rates are shown as red circles, the
calculated Γ2 rates (derived from ensemble rigid body simulated
annealing calculations) for a N ) 4 representation for the ensemble
of self-associated states at a population of 5% are shown as black
lines (PRE Q-factor ) 0.22), and the Γ2 rates back-calculated from
the structure of the mature protease at populations of 1 and 2% are
shown as blue and green lines, respectively. (B) PRE profiles
observed with the nitroxide spin label attached at the N-terminus
of SFNFPRD25N with intermolecular PREs (obtained from a mixed
sample of 15N-labeled precursor and nitroxide-labeled precursor)
shown in red and the sum of intra- and intermolecular PREs
(obtained from a sample comprising dual 15N- and nitroxide-labeled
miniprecursor) in blue. (C) Atomic probability density map (gray
mesh plotted at a threshold of 20% of maximum) showing the
distribution of the spin-labeled (T12C, E34C, and V82C) subunit
relative to the isotopically labeled subunit (red ribbon) in the
SFNFPRD25N encounter complexes, with the location of the second
subunit in the mature protease shown as a blue ribbon. (D) Inter-
and intramolecular PREs with Γ2 rates >10 s-1 color-coded in red
and blue, respectively, onto the molecular surface of the mature
protease dimer originating from the N-terminal spin-label. Adapted
from Tang et al.117 published in Nature (Nature Publishing Group)
while the authors were U.S. Government employees at the National
Institutes of Health.
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the CTD exposed and therefore accessible for binding. The
presence of a partially closed apo state in rapid equilibrium
with the predominant open state may facilitate the transition
to the holo conformation upon sugar binding. Further, since
the predominant structural fluctuations in apo MBP do not
involve the energetically disfavored holo conformation but
a related partially closed conformation, one could regard the
conformational transition to the holo conformation upon
sugar binding as an example of induced fit.

4.3.2. Conformational Space Sampled by Denatured and
Intrinsically Disordered Proteins

Denatured and intrinsically disordered proteins occupy an
ensemble of non-native conformational states.237 One might
expect that these states constitute a statistical random coil,
but this need not necessarily be the case, owing to the

presence of residual structure or local non-native collapse
around hydrophobic clusters.238 By comparing the observed
PREs with those expected from a statistical random coil, one
can deduce the existence of residual structure or compaction.
PRE measurements have been carried out on a wide range
of partially unfolded, unfolded, and intrinsically unstructured
proteins.99-109

The expected profile for a random coil, calculated using
the mean field approximation to an unperturbed wormlike
chain, predicts that the PRE should extend to ∼15 residues
from the site of a nitroxide spin label.108 Depending on the
location of the spin label, this behavior can be reproduced.
In other cases, however, PRE effects have been observed to
extend well beyond the 15 residue limit and, in addition,
may not be evenly distributed. In general, the PRE data on
unfolded and intrinsically disordered proteins have provided
definitive evidence of multiple distinct hydrophobic clusters
which include both non-native interactions and in some
instances residual native contacts.99-108 For chemically
denatured N-PGK,109 on the other hand, significant PREs,
distributed almost uniformly throughout the sequence, were
observed from multiple spin labels, suggesting the existence
of a collapsed state with no coherent three-dimensional
structure and a radius approximately 20% larger than that
of the folded state.

5. Concluding Remarks
Although the PRE was first described in the 1950s76 and

early 1960s119 and has been extensively used in the study of
metalloproteins,59,60,118 it is only relatively recently that the
appropriate theoretical and computational framework has
been established to permit direct quantitative refinement
against PRE relaxation rates for systems in which an extrinsic
paramagnetic center (covalently attached to the macromol-
ecule of interest via a linker with several rotatable bonds)
samples a wide range of conformational space.78 Quantitative
refinement against PRE relaxation rates not only affords a
powerful tool in three-dimensional solution structure deter-
mination but also permits structural information on lowly
populated states to be derived under conditions where the
minor and major species are in fast exchange on the PRE
relaxation time scale.

From the perspective of structure determination, the PRE
permits a large number of long-range distance interactions,
up to 35 Å in the case of Mn2+, between the paramagnetic
center and the protons of the macromolecule(s) to be probed.
In contrast, the NOE which forms the backbone of all NMR
structure determination is restricted to short-range interproton
distances less than about 6 Å.30-32,51 It is not simply the
ability to sample long-range distances that makes the PRE
so useful. The unambiguous identification of a PRE effect
is entirely straightforward, since the assignment of cross-
peaks in 2D or 3D correlation spectra is already known from
through-bond scalar triple resonance experiments. This is in
stark contrast to the assignment of NOE cross-peaks where
extensive spectral overlap can render unambiguous identi-
fication to a single interproton interaction difficult even in
four-dimensional spectra.

While the NOE cannot provide information concerning
long-range order, since the effects are limited to 6 Å, it is
evident that a large number of such short-range contacts,
even if interpreted in the most generous and qualitative
manner, are in fact highly constraining from a structural
perspective when dealing with globular proteins.51 Qualitative

Figure 34. Dynamic interconversion between major open and
minor, partially closed states of apo MBP. (A) Comparison of the
observed PRE profile for apo MBP spin-labeled at position D41C
(red circles) with that back-calculated on the basis of the apo crystal
structure (open state). (B) Correlation between observed and
calculated Γ2 rates for the D41C data obtained with the apo crystal
structure alone (left panel) and upon inclusion of a minor, partially
closed species at an occupancy of 5% (right panel) derived by
conjoined rigid body/torsion angle simulated annealing refinement.
(C) Comparison of the major open (blue cylinder) and minor
partially closed (green smoothed backbone trace with the reweighted
atomic probability map shown as a green mesh) forms of the CTD
of apo MBP with the NTD of the two species superimposed (gray
ribbon). (D) Comparison of the relative orientation of the CTD in
the minor partially closed state of apo MBP (green cylinder) and
the holo crystal structure (closed state) of MBP (red cylinders) with
the crystal structure (open state) of apo MBP shown as a molecular
surface color-coded according to electrostatic potential. Adapted
from Tang et al.114 published in Nature (Nature Publishing Group)
while the authors were U.S. Government employees at the National
Institutes of Health.
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interpretation of PRE data, however, is much less useful in
this regard, since a distance restraint of 20 ( 5 Å or 20 (
10 Å is not particularly conformationally restrictive. This is
why direct refinement against the PRE rates is so important
from the perspective of structure determination, since it is
only by this means that the full power of the PRE can be
truly exploited.78

The PRE is not the only biophysical technique that can
probe long-range distance interactions. Fluorescence reso-
nance energy transfer (FRET)239 and double electron-electron
resonance (DEER)240,241 allow separations of 10-100 Å and
20-60 Å, respectively, to be studied and, in contrast to
solution NMR methods, are not limited by molecular size.
However, both FRET and DEER require the introduction of
two probes, a fluorescence donor and acceptor for the former
and two nitroxide labels for the later, and more importantly,
only a single pairwise distance can be measured per sample,
with each distance requiring a new double chromophore-
labeled or double spin-labeled sample. The PRE, of course,
can probe hundreds of distances simultaneously in a single
sample, thereby permitting one not only to derive three-
dimensional structural information but also to detect and
visualize lowly populated species.

As with any labeling method, the introduction of
extrinsic PRE labels can potentially alter the interaction
energy, structure, or kinetics of the interacting molecules.
For this reason, care should be taken in choosing the sites
of labeling. The absence of significant structural perturba-
tions involving the high-populated state of the labeled
molecule and the complex can be easily assessed by NMR
spectroscopy using chemical shifts as an indicator. The
absence of any significant chemical shift perturbations
(e.g., in a 1H-15N correlation spectrum) outside the
immediate vicinity of the labeled residue indicates that
any potential structural perturbations are too small to be
characterized by NMR. Likewise, residual dipolar cou-
plings can readily be used to verify the absence of any
significant perturbations in backbone structure. Overall
interactions energies can be derived by titration experi-
ments (e.g., using NMR, fluorescence, or isothermal
titration calorimetry to determine overall equilibrium
constants). In the examples discussed here involving
protein-protein and protein-DNA interactions, as well
as multidomain proteins, no significant structural or
energetic perturbations were detected upon introduction
of the paramagnetic labels.23-25,27,78,94,112,114,116,117

The application of the PRE for structure determination of
complexes or multidomain proteins is restricted to systems
in slow exchange on the PRE relaxation time scale. Under
these conditions, the observed intermolecular or interdomain
PREs reflect a single state, and direct refinement against the
PRE rates using a single structure representation of the
macromolecule can proceed in the same way as using the
intramolecular PREs for structure determination/refinement
of a single protein.78

Perhaps the most exciting aspects of the PRE are the recent
findings that, under fast exchanging conditions, intermolecu-
lar or interdomain PREs can provide the footprint of low
population species providing a significant number of para-
magnetic center-proton distances are shorter in the minor
species than the major one.24 This PRE footprint permits one
to detect, visualize, and characterize lowly populated states
of macromolecules and their complexes under equilibrium
conditions, shedding information on states that are effectively

invisible to other biophysical and structural techniques. These
states are of considerable interest, since they play a crucial
role in a wide range of dynamical processes, including
molecular recognition and binding, allostery, induced-fit, and
self-assembly. In this review, we have shown how the PRE
in the fast exchange regime can be used to demonstrate
sliding and hopping of transcription factors on DNA;24 to
identify and structurally characterize nonspecific encounter
complexes in protein-protein association;27,28,110,111 to detect
ultraweak self-association,116 a process that is vital, for
example, for N-terminal autoprocessing of the monomeric
HIV-1 protease precursor;117 to probe large scale interdomain
motions in multidomain proteins involving rare transitions;114

and to characterize ensembles of unfolded and intrinsically
disordered states of proteins, including the sampling of non-
native partially collapsed states. 99-109
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(38) Riek, R.; Pervushin, K.; Wüthrich, K. Trends Biochem. Sci. 2000,

25, 462.
(39) Tugarinov, V.; Muhandiram, R.; Ayed, A.; Kay, L. E. J. Am. Chem.

Soc. 2002, 124, 10025.
(40) Tugarinov, V.; Sprangers, R.; Kay, L. E. J. Am. Chem. Soc. 2004,

126, 4921.
(41) Caffrey, M.; Cai, M.; Kaufman, J.; Stahl, S. J.; Wingfield, P. T.;

Covell, D. G.; Gronenborn, A. M.; Clore, G. M. EMBO J. 1998, 17,
4572.

(42) Garrett, D. S.; Seok, Y. J.; Peterkofsky, A.; Gronenborn, A. M.; Clore,
G. M. Nat. Struct. Biol. 1999, 6, 166.

(43) Williams, D. C., Jr.; Cai, M.; Clore, G. M. J. Biol. Chem. 2004,
279, 1449.

(44) Williams, D. C., Jr.; Cai, M.; Suh, J. Y.; Peterkofsky, A.; Clore,
G. M. J. Biol. Chem. 2005, 280, 20775.

(45) Tugarinov, V.; Choy, W. Y.; Orekhov, V. Y.; Kay, L. E. Proc. Natl.
Acad. Sci. U. S. A. 2005, 102, 622.

(46) Hu, J.; Hu, K.; Williams, D. C., Jr.; Komlosh, M. E.; Cai, M.; Clore,
G. M. J. Biol. Chem. 2008, 283, 11024.

(47) Fiaux, J.; Bertelsen, E. B.; Horwich, A. L.; Wüthrich, K. Nature 2002,
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A simple model is presented as the basis for explaining the equations that 
describe the isotropic shift for paramagnetic molecules in solution. The 
simplest case is that of an axially symmetric molecule for which the Curie 
Law is valid and for which zero field splitting and second-order Zeeman 
effects are small. It is used as a point of departure for considering the 
many underlying factors that affect observation of NMR resonances in 
paramagnetic molecules. 

INTRODUCTION 

For years, metallobiochemistry and transition-metal chemistry have contributed to the extensive 
literature on the application of NMR to paramagnetic molecules. More recently, development of 
paramagnetic contrast-enhancing agents useful in NMR imaging has widened interest in the NMR 
of paramagnetic molecules (I). Unfortunately, one frequently encounters misuses and misconceptions 
associated with paramagnetic NMR phenomena. A commonly encountered example is the attribution 
of the large resonance shifts demonstrated by paramagnetic molecules to the "contact shift." We shall 
see that the contact contribution to the observed shift is but one of two major factors, and, in fact, 
in certain systems it may even play a minimal role in the magnitudes of observed shifts. 

Additional interest in performing NMR spectroscopy with paramagnetic molecules has recently 
been fueled by developments in metallobiochemistry and physiology. For example, water soluble 
paramagnetic shift reagents have opened the door to quantitative studies of cations in intact cells 
(2, 3). Furthermore, many metalloproteins distributed throughout the biosphere are appropriately 
paramagnetic (4) .  

This article is meant to be an introduction to the underlying principles governing NMR shifts in 
paramagnetic molecules. In Part 11, the subject of relaxation in paramagnetic molecules and criteria 
for successful observation of NMR in paramagnetic molecules will be described. No derivations will 
be presented. Rather, the goal of this article is to provide a conceptual basis for chemists, 
physiologists, and medical researchers to understand why paramagnetic molecules can be 
advantageous, as well as how and why they work. The complexity associated with this task stems 
from the fact that, from the NMR viewpoint (as opposed to the electron paramagnetic resonance 
(EPR) viewpoint), the most useful paramagnetic species are f-block and d-block transition elements. 
Consequently a detailed understanding necessitates familiarity with a variety of disparate topics, 
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including transition-metal chemistry, lanthanide chemistry, factors governing metal ion electronic 
structures, bulk magnetism, quantum mechanics, operator algebra, perturbation theory, crystal-field 
and ligand-field theories, as well as both EPR and Nh4R spectroscopy. Approached abruptly, such 
a task may be daunting, particularly to medical researchers, since these topics are not normally part 
of the medical school curriculum. 

For the more advanced reader, there are two major treatises (and abundant literature, some of 
which is cited herein) on NMR in paramagnetic molecules (4, 5) .  These should be referred to by 
those desiring complete descriptions of the ideas that will be developed here. 

HISTORICAL BACKGROUND 

The effect of paramagnetic ions upon solution NMR parameters was appreciated soon after the 
original experimental verification of the NMR phenomenon (6). Early workers realized that the 
unique manifestations of paramagnetic ions arose from the interaction between unpaired electron 
magnetic moments and individual nuclear magnetic moments. Initially, quantitation of nuclear 
relaxation time ratios, (T1/T2) ,  stimulated development of equations needed to account for the 
observed paramagnetic effects. Such early experiments were analogous to shift-reagent and 
relaxation-reagent experiments that might well be carried out today. They were particularly 
concerned with relaxation time changes for H,O,.D,O, or solutes, caused by the presence of added 
paramagnetic transition metal ions (7-13). It is interesting to note the more recent applications of 
transition-metal complexes as imaging contrast agents (1) in work that mimics those early results. 

Between 1948 and 1961, several concepts were developed (6-24) that later allowed formulation 
of a comprehensive theory (21-23) for paramagnetic induced shifts and relaxation. These concepts 
included the ideas that interactions between unpaired electron magnetic moments and nuclear 
magnetic moments occur via dipole-dipole (6-8) coupling and Fermi (25) contact coupling (21, 16), 
and that these electron-nuclear interactions can affect both nuclear relaxation times (6, 12, 14, 16)  
and observed shifts (7, 8, 9, 20). Particularly relevant to this article (Part I) is the work by 
McConnell and Holm (9) in which they apparently reported the first intramolecular paramagnetic 
nuclear (proton) resonance shifts, both in the solid state and in toluene solutions, for a stable intact 
paramagnetic complex (nickelocene). Furthermore, they established (9) a precedent for interpreting 
the origin of these shifts, which have come to be known as isotropic shifts. Their work first explicitly 
associated isotropic shifts with unpaired spin-density delocalization via metal-ligand bonding and is 
significant for that fact as well. Another important idea that originated before 1%1 and is relevant 
here is that electron spin-lattice relaxation times of metal ions in solution can affect proton NMR 
relaxation times, and implicitly those of other nuclei as well. As we shall see in Part 11, this point 
is important for deciding which paramagnetic transition metals will provide resolvable spectra, or 
which will perform more successfully as relaxation reagents. 

OBSERVED SHIFTS 

For a paramagnetic molecule in solution, the observed (intramolecular) nuclear resonance 
spectrum arises from both diamagnetic and paramagnetic shifts, given by Eq. [l]. 

The term (Av/v) represents the particular shift in ppm, where the numerator ( A v )  is the frequency 
difference between the resonance of interest and the frequency of an internal reference, whereas the 
denominator (v )  is the absolute frequency of the spectrometer. The last term is called the isotropic 
(or sometimes the hyperfine) shift and results from the presence of molecular paramagnetism. From 
Eq. [l], it should be clear that for a given nucleus in a molecule, the isotropic shift is additive to its 
"normal" diamagnetic shift. 

The general approach to calculating NMR transition energies and frequencies is to use an 
eigenfunction-eigenvalue equation similar to the Schrijdinger equation in which the operator contains 
all terms that can affect the spin-state energies, and hence the transition, or resonance frequencies 
(i.e., the observed shifts)(l7, 28). This approach is called the Hamiltonian formalism because the 
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operator in this equation is called the Haniiltonian. Some parts of the Hamiltonian reflect only 
diamagnetic interactions such as those between nuclear spins and the external field (the Zeeman 
interaction and chemical shielding) and among the nuclear spins (spin-spin coupling). The remainder 
of the Hamiltonian contains terms describing the interactions between nuclear spins and the unpaired 
electrons. These parts represent the paramagnetic effects that occur as a result of the unpaired 
electron-nucleus interactions. As mentioned in the preceding paragraph, it is these parts that give 
rise to the isotropic shift for a particular nucleus, and it is customary to relabel the paramagnetic 
term in Eq. [l] as ( A v / ~ ) k ~ & ~ ~ i ~ .  Properly, if one wishes to analyze only isotropic shifts, then 
rearrangement of Eq. (11 to Eq. [2] indicates that isotropic shifts are the difference between observed 
resonance positions in a paramagnetic molecule and resonance positions of corresponding nuclei in 
an identical diamagnetic molecule. 

(Av/v)isoonopic = (Av/v)obsmed - (Av/v)diumugnetic PI 
A practical example of this is demonstrated by Figs. 1 and 2 and Table 1, provided for a 
paramagnetic bi~pyridine-tetraphenylporphyrin-Fe~' complex. 

7 
L 

Figure 1. (Left) Structure of tetraphenylprphyrin Fe(ll1) viewed along the z axis; (Right) the 
bis(3methyl)pyridine adduct of tetraphenylprphyrin Fe(II1) viewed edge-on with the porphyrin 
ring structure edited. Free rotation about the pyridine-iron bond occus.  

I l l  I I I I I ,  

20 10 0 - 10 - 30 

S H I F T S  ( p p r n )  

Figure 2. 100 MHz Proton NMR spectrum of bis(3methyl)pyridinetetraphenylporphyrin Fe(ll1) 
at -60°C in rnethylene chloride. 
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o-H p-H m-H 

-5.02 -2.06 -0.19 -34.0 

TABLE 1 
Isotropic Shifts (ppm) in Bis(3-methy1)pyridinetetraphenylporphyrin Fe(II1) at -60°C 

2,6-H 3-CH3 4-H 

-12.9 13.1 18.2 

For those not familiar with this topic, perhaps the most striking feature is the magnitude of the 
shifts in the proton spectrum (Fig. 2). They extend from 25 ppm to lower shielding to nearly -30 
ppm to higher shielding, which is far outside the range of commonly encountered diamagnetic shifts 
(i.e., -2 to 12 pprn relative to TMS). In fact, the proton shift range of the spectrum shown in Fig. 
2 is quite compact considering that observed proton shifts of as much as 150 pprn to both higher and 
lower shielding from, say TMS, are common for paramagnetic molecules. 

With regard to quantifying an isotropic shift, note that the individual isotropic shifts reported in 
Table 1 are smaller than the observed resonance shifts for each of the corresponding protons found 
in the spectrum (Fig. 2). Employing the principle described by Eq. [2], a tabulated isotropic shift 
for a particular proton is the difference between its observed shift in the Fe3+ (paramagnetic) complex 
and its shift in a suitable diamagnetic complex such as the diamagnetic tetraphenylporphyrin RuZt 
complex. Clearly, the more nearly isostructural the paramagnetic complex and its diamagnetic 
reference compound, the more accurate will be the isotropic shift values so determined. Zinc (11) 
is another species that forms useful diamagnetic reference complexes. 

The molecular symmetry inherent in the complex's physical structure and the arrangement of 
electrons in the iron ion's d-orbitals, both of which are characteristic of the porphyrin complex shown 
in Fig. 1, allow for simplified versions of equations that are useful for describing the important factors 
governing the isotropic shift. Recall that the early paramagnetic NMR work discussed in the previous 
section suggested that there were two principal interactions between unpaired electrons and nuclei 
within a molecule. The first of these intramolecular interactions is the dipole-dipole interaction that 
produces a dipolar contribution to the isotropic shift (see Eq. [3]). This factor represents 
non-exchange type coupling (i.e., an interaction energy) between electron magnetic moments and 
nuclear magnetic moments. It is a through-space type of interaction whose derivation commonly 
assumes that the electron magnetic moments are localized on the metal, and that the nuclear 
moments are localized on the rest of the molecule (the ligands). This interaction is then treated 
as originating from spatially discrete point dipoles. The second interaction is called the Fermi contact 
interaction (25) and is a result of unpaired spin density being transferred off the metal onto the 
ligands. Thus, the contact term in Eq. [3] relates to the extent of metal-ligand bonding and the 
precise way in which unpaired spin density appears on ligands. Both sigma and pi orbitals can be 
involved. 

In the case of the ferric porphyrin complex (Fig. l), these interactions are given by Eqs. [3-51. 
Although these equations are strictly valid only under a very limited set of circumstances peculiar to 
porphyrin complexes like those in Fig. 1, further qualitative consideration of each will provide 
additional insights about virtually all of the important factors governing isotropic shifts in general. 

(Avlv)isotropic = (Av/v)conrcIct + (Av/v)dipolar [31 
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These equations look complicated primarily because they are filled with constants and symbols. 
The important parts of each will be fully defied in the discussions that follow for each of Eqs. [3-51. 
The more advanced (or impatient!) reader may wish to refer immediately to more detailed discussions 
(4, 5) .  

Consider first the contact shift term (Eq. [5]). It contains the constant A,n, called the hyperfine 
coupling constant. This is a coupling constant in the same sense as nuclear spin-spin coupling 
constants (I values) except that the coupling described by A,-,, is between an electron and a 
particular nucleus. Also, A,,, is indexed in Eq. [S] to indicate that different nuclei in a molecule 
may have different hyperfine coupling constants. This means, for example, that in the ferric porphyrin 
complex (Fig. l), A,,, can be different for the chemically different types of protons represented by 
the separate resonances shown in the spectrum (Fig. 2). To illustrate these two points, one can refer 
to the Hamiltonian term (Eq. [6]) from which Eq. [5] is developed. 

H' = A,,, 1 - S  [61 

Note the similarity of Eq. [6] to the Hamiltonian term for spin-spin coupling (Ill - I*). It is simply 
a scalar coupling between nuclear (I) and electron (S) angular momentum vectors. McConnell and 
Holm (9) introduced this term for the first time, and one can well understand how their EPR 
background contributed to this concept because Eq. [6] is part of the complete spin Hamiltonian for 
an isolated hydrogen atom (17).  In that context, the equation developed for A,,, (Eq. [ I )  shows 
that for a particular nucleus the magnitude of the hyperfine coupling constant depends upon 14'(0) I? 

This term includes the square of a wavefunction for the irh nucleus, evaluated at that nucleus (i.e., 
zero distance from the nucleus), and expresses the probability of finding unpaired spin density at that 
particular nucleus. Relying on elementary quantum mechanics (18) allows one to conclude that, for 
A,,, to be nonzero, unpaired spin density must appear in an orbital with s character, since only for 
s-type orbitals is [ Q l z  nonzero when evaluated at the nucleus. This is a point to ponder. If unpaired 
spin density originates in metal ion &orbitals, how can it show up in a ligand s-orbital? Conceptually, 
the answer is given by McConnell's (and later Bloembergen's) suggestion that spin density is 
delocalized from metal-to-ligand orbitals, followed by polarization of bonding electrons (9-11, 16, 17, 
19). Of course, unpaired spin density delocalization (when more than one unpaired electron is 
present on the metal) is much more complicated, and detailed analyses reveal that both 
metal-to-ligand and ligand-to-metal transfer can, in principle, occur (19). 

Perhaps the most important concept that A,, introduces is the fact that extensive metal-ligand 
covalency, or bonding, must be present in order for spin density to be delocalized. Without bonds 
between metal and ligands, no spin density transfer could occur; A,,, would be zero, and no contact 
shift would be observed. In such a case, any isotropic shift would arise only from the dipolar 
(sometimes called pseudocontact) shift described in its simplest form in Eq. [4]. 

Before considering the dipolar, or pseudocontact, shift equation, some additional comments 
concerning Eq. [5] are appropriate. Aside from the collection of constants, one finds g (the 
rotationally averaged electron g-factor), /3 (the Bohr magneton), and the quantity S(S+  1) (where 
S = total spin angular momentum quantum number). All three of these factors, then, are properties 
of the metal-centered, unpaired electrons. What this means is that a metal's electronic properties 
govern the nuclear isotropic shift. In particular, the product g/3 can be thought of as a proportionality 
factor relating the free electron magnetic moment (pe)  and the electron spin angular momentum (S)(17) 
according to Eq. [8], Here, g for a free electron is isotropic, i.e., it is a scalar. 

In Eq. [8], g is the free electron g-factor, whose value is 2.002322, and /3 = eh/2mc (e = electron 
charge, h = Planck's constant, rn = electron rest mass, and c = speed of light). Deviations from 
this value of g are interpreted as being due to spin-orbit coupling, a phenomenon wherein the 
electron spin angular momentum and orbital angular momentum do not act independently, but rather 
as a coupled system (17, 18, 24). 
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In general, g in Eq. [5] and g in Eq. [8] are not identical. To see why this is the case, one must 
understand that the common use of g in EPR spectroscopy is to describe anisotropy in the electron 
distribution in a molecule. Not surprisingly, molecular electron distributions are more frequently 
anisotropic (since electrons occur in orbitals with distinct spatial orientations) than isotropic 
(spherically symmetric). Whereas an isotropic distribution can be described by a scalar quantity (i.e., 
as in Eq. [S]), an anisotropic distribution is best described by a g cast in tensor form (a 3 X 3 array 
representing g in 3-dimensional space)(l7). That is, one can normally expect two or three different 
g values for a molecule, corresponding to measurements along a set of molecule-centered Cartesian 
(x, y, 2) axes. Here is where molecular symmetry plays a role. For example, in a porphyrin system 
similar to the one being considered here (Fig. l), where real site symmetry of the transition metal 
could be considered to be D4,,, one would find that the two g values corresponding to axes lying in 
the porphyrin plane (g,,, gyy )  were equal, while g,,, lying along the axial ligand (2) axis, would be 
different. In this case, two numerically different g values occur, and these are called g, and g,, (e.g., 
Eq. [4]). In more highly anisotropic systems, three different g values occur, such as demonstrated 
by NO, trapped in crystals (20). So, for Eq. [5] to be valid, an isotropic g value is required, or an 
approximation is used that involves averaging g values. 

From this discussion, one can see that qualitatively Eqs. [4] and [5] have both @S(S t 1) and g- 
factor terms in common. Therefore, they predict that, all other things being equal, larger isotropic 
shifts will be displayed by molecules with larger numbers of unpaired electrons (larger values of S). 
This idea is somewhat naive, but leads to another qualitatively useful idea that, all other things being 
equal, the larger the magnetic moment, the larger will be the isotropic shift. It is easy to see, 
therefore, that isotropic shifts are generated by the large hyperfine fields that occur at the nucleus 
via electron-nuclear interactions. These hyperfine fields are the result of unpaired electron magnetic 
moments centered on the metal. 

The dipolar, or pseudocontact, shift equation (Eq. [4]) results from considering the interaction 
of two point dipoles for which the Hamiltonian term is given by Eq. [9] (where, as before, the 
subscript n refers to nuclear constants, and r is the vector between the electron magnetic moment 
(S) and the nuclear magnetic moment (I)). 

1 3(S - r)(I * r) 
r5 191 

Practically, r is the metal-nucleus distance, generally determined by structural analysis or estimated 
by computer modelling. Therefore, the interaction between nuclear and electron magnetic moments 
via this mechanism is analogous to the classical interaction between two bar magnets. There is an 
angular dependence to the interaction energy of two bar magnets. It should not be surprising that 
the dipolar shift equation contains an angular function as well. In Eq. [4], 0 refers to the angle 
between r and the principal axis of quantization, or highest order symmetry axis, as illustrated in Fig. 
3. For the molecule illustrated in Fig. 1, this would be (to a first approximation) the vertical 

z 

Figure 3. Definition of factors in the dipolar shift equation for an axially symmetric molecule, 
using metal-centered Cartesian coordinates: M represents the metal, H represents a remote 
proton, r is the metal-proton distance vector. 
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pyridine-Fe-pyridine axis. When a molecule exhibits lower than axial symmetry, more complicated 
g-factor and angular (geometric factor) functions are required. 

The (1 - 3cos2B)/r3 term is frequently referred to as the "geometric factor." The numerator 
becomes zero when B = 54.7: the so-called "magic angle." Nuclei lying anywhere on the spatial 
cones described by this angle (Fig. 4) experience no dipolar shift. Furthermore, dipolar shifts are 

8 I54 70 

Figure 4. Magic angle cones for an axially symmetric molecule in which the molecule-centered 
z axis is the principal axis. 

of opposite signs for identical nuclei lying on opposite sides of the cone. For example, if a proton 
lying inside the cone experiences a deshielding dipolar shift, a proton lying outside the cone 
experiences a shielding, and vice versa. In the case of the molecule shown in Fig. 1, this means 
that the protons of the coordinated pyridines will demonstrate an opposite dipolar shift compared to 
the protons of the porphyrin. The relative directions of these shifts obviously depend upon the sign 
of the magnetic anisotropy, represented by the g-factor term in Eq. [4], and that depends upon the 
relative magnitudes of g, and g,, . 

The form of Eq. [4] suggests that the magnitude of a dipolar shift depends upon the magnitudes 
of the g anisotropy (term 2), the geometric factor (term 3), and the distance of a nucleus from the 
metal (expressed as r"). Equation [4] thus predicts that the largest dipolar shifts should occur for 
nuclei that have the largest geometric factor, that are closest to a metal, and that have the largest 
g anisotropy. 

Finally, both the contact and dipolar equations explicitly contain temperature in the denominator, 
thereby indicating that isotropic shifts are temperature-dependent. This is illustrated in Fig. 5, for 

+ 1 ° 1  4 20 

I I I I 
0 1 2 3 4 

[l/T] I l o 1  

Figure 5. Proton Curie plot for the spectrum shown in Fig. 2. 
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the complex pictured in Fig. 1, with the observed spectrum shown in Fig. 2. It is obvious from Fig. 
5 that large temperature dependencies are possible, which makes temperature an important 
experimental parameter. Molecules, for which the Curie Law approximation holds (see next section), 
exhibit linear plots of shift vs. Ti' Curvature in such "Curie plots" indicates the basic 
oversimplification of Eqs. [4] and [5] and the need to incorporate additional features, such as the 
second-order Zeeman interaction (see below), into the description. 

QUALIFICATIONS 

Earlier it was stated that Eqs. [4] and [5] were derived using certain restrictive assumptions. 
Chief among these is the assumption that the magnetic susceptibility (which is proportional to the 
magnetic moment) obeys the Curie Law (Eq. [lo]). 

giiS'S(S+ 1) xii = C/T = 
3kT 

In this case, xii refers to a principal component of the magnetic susceptibility tensor, C is called the 
Curie constant, and the other symbols have their previous definitions. In the development of Eqs. 
[4] and [5] from Eqs. [9] and [6], respectively, the general theory (22, 23) involves terms in x,,, xyU, 
and xzz. By substituting the right-hand side of Eq. [lo] for the susceptibility, those equations arc 
brought into the simple forms shown in Eqs. [4] and [5]. Application of Eq. [lo] is strictly valid only 
for a single unpaired spin for which the coupling of electron spin (S) and orbital (L) angular 
momenta is small. In fact, spin-orbit coupling is sizeable for heavier transition elements and 
becomes even larger than ligand field effects for the lanthanides and actinides. In the lanthanide 
shift reagents, for example, the spin-orbit coupling is so effective that Eq. [lo] must be modified by 
employing J(J+ l),  where J = L+S, rather than S(S+ 1). When J is a good quantum number for a 
system, then the Land6 g-factor, g,, is also employed, rather than the free-electron g term. 

A related issue of particular relevance to lanthanides is the second-order Zeeman (SOZ) 
interaction. This refers to the second term in Van Vleck's (25) expression for the magnetic 
susceptibility. It contains a matrix element that mixes ground and excited electronic states of a metal 
ion via spin and orbital operators. Thus, it accounts for thermal population of more than the 
electronic orbital configuration described by the orbital ground "term symbol." Equations [4] and 
[5], in the form presented, require the assumption that only the orbital ground state is populated, 
meaning that the SOZ is negligible. Furthermore, it is assumed that only a single Kramers' doublet 
(27) is populated. In this case, the term Kramers' doublet refers to a special situation that occurs 
for molecules with odd numbers of unpaired electrons. For the low-spin d5 ferric-porphyrin with a 
single unpaired electron (S = %), a single two-fold spin degeneracy (the doublet) occurs in the 
absence of an applied field, corresponding to the two allowed electron spin orientations, +% and -%. 
This is represented by the spin multiplicity, 2S+1, being equal to 2 (a doublet). In the absence of 
a field, both spins have equal energy. The doubly degenerate electron spin level is then written as 
2% (the Kramers' doublet). Of course, when a field is applied, these two spin levels have different 
energies and an EPR spectrum may, in principle, be observed. Molecules with odd numbers of 
electrons frequently occur, particularly for transition-metal ions. When more than one unpaired 
electron occurs (S > %), account must be taken of the fact that, in such cases, several Kramers' 
doublets may be populated, (ix., +%; +3/2 ;  +5/2; et cetera). 

CONCLUSION 

The goal of this essay has been to introduce the novice to the basic equations and factors needed 
to understand and interpret isotropic NMR shifts. A simple example, an axially symmetric ferric 
porphyrin complex, has been used as a basis for this discourse. However, it should be possible for 
the reader to conclude that the practical analysis of isotropic shifts can frequently be very 
complicated, because of the variety of metal ions, the multitude of possible metal oxidation and spin 
states, and the many possible physical structures that are a result of ligands complexing the free 
ions. 
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A case in point is provided by the lanthanide shift reagents. A variety of studies have 
consistently shown that the lanthanides exhibit varying abilities for inducing shifts on substrates (2, 
3, 30, 31). Results collected for the lanthanide series show that some of these shift reagents lead 
to shielding, some induce deshielding, and some induce virtually no shift at all. It is generally 
assumed that all lanthanide shift reagents act similarly. A typical experiment aimed at resolving 
overlapping peaks in the spectrum of a molecule of interest (the substrate) involves adding a soluble 
lanthanide complex. In general, the concentration of the shift reagent is kept much lower than the 
substrate concentration, and the substrate is considered to be in rapid exchange so that only a small 
fraction of the total substrate molecules is associated with the shift reagent at any given time. The 
observed induced shifts for the substrate, then, arise from the population-weighted average of the 
complexed (to the shift reagent) vs. free forms. Clearly, the magnitude of induced shift for the 
substrate increases with increasing lanthanide complex concentration. It has become evident from 
a number of studies that the induced shifts for the substrates (primarily for proton spectroscopy) are 
predominantly dipolar in origin. The reader should, by now, be able to predict that lanthanide ion 
complexes should exhibit variable abilities as spectra-resolving shift reagents because of variations in 
an assortment of related properties, including magnetic anisotropy, orbital ground state, the symmetry 
of the complex, and varying temperature. 

However, it is also true that in favorable cases, much detailed information concerning bonding 
and electronic structure can be obtained from analysis of isotropic shift patterns (19, 26, 27). This 
is particularly true for small molecules, some of which can be constructed to mimic the immediate 
environment of metal ions in biological systems, making valid conclusions drawn from the models 
useful in interpreting data for the much more complicated biological structures. 

NMR in paramagnetic molecules encompasses an extensive literature. It is particularly fortunate 
that the Specialist Periodical Reports on Nuclear Magnetic Resonance Spectroscopy (published by the 
Chemical Society) provides a yearly compendium in this area. Some flavor of the extent of this field 
has been described in this article. Isotropic shifts are only one aspect of this field, and in Part 11, 
electron and nuclear relaxation will be described. 
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