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M. Sc. IV Semester 2019-20 

Paper 4305- Advanced Quantum Mechanics 

PARTICLE-IN-A-BOX 

1. (a) Show that )exp()exp( ikxBikxA   is a solution to the particle in a one-

dimensional box problem. Evaluate the constants A and B. 

Is   an eigenfunction of xp̂ ? Of 2ˆ
xp ? 

What happens when xp̂  operates on either half of ψ? What does a solution in the 

form of ψ2 imply about the measurement of px? 

(b) Re-evaluate A and B placing the origin at the middle of the box,  i.e. 
22

L
x

L
 . 

Normalize the wave functions. Why are the wave functions different in this case? 

Would you expect any property: energies, probability density plots, expectation 

values of momentum, position to be different for this case? Which of these properties 

is different in this system? Would this affect x ? 

2. (a) (i) Show that the function 









L

xn
N


 sin  satisfies the Schrödinger equation 

for a particle in a one-dimensional box with a potential function V(x) equal to zero for 

0 ≤ x ≤ L and infinity elsewhere. 

(ii) What is the eigenvalue? 

(iii) Describe what is meant by the Born interpretation, )()(*)( xxxP nnn  ? 

(iv) What values may the quantum number n take? Sketch the first three 

wavefunctions and their probability density functions.  

(v) Determine the average position and the average momentum of the particle for an 

arbitrary quantum state of the particle. 

(vi) Show that the function is not an eigenfunction of the momentum operator 

dx

d
ip ˆ  but it is so of 2p̂ . Discuss the significance of the result. 

(vii) What is the probability of finding the particle between 0.4 L and 0.6 L when (I) n 

=1, (II) n = 2? What would you expect the answer to be for very large values of n? 



2 

 

3. Using the fact that the half-wavelength of a single particle in a one-dimensional 

box must fit between the walls an integral number of times, and the de Broglie 

relationship λ = h/p, derive the equation 
2

22

8mL

hn
E  . 

4. Each of the following particles is confined to a one-dimensional box. For each case 

calculate 

(a) the energy (in Joule) corresponding to the lowest energy level (n = 1); 

(b) the separation (E2-E1) between the lowest and next-to-lowest energy levels; 

(c) the number of levels with energy less than the mean thermal energy kT
2
1  at T 

= 300 K. 

 Particle Mass (m) Length (L) 

i) Electron 9.11×10
-31

 kg 1 Å 

ii) H2 molecule 3.35×10
-27

 kg 1 cm 

iii) Ball 0.10 kg 1 m 

 

5. In connection with the last question, estimate the quantum number corresponding to 

an energy kT at 300 K for each of the following. How close is the neighbouring level 

in each case? 

a) The mass is mp, the mass of the proton (1.673×10
-27

 kg) and the box side is 5 

Å. 

b) The mass is that of the proton, mp, and the box is made much larger, to 

correspond to the volumes in which gases are customarily confined, for 

example, 0.1 m on a side. 

c) The mass is mp and the box is made much smaller, to a length of 10
-15

 m, 

roughly the size of atomic nuclei. 

The second of these will show very quickly how, in large containers, the quantization 

of energy levels is not observable because the levels are so closely spaced. Why do 

we neglect quantum effects in the Kinetic Theory of gases? 

The third problem, the nuclear problem, will quickly give some feeling for why 

nuclear physics experiments require high-energy machines for the study of nuclear 

reactions, although one can use ordinary light to carry out chemical excitation 

processes. 

6. Using your knowledge of the boundary conditions the wave functions must satisfy, 

explain what happens to the energy levels of a particle in a one-dimensional box if the 

box length is changed from L to L/k (k = 2, 3, 4,...). 

7. Carbon nanotubes are thin hollow cylinders of carbon atoms that are excellent 

electrical conductors and can be used as wires in nanodevices. The tubes have 

diameters between 1 and 2 nm and lengths of several micrometres. A long carbon 

nanotube can be modelled as a one-dimensional structure. The electrons of the 
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nanotube are described by the wave function sin πx/L, where L is the length of the 

nanotube. 

(a) Find the normalized wave function. 

(b) Compute the expectation value of the kinetic energy of the electron. 

(c) Compute the expectation value of the position of the electron. 

(d) Suppose the nanotube is of length L = 10.0 nm. Calculate the probability that 

the electron is 

(i) between x = 4.95 nm and 5.05 nm, 

(ii) between x = 7.95 nm and 9.05 nm, 

(iii) between x = 9.90 nm and 10.00 nm, 

(iv) in the left half of the box, 

(v) In the central third of the box. 

8. a) Show that the existence of zero-point energy is consistent with Heisenberg‟s 

Uncertainty Principle.  

b) Calculate the zero-point energy for (i) a hydrogen atom confined to containers of 

length 1 nm, 100 nm, 1 cm; (ii) an electron in a piece of wire of length 1 cm, 0.1 nm.  

c) Estimate the quantum number corresponding to an energy kT for a hydrogen 

molecule confined to a box of length 10 cm. How close is the neighbouring level? 

Are your calculations consistent with the Correspondence Principle? 

9. Define a reflection operator, R̂ , such that )()(ˆ xLxR   (if the origin is 

placed at L/2). 

Show that the Hamiltonian for the particle in a one-dimensional box is invariant with 

respect to reflection, i.e. HHR ˆˆˆ  . This implies that   0ˆ,ˆ HR . Hence show that the 

eigenfunctions of the Hamiltonian operator are either symmetric or anti-symmetric 

with respect to reflection, provided they are non-degenerate. 

10. Verify that the particle in a box wavefunctions form an orthonormal set.  

11. For the states with n = 1, 2, 3, find the probability that the particle is in the region 

defined by (i) 
2

0
L

x  , (ii) 
3

2

3

L
x

L
 . 

12. Give a logical explanation for the fact that the kinetic energy increases as the 

number of nodes in the wave function increases. 

13. a) For a particle in a one dimensional box whose probability distribution is given 

by the laws of classical mechanics, find <x> and <x
2
>. 

b) Compare with <x> and <x
2
> obtained from quantum mechanics. Show that the 

mean value of the position is at the centre of the well for all the quantum numbers. 
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For the n = 2 state, what is the probability of finding an electron in a small unit of 

length dx at this position? Can you rationalize the results? 

c) Compare <x
2
> from (c) and (b) and show that this result is consistent with the 

Correspondence Principle. 

d) Obtain <p> and <p
2
>, and show that 

2


px . 

(e) Calculate the minimum uncertainty in momentum and velocity of an electron in a 

0.1 nm box, a hydrogen atom in a 1 nm box, and a 0.001 kg ball bearing in a 0.10 m 

box. 

14. Show that the Hamiltonian operator for a particle constrained to move in a ring is 

-
2

22

2 



I


, where I = mr

2
, where r is the radius of the ring. Explain the significance of 

the quantities I and . What causes the energy to be quantized in this case? What is 

the lowest value that the quantum number n can have? Why is the lowest energy 

different for a particle in a ring and a particle in a box? Compare your solutions with 

those for the free unconstrained particle. 

15. Assuming that the energies of the π electrons in a benzene ring are described by 

the “Particle on a ring” model, estimate the wavelength of the radiation needed to 

excite an electron from the highest occupied energy level to the lowest unoccupied 

energy level.  Assume that each energy level can hold a maximum of two electrons, 

and that the radius of a benzene ring is 150 pm. The absorption spectrum of benzene 

contains a band at 260 nm.  Compare your result with this value. 

16. Show for the particle in a three-dimensional box, that ),,( zyx must be 

normalized within the limits ( czbyax  0,0,0 ) of the box if each of the 

individual  functions is normalized within their respective one-dimensional limits. 

17. The term “state” and “energy level” are not synonymous in quantum mechanics. 

For the particle in a cubic box, consider the energy range 
2

2

8

15

mL

h
E  , 

(a) How many states lie in this range? 

(b) How many energy levels? 

(c) Plot these levels on an energy scale and give their degeneracies. 

(d) For a particle in a rectangular box of length L and width L/2, calculate the 

degeneracy of the level corresponding to E = 20h
2
/8mL

2
. 

18. Consider a single particle of mass m in a cubic box of length L. Suppose that the 

system is perturbed slightly by pushing in one wall so that the new dimensions are 

L×L×0.99L. 

a) Calculate the first seven energy levels, in units of 
2

2

8mL

h
. 
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b) Sketch an energy level diagram for the perturbed system indicating the 

degeneracy of each of the new levels. 

c) Given the results of (a) and (b), how would you expect the perturbation of any 

system to affect degeneracy? 

19. Consider the case of a particle in a cubic box of length L. Suppose that the system 

is perturbed slightly by pushing in one wall so that the new dimensions are L×L×(L-λ) 

where λ << L. 

a) Sketch an energy level diagram for the perturbed system (First show that 

)
2

1(
2

2

LL

n
E z

z


  and take λ as 0.01. 

b) How would you expect the perturbation of any system to affect degeneracy? 

20. Consider the particle in a three-dimensional box with a = b = c/2. What would be 

the energy when nx = 1, ny =2, nz =2? For nx = 1, ny = 1, nz = 4? Can you guess the 

meaning of the term “accidental degeneracy”?  

For these two states (1,2,2) and (1,1,4), plot the nodal lines in the yz plane 

21. Consider the problem of a particle in a cubic box of length L. If one side of the 

box is distorted by a small distance dx in one direction, the degeneracy of the first 

triply degenerate level is lifted. Calculate the difference between the resulting two sets 

of levels in Joule, if the particle has a mass 1.5×10
-27

 kg, the box of length 0.1 nm is 

distorted by 0.008 nm. 

22. Derive the expression for the energies of the first excited state (2,1,1), (1,2,1) and 

(1,1,2) of a particle of mass m in a cubic box whose length has been elongated from L 

to L+dL in one direction. 

23. Show that the momentum of a wavefunction ikxe  is k . Since 

k
L

nh
mEpx  2 , 

L

n
k

2
 . Extending to the three dimensional case, 

L

n
k x

x

2
 , 

L

n
k

y

y

2
 , 

L

n
k z

z

2
  and 

L

nnn
k

zyx

2222 



. Applying de 

Broglie‟s relation, 
k

2

k


 



h

p

h
. This is the wavelength of the electron wave. 

Notice that the quantum states with small amounts of momentum and energy have 

small values of │k│. Thus in k-space they will be represented by points near the 

origin. The equation  222
2

2
zyx

e

kkk
m

E 


 is the equation of a sphere. Thus, all 

quantum states with energy E will be represented by points in k-space which lie on the 

surface of a sphere with radius 
2

2



Emek . 
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a) An electron occupies a quantum state with kx = 10
-10

 m
-1

, ky = 10
-10

 m
-1

 and kz = 0 

m
-1

. Work out the wavelength, energy, and speed of an electron occupying this state. 

(Ans. λ =4.44×10
-10

 m; Energy = 7.58 eV; Speed = 1.633×10
6
 m/s). 

b) Consider the case of a metal at the absolute zero of temperature, at which the N 

electrons in the metal occupy the N lowest energy quantum states. The region of 

occupied states forms an essentially perfect sphere, known as the Fermi sphere, with 

Fermi radius kF. Since each electron occupies a „volume‟ of k-space 4
3
/V (two 

electrons with up and down spins in the volume (2/L)
3
 in reciprocal space), we can 

write N

V

kF


3

3

4

3

4





 or 23 3 









V

N
kF  and   3/123 nkF  , where n = N/V is the electron 

density. We can also work out an expression for the energy (called the Fermi energy) 

of electrons on the „surface‟ of the Fermi sphere: 
e

F
F

m

k
E

2

22
 .  

The density of copper (At. Wt. = 64.55 u) is 8.933 × 10
3
 kg m

-3
. Assuming copper to 

be monovalent, estimate the number density, n, of „free electrons‟ in copper. Also 

calculate the Fermi wave vector kF and the Fermi energy for copper (8.47×10
28

 

electron m
-3

; 1.36×10
10

 m
-1

; 7.06 eV). 

c) Sodium metal has the bcc structure (two atoms per unit cell) with a lattice constant 

of 0.422 nm. Calculate the Fermi energy (Ans. 3.2 eV). 

The 3s band of solid Na will have as many orbitals (each delocalized over the entire 

solid) as the number of 3s orbitals from Na atoms in the sample. If each orbital of the 

sample can hold two spin-paired 3s valence electrons, to what extent will the band be 

filled? Hence, explain why sodium metal conducts electricity. 

What about Mg? Explain why Mg conducts electricity though it has a completely 

filled 3s band. (The Fermi of Mg is 7.09 eV). 

24. A useful first approximation to the optical properties of linear conjugated 

molecules may be obtained by considering the -electrons as free electrons in a one-

dimensional box with infinitely high walls. Consider butadiene 

0.134 nm

0.148 nm

 

It has four  electrons that will fill the n = 1 and n = 2 levels of the “box” (one  

electron of each spin in each energy level). The first transition, which gives rise to an 

optical transition band, occurs when an electron jumps from the n = 2 level to the n = 

3 level and the transition has a wavelength of 210 nm. To what length of box does the 

wavelength correspond? 

How does this compare to the actual length of the conjugated system. β-carotene, one 

of the precursors of Vitamin A, has a conjugated system containing 11 double bonds 
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and a transition wavelength of 460 nm. Again compare the calculated and the actual 

length of the box (Bayliss, N. (1952) Quart. Rev. 6: 319).  

25. Because of delocalization, each of the six  electrons in the hexatriene molecule 

behaves approximately as if it were contained in a one-dimensional box whose length 

extends about one-half a bond length beyond each of the terminal carbons and is 

given as 0.73 nm. 

(a) Calculate the first four energy levels for the -electron in hexatriene. 

(b) According to the Pauli exclusion principle, not more than two electrons may 

occupy a single energy level, so that six electrons completely fill the first three 

energy levels. What is the frequency and wavelength of the photon absorbed 

when a single electron undergoes a transition from the third to the fourth 

energy level? Compare this with the experimentally observed absorption band 

at 268 nm. 

(c) Calculate the uncertainty in momentum for the electron in the n = 3 level of 

the hexatriene molecule. 

(d) Calculate the expectation values of px, px
2
, and px

3
 for the n = 1 level of the 

hexatriene molecule. 

(e) For each of the three filled energy levels in hexatriene, compute the total 

particle density (= 2(x)
2
) since there are two electrons in each energy level at 

the points x = L/8, L/4, L, 3L/8 and L/2. Since all functions are symmetrical 

about x = L/2, the particle densities at 5L/8, 3L/4 and 7L/8 will also be known. 

Plot the particle densities as a function of x. 

26. Now approximate the energy levels of hexatriene by using a one-dimensional box 

model whose length is the length of the molecule plus one C-C single bond length. 

Use 0.154 nm as a C-C and 0.135 nm as a C=C length. Using the six electrons to fill 

the three lowest energy levels, calculate the following quantities. 

(a) The energy of the highest filled level. 

(b) The energy of the lowest unfilled level. 

(c) The difference in energy between the highest energy filled and the lowest 

energy unfilled levels. The energy difference should be approximately equal to 

the energy of the longest wavelength absorption band in the ultraviolet-visible 

spectrum of the dye. Compare your calculated energy with the experimental 

wavelength of maximum absorption max = 268 nm. 

(d) Derive an expression for max for the general polyene H2-(CH=CH)n-H2. 

Leave the length of the chain as an undetermined parameter in the expression for . 

(See Kuhn, H. Helv. Chim. Acta 31: 1441 (1948); 34: 1308 (1951); J. Chem. Phys. 

29: 1958 (1958) for help). 

27. Kuhn (Kuhn, H. (1949) J. Chem. Phys. 17: 1198) has suggested that the mobile  

electrons in polymethine dyes can be modelled after the one-dimensional box. 

Onsider the symmetric carbocyanine dyes (I) where the positive charge “resonates” 

between the two nitrogen atoms. The zigzag polymethines “path” along which the 

electrons are relatively free to move extends along the conjugated system between the 

two nitrogens. Kuhn assumed a bond length L equal to the path length plus one extra 

bond length on each end (so that the nitrogens would not be at the very edge of the 
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box where they would be prevented from having any -electron charge). This gives L 

= (2n + 10)l where l = 0.139 nm, the bond length of an intermediate (i.e. between 

single and double) C-C bond. The number of  electrons in the polymethine region is 

2n + 10. Assume that each energy level in the box is capable of holding no more than 

two electrons and that the electronic transition responsible for the dye colour 

corresponds to the promotion of an electron from the highest filled to the lowest 

empty level, the levels having initially being filled starting with the lowest, calculate 

 and  for the cases n = 0, 1, 2, 3, and compare with the observed  values of 

maximum absorption of about 575, 715, 818, and 925 nm, respectively. 

CH
3

N+

CH
3

N

N+

CH
3

N

CH
3

n

n

 

28. A very crude model of the buckminsterfullerene molecule (C60) to treat it as a 

collection of electrons in a cube with sides of length equal to the mean diameter of the 

molecule 0.7 nm. Suppose that only the  electrons of the carbon atoms contribute. 

Calculate 
222

zyx nnnn   and predict the wavelength of the first excitation of C60 

to the n + 1 state. (The actual value is 730 nm.). 

QUANTUM MECHANICAL TUNNELLING 

1. a) Solve the problem of a particle in a one-dimensional box with one finite barrier 

at x  0, and a finite barrier of V = V0 at x  L. What are the boundary requirements 

responsible for quantization of energies in this case? 

b) Consider the effect of lowering the height of one wall of a one-dimensional box 

with infinitely high walls. Show that each energy level for a particle in the box will be 

lowered. Which levels are affected most and why? What does this imply about the 

involvement of core and valence electrons in chemical bonding? 
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c) Show that the transcendental equation for the energy levels lying lower than V0 (E 

< V0), is 
EV

EmE



















0

2
tan


. 

d) Show that the energies are continuous (not quantized) for the case E > V0. 

Plot the wave functions for both cases E < V0 and E > V0. 

2. a) Show that for the particle in an infinite box with a finite central barrier 

 















otherwise 0

0 LaaxV

Lx

V  

The wavefunctions must be either symmetric or antisymmetric with respect to 

reflection through x = 0 (the centre of the box). 

b) Plot a correlation diagram relating energies when the central barrier is infinite (i.e. 

when the system is split into two infinite boxes) with those when the barrier vanishes. 

Hence, show that the lowest energy state for the system described in (a) must be 

symmetric, followed by an asymmetric level. 

c) Plot the approximate wavefunctions for the case E < V0 and E > V0. 

This kind of energy level plotting described in (b) is an extremely pervasive 

phenomenon in chemistry, e.g. in bond formation. 

3. In a few words, indicate what is wrong with the wavefunctions sketched in the 

potentials shown below. In (h) the wave is incident from the left. If the solutions 

appear acceptable, indicate the fact. 

 

4. (a) Explain how the phenomenon of quantum mechanical tunnelling has been 

exploited in the Scanning Tunnelling Microscope. How does the Atomic Force 

Microscope differ from the Scanning Tunnelling Microscope? 
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(b) The wavefunction of the electron in the gap between sample and needle in a 

Scanning Tunnelling Microscope is given by xBe    where 2/)(2 EVme  . 

Assume that the tunnelling current is proportional to the transmission probability, 

which in turn is proportional to the square of the wavefunction. Sketch the tunnelling 

current versus tip to surface distance. If V – E = 2.0 eV, calculate by what factor the 

current would drop if the needle is moved from 0.50 nm to 0.60 nm from the surface?  

(c) Why is it necessary to apply a bias voltage between the tip and surface in a 

scanning tunnelling microscope? 

(d) Explain why tunnelling is more likely for a particle with E = 3V0/4 than for E = 

V0/4. What does this imply about the involvement of valence or core electrons in 

chemical bond formation? 

HARMONIC OSCILLATOR 

1. For a classical one-dimensional harmonic oscillator, show that the total energy E = 

T + V = 2

0
2

1
kx , where x0 is the amplitude of the oscillator. Hence the system is 

conservative. 

2. Consider a heteronuclear diatomic molecule lying along the x-axis, and let m1 and 

m2 be the masses of the two atoms, and x1 and x2 their respective displacements from 

their equilibrium positions.  

a) Expand the potential energy for the system about the equilibrium interatomic 

distance Re (i.e. about x = 0, where x = x2 – x1 is the net extension of the bond) and 

show that the potential energy function can be expressed in a parabolic form 2

2

1
kx  

when x is small. 

Write the expression for k and show that it is a positive quantity. 

b) Obtain the kinetic energy and potential energy matrices, T and V, and find the 

generalized eigenvalues λ of the matrix V by solving the equation   0 yTV  . 

Obtain the eigenvectors y, too. Note that these are not orthogonal. To facilitate 

calculations, you need not normalize the eigenvectors. Show that the matrix of 

eigenvectors is 











1

2

1

1

m

m
G  and the transformation that will diagonalize the two 

matrices simultaneously is 























MM

M

m

M

m

G
11

21

1 , where M = m1 + m2 is the mass of the 

system. 
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Also show that, in terms of the new coordinates 
M

xmxm
q 2211

1


 (centre of mass 

coordinates) and 
M

xx
q 21

2


 (internal coordinates), the two matrices are 














 2

2

1
0

00
'

kM
VGGV T  and 





















Mmm

M
TGGT T

21
2

1
0

0
2

1

'  or 22

2

1
' qkMV   

and 2

221

2

2

1

2

1
' qMmmqMT   . To cast V’ and T‟ in the more familiar forms, we let 

12
2 xx

M

q
x   and 1qxm  . Hence 2

2

1
' kxV  and 22

2

1

2

1
' xxMT m

  , where μ is 

the reduced mass. Hence, classically any two-body problem can be reduced to two 

simpler one-body problems by defining two sets of coordinates- centre of mass 

coordinates (which appear only in the kinetic energy part) and internal coordinates. 

The two separated equations are 

(i) 2

1
2

1
mxME  , which corresponds to the translational kinetic energy of a particle 

of mass M located at xm. The corresponding quantum mechanical 

Schrödinger equation is mm

m

m E
dx

d

M





2

22

2


, which is the equation for a 

free particle and yields continuous energies. 

(ii) The other equation is 22

2

1

2

1
kxxE   , which is the energy of relative 

motion. The Schrödinger equation is 



Ekx

dx

d
 2

2

22

2

1

2


, and 

should yield quantized energies. (Note: To separate translational energy of 

the molecule as a whole, replace the individual masses by the reduced 

mass μ and the coordinates by internal coordinates). 

3. Show that the solution to the above equation is 

 
2/2

)()(   eHN nnn  or 
2/2

)()( x

nnn exHNx    

Where 


k
   and Hn(ξ) are Hermite polynomials that obey Hermite‟s differential 

equation 

 02'2"  nnn nHHH  , 

Nn is the normalization constant and x  . 
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The Hermite polynomials are standardized by the condition that the coefficient of the 

highest power of ξ in Hn(ξ) is 2n. Verify that 




 
0

2

!
)(),(

2

n

n

n

tt

n

t
HetG    is a 

generating function for the Hermite polynomials (Hint: Note that 
222 )(2  eee ttt   and expand both functions as Maclaurin series. Then show that 

n

nc 2 and the recursion formula for Hermite polynomials 
)1)(2(

)(2

,

,2








mm

nm

c

c

nm

nm
is 

obeyed. 

Differentiate the generating function n times with respect to ξ to obtain Rodrigues 

formula 

  22

)1()( 


  e

d

d
eH

n

n
n

n  

Use this formula to obtain the normalization constant Nn for the n
th
 harmonic 

oscillator wavefunction. 

4. a) Differentiate the generating function with respect to t and show that 

 )(2)( 011  HH   

 )()1(2)(2)( 12  nnn HnHH    (n  0) 

b) Differentiate the generating function with respect to ξ and show that  

 )()1(
)(1 




n

n Hn
d

dH
    (n  0) 

5. a) For the harmonic oscillator wavefunctions, obtain the following quantities <x>, 

<x
2
>, <px> and <px

2
>. You may need some of the recurrence relations (To obtain 

<x
2
>, first find <ξ

2
>. Then 



 


2
2x ).  

Also show that 
2


px . 

b) Use the expressions for <px
2
> and <x

2
> to show that, on the average, the harmonic 

oscillator stores half its energy as kinetic and half as potential energy. 

6. a) Show that the harmonic oscillator wavefunctions are either symmetric or 

antisymmetric with respect to reflection through a plane passing through x = 0. 
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b) Show that the harmonic oscillator wavefunctions form an orthonormal set. (Note 

that this means that 
nmmnnm dHHeNN  





 )()(
2

). 

7. a) For what value of α is the function )exp( 2x an eigenfunction of the 

Hamiltonian operator for the linear harmonic oscillator? 

b) Give reasons why the following wavefunctions cannot be satisfactory 

wavefunctions for the harmonic oscillator: 

 i. )2/exp()32( 22    

 ii. )2/exp(2 2  

8. (i) Find the expectation value of the position x and linear momentum px for the 

ground state of a simple harmonic oscillator. The ground state wavefunction has the 

form 

 2/
4

1

2xe 




 









  

(ii) Obtain the variance in momentum 2

p  for the ground state of the oscillator. 

9. The Hamiltonian of an oscillator is given by 
22

ˆˆ
222 xm

m

p
H


  where 

dx

d

i
p


ˆ . 

Use the operators b̂ and b̂  

 

]ˆˆ[
2

1ˆ

]ˆˆ[
2

1ˆ

xmip
m

b

xmip
m

b














 

to estimate <p
2
>and <x

2
> for the n

th
 state (n). 

10. The eigenfunctions for the harmonic oscillators are 

 
2/2

)()(   eHNx nnn  

Where 
4

1

!2

1














n
N

n
n , x   and 



k
   

Show that )(xn  is normalized that <p
2
> (for n = 1 state) is given by 
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 .
2

32 kp   

11. a) Show that the amplitude of a quantum mechanical oscillator can exceed the 

classical value (classically 
k

E
x

2
0  ). What is the significance of the result? 

b) On a potential energy diagram, plot some of the energy states of a harmonic 

oscillator. Plot the wavefunctions on the same scale. 

According to this model, how many lines will be observed in the IR (vibration) 

spectrum of a diatomic molecule, if only transitions with Δn = ±1 are allowed. 

ANGULAR MOMENTUM AND HYDROGEN-LIKE IONS 

1. (i) From the classical relation L = r × p for the angular momentum, L, obtain 

expressions for the three components Lx, Ly and Lz in terms of the components of r 

and p. 

(ii) Write down the quantum mechanical operators for the three components of the 

angular momentum in Cartesian coordinates. 

(iii) Evaluate the commutators ]ˆ,ˆ[ zy LL  and ]ˆ,ˆ[ 2

zLL . What is the physical 

significance of the result? 

2.(a) Show that the classical expression for the relative kinetic energy of a two 

dimensional rigid rotator is 
I

L
E

2

2

 , where L is the angular momentum of the system, 

and I is the moment of inertia. 

b) Express the Schrödinger equation for the system in spherical polar coordinates, and 

hence obtain an expression for 
2L̂  in spherical polar coordinates. 

c) Separate the Θ and Φ parts, and show that 



 ime

2

1
)(   (m = 0, ±1, ±2, ±3, ...). 

d) Express zL̂  in polar coordinates and hence show that these functions are 

eigenfunctions of the zL̂  operator with eigenvalues m . 

3. Show that the Θ equation is 0)
sin

((sin
sin

1
2

2












m

d

d

d

d
, where 

2/2 IE . Substitute cosz  and show that 

0)()
1

(
)(

2
)(

)1(
2

2

2

2
2 


 zP

z

m

dz

zdP
z

dz

zPd
z  , where )()( zP . For the case m 

= 0, this becomes Legendre‟s equation with β = l(l + 1), where l is a positive integer, 

and the solutions are Legendre polynomials, Pl(x), l = 0, 1, 2, ... 
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4. Since 2/2)1( IEll  , the energies are quantized and )1(
2

2

 ll
I

E


. In 

rotational spectroscopy, I2/2  is called the rotational constant, B and the quantum 

number l is replaced by J. 

Since E = L
2
/2I, mlml YllYL ,

2

,

2 )1(ˆ  , where l is a positive integer, and 

mlmlz YmYL ,,
ˆ   where m = 0, ±1, ±2,...±l. (This condition arises from the condition 

that solutions of the associated Legendre equation in Problem 2 be well-behaved). 

Hence there are 2l + 1 states having the same l but different m quantum numbers. 

The Yl,m are spherical harmonics and have the form 




 imm

l eP
ml

mll

2

1
)(cos

)!(

)!(

2

12
2/1
















. 

5. a) The step-up and step-down operators for angular momentum are defined as 

yx LiLL ˆˆˆ   and yx LiLL ˆˆˆ  . Evaluate the following commutators  LL ˆ,ˆ2 , 

 LL ˆ,ˆ2  and  LLz
ˆ,ˆ . 

b) Show that 

     mlmlyx YmllYLL ,

22

,

22 )1(ˆˆ   

 mlml YLllYLL ,

2

,
ˆ)1(ˆˆ
    

 mlmlz YmYLL ,, )1(ˆˆ  . 

What is the significance of these equations?  

c) Also show that  

 mlml YLllYLL ,

2

,

2 ˆ)1(ˆˆ
    

 mlmlz YLmYLL ,,
ˆ)1(ˆˆ
    

And 1,, )1()1(ˆ
  mlml YmmllYL  

d) Show that 0ˆ
,  llYL  and 0ˆ

,  llYL . 

e) Show that 22 ˆˆˆˆˆ
zz LLLLL   . 

6. Show that, in central field problems (V function of r only), the following 

commutation rules hold: 



16 

 

  0ˆ,ˆ 2 LH ,   0ˆ,ˆ zLH . What is the significance of these results? 

7. (a) Express the Hamiltonian operator for hydrogen atom and hydrogen-like ions in 

atomic units. In the expression, µ is the reduced mass of the electron-nucleus pair. 

How does it compare with me, the meass of the electron? 

b) For what value of α is the function e
-αr

 an eigenfunction of the Hamiltonian 

operator? What is the eigenvalue? Normalize this function. 

c) Using this function, obtain the following: <r>, <r
2
>, 

r

1
 and the most probable 

value of r. Show that the average distance of the electron in the ground state of the 

hydrogen atom is 1.5 times the most probable distance. Justify the statement that “the 

hydrogen atom has a diameter of approximately one Å”. 

d) Obtain <T> and <V> and show that <E> = -<T>, and hence <V> = 2<E> = -2<T>. 

This is the virial theorem. 

e) Calculate the probability that the electron is at a distance 2 a.u. from the nucleus. 

f) Calculate the radius of the sphere that encloses a (i) 50%, (ii) 90 % probability of 

finding the hydrogen 1s electron. 

g) Write down an expression for the radial distribution function 4r
2
Rn,l

2
 and explain 

why this function has a different physical interpretation to Rn,l
2
. 

(h) For the 1s and 2s wavefunctions, plot 4r
2
Rn,l

2
dr as a function of r. Also plot Rn,l

2
 

as a function of r. How many nodes are there in each of the two wavefunctions? 

i) At classical turning points the kinetic energy vanishes and so the total energy is 

entirely potential energy. We can use this condition to get general expressions for the 

positions of the classical turning points. 

Show that the inner and outer classical turning points for a hydrogen atom are given 

by the following expressions. 

 












 

2

)1((
,

2

)1(( 22 llnnnllnnn
 

Calculate the classical turning points for an electron in the hydrogen atom, with l = 4 

and n = 2, 3, and 4.  

Show that the inner forbidden region decreases in size and the start of the outer 

forbidden region occurs at larger distances with increasing n. 
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VARIATION THEOREM 

1. a) Suppose that a particle is described by a state  which is not an eigenfunction of 

an operator Â . Show that the probability of observing a particular eigenvalue „ai‟ of 

the operator Â  in an experimental determination of the quantity associated with Â , is 

equal to the square of the Fourier coefficient in the expansion of  in terms of the 

eigenfunctions i of Â  ( iii aA  ˆ ). 

b) Let an approximate wavefunction for a particle in a box be given by 

 LxxLNxx  0)()( . Show that this is well-behaved function and 

normalize it. Expand this function in terms of the eigenfunctions of the particle in a 

box. 

c) Calculate the average energy <E> using 

(i) the mean value theorem, and 

(ii) the Fourier expansion and compare with the exact ground state energy. 

What is the percentage difference? Comment on the magnitude of 

the energy (
2
 = 9.87). 

d) Show that the probability that the particle is found in the ground state is 0.999. 

Why is the probability so high? Also show that the particle is found in a state with n = 

even is zero. Explain this result in terms of the symmetry of the wavefunctions. 

e) Use your results of parts (b) and (c) to state and prove the Variation Theorem. 

2. In connection with the last problem, without doing actual calculations, answer the 

following: 

a) What would be the approximate expectation value of the energy for a state 

described by  xLx
L

Nx 









2
 ? 

b) Which term in the Fourier expansion would make the maximum contribution and 

why? Can you predict whether any terms would be „zero‟? 

Give reasons for your answers. 

3. a) Can you use a trial function of the form )1()(' 2xxx  to estimate the ground 

state energy? Give reasons for your answer. 

b) Variation method can be used to improve the ground state energy of the above 

problem with trial functions 1 and 2, where )1(1 xx   and 22

2 )1( xx  . The 

two linear combinations obtained by the variation method correspond respectively to 

the energy values 
m2

8698.9
2

 and 
m2

1302.102
2

. Give reasons and indicate to which n 

values the two linear combinations correspond. 
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4. Using the variational principle, calculate the energy of the ground state of the 

particle in the box by taking the “true” wavefunction as the trial function and show 

that the result is E = E0 = h
2
/8mL

2 

5. If we use the normalized trial function Lxx
L

 0,
3

3
  for the particle in a 

one-dimensional box, we find that the variational integral has the value zero which is 

less than the true ground state energy. What is wrong? 

6. Using a trial function 
2xCe  , calculate the ground state energy of an oscillator for 

which the Hamiltonian is 2

2

22

2

1

2
ˆ kx

dx

d

m
H 


. 

7. Use the trial function rer  )( , where α is a variational parameter, to determine 

the energy of the ground state of a hydrogen atom. The radial part of the Hamiltonian 

for the hydrogen atom has the form (in atomic units) 

 
rdr

d
r

dr

d

r
H

1

2

1ˆ 2

2









  

List two other operators of which this trial wavefunction is an eigenfunction. 

8. Let )exp( 2rN   be a trial function (not normalized) for the ground state of the 

hydrogen atom. Use the variation method to determine the minimum energy attainable 

from this form by variation of α. Find the average value of r and the most probable 

value of r for this wavefunction. Compare these r values and the average energy with 

the exact energy. Find the percentage error in energy. 

9. (a) Schrödinger (1926) showed that the wavefunction or orbital for the hydrogen 

atom in its ground state can be written 

rre 




 

3

 

where r is the radial distance between the proton and the electron and ζ is the orbital 

exponent. Find the upper bound to the energy of the hydrogen atom by the variational 

method. 

(b) Repeat using a Gaussian approximation to the wavefunction for the ground state 

of the hydrogen atom 

2

43

2 re 




 









  

Find the energy as a closed algebraic expression for the Gaussian trial function. 
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Show that, at the minimum energy, the minimization parameter α = 
9

8
= 0.283. Use 

the variation method to determine the minimum energy attainable from this form by 

variation of α. Find the average value of r and the most probable value of r for this 

wavefunction. Compare these r values and the average energy with the exact energy. 

Find the percentage error in energy. 

10. Use the trial function 22 )1()1( xbxxax  to determine the approximate 

ground state energy of a particle of mass m in a one-dimensional box of unit length. 

11. (a) Use the trial function rer  )( , where α is a variational parameter, to 

determine the energy of the ground state of a hydrogen atom.  

(b) What values of α and β would be obtained in a variational calculation on the 

hydrogen atom using a function 
2rre   , where α and β are variation constants? 

12. One of the many possible approximate wavefunctions for a helium atom contain 

an “effective” nuclear charge Z’ as a variable parameter. This wavefunction gives rise 

to an energy '
8

27
)'( 2 ZZE   in a.u. Use the variation principle to compute the best 

possible energy obtainable with a wavefunction of this type. 

PERTURBATION THEORY 

1. (a) An electron (charge e) is confined to a cubic box of length L. The potential 

energy of the electron is given by 

 
























Lz

Ly

Lx

zyxV

0

0

0

0),,(  

 V =  elsewhere in space. 

Find the first order correction to the first excited energy level (which is triply 

degenerate). If an electric field of strength  ia applied parallel to the z-axis ( to x 

and y). The perturbation may be taken as  

 'Ĥ  = ez 

(b) Use perturbation theory to estimate the first order correction to the energy of the 

n
th

 state of a particle of mass m in a one-dimensional box of length L ( Lx 0 ), 

where the perturbation is of the form H’=Vx/L. 

(c) Calculate the first order perturbation correction to the energy levels of a particle in 

a one-dimensional box when a constant electric field of strength F is applied. Take 

'Ĥ  = eFx. 
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2. Calculate the first order perturbation correction to the energy of a hydrogen-like ion 

by a perturbation of the form cos'ˆ FrFzH  (in atomic units), where F is the 

strength of an electric field applied in the z direction. 

MULTIELECTRON ATOMS 

1. Besides the orbital angular momentum, there is a spin angular momentum. The 

corresponding operators are similar to the orbital angular momentum operators. Thus 

    0ˆ,ˆˆ,ˆ 2  zSHSH , yx SiSS ˆˆˆ  , 22 ˆˆˆˆˆ
zz SSSSS   (in atomic units). There are 

two spin functions α and β which are orthonormal. Thus,    122  dd , 

  0d . For multi-electron electron atoms, 
i

ziz SS ˆˆ . 







 

i

iSS 22ˆ , 

 
i

ii SS ˆˆ , etc. 

For the helium atom, obtain zero-order functions, and use them to obtain an 

approximation to the ground state energy. Use perturbation theory and variation 

theorem to show that the best value of energy is obtained by using an exponent of 

1.69 for the 1s orbital. 

2. (a) Insert the Hamiltonian in au for He 

 
12

2

2

2

1

1

2

1

2

1ˆ
r

H   

into  

  )()(ˆ)(*)(* 212121 rrHrrdrdrE   

and show that 

 E= I1+I2+J12 

Where  

 )(
2

1
)(* 2

j

j

jjjj r
r

Z
rdrI 












  

and 

  )()(*
1

)()(* 22

12

112112 rr
r

rrdrdrJ   

Why is J12 called the Coulomb integral? 
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(b) Show that the energy of the 1s2s configuration of the He atom is I1+I2+J12±K12. 

Why is the triplet state lower in energy than the singlet? 

3. Construct zero-order orthonormal wavefunctions for the 1s2s state for helium atom. 

Show that the antisymmetric space function is a triplet state and the symmetric space 

function is a singlet state. What are the term symbols for the two states? (Use 

zz SSLL ˆ,ˆ,ˆ,ˆ 22  operators to obtain the term symbols). 

4. Show that the triplet state has an energy KJEET  0  and the singlet state has 

an energy KJEES  0 . What is the meaning of the terms E0, J and K in the 

above expressions? 

What is the sign of the terms J and K? Which is larger and why? On an energy level 

diagram, plot the energies of the (1s1s) and (1s2s) states, and indicate what splitting 

you would observe when a magnetic field is applied in the z-direction. 

5. (a) Write down the Slater determinant for the ground state of the Helium atom. 

Explain how this determinantal wavefunction satisfies the Pauli Exclusion Principle. 

(b) Justify the statement that the Coulomb integral  

     21

2

12

2

21

12

12 )]2(2[
1

)]1(1[)2(2)1(1
1

)2(2)1(1  dds
r

sddss
r

ssJ  

for the 1s2s excited state of He is positive. 

(c) Without invoking equations, explain why the energy of the triplet state is lower 

than that of the singlet state for He in the 1s2s configuration. 

6. Show using an example that the following two formulations of the Pauli exclusion 

principle are equivalent: 

a. Wavefunctions describing a many-electron system must change sign under the 

exchange of any two electrons. 

b. No two electrons may have the same values for all four quantum numbers. 

7. Outline the Hartree-Fock SCF procedure. 

8. Write down the Slater determinant for the lithium atom. 

CHEMICAL BONDING 

1. Derive the secular equations for the trial wavefunction of the form 

 BBAA cc    

where the φ‟s are the normalized atomic orbitals on atom A and B, and the c‟s are the 

coefficients. 
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(a)  Write down the Hamiltonian and a trial wavefunction for the H2
+
 molecule 

ion. 

(b) Assuming that identical normalized hydrogen-like wavefunctions are chosen, 

show that the normalization constant is (2+2S)
-1/2

, where S is the overlap 

integral. 

(c) Use the variation method to obtain the wavefunctions and the energies of the 

bonding and antibonding orbitals of the hydrogen molecule ion. 

(d) By expanding the probability density, ψ*ψ, qualitatively confirm that 

 BAs S   )22(  represents the wavefunction for a bonding orbital of 

H2
+
. 

(e) Show that the energy of this orbital is 

AB

H
RS

KJ
EE

1

1





 , 

 where RAB is the internuclear diatance. 

(f) Qualitatively demonstrate that  BAa S   )22(  represents the 

antibonding orbital. 

2. Show that zAA pcsc 21 21  is normalized if 12

2

2

1  cc . 

3. (a) Write an LCAO-MO trial wavefunction for the H2 molecule, assuming that 

identical normalized hydrogen-like wavefunctions are chosen. Show that the 

normalization constant is (2+2S
2
)

-1/2
, where S is the overlap integral. 

(b) The trial Valence Bond wave function used by Heitler and London to describe the 

hydrogen molecule in terms of hydrogen-like wavefunctions is 

 )1()2()2()1( 21 BABA cc    

Compare with the wavefunctions you wrote in (a) and comment on the missing terms. 

4. a and b are chosen to be the normalized set of basis functions for a one-electron 

homonuclear diatomic system. It is found that the values for the integrals involving 

these functions are   dHH aaaa
ˆ*

= -2 a.u.;   dHH bbbb
ˆ*

= -2 a.u.; 

  dHH baab
ˆ*

= -1 a.u.;   dS baab

*
= 0.25. 

Find an upper bound for the exact lowest energy for this system. Find the 

corresponding LCAO normalized approximate wavefunction. 

5. a and b are chosen to be the normalized basis functions for an LCAO 

wavefunction for a one-electron heteronuclear diatomic molecule. It is found that the 

values for some integrals involving these functions are   dHH aaaa
ˆ*

= -2 a.u.; 

  dHH bbbb
ˆ*

= -1 a.u.;   dHH baab
ˆ*

= -0.5 a.u.;   dS baab

*
= 1/3, 
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where Ĥ is the molecular Hamiltonian. Set up the secular determinantal equation and 

find the lowest electronic energy that can be computed from an LCAO wavefunction 

bbaa cc   . Find ca such that <E> is minimized and the wavefunction is normalized 

(Ans. <E> (lowest) = -2.030 a.u., ba  179.0045.1  ). 

6. For the lithium hydride (LiH) molecule: (a) Write the complete time-independent 

Schrödinger equation; (b) Write the electronic equation; (c) Write the nuclear wave 

equation. 

7. Consider the one-electron molecule-ion HeH
2+

: (a) Write down the Hamiltonian 

(Born-Oppenheimer approximation) for the electronic energy in atomic units for the 

system; (b) Calculate the electronic energies for the lowest energy state of this system 

in the separated atom and united atom limits. (Ans. Separated atoms: lowest energy 

for H
+
 + He

+
 (1s) = -2 a.u.; For the united atom Li

2+
(1s) = -4.5 a.u.). 

8. Draw and label an energy level diagram for molecular orbitals for a second row 

homonuclear molecule upto N2. Use the diagram to explain the following: 

(i) The bond length of Li2 is much greater than that of B2. 

(ii) B2 is paramagnetic but C2 is not.  

(iii)NO
+ 

is more stable toward dissociation into its atoms than NO, whereas CO
+
 

is less stable than CO. 

(iv) He2
+
 ion in its electronic ground state is stable toward dissociation into He and 

He
+
. 

(v) The bond length in N2
+
 is 0.02 Å greater than in N2, while the bond length in 

NO
+
 is 0.09 Å less than in NO. 

9. (a) Predict the order of the N-O bond strengths in NO, NO
+
, and NO

-
, and describe 

the magnetic properties of each. With what neutral homonuclear diatomic molecules 

are the NO
+
 and NO

-
 ions isoelectronic? 

(b) Compare the molecules OF, OF
-
 and OF

+
, discussing molecular orbitals, bond 

orders, bond lengths, bond energies, fundamental vibrational frequencies and 

paramagnetism. 

(c) Arrange the following molecules in order of increasing bond length: 

 O2, O2
+
, O2

-
, and O2

2-
 

Which molecule will have the greater bond dissociation energy, O2 or O2
+
? 

(d) Compare the molecules OF, OF
-
 and OF

+
, discussing molecular orbitals, bond 

orders, bond lengths, bond energies, and paramagnetism. 

10. Use sketches and symmetry arguments to decide which of the following integrals 

vanish for diatomic molecules: (a)  dss ba11 ; (b)  dpp zbza 22 ; (c)  dps zba 21 ; 

(d)  dpp zbxa 22 ; (e)  dps zba 21 ; (f)  dpp ybza 22  
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11. A homonuclear diatomic system has the ground state MO configuration 
2242222 1312211 gguugug  . 

(a) What is the net number of bonding electrons? 

(b) Determine the states arising from this configuration and use Hund‟s rules to 

arrange them in order of increasing energy. 

(c) What would you expect the effect to be on the dissociation energy of this molecule 

on ionization (i) from the 1g MO; (ii) from the 3g MO? 

(d) Upon ionization (one-electron) from the 1g level, what would be the spin 

multiplicity of the ground state? 

12. Give the g and u character of the following types of molecular orbitals: (a) * in 

F2; (b) * in NO? 

13. Assign the 13 electrons in BO to appropriate bonding and antibonding orbitals. 

What is the bond order of the bond in BO? 

14. Give the MO configurations of the following species: H2
-
, N2, O2, CO, NO, CN. 

13. Which of the following species: N2, NO, O2, C2, F2, CN would you expect to be 

stabilized (a) by the addition of an electron to form AB
-
, (b) by ionization to AB

+
? 

15. Draw the MO diagram for (a) CO, (b) XeF, and use the Aufbau principle to put in 

the appropriate number of electrons. Is XeF
+
 likely to be more stable than XeF? 

16. Write the valence-electron wavefunction for the HF molecule (regarding it as 

being formed from an H 1s-orbital and an F 2pz orbital (a) supposing it to be purely 

covalent, (b) supposing it to be purely ionic, (c) supposing it to be 80 % covalent and 

20% ionic. 

17. Evaluate and graph the effects of dividing HAA ± HAB by 1 ± S for each of the 

following cases: HAA = 0, -5, -10, -20. In each case, let HAB = -5, S = 0.5. Does the 

QMOT rule that antibonding interactions are more destabilizing than bonding 

interactions are stabilizing apply in all cases? Is the bonding level always the lower of 

the two? Does the QMOT expectation appear to be better followed by very low-

energy levels, or by higher-energy levels? 

18. Table 1 is a list of electron affinities (in eV) of certain molecules and atoms. Can 

you rationalize the molecular values relative to the atomic values using QMOT ideas? 

 

Table 1 Atomic and Molecular Electron Affinities (in electron Volts) 

H (0.75) F (3.40) N2 (-1.6) 

C (1.27) H2 (~ -2) CO (< -1.8) 
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N (0.0±0.2) C2 (3.5) O2 (0.43) 

O (1.46) CN (3.82±0.02) F2 (2.9) 

 

19. a) Using the calculated molecular orbital energies shown in Table 2 for N2 give 

the ionization energy when the electron is ionized from the highest-occupied orbital 

and when it is ionized from the second highest occupied orbital. The experimental 

results are 0.578 a.u. and 0.624 a.u., respectively. 

Table 2 Molecular orbital energies (in a.u.) 

N2 1g 1 *

u  g2  *2 u  u  *3 g  

 -15.722 -15.720 -11.952 -0.7396 -0.5795 -0.5445 

b) Would the lowest energy transition of N2 be a →* or a →* type of transition? 

20. (a) Explain the origin of the Lewis-base character of CO on the basis of MO 

theory. 

(b) If CO were to lose its highest-energy electron (i.e. ionize), on which “end” of CO 

would most of the residual positive charge be found? 

(c) Predict the “end” of the CO molecule that will be most positive in the ground state 

(after →*) be the same as in the ground state? 

(d) Explain the formation of nickel-carbon monoxide complexes (Hint: Consider the 

bonding properties of both the lone pair and the availability of the 
* MO  as a site for 

the d electrons of the nickel atom). 

21. Which of the following species do you expect to be linear: H2O, H2O
2+

, H2O
+
? 

Give reasons on the basis of both VB and MO theories. 

22. For some time, it was uncertain whether the ground state of CH2 and NH2
+
 are 

singlets (2a1)
2
 or triplet (2a1)(1b1). The ground state geometries of these systems have 

HAH angles of 136º (CH2) and 140-150º (NH2
+
). Based on other data described in 

class for HAH systems, would you say these angles are more consistent with a singlet 

or a triplet ground state? Assuming that the first excited state is the other multiplicity, 

should the first excited state be more or less bent than the ground state? 

23. Based on the Walsh diagram, what should happen to the geometry of H2O upon 

1b1→3a1 excitation? 

 


