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xv

PREFACE

The purpose of this textbook is twofold. One is to familiarize senior undergraduate
and entry-level graduate students in polymer science and chemistry programs with
various concepts, theories, models, and experimental techniques for polymer solu-
tions. The other is to serve as a reference material for academic and industrial
researchers working in the area of polymer solutions as well as those in charge of
chromatographic characterization of polymers. Recent progress in instrumentation of
size exclusion chromatography has paved the way for comprehensive one-stop char-
acterization of polymer without the need for time-consuming fractionation. Size-
exclusion columns and on-line light scattering detectors are the key components in
the instrumentation. The principles of size exclusion by small pores will be explained,
as will be principles of light-scattering measurement, both static and dynamic.

This textbook emphasizes fundamental concepts and was not rewritten as a re-
search monograph. The author has avoided still-controversial topics such as poly-
electrolytes. Each section contains many problems with solutions, some offered to
add topics not discussed in the main text but useful in real polymer solution systems.

The author is deeply indebted to pioneering works described in the famed text-
books of de Gennes and Doi/Edwards as well as the graduate courses the author
took at the University of Tokyo. The author also would like to thank his advisors
and colleagues he has met since coming to the U.S. for their guidance.

This book uses three symbols to denote equality between two quantities A and B.

1) ‘A � B’ means A and B are exactly equal.

2) ‘A � B’ means A is nearly equal to B. It is either that the numerical coefficient
is approximated or that A and B are equal except for the numerical coefficient.

3) ‘A � B’ and ‘A � B’ mean A is proportional to B. The dimension (unit) may
be different between A and B.

Appendices for some mathematics formulas have been included at the end of the
book. The middle two chapters have their own appendices. Equations in the book-
end appendices are cited as Eq. Ax.y; equations in the chapter-end appendices are
cited as Eq. x.A.y; all the other equations are cited as Eq. x.y. Important equations
have been boxed.



amorphous 69
athermal 37
athermal solution 75
autocorrelation function 117

concentration fluctuations 131
decay rate 188
electric field 172, 173, 174, 188
Gaussian chain 122
intensity 169, 171
real chain 124

autocorrelator 168

backflow correction 200
baseline 169
bead-spring model 3, 4, 15, 221
bead-stick model 3
binodal line 85
blob 279, 308

model 279
number of monomers 281
size 279, 301

Boltzmann distribution 29
bond angle 19
branched chain 2, 49

radius of gyration 52
branching parameter 50
Brownian motion 176
� parameter 73

center-of-mass motion 183, 223
chain contraction 295
chemical potential 77, 196, 285, 294,

298, 304
chromatogram 149
Clausius-Mossotti equation 129, 143
cloud point 101
coexistence curve 85, 99
coherence factor 171
coherent 113
coil-globule transition 105
column 148
comb polymer 49

radius of gyration 54
concentrated solution 6, 65, 278
concentration gradient 194
confinement

enthalpy 152
entropy 152
Gaussian chain 153
real chain 156

conformation 3
constraint release 321
CONTIN 189
contour length 3
contrast matching 138
copolymer 2

differential refractive index 144

INDEX

333

Polymer Solutions: An Introduction to Physical Properties. Iwao Teraoka
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-38929-3 (Hardback); 0-471-22451-0 (Electronic)



copolymer (contined )
enthalpy of mixing 90
excess scattering 145
static structure factor 139

correlation function 117
examples 119
Ornstein-Zernike 291

correlation length 120
dynamic 308

could-point method 100
critical phenomena 286

point 82, 99
temperature 99

cross-linked chain 2
crystalline 69
cubic lattice 5, 13
cumulant expansion 189

de Gennes 286, 310
Debye function 122
degree of polymerization 1
delay time 169
delta function 24, 328
dendrimer 50
diamond lattice 5
diblock copolymer 2

hydrodynamic radius 204
radius of gyration 21

differential refractive index 130
diffusion 176, 178

concentration effect 196
cooperative 308
mutual 197
in nonuniform system 200
self 197

diffusion coefficient 177, 181, 184, 195
center-of-mass 184, 319
concentration dependence 199
cooperative 308
curvilinear 314
long-time 180
mutual 197, 199, 307
reptation theory 318
rotational 262
self 197, 199, 319
sphere 184
tracer 198, 320, 322
translational 262

diffusion equation 25, 179, 180, 196

rotational 263
dilute solution 64
disengagement time 314
DLS 168
dn/dc 130, 135
DNA 43, 48
Doi 310
dynamic light scattering

168, 307, 320
dynamic structure factor 174, 180, 181

bead-spring model 244, 246
long-time 183
particles 174
polymer solution 182
rodlike molecule 266
single chain 182
single particle 174, 175

Edwards 310
efflux time 215
electric permittivity 112, 128
eluent 148
end-to-end distance 16, 180
end-to-end vector 15
ensemble average 169
entanglement 279, 310
entropy elasticity 30, 31
equation of motion 191, 207
equipartition law 193, 207
ergodicity 169, 221
excess chemical potential 285

polarizability 128
scattering 129

excluded volume 5, 6, 33
chain 6
shielding 295

exclusion limit 159
exponential distribution 58, 59

Fick’s law 195
Fickian diffusion 195
Flory 36, 70
Flory exponent 36
Flory’s � parameter 73
Flory’s method

confinement 158, 162
good solvent 36
semidilute solution 305
theta solvent 104, 108

334 INDEX



INDEX 335

Flory-Huggins
mean-field theory 71
� parameter 73

flow
capillary 214
elongational 218
field 217
laminar 209

fluctuation-dissipation theorem 184
fluorescence recovery after 

photobleaching 197, 319
flux 193
forced Rayleigh scattering 197, 319
form factor 125

Gaussian chain 125
rodlike molecule 126, 141
sphere 126, 141
star polymer 126, 142

forward-scattered beam 109
Fourier transform 118, 329
FRAP 197
FRS 197
freely rotating chain 3, 19, 22
freely-jointed chain 3
friction coefficient 184

Gaussian chain 23, 121
anisotropy 26
contour length 25
end-to-end distance 25
radius of gyration 26

Gaussian distribution 23
gel 321
gel filtration chromatography 150
gel permeation chromatography 150
GFC 150
Gibbs-Duhem theorem 94, 95, 143
good solvent 69, 87
GPC 150
Green’s theorem 195

homopolymer 2
hydrodynamic interaction 185, 234
hydrodynamic radius 185

Gaussian chain 186
polymer chain 186, 238
rodlike molecule 263, 270

hydrodynamic volume 243
hyperbranched chain 50

ideal chain 6, 7
end-to-end distance 18
radius of gyration 18

index matching 108, 130
instability 81, 95
interference 113, 114
intrinsic viscosity 64, 211, 216

bead-spring model 240, 241
inverse-Fourier transform 118, 330
inverse-Laplace transform 189
isorefractive 130, 198

Kratky-Porod model 43
Kuhn segment length 45

Laplacian 179
lattice 5
lattice chain theory 70
lattice coordinate 5, 73
LCST 100
Legendre polynomials 264
lever rule 84, 96
light scattering 108

Gaussian chain 121
many polymer chains 115
polymer chain 112
polymer solution 129
real chain 124
sample geometry 108
small particle 110
solvent 128

linear chain 2
concentration regime 63

log-normal distribution 58, 60
long-range interaction 35
long-time average 169
low-angle scattering 120
lower critical solution temperature 100, 103

MALDI-TOF 57
Mark-Houwink-Sakurada equation 216
Mark-Houwink-Sakurada exponent 216
Markoffian 8, 14, 177
mass conservation 195
master curve 287
matrix 198, 320
Maxwell construction 83
mean square displacement 10, 177, 178,

180, 192



mean-field theory
chemical potential 77
enthalpy of mixing 70
entropy of mixing 70, 72
Helmholtz free energy 75, 88
osmotic compressibility 78
osmotic pressure 76, 77, 88
replacement chemical potential 80

membrane osmometry 70, 77
metastable 84
miscibility gap 85
mobile phase 148
molecular weight distribution 55, 148
monodisperse 55
mutual diffusion 197

Nernst-Einstein equation 184
Newtonian fluid 210
nonreverse random walk 48
nonsolvent 69, 87
normal coordinate 223

autocorrelation 229, 230
center-of-mass diffusion coefficient 231
cross correlation 229, 230
end-to-end vector 230
equation of motion 228
fluctuations 230
transition probability 232

normal distribution 11
normal mode 223
number-average molecular weight 55

Oseen tensor 185, 235
osmotic compressibility 144
osmotic pressure 76, 164, 282
overlap concentration 64, 80, 277

pair distribution function 117
particle sizing 168, 188
partition coefficient 150, 152

Gaussian chain 154, 155
real chain 157
rodlike molecule 155

partition ratio 151
PCS 168
pearl-necklace model 3, 4, 34
persistence length 44, 46
PFG-NMR 197
phase diagram 84, 99
phase separation 82

photon correlation spectroscopy 168
photon counting 170
plate 150
plate theory 150
poise 211
Poiseuille law 214
Poisson distribution 58, 62
polarizability 112
poly(�-methylstyrene)

hydrodynamic radius 188
mutual diffusion coefficient 200
osmotic pressure 284

poly(ethylene glycol) 75
mass spectrum 57
solvent/nonsolvent 69
universal calibration curve 244

poly(�-benzyl-L-glutamate) 43
persistence length 48

poly(methyl methacrylate)
solvent/nonsolvent 69
theta temperature 102
universal calibration curve 244

poly(n-hexyl isocyanate) 42
intrinsic viscosity 270
persistence length 47
radius of gyration 48

poly(N-isopropyl acrylamide)
radius of gyration 106
theta temperature 102

poly(p-phenylene) 42, 48
poly(vinyl neo-decanoate)

intrinsic viscosity 216
polydiacetylene 42
polydisperse 55, 87, 97, 133

diffusion coefficient 205
intrinsic viscosity 220

polydispersity index 57
polyelectrolyte 43
polyethylene

branched 52
radius of gyration 38

polystyrene
autocorrelation function 190
correlation length 293, 309
hydrodynamic radius 188, 191
osmotic compressibility 289
phase diagram 101
radius of gyration 38, 104, 296
second virial coefficient 103
self-diffusion coefficient 319

336 INDEX



INDEX 337

solvent/nonsolvent 69
theta temperature 102
tracer diffusion coefficient 320, 322
universal calibration curve 244

poor solvent 87
pore 148
primitive chain 311

center-of-mass motion 315
probe 198, 320
pulsed-field gradient nuclear magnetic 

resonance 197, 319

QELS 168
quasi-elastic light scattering 168

radius of gyration 16, 120, 132
random coil 3
random copolymer 2
random force 191, 222, 228
random walk 7, 311

continuous space 14
cubic lattice 13
square lattice 12

random-branched chain 49
Rayleigh scattering 111
real chain 5, 6, 7

end-to-end distance 33, 36
free energy 36
radius of gyration 36

reduced viscosity 212
refractive index 108, 109, 129
relative viscosity 211
renormalization group theory 36, 239, 287
reptation 312

monomer diffusion 324
theory 310

retention
curve 149
time 149
volume 149

ring polymer 52
radius of gyration 53

rodlike molecule 43
concentration regime 65
dynamics 262
overlap concentration 65
rotational correlation 265

rotational isometric state model 3
Rouse model 221, 314, 323

center-of-mass diffusion coefficient 234

end-to-end vector 234
equation of motion 222, 226, 227
fluctuations 233
initial slope 247
intrinsic viscosity 243
monomer displacement 252, 253, 254
relaxation time 228
spring constant 227

SANS 136
SAXS 139
scaling

function 287
plot 287
theory 286

scatterer 110
scattering

angle 109
cross section 137
function 116
intensity 168, 169
length 137
vector 109
volume 110

SEC 148
second virial coefficient 79, 93,

98, 131, 132
segment 4

density 117
length 15, 23

self-avoiding walk 39
chain contraction 296
chemical potential 294
radius of gyration 40, 296

self-diffusion 197
semidilute regime

upper limit 278
semidilute solution 65, 277

chemical potential 285, 294, 298, 304
correlation length 282, 290
excess scattering 289, 305
Flory’s method 305
osmotic compressibility 289
osmotic pressure 282, 286, 297, 303, 306
partition coefficient 299, 301, 306
radius of gyration 295
self-diffusion coefficient 319
theta condition 296, 305, 306

semiflexible polymer 41
semirigid chain 41



shear flow 217
shear rate 218
shear stress 210
short-range interaction 19, 35, 72
single-phase regime 85
site 5, 71
size exclusion chromatography 38,

148, 300
calibration curve 159
light scattering detector 160
universal calibration curve 243
viscosity detector 216

SLS 109
small-angle neutron scattering 136, 296
small-angle X-ray scattering 139
solubility parameter 107
specific refractive index increment 130
specific viscosity 212
spinodal line 82
square lattice 5, 12
star polymer 49

hydrodynamic radius 203
polydispersity index 62

star-branched chain 49
static light scattering 109
static structure factor 116

copolymer 139
Gaussian chain 122, 166
real chain 125
semidilute solution 292

stationary phase 148
Stirling’s formula 11
Stokes radius 184
Stokes-Einstein equation 184

telechelic molecule 146, 147
test chain 310
theta condition 86

radius of gyration 104
self-avoiding walk 105

theta solvent 6
theta temperature 86, 200, 102
third virial coefficient 79, 93, 98
tracer 198
transition probability 23

concentration 179
Gaussian 178
particles 175

triangular lattice 5

tube 310
diameter 318, 324
disengagement 313
length 312
model 310
renewal 312

two-phase regime 85

UCST 99
unstable 81
upper critical solution temperature 99, 103

vapor pressure osmometry 77, 164
velocity gradient 210
virial expansion 79, 93, 98
viscometer 213

Ubbelohde 213
viscosity 211

kinematic 214
zero-shear 218

wave vector 109
weak-to-strong penetration transition 301
weight-average molecular weight 55
Wiener process 178
wormlike chain 43

dynamics 269
end-to-end distance 45
overlap concentration 66
radius of gyration 45

z-average molecular weight 56
Zimm model 234
Zimm model (good solvent) 238

center-of-mass diffusion coefficient 239
fluctuations 271
initial slope 249
intrinsic viscosity 243
monomer displacement 252, 256
relaxation time 239
spring constant 239

Zimm model (theta solvent) 236
center-of-mass diffusion coefficient 237
equation of motion 237
initial slope 248
intrinsic viscosity 243
monomer displacement 252, 255
relaxation time 238
spring constant 237

Zimm plot 133, 147

338 INDEX



1

1
Models of Polymer Chains

1.1 INTRODUCTION

1.1.1 Chain Architecture

A polymer molecule consists of the same repeating units, called monomers, or of
different but resembling units. Figure 1.1 shows an example of a vinyl polymer, an
industrially important class of polymer. In the repeating unit, X is one of the mono-
functional units such as H, CH3, Cl, and C6H5 (phenyl). The respective polymers
would be called polyethylene, polypropylene, poly(vinyl chloride), and poly-
styrene. A double bond in a vinyl monomer CH2RCHX opens to form a covalent
bond to the adjacent monomer. Repeating this polymerization step, a polymer mol-
ecule is formed that consists of n repeating units. We call n the degree of polymer-
ization (DP). Usually, n is very large. It is not uncommon to find polymers with n
in the range of 104 –105. 

In the solid state, polymer molecules pack the space with little voids either in a
regular array (crystalline) or at random (amorphous). The molecules are in close
contact with other polymer molecules. In solutions, in contrast, each polymer mole-
cule is surrounded by solvent molecules. We will learn in this book about properties
of the polymer molecules in this dispersed state. The large n makes many of the
properties common to all polymer molecules but not shared by small molecules. A
difference in the chemical structure of the repeating unit plays a secondary role.
The difference is usually represented by parameters in the expression of each physi-
cal property, as we will see throughout this book.

Polymer Solutions: An Introduction to Physical Properties. Iwao Teraoka
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-38929-3 (Hardback); 0-471-22451-0 (Electronic)



Figure 1.2 shows three architectures of a polymer molecule: a linear chain (a), a
branched chain (b), and a cross-linked polymer (c). A bead represents a
monomer here. A vinyl polymer is a typical linear polymer. A branched chain has
branches, long and short. A cross-linked polymer forms a network encompassing
the entire system. In fact, there can be just one supermolecule in a container. In the
branched chain, in contrast, the branching does not lead to a supermolecule. A
cross-linked polymer can only be swollen in a solvent. It cannot be dissolved. We
will learn linear chain polymers in detail and about branched polymers to a lesser
extent.

Some polymer molecules consist of more than one kind of monomers. An A–B
copolymer has two constituent monomers, A and B. When the monomer sequence
is random, i.e., the probability of a given monomer to be A does not depend on its
neighbor, then the copolymer is called a random copolymer. There is a different
class of linear copolymers (Fig. 1.3). In an A–B diblock copolymer, a whole chain
consists of an A block, a B block, and a joint between them. In a triblock copoly-
mer, the chain has three blocks, A, B, and C. The C block can be another A block. A
polymer consisting of a single type of monomers is distinguished from the copoly-
mers and is called a homopolymer.

1.1.2 Models of a Linear Polymer Chain

1.1.2.1 Models in a Continuous Space A polymer chain in the solution is
changing its shape incessantly. An instantaneous shape of a polymer chain in

2 MODELS OF POLYMER CHAINS

Figure 1.1. Vinyl polymer.

Figure 1.2. Architecture of polymer chain: a linear chain (a), a branched chain (b), and a
cross-linked polymer (c).

C C
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H H

( )n

a  linear chain c  cross-linked polymerb  branched chain
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solution (Fig. 1.4a) is called a conformation. To represent the overall chain confor-
mation, we strip all of the atoms except for those on the backbone (Fig. 1.4b).
Then, we remove the atoms and represent the chain by connected bonds (Fig. 1.4c).
In linear polyethylene, for instance, the chain is now represented by a link of
carbon–carbon bonds only. We can further convert the conformation to a smoothed
line of thread (Fig. 1.4d). In the last model, a polymer chain is a geometrical object
of a thin flexible thread. 

We now pull the two ends of the skeletal linear chain to its full extension
(Fig. 1.5). In a vinyl polymer, the chain is in all-trans conformation. The distance
between the ends is called the contour length. The contour length (Lc) is propor-
tional to DP or the molecular weight of the polymer. In solution, this fully stretched
conformation is highly unlikely. The chain is rather crumpled and takes a confor-
mation of a random coil.

Several coarse-grained geometrical models other than the skeletal chain model
are being used to predict how various physical quantities depend on the chain
length, the polymer concentration, and so forth, and to perform computer simula-
tions. Figure 1.6 illustrates a bead-stick model (a), a bead-spring model (b), and a
pearl-necklace model (c).

In the bead-stick model, the chain consists of beads and sticks that connect
adjacent beads. Many variations are possible: (1) the bead diameter and the stick
thickness can be any nonnegative value, (2) we can restrict the angle between two
adjacent sticks or let it free, or (3) we can restrict the tortional angle (dihedral
angle) of a stick relative to the second next stick. Table 1.1 compares two typical
variations of the model: a freely jointed chain and a freely rotating chain. When
the bond angle is fixed to the tetrahedral angle in the sp3 orbitals of a carbon atom
and the dihedral angle is fixed to the one of the three angles corresponding to trans,
gauche�, and gauche�, the model mimics the backbone of an actual linear vinyl
polymer. The latter is given a special name, rotational isometric state model
(RIMS). A more sophisticated model would allow the stick length and the bond

Figure 1.3. Homopolymer and block copolymers.

A

triblock copolymer

A AA
A BA B
A BA CB C

homopolymer

diblock copolymer

TABLE 1.1 Bead-Stick Models

Model Bond Length Bond Angle Dihedral Angle

Freely jointed chain fixed free free
Freely rotating chain fixed fixed free



angle to vary according to harmonic potentials and the dihedral angle following its
own potential function with local minima at the three angles. In the bead-stick
model, we can also regard each bead as representing the center of a monomer unit
(consisting of several or more atoms) and the sticks as representing just the
connectivity between the beads. Then, the model is a coarse-grained version of a
more atomistic model. A bead-stick pair is called a segment. The segment is the
smallest unit of the chain. When the bead diameter is zero, the segment is just a
stick.

In the bead-spring model, the whole chain is represented by a series of beads
connected by springs. The equilibrium length of each spring is zero. The bead-
spring model conveniently describes the motion of different parts of the chain. The
segment of this model is a spring and a bead on its end.

In the pearl-necklace model, the beads (pearls) are always in contact with
the two adjacent beads. This model is essentially a bead-stick model with the
stick length equal to the bead diameter. The bead always has a positive dia-
meter. As in the bead-stick model, we can restrict the bond angle and the dihedral
angle.

There are other models as well. This textbook will use one of the models that
allows us to calculate most easily the quantity we need.

1.1.2.2 Models in a Discrete Space The models described in the preceding sec-
tion are in a continuous space. In the bead-stick model, for instance, the bead cen-
ters can be anywhere in the three-dimensional space, as long as the arrangement
satisfies the requirement of the model. We can construct a linear chain on a discrete

4 MODELS OF POLYMER CHAINS

contour length  Lc random coil

Figure 1.5. A random-coil conformation is pulled to its full length Lc.

Figure 1.4. Simplification of chain conformation from an atomistic model (a) to main-chain
atoms only (b), and then to bonds on the main chain only (c), and finally to a flexible thread
model (d).

a  atomistic model b  main-chain atoms c  bonds only d  thread model
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space as well. The models on a discrete space are widely used in computer simula-
tions and theories. 

The discrete space is called a lattice. In the lattice model, a polymer chain con-
sists of monomers sitting on the grids and bonds connecting them. The grid point is
called a site; Figure 1.7 illustrates a linear polymer chain on a square lattice (a) and
a triangular lattice (b), both in two dimensions. The segment consists of a bond and
a point on a site. In three dimensions, a cubic lattice is frequently used and also a
diamond lattice to a lesser extent. Figure 1.8 shows a chain on the cubic lattice. The
diamond (tetrahedral) lattice is constructed from the cubic lattice and the body
centers of the cubes, as shown in Figure 1.9. The chain on the diamond lattice is
identical to the bead-stick model, with a bond angle fixed to the tetrahedral angle
and a dihedral angle at one of the three angles separated by 120°. There are other
lattice spaces as well.

The lattice coordinate Z refers to the number of nearest neighbors for a lattice
point. Table 1.2 lists Z for the four discrete models.

1.1.3 Real Chains and Ideal Chains

In any real polymer chain, two monomers cannot occupy the same space. Even a
part of a monomer cannot overlap with a part of the other monomer. This effect is
called an excluded volume and plays a far more important role in polymer solu-
tions than it does in solutions of small molecules. We will examine its ramifications
in Section 1.4. 

Figure 1.6. Various models for a linear chain polymer in a continuous space: a bead-stick
model (a), a bead-spring model (b), and a pearl-necklace model (c).

c  pearl-necklace modelb  bead-spring modela  bead-stick model

TABLE 1.2 Coordination Number

Dimensions Geometry Z

2 square 4
2 triangular 6
3 cubic 6
3 diamond 4



We often idealize the chain to allow overlap of monomers. In the lattice
model, two or more monomers of this ideal chain can occupy the same site.
To distinguish a regular chain with an excluded volume from the ideal chain, we
call the regular chain with an excluded volume a real chain or an excluded-
volume chain. Figure 1.10 illustrates the difference between the real chain
(right) and the ideal chain (left) for a thread model in two dimensions. The
chain conformation is nearly the same, except for a small part where two parts
of the chain come close, as indicated by dashed-line circles. Crossing is allowed
in the ideal chain but not in the real chain. The ideal chain does not exist in
reality, but we use the ideal-chain model extensively because it allows us to
solve various problems in polymer solutions in a mathematically rigorous way. We
can treat the effect of the excluded effect as a small difference from the ideal
chains. More importantly, though, the real chain behaves like an ideal chain in
some situations. One situation is concentrated solutions, melts, and glasses. The
other situation is a dilute solution in a special solvent called a theta solvent. We
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Figure 1.8. Linear chain on a cubic lattice.

Figure 1.7. Linear chains on a square lattice (a) and a triangular lattice (b).

a  square lattice b  triangular lattice
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will learn about the theta solvent in Section 2.3 and the concentrated solution in
Chapter 4.

1.2 IDEAL CHAINS

1.2.1 Random Walk in One Dimension

1.2.1.1 Random Walk A linear flexible polymer chain can be modeled as a ran-
dom walk. The concept of the random walk gives a fundamental frame for the con-
formation of a polymer chain. If visiting the same site is allowed, the trajectory of
the random walker is a model for an ideal chain. If not allowed, the trajectory re-
sembles a real chain. In this section, we learn about the ideal chains in three dimen-
sions. To familiarize ourselves with the concept, we first look at an ideal random
walker in one dimension.

Figure 1.9. Diamond lattice.

a b

Figure 1.10. Conformations of an ideal chain (a) and a real chain (b) in two dimensions.



The random walker moves in each step by b either to the right or to the left, each
with a probability of one-half (Fig. 1.11). Each time it decides where to move next
independently of its preceding moves. The walker does not have a memory
regarding where it has come from. The latter property is called Markoffian in
stochastic process theory. The walker can come back to the sites previously visited
(ideal). The N-step trajectory of the random walker is a chain of length Nb folded
one-dimensionally, as illustrated in Figure 1.12. The movement of the random
walker is specified by a sequence of “�” and “�,” with � being the motion to
the right and � being that to the left. In this example the sequence is
����������������. Thus one arrangement of the chain folding
corresponds to an event of having a specific sequence of � and �. Another way to
look at this sequence is to relate � to the head and � to the tail in a series of coin
tosses.

Suppose there are n “�” out of a total N trials (n � 0, 1, . . . ,N ). Then the ran-
dom walker that started at x � 0 on the x-axis has reached a final position of x �
nb � (N � n)(� b) � b(2n � N ). How these n� are arranged is irrelevant to the fi-
nal position. What matters is how many � there are. If all are �, x � Nb; if all are
�, x � �Nb. The probability Pn to have n� is given by

(1.1)

The probability distribution is called a binomial distribution, because Pn is equal to
the nth term in the expansion of

(1.2)( p � q)N � �
N

n�0
pnqN�n

NCn

Pn � 2�N
NCn � 2�N 

N!

n!(N � n)!
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Figure 1.12. One-dimensional random walk of 16 steps. The trajectory is a folded chain.

0−4b −2b 2b 4b x

b
x

−b

Figure 1.11. Step motion in one-dimensional random walk.
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with p � q � 1�2. Thus we find that Pn given by Eq. 1.1 is normalized. An exam-
ple of Pn is shown in Figure 1.13 for N � 16. The range of n is between 0 and N,
which translates into the range of x between �N and N. Only every other integral
values of x can be the final position of the random walker for any N.

1.2.1.2 Mean Square Displacement If we set p � q � 1 in Eq. 1.2, we have the
identity

(1.3)

Using the identity, the mean (expectation) of n is calculated as follows:

(1.4)

On the average, the random walker moves half of the steps to the right. Likewise,
the average of n2 is calculated as

(1.5)

 � N(N � 1)�4

 � 2�N�N(N � 1) �
N

n�2

(N � 2)!

(n � 2)!(N � n)!
� N �

N

n�1

(N � 1)!

(n � 1)!(N � n)! �

 〈n2〉 � �
N

n�0
n2Pn � 2�N �

N

n�0

n2N!

n!(N � n)!

〈n〉 � �
N

n�0
nPn � 2�N �

N

n�0
 

nN!

n!(N � n)!
� 2�N N �

N

n�1
 

(N � 1)!

(n � 1)!(N � n)!
� 2�NN 2N�1 � N�2

2N � �
N

n�0
 

N!

n!(N � n)!

Figure 1.13. Probability distribution for the number n of positive moves. The corresponding
final position x is also indicated.

0 5 10 15

N  = 16

Pn

n
x 0 16−16



Then the variance, the mean square of �n # n– 〈n〉, is

(1.6)

Its square root, 〈�n2〉1/2, called the standard deviation, is a measure for the broad-
ness of the distribution. Note that both 〈n〉 and 〈�n2〉 increase linearly with N.
Therefore, the relative broadness, 〈�n2〉1/2�〈n〉, decreases with increasing N.

Let us translate these statistical averages of n into those of x. Because
x � b(2n – N ), the mean and the variance of x are

(1.7)

where �x � x – 〈x〉 is the displacement of the random walker in N steps. Because
x � 0 before the random walk, �x � x. The average of its square, 〈�x2〉, is called
the mean square displacement.

1.2.1.3 Step Motion Now we look at the N-step process from another perspec-
tive. Let �xn be the displacement in the nth step. Then, �xn is either b or –b with
an equal probability. Therefore, 〈�xn〉 � 0 and 〈�xn

2〉 � b2. Different steps are not
correlated. Mathematically, it is described by 〈�xn�xm〉 � 0 if n � m. Combining
n � m and n � m, we write

(1.8)

where �nm is the Kronecker’s delta (�nm � 1 if n � m; �nm � 0 otherwise). In N
steps, the random walker arrives at x, starting at x � 0. The total displacement
�x � x – 0 of the N steps is given as

(1.9)

The mean and the variance of �x are calculated as

(1.10)

(1.11)

As required, the results are identical to those in Eq. 1.7.

1.2.1.4 Normal Distribution Let us see how Pn or P(x) changes when N
increases to a large number. Figure 1.14 compares Pn for N � 4, 16, and 64. As N

〈� x2〉 � 〈 �
N

n�1
� xn �

N

m�1
� xm 〉 � 〈 �

N

n,m�1
� xn � xm 〉 � �

N

n,m�1
〈� xn � xm〉 � �

N

n�1
〈� xn

2〉 � Nb2

〈� x〉 � 〈 �
N

n�1
� xn 〉 � �

N

n�1
〈� xn〉 � 0

� x � �
N

n�1
� xn

〈� xn� xm〉 � b2�n m

〈x〉 � 0,  〈�x2〉 � 〈x2〉 � Nb2   1D random walk

〈� n2〉 � 〈(n� 〈n〉)2〉 � 〈n2〉 � 〈n〉2 � N�4
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increases, the plot approaches a continuously curved line. To predict the large N
asymptote of Pn, we use Stirling’s formula lnN! � N(lnN – 1). Equation 1.1 is
rewritten to

(1.12)

With n � (N � x�b)�2, this equation is converted to a function of x:

(1.13)

where the Taylor expansion was taken up to the second order of x�(Nb) in the last
part, because P(x) is almost zero except at small �x�(Nb)�. This equation does not
satisfy the normalization condition because we used a crude version of Stirling’s
formula. Normalization leads Eq. 1.13 to

(1.14)

This probability distribution, shown in Figure 1.15, is a normal distribution with a
zero mean and a variance of Nb2. Note that the mean and the variance are the same

P(x) � (2 �Nb2)�1�2 exp ��
x2

2Nb2 	   1D random walk

� � 12 N � x

Nb 	
2

� �
x2

2Nb2

 � �1
2N ��1 �

x

Nb 	 ln �1 �
x

Nb 	 � �1 �
x

Nb 	 ln �1 �
x

Nb 	�
 � N ln N � 1

2 (N � x�b) ln (N � x�b) � 1
2 (N � x�b) ln (N � x�b)

�1
2(N � x�b) ln [(N � x�b) �2]

 ln P � �N ln 2 � N ln N � 1
2 
(N � x�b) ln[(N � x�b)�2]

 � �N ln 2 � N ln N � n ln n � (N � n) ln (N � n)

 ln Pn � �N ln 2 � N (ln N � 1) � n(ln n � 1) � (N � n)[ln (N � n) � 1]

0

0.1

0.2

0.3

0.4

-60 -40 -20 0 20 40 60
x

P

16

4

64

Figure 1.14. Distribution of the final position x for 4-, 16-, and 64-step random walks.



as those we calculated for its discrete version Pn. Now x is continuously distributed.
The probability to find the walker between x and x � dx is given by P(x)dx.

For a large N, the binomial distribution approaches a normal distribution. This
rule applies to other discrete distributions as well and, in general, is called the law
of large numbers or the central limit theorem. When N » 1, the final position x of
the random walker is virtually continuously distributed along x.

1.2.2 Random Walks in Two and Three Dimensions

1.2.2.1 Square Lattice We consider a random walk on a square lattice extending
in x and y directions with a lattice spacing b, as shown in Figure 1.7a. The random
walker at a grid point chooses one of the four directions with an equal probability
of 1/4 (Fig. 1.16). Each step is independent. Again, the random walker can visit the
same site more than once (ideal). The move in one step can be expressed by a dis-
placement �r1 � [�x1, �y1]. Similarly to the random walker in one dimension,
〈�x1〉 � 〈�y1〉 � 0 and hence 〈�r1〉 � 0. The variances are 〈�x1

2〉 � 〈�y1
2〉 � b2�2;

therefore, the mean square displacement is 〈�r1
2〉 � b2. In a total N steps starting at

r � 0, the statistics for the final position r and the displacement �r are: 〈x〉 �
〈�x〉 � 0, 〈y〉 � 〈�y〉 � 0 and hence 〈r〉 � 〈�r〉 � 0; 〈x2〉 � 〈�x2〉 � Nb2�2, 〈y2〉 �
〈�y2〉 � Nb2�2 and hence 〈r2〉 � 〈�r2〉 � Nb2.

The x component of the position after the N-step random walk on the two-
dimensional (2D) square lattice has a zero mean and a variance of Nb2�2. When
N » 1, the probability density Px(r) for the x component approaches a normal distri-
bution with the same mean and variance. Thus,

(1.15)Px(r) � (�Nb2)�1�2 exp[�x2�(Nb2)]
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Figure 1.15. Distribution of the final position x for a random walk of infinite number of
steps.
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The y-component Py(r) has a similar expression. When the two components are
combined, we have the joint probability density P(r) � Px(r)Py(r) as

(1.16)

Again, the mean and the variance are held unchanged in the limiting procedure.

1.2.2.2 Lattice in Three Dimensions We place the random walker on a cubic
lattice with a lattice spacing b in three dimensions, as shown in Figure 1.8. In each
step, the random walker chooses one of the six directions with an equal probability
of 1�6 (Fig. 1.17). The displacement in one step is expressed by �r1 � [�x1, �y1,
�z1]. Statistical properties of �r1 and their components are 〈�r1〉 � 0, 〈�x1

2〉 �
〈�y1

2〉 � 〈�z1
2〉 � b2�3; therefore, 〈�r1

2〉 � b2. In a total N steps starting at r � 0,
the statistics for the final position r and the displacement �r are 〈r〉 � 〈�r〉 � 0;
〈�x2〉 � 〈�y2〉 � 〈�z2〉 � Nb2�3 and 〈r2〉 � 〈�r2〉 � Nb2.

The x component of the position after the N-step random walk on the three-
dimensional (3D) cubic lattice has a zero mean and a variance of Nb2/3. When
N » 1, the probability density Px(r) for the x component approaches that of a normal
distribution with the same mean and variance. Thus,

(1.17)Px(r) � (2�Nb2�3)�1�2 exp[�3x2�(2Nb2)]

P(r) � (�Nb2)�1 exp ��
r2

Nb2 	   2D random walk

b x

y

b

Figure 1.16. Step motion in a two-dimensional random walk on a square lattice.

b
x

y

z

b

b

Figure 1.17. Step motion in a three-dimensional random walk on a cubic lattice.



The other components have a similar expression. When the three components
are combined, we have the joint probability density P(r) � Px(r)Py(r)Pz(r) as 

(1.18)

Note that P(r) depends only on �r �; i.e., the distribution of r is isotropic.
The random walk is not limited to rectangular lattices. In the nonrectangular

lattices such as a triangular lattice and a diamond lattice with lattice unit � b, we
let the random walker choose one of the Z nearest-neighbor sites with an equal
probability irrespective of its past (Markoffian). Then, the same statistics holds for
�ri as the one in the rectangular lattices:

(1.19)

In a total N steps, 〈�r〉 � 0 and 〈�r2〉 � Nb2. Then, for N » 1, the probability
density for r is given by the same equations (Eqs. 1.16 and 1.18 for the 2D and 3D
lattices, respectively). The type of the lattice is irrelevant. When N is not suffi-
ciently large, however, P(r) is different from lattice to lattice, reflecting its detailed
structure. Note that b is the lattice unit, not its projection onto the x, y, or z axis.

1.2.2.3 Continuous Space The random walks are not limited to those on a lat-
tice. Here, we consider a random walker who jumps by a fixed distance b. The
trajectory is shown in Figure 1.18 for a two-dimensional version of the continuous-
space random walk. Starting at r0, the walker moves by �r1, �r2, . . . ,�rN to arrive
at rN in a total N steps. When the direction is random in three dimensions, the
trajectory represents a freely jointed chain (Table 1.1). Like a random walk on the
lattice, the ith jump �ri is not correlated with the jth jump �rj if i � j. As long as
�ri satisfies Eq. 1.19, the displacement in a total N steps has the same statistical

〈�ri〉 � 0,  〈�ri	�rj〉 � b2�ij

P(r) � (2�Nb2�3)�3�2 exp ��
3r2

2Nb2 	   3D random walk

14 MODELS OF POLYMER CHAINS

b∆r1

∆r2
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rN-1
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r1

Figure 1.18. Trajectory of a two-dimensional random walk of N steps with a fixed step
displacement length b. 
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properties as a random walk on the cubic lattice: 〈�r〉 � 0 and 〈�r2〉 � Nb2. When
N » 1, the probability density of the final position rN is given by

(1.20)

The step length does not have to be fixed to b either. Suppose the step length has
some distribution, but each step follows the same distribution to yield 〈�ri

2〉 � b2.
A typical trajectory of this type of random walk is seen in a bead-spring model.
With a randomness in the orientation of �ri and a common distribution for all of
�ri, �ri will satisfy Eq. 1.19. If �ri and �rj (i 
 j) are not correlated, the final
position rN follows the distribution given by Eq. 1.20.

Figure 1.19 compares a freely jointed chain with a fixed bond length b (also
called a segment length) and a bead-spring model with 〈�ri

2〉 � b2, both in two di-
mensions. Examples of a 100-step random walk are shown. The bead-spring model
can have greater density fluctuations for the same Nb2.

1.2.3 Dimensions of Random-Walk Chains

1.2.3.1 End-to-End Distance and Radius of Gyration Here, we learn how to
assess the dimension or the size of a polymer molecule. We consider a linear chain
consisting of N bonds of length b (Fig. 1.20). The positions of the joints are denoted
by ri (i � 0, 1, . . . ,N ). The two ends of the ith bond are at ri – 1 and ri. It is conven-
ient to define the end-to-end vector R by

(1.21)R # rN � r0

P(rN) � (2�Nb2�3)�3�2 exp ��
3(rN � r0)2

2Nb2 	   3D random walk

Figure 1.19. Example of a freely jointed chain (a) and a bead-spring model (b) of 100 steps
with the same orientation of each pair of jumps in two dimensions. The bar shows the bond
length b.

b

a b



R is different for each configuration of the chain. Although the chain ends are
not necessarily faced outward and therefore R does not always span the largest
dimension of the chain, its average length is a good measure for the overall chain
dimension. The root-mean-square end-to-end distance RF (or simply end-to-end
distance) of the chain is the root mean square of R:

(1.22)

We can regard the whole chain as roughly being contained in a sphere of diameter RF.
Another often used measure of the chain dimension is the root-mean-square

radius of gyration Rg (or simply radius of gyration). Its square, Rg
2, is the second

moment around the center of mass of the chain. The latter is defined as the mean
square of the distance between the beads and the center of mass (Fig. 1.21).
Roughly, the chain occupies a space of a sphere of radius Rg. The center of mass rG

of the chain is given as 

(1.23)rG �
1

N � 1
 �

N

i�0
ri

RF
2 � 〈R2〉 # 〈(rN � r0)2〉
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1

N

Rr0
rN

r1

ri

2

Figure 1.20. End-to-end vector R is defined by R � rN � r0 in the bead-stick model. The
sphere with R as its diameter contains most of the segments.

ri

rG

Rg

Figure 1.21. Center of mass rG and the radius of gyration Rg in the bead-stick model.
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where we assume that beads have the same mass and are connected by massless
bonds. Then, Rg is given by

(1.24)

where the summation and averaging can be interchanged. As the name suggests,
mRg

2 is the moment of inertia (m represents mass of the molecule) for rotational
motion of this molecule around its center of mass.

The following formula is useful:

(1.25)

This formula indicates that we can use the mean square distance between two
monomers to obtain Rg in place of first calculating rG and then the mean square dis-
tance between rG and each monomer. Because summation with respect to i and j is
another averaging, we can say that Rg

2 is half of the average square distance be-
tween two monomers on the chain (Fig. 1.22).

We can prove the formula by using the following identity:

(1.26)

 �2(N � 1)�
N

i�0
(ri � rG)2

 �2(N � 1)�
N

i�0
(ri � rG)2 � 2�

N

i�0
(ri � rG) 	 �

N

j�0
(rj � rG)

 � �
N

i, j�0
(ri � rG)2 � 2 �

N

i, j�0
(ri � rG)	(rj � rG) ��

N

i, j�0
(rj � rG)2

 �
N

i, j�0
(ri � rj)2 � �

N

i, j�0
 [(ri � rG) � (rj � rG)]2

Rg
2 � 

1

2
 〈 1

(N � 1)2 �
N

i, j�0
(ri � rj)2 〉 � 

1

2(N � 1)2 �
N

i, j�0
〈(ri � rj)2〉  any conformation

Rg
2 � 〈 1

N � 1 �
N

i�0
(ri � rG)2 〉 �

1

N � 1 �
N

i�0
〈(ri � rG)2〉

j

i

Rg

ri − rj

Figure 1.22. The mean square distance between two monomers i and j is twice as large as Rg
2.



where Eq. 1.23 was used. This transformation does not assume any specific chain
model. Equation 1.25 applies therefore to any chain conformation. 

Note that RF is defined for linear chains only, but Rg can be defined for any chain
architecture including nonlinear chains such as branched chains. In this sense, Rg

gives a more universal measure for the chain dimension.

1.2.3.2 Dimensions of Ideal Chains Now we obtain RF and Rg for ideal chains
whose conformations are given as trajectories of random walkers. They include
a random walk on a lattice, a freely jointed chain, a bead-spring model, and any
other model that satisfies the requirement of Markoffian property (Eq. 1.19). The
bond vector ri � ri �1 of the ith bond is then the displacement vector �ri of the ith
step. We assume Eq. 1.19 only. Then the end-to-end distance is Nb2. To calculate
Rg, we note that a part of the ideal chain is also ideal. The formula of the mean
square end-to-end distance we obtained for a random walk applies to the mean
square distance between the ith and jth monomers on the chain just by replacing N
with � i – j �:

(1.27)

From Eqs. 1.25 and 1.27, we can calculate the radius of gyration of the chain as

(1.28)

Thus, we find for large N ideal chains with no correlations between bonds have the
dimensions of

(1.29)

The ratio of RF to Rg is 61/2 � 2.45 for the ideal chain, close to the diameter to
radius ratio.

Both RF
2 and Rg

2 consist of x, y, and z components. In Section 1.2.2, we have
seen this property for RF

2 already. The x component of Rg
2 is defined by 

(1.30)

where xi and xG are the x components of ri and rG, respectively. If there is no
preferred orientation of the chain, 〈(xi � xG)2〉 � 〈(ri – rG)2〉�3. Then, Rgx

2 �
Rg

2�3.

Rgx
2 � 〈 1

N � 1 �
N

i�0
(xi � xG)2 〉 �

1

N � 1 �
N

i�0
〈(xi � xG)2〉

RF
2 � b2N, Rg

2 � 1
6 b

2N   ideal chain, N » 1

 �
2b2

(N � 1)2 �
N

i�0
  
1
2 
i (i � 1) � b2 

N(N � 2)

3(N � 1)

 2Rg
2 �

1

(N � 1)2 �
N

i, j�0
  b2 � i � j � �

2b2

(N � 1)2 �
N

i�0  

�
i

j�0
(i � j)

〈(ri � rj)2〉 � b2� i � j �   ideal chain
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1.2.3.2 Dimensions of Chains with Short-Range Interactions Now we lift
the condition of 〈�ri 	 �rj〉 � b2�ij and consider a bead-stick model with a restric-
tion on the choice of the bond angle. In Figure 1.23, the angle � between two
adjacent bond vectors (bond angle � � – �) is fixed to �b (�0), but there is no re-
striction on the dihedral angle (freely rotating chain; see Table 1.1). The next
bead (ri�1) can be anywhere on the circular base of a cone. Then, 〈�ri 	 �ri�1〉 �
b2cos�b.

To calculate 〈�ri�1 	�ri�1〉, we first obtain 〈�ri�1〉�ri
, the average of �ri�1 for a

given �ri.1 We decompose �ri�1 into a component parallel to �ri and a component
perpendicular to �ri (see Fig. 1.24). The parallel component is (cos �b)�ri, com-
mon to all dihedral angles. The perpendicular component is different from one ori-
entation to another orientation of �ri�1, but the randomness in the dihedral angle
makes the perpendicular component uniformly distributed on a plane perpendicular
to �ri. Thus, 〈�ri�1〉�ri

� (cos �b)�ri. Next, we calculate 〈�ri – 1 	�ri�1〉 in two
steps: 〈�ri�1 	�ri�1〉 � 〈�ri�1 	〈�ri�1〉�ri

〉, where the interior bracket of the right-
hand side refers to the average for a given �ri and the exterior bracket refers to that

Figure 1.23. Bond vectors in the bead-stick model with a fixed bond angle.

∆ri

ri

∆ri+1
ri+1

ri−1

θ b

∆ri

∆ri+1

〈∆ri+1〉∆ri

perpendicular
component

θ b

Figure 1.24. Average of �ri�1 for a given �ri. The perpendicular component averages to zero.



for a given �ri– 1 (or without any condition). Then, 〈�ri�1 	�ri�1〉 � b2 cos2 �b.
Repeating the same procedure, we obtain

(1.31)

The correlation diminishes exponentially with an increasing distance between
the two bonds along the chain contour. The displacement in a total N steps is

(1.32)

When N » 1,

(1.33)

When �b is the tetrahedral angle, cos �b � 1�3. Then, RF
2 � 2Nb2.

A smaller �b denotes that the bond vector changes its orientation by a smaller
angle, effectively making the chain stiffer. Equation 1.33 demonstrates that a stiffer
chain has a longer end-to-end distance, a reasonable result. A restriction on the
local correlation of the bond direction does not change the proportionality between
RF and N1/2. Thus we can regard the chain as consisting of freely jointed bonds of
an effective bond length of beff � b[(1 � cos �b)�(1 – cos �b)]1/2. This equivalence
allows us to estimate Rg in a simple way: From Eq. 1.29, Rg

2 is 1/6 of the value of
RF

2 given by Eq. 1.33. It is possible to obtain an exact formula for Rg
2 that applies

to any N.
As seen in this example, short-range interactions such as the restriction on the

bond angle do not deprive the chain of the characteristics of the ideal chain. Other ex-
amples of the short-range interactions include a restriction on the dihedral angle. The
short-range interactions are only between monomers that are close to each other along
the chain backbone. The correlation between the bond orientations decreases with an
increasing distance along the backbone, as we saw in Eq. 1.31.

1.2.4 PROBLEMS

Problem 1.1: When we obtained Eq. 1.16, we implicitly assumed that �x and
�y were uncorrelated. This assumption is, however, correct only when N » 1.
In each step, �x1 and �y1 are correlated; When the random walker moves in
the y direction, �x1 � 0. Then, 〈�x1

2�y1
2〉 � 0 is not equal to 〈�x1

2〉 〈�y1
2〉 �

(b2�2)2. Show that 〈�x2�y2〉 � 〈�x2〉〈�y2〉 when N » 1.

RF
2 � b2N 

1 � cos �b

1 � cos �b

   bond angle � � � �b

 �b2N 

1 � cos �b

1 � cos �b

� 2b2 cos �b

1 � cosN �b

(1 � cos �b)2

 RF
2 � 〈�r2〉 � �

N

i, j�1
〈�ri	�rj〉 � �

N

i, j�1
b2 cos�i�j� �b � b2�N � 2 �

N�1

i�1
�
N

j� i�1
cos  

j�i�b�

〈�ri	�rj〉 � b2cos�i�j��b
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Solution 1.1:

〈�x2�y2〉 approaches (Nb2�2)2 � 〈�x2〉 〈�y2〉 as N : 
.

Problem 1.2: Find a formula similar to Eq. 1.25 that allows us to calculate Rg
2

without explicitly obtaining rG for a linear polymer chain in which mass mi of
the ith monomer may be different from monomer to monomer. Here, Rg

2 is
the average of the second moment around rG, weighted by the mass of each
monomer.

Solution 1.2: Let , then 

Rg
2 for this polymer chain is defined as

By definition, it is rewritten to

Since

we obtain

Problem 1.3: In an a–b diblock copolymer, the monomer molecular weights in
the two blocks are M1a and M1b and the degrees of polymerization are Na and
Nb (Na, Nb » 1), respectively. The two blocks are ideal chains with a segment

Rg
2 �

1

2
 〈 1

M2 �
N

i, j�0
mi 

mj(ri � rj)2 〉

1

2 �
N

i, j�0
mi mj (ri � rj)2 � M�

N

i�0
mi 

ri
2 � (MrG)2

Rg
2 � 〈 1

M �
N

i�0
miri

2 � rG
2 〉

Rg
2 � 〈 1

M �
N

i�0
mi (ri � rG)2 〉

rG �
1

M �
N

i�0
miriM � �

N

i�0
mi

 � 0 � N(N � 1)〈�x1
2〉 〈�y2

2〉 � N(N � 1)(b2�2)2

 � �
i� j�k� l

〈�xi 
�xj 

�yk 
�yl〉 � �

i� j
k� l

〈�xi 
�xj 

�yk 
�yl〉

 〈�x2�y2〉 � �
i
�

j
�
k
�

l

〈�xi 
�xj 

�yk 
�yl〉 � �

i� j
� 
k� l

〈�xi 
�xj 

�yk 
�yl〉



length ba and bb, respectively. Calculate Rg
2 of the whole chain. Neglect the

joint.

22 MODELS OF POLYMER CHAINS

r0

raNa
rbNb

rai

rbj

a block b block

Solution 1.3:
The molecular weight M of the whole chain is given by M � M1aNa � M1bNb.
Now we use the formula we obtained in Problem 1.2:

where rai and rbj are the positions of monomers i and j on a block and b block,
respectively, with ra0 � rb0 � r0 being the joint. In the second term, the mean
square distance between monomers on different blocks is

Thus,

Problem 1.4: In the freely rotating chain with bond length b and bond angle
� � �b, the dihedral angle is unrestricted. How do 〈�ri 	�ri�1〉,
〈�ri�1 	�ri�1〉, and 〈�ri 	�rj〉 change from those for the freely rotating chain
when the dihedral angles are restricted to trans, gauche �, and gauche �, but
the three angles are chosen with equal probabilities?

Solution 1.4:
〈�ri 	�ri�1〉 � b2 cos �b

For a given �ri, 〈�ri�1〉�ri
� (cos �b)�ri, because the average of the components

perpendicular to �ri is zero. Then, 〈�ri�1 	�ri�1〉 � 〈�ri�1 	�ri〉 cos �b � b2

cos2 �b. Likewise, 〈�ri 	�rj〉 � b2 cos� i – j ��b. There are no changes.

 � M1a
2 ba

2 13 Na
3 � M1a 

M1b 
Na 

Nb(ba
2  Na � bb

2 Nb) � M1b
2bb

2 13 Nb
3

 2M2Rg
2�M1a

2 �
Na

i�1 
�
Na

j�1
ba

2� i � j � � 2M1a 
M1b �

Na

i�1 
�
Nb

j�1
(ba

2i � bb
2 j) � M1b

2 �
Nb

i�1 
�
Nb

j�1
bb

2� i � j �

〈(rai � rbj)2〉 � 〈(rai � r0)2〉 � 〈(r0 � rbj)2〉 � ba
2i � bb

2  j

� �
Nb

i�1
�
Nb

j�1
M1b

2 〈(rbi � rbj)2〉

2M2Rg
2 � �

Na

i�1 
�
Na

j�1
M1a

2〈(rai � raj)2〉 � 2 �
Na

i�1 
�
Nb

j�1
M1aM1b 〈(rai � rbj)2〉



GAUSSIAN CHAIN 23

1.3 GAUSSIAN CHAIN

1.3.1 What is a Gaussian Chain?

1.3.1.1 Gaussian Distribution We have learned that, in the limit of N : 
, all
ideal chains become identical and follow the normal distribution as long as each
step satisfies the same statistics given by Eq. 1.19. We define a Gaussian chain by
extending the ideality to short parts of the chain. In the Gaussian chain, any two
points r1 and r2 on the chain follow a Gaussian distribution G(r1, r2; n). For a
given r2, the probability density for r1 is given as

(1.34)

where the partial chain between the two points consists of n (n � N) segments of
segment length b. We do not limit n to integers but allow it to change continuously.

Essentially G(r1, r2; n)dr1 is a transition probability for a point r2 to move into
a small volume dr1 around r1 in n steps. Likewise, G(r1, r2; n)dr2 gives a probabil-
ity for the chain of n segments with one end at r1 to have the other end in a small
volume dr2 around r2. We can show that G(r1, r2; n) satisfies the following multipli-
cation law:

(1.35)

This law states that a Gaussian chain of n1 segments and another Gaussian chain
of n2 segments can be joined into a single Gaussian chain of n1 � n2 segments, as
illustrated in Figure 1.25. Alternatively, a Gaussian chain of N segments can be
divided into two parts of n segments and N – n segments.

Just as in P(r) for the three-dimensional random walk on a discrete lattice
(Eq. 1.18), G(r1, r2; n) consists of three independent factors:

(1.36)G(r1, r2; n) � Gx(x1, x2; n) Gy(y1, y2; n) Gz(z1, z2; n)


G(r1, r�; n1)G(r�, r2; n2) dr� � G(r1, r2; n1 � n2)

G(r1, r2; n) � (2� nb2�3)�3�2 exp��
3(r1 � r2)2

2nb2 	

n1

n2

r2

r1 r´

Figure 1.25. Two jointed Gaussian chains with n1 and n2 segments are equivalent to a single
Gaussian chain with n1 � n2 segments.



where, for example, the x component

(1.37)

is the one-dimensional transition probability from x2 to x1 in n steps. When the
Gaussian chain is projected onto x,y plane, the projection forms a two-dimensional
Gaussian chain with n and (2�3)1�2b. We can find the segment length, (2�3)1�2b, by
comparing GxGy with Eq. 1.16.

Unlike the ideal random walk, the Gaussian chain is defined also in the limit of
n : 0. As shown in Figure 1.26, Gx(x1, x2; n) narrows at around x1 – x2 � 0 as n
approaches 0 without changing the area under the curve (normalization). Then,
Gx(x1, x2; 0) must be a delta function of x1 centered at x2:

(1.38)

See Appendix A1 for the delta function. The same limiting procedure is applied to
Gy and Gz. Combining the three factors,

(1.39)

The Gaussian distribution is of the same functional form as the solution of a

G(r1, r2; 0) � � (r1 � r2)

Gx(x1, x2; 0) � � (x1 � x2)

Gx(x1, x2; n) � (2�nb2�3)�1�2 exp��
3(x1 � x2)2

2nb2 	
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−2 −1 0 1 2

(x1 − x2) /b

bGx

n = 1

n = 0.1

n = 0.01

5

Figure 1.26. As n decreases to 0, Gx approaches the delta function at x1 � x2 � 0. 
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diffusion equation, which we will learn in Section 3.2. Thus, G(r, r�; n) satisfies

(1.40)

where �2 � �2��x2 � �2��y2 � �2��z2 is the Laplacian. The right-hand side is zero
except for n � 0.

1.3.1.2 Contour Length Each segment of the Gaussian chain has a root-mean-
square length of b. It may appear that the whole chain of N segments has a contour
length of Nb, but this is wrong. The contour length is not defined in the Gaussian
chain because the choice of N is arbitrary and the apparent contour length Nb de-
pends on N. This situation is illustrated in Figure 1.27. As N increases and the tra-
jectory becomes more detailed, the path length increases, resulting in an increase
of Nb. What is held unchanged in the Gaussian chain between different choices of
N is Nb2. A Gaussian chain should rather be viewed as a hypothetical chain with
the end-to-end distance RF that, when coarse-grained into N segments, each
segment follows a Gaussian distribution with the mean square end-to-end length of
RF

2�N.
The Gaussian chain has another unrealistic property. In Eq. 1.34, r1 and r2 can

be separated by more than nb, although its probability is low when n is large (see
Problem 1.7). Despite this shortcoming, the Gaussian chain is the most preferred
model in calculating various physical quantities in theories. It often happens that we
can obtain an explicit analytical expression for the quantity in question only in the
Gaussian chain model. It is the only model that gives an exact yet simple
expression for the density of the chain ends, for instance.

1.3.2 Dimension of a Gaussian Chain

1.3.2.1 Isotropic Dimension Because a Gaussian chain is ideal, the end-to-end
distance and the radius of gyration are given by Eq. 1.29. Here, we use Eq. 1.34 to
confirm these dimensions for a Gaussian chain consisting of N segments of
length b.

� �

�n
� (b2�6)�2� G(r, r�; n) � � (n) � (r � r�)

a b

Figure 1.27. The contour length of a Gaussian chain depends on the number of segments.
Compared with panel a, panel b has a more detailed contour and therefore has a longer con-
tour. The end-to-end distance is common to both.



A partial chain of a Gaussian chain is also a Gaussian. The mean square distance
between two monomers separated by n segments is calculated as follows:

(1.41)

The three components of 〈(r1 – r2)2 〉 are equal:

(1.42)

These relationships apply to the whole chain (n � N ) as well.
We calculate Rg

2 of the whole chain by first placing r1 and r2 on the chain, as
shown in Figure 1.28, and then taking average of 〈(r1 – r2)2〉 � n2b2 with respect to
n1 and n2 (also shown in Fig. 1.28). The random variables n1 and n2 are uniformly
distributed in [0, N] and [0, N � n1], respectively. Using a formula similar to Eq.
1.25, we obtain Rg

2 as

(1.43)

The above results are identical to those in Eq. 1.29, as required. Again, x, y, and z
components of Rg

2 are equal.

1.3.2.2 Anisotropy The Gaussian chain is isotropic when averaged over many
conformations and orientations. In the crudest approximation, we can regard it as a
sphere of radius Rg. The instantaneous shape of the chain, however, does not look
like a sphere. We will examine its anisotropic shape here.

In Figure 1.29, a Gaussian chain shown as a dark line is placed with its end-
to-end vector on the z axis. We estimate how much the segments are away from the
z axis. The distance from the z axis is better represented by the projection of the
chain onto the x,y-plane, which is shown as a gray line. To evaluate the distance,

Rg
2 �

1

2
 

2

N2 
N

0
d n1
N�n1

0
d n2〈(r1 � r2)2〉 �

1

N2 
N

0
d n1
N�n1

0
n2b2 d n2 � 1

6 b
2N

〈(x1 � x2)2〉 � 〈(y1 � y2)2〉 � 〈(z1 � z2)2〉 � nb2�3

 � (2�nb2�3)�3�2



0
r2 exp��

3r2

2nb2 	 4� r2d r � nb2

〈(r1 � r2)2〉 � 
(r1 � r2)2G(r1, r2; n) d(r1 � r2)
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n1

n2

r2

r1r´

r

N−n1−n2

Figure 1.28. Two points, r1 and r2, on the Gaussian chain of N segments.
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we consider the conditional distribution G0R (r; n) for the position r of the nth segment
(0 � n � N), when one of the ends is at the origin and the other at R � [0, 0, RF] on
the z axis. It is given by

(1.44)

Note that this probability distribution is already normalized. Using Eq. 1.34, we can
rearrange the right-hand side into (Problem 1.8)

(1.45)

We take the segment at the midpoint of the two chain ends, n � N�2. Its distribution

(1.46)

is identical to the distribution for the end of the N�4-segment Gaussian chain with
the one end at R�2. Because R�2 � [0, 0, RF�2] in our arrangement, the average of
x2 � y2 is equal to 2�3 of the mean square end-to-end distance. It is calculated as

(1.47)〈x2 � y2〉 �
N

4
 b2 �

2

3
�

1

6
 Nb2

G0R(r; N�2) � G(r, R�2; N�4)

G0R(r; n) � G �r, 
n

N
 R; 

n(N � n)

N 	

G0R(r; n) �
G(r, 0; n) G(R, r; N � n)

G(R, 0; N)

x
y

z

Figure 1.29. Gaussian chain with its end-to-end vector on the z axis is shown as a dark line.
Its projection onto the x,y-plane is shown as a gray line. The small filled circle on the 
y,z-plane is the midpoint of the chain.



The excursion into x and y directions is much shorter than RF � bN1/2, the principal
extension of the chain in the z direction. It is premature to say that the Gaussian
chain resembles a football, however. The cross section of the Gaussian chain is not
circular, as shown below.

Now we rotate the chain around the z axis until the midpoint r sits on the 
y,z-plane. We consider how much the midpoint of the half chain, i.e., the quarter-
point of the original chain, extends in the x direction. As in Eq. 1.46, the probability
density of the quarterpoint r1 is given by

(1.48)

This distribution is equivalent to the one for the end of a Gaussian chain that con-
sists of N�8 segments and has the other end at r�2. Because r�2 � [0, y�2, z�2],
the mean square of x1 is calculated as

(1.49)

The overall shape of the Gaussian chain is thus approximated by an ellipsoidal
body with the lengths of its principal axes in the ratio of

(1.50)

Figure 1.30 depicts the ellipsoid. However, the Gaussian chain in solution does not
behave like a solid ellipsoid. The overall shape is constantly changing. At a given
time, the shape is different from chain to chain. The overall shape can be either
more spherical or more elongated than the one shown in the figure.

1.3.3 Entropy Elasticity

1.3.3.1 Boltzmann Factor The Gaussian chain of N segments is physically real-
ized by a bead-spring model consisting of N independent springs of a force constant

RF: 〈x2 � y2〉1�2: 〈x1
2〉1�2 � 1: 

1

√6
 : 

1

2√6
� 1 : 0.4 : 0.2

〈x1
2〉 �

N

8
 b2 �

1

3
�

1

24
 Nb2

G(r1, 0; N�4) G(r, r1; N�4)

G(r, 0; N�2)
� G(r1; r�2; N�8)
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a b

Figure 1.30. An instantaneous shape of the Gaussian chain (a) is approximated by an ellip-
soid (b).
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ksp (Fig. 1.31). Let the beads be at r0, r1, . . . ,rN. The potential energy U of the chain
resides in the elastic energy of the springs:

(1.51)

The kinetic energy is negligible in a viscous solvent where the motion is over-
damped. Then, the Boltzmann distribution with Eq. 1.51 gives the probability (un-
normalized) for a specific arrangement of r0 , . . . ,rN:

(1.52)

where kB is the Boltzmann constant and T the temperature. Each factor,
exp[– (ksp�2kBT)(rn � rn – 1)2], is identical to the Gaussian distribution of a single
segment given by Eq. 1.34 with n � 1, when

(1.53)

The force constant is equal to 3kBT�b2, where b2 is the mean square length of the
spring.

With Eq. 1.53, the Boltzmann factor given by Eq. 1.52 can be rewritten to an
expression that does not involve ksp:

(1.54)

We can take i to be continuous and write

(1.55)exp[�U(r0 , . . . , rN)�kBT ] � exp��
3

2b2 
N

0
� �r

�n 	
2

d n�

exp[�U(r0 , . . . , rN)�kBT ] � exp��
3

2b2 �
N

n�1
(rn � rn�1)2�

b2 �
3kBT

ksp

exp[�U(r0 , . . . , rN)�kBT ] � �
N

n � 1
exp��

ksp

2kBT
 (rn � rn�1)2�

U(r0 , . . . , rN) � 1
2 ksp �

N

n�1
(rn � rn�1)2

r0

rN
r1

Figure 1.31. Gaussian chain of N segments is realized by a bead-spring model in which N
springs are connected in series.



This factor gives a statistical weight for each conformation given as a continuous
line, r(n).

1.3.3.2 Elasticity We model the whole chain by a single spring. Its force con-
stant is given by

(1.56)

The two ends of the Gaussian chain behave like two points connected by a spring
with a force constant of 3kBT�RF

2. Another way to look at this elastic property is
described below.

Equation 1.34 allows us to express the entropy S of the Gaussian chain as a func-
tion of the two ends at r and r�:

(1.57)

Then, the Helmholtz free energy A of the chain is calculated as

(1.58)

The chain tries to decrease the magnitude of r – r� to minimize A and thus
approach the equilibrium. To hold the end-to-end vector at a nonzero r – r� in
Figure 1.32 requires a force of

(1.59)

which is nothing more than the spring force of a force constant 3kBT�RF
2. 

�A

�r
�

3kBT

RF
2 (r � r�)

A � const. �
3kBT

2RF
2 (r � r�)2

S � const. � kB ln G � const.�
3kB

2RF
2  (r � r�)2

ksp �
3kBT

RF
2 �

3kBT

Nb2
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∂A
∂r

r

r´

Figure 1.32. Entropy elasticity. To hold the end-to-end vector at r � r�, the Gaussian chain
needs to be pulled with a force of �A��r � (3kBT�RF

2)(r � r�).
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Because of the entropic origin, the above property is called the entropy elastic-
ity. It is not limited to Gaussian chains. Any chain that has a finite size, including
ideal chains and real chains, has this elasticity. By the same reason, a rubber is elas-
tic. A rubber is a cross-linked polymer. A partial chain between two cross-links
behaves elastically, giving rise to the elasticity of the material as a whole.

1.3.4 PROBLEMS

Problem 1.5: What is the most probable end-to-end distance Rmp of a Gaussian
chain? At R � Rmp, R 2G(R; N ) maximizes, where G(R; N) � G(r, r�; N ) with
R � �r � r��.

Solution 1.5: At R � Rmp,

Then, Rmp � b(2N�3)1/2 � 2Rg.

Problem 1.6: What is the second moment of the segments from one of the
chain ends in the Gaussian chain? The square root of this second moment
gives the “size” of the molecule tethered to a point in space.

Solution 1.6: Let r be the position of the nth segment. Then, the second
moment around the end at 0 is

Problem 1.7: Calculate the probability for the two ends of a Gaussian chain with
the mean square end-to-end distance Nb2 to be longer than its “fully stretched
length” Nb. How large is the probability when N � 5? When N � 10?

Solution 1.7: The probability P is given as

With t � (3�2N)1�2 r�b,

P � 4��1/2��

(3N/2)1/2

t2 exp(�t2)dt�2��1/2�(3N�2)1/2 exp(�3N�2) � Erfc�(3N�2)1/2��  (*)

P � ��

Nb

4�r2(2�Nb2�3)�3/2 exp ��
3r2

2Nb2 �dr

1

N
 �N

0
dn〈(r � 0)2〉 �

1

N
 �N

0
nb2 dn �

1

2
 Nb2

 �(2�Nb2�3)�3/2 �2R �
3R3

Nb2 � exp ��
3R2

2Nb2 �

 0 �
∂

∂R
 R2G (R; N ) �

∂

∂R
 R2 (2�Nb2�3)�3/2 exp ��

3R2

2Nb2 �



Where

When Z » 1,

Erfc(z) 	 (2z)�1 exp(�z2)

Therefore, the first term is dominant in (*):

P 	 (6N��)1/2 exp(�3N�2)

At N � 5, P � 1.7 � 10�3. At N � 10, P � 1.3 � 10�6.

Problem 1.8: Verify Eq. 1.45.

Solution 1.8: From Eq. 1.44,

Problem 1.9: Equation 1.45 gives the distribution of an arbitrary point on the
Gaussian chain when its ends are at 0 and R. Place R on the z axis and calcu-
late the average of 〈x2 � y2〉 when n is swept from 0 to N.

Solutioin 1.9:

  �exp��
3(x2 � y2)

2[n(N � n)�N ]b2 � dx dy

 �
1

N
�N

0
dn��(x2 � y2)�2�  

n(N � n)

N
 b2/3�

�1

 〈x2 � y2〉 �
1

N
�N

0
dn��(x2 � y2) G0R(x, y; n)dx dy

� �2� 
n(N � n)

N
 b2�3�

�3/2

 exp��
3(r � (n�N )R)2

2b2n(N � n)�N � � G�r, 
n

N
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n(N � n)

N �

 � �2� 
n(N � n)

N
 b2�3�

�3�2

 exp��
3

2b2  � r2

n
�

(R � r)2

N � n
�

R2

N
 ��

G0R(r; n) � 

(2�nb2�3)�3/2 exp�� 3r2

2nb2 �(2� (N � n)b2�3)�3/2 exp�� 3(R � r)2

2(N � n)b2 �
(2�Nb2�3)�3/2 exp��

3R2

2Nb2 �

Erfc(z) # ��

z
exp(� t2)dt
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Problem 1.10: A Gaussian chain with fluorescent tag on one end and its
quencher on the other end is dissolved in a non-quenching solvent. If there is
no specific interaction between the two ends other than the fluorescence
quenching, how does the fluorescence intensity change with the chain
length? The fluorescence is quenched when the quencher is in close
proximity.

Solution 1.10: The probability P for the two chain ends to come close is pro-
portional to (2�Nb2)�3/2. Thus, P 	 N�3/2. The intensity per molecule in-
creases as const.�N�3/2.

1.4 REAL CHAINS

1.4.1 Excluded Volume

1.4.1.1 Excluded Volume of a Sphere The excluded volume makes the real
chains nonideal. The dimension of the real chain is different from that of the ideal
chain of the same contour length, for instance. Before considering the excluded
volume effect in a chain molecule, we look at the effect in a suspension of hard
spheres of diameter ds. In Figure 1.33, the center-to-center distance between
spheres A and B cannot be less than ds. In effect, sphere B is excluded by sphere
A. The space not available to the center of sphere B is a sphere of radius ds indi-
cated by a dashed line. Thus the excluded volume (ve) is eight times the volume
of the sphere.

 �
1

N
�N

0
dn 2 

n(N � n)

N
 b2�3 �

1

9
 Nb2

  �exp��
3x2

2[n(N � n)�N ]b2 �dx

 �
1

N
 �N

0
dn 2�x2�2� 

n(N � n)

N
 b2�3�

�1/2

A B

ds

Figure 1.33. Excluded volume in a suspension of spheres. The center of sphere B is ex-
cluded from the spherical region (dashed line) by sphere A.



Consider a hypothetical process in which the volume excluded by each of the
two spheres increases from 0 to ve. The space available to the other sphere de-
creases from the volume V of the system to V – ve. Therefore, the configurational
entropy of the sphere changes by

(1.60)

where ve « V is assumed. The change in the Helmholtz free energy is then

A�kBT � –
S�kB � ve�V.

When the system has N identical spheres in the volume of V, there are N2�2 pairs
of excluded-volume interaction. Then, the change in the total free energy due to the
excluded volume is 
A�kBT � (N2�2)ve�V. The change per sphere, (
A�kBT)�N, is
proportional to the density N�V. At low concentrations, the excluded volume is
negligible. As the concentration increases and Nve approaches V, the effect becomes
stronger. The same effect appears in the van der Waals equation of state for a real
gas; The correction to the volume is equal to the excluded volume.

1.4.1.2 Excluded Volume in a Chain Molecule In the polymer solution, the
excluded volume does not disappear even in the low concentration limit. Connec-
tivity of monomers makes the situation different from that in the suspension of
spheres.

Suppose a polymer chain consisting of N spheres of diameter b (pearl-necklace
model; see Fig. 1.34). We consider the dilute solution limit in which each chain is
isolated from the other chains in the solution. When the chain dimension is R,
these N spheres are contained in a cube of volume close to R3, but no other spheres


S � kB ln 
V � ve

V
	 �kB

ve

V
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b

Figure 1.34. Excluded volume in a chain molecule. The two white beads cannot overlap
each other.
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will be found there. The free-energy change per chain due to the excluded volume
is then 
Ach�kBT � (N 2�2)ve�R3. Although entropic in origin, we regard the
excluded volume as an interaction and we write 
Uch�kBT � (N 2�2)ve�R3.
Because ve 	 b3,

(1.61)

where the numerical coefficient is dropped. Note that N 2�R3 is equal to the volume
R3 multiplied by the square of the monomer density (� N�R3). Other types of direct
interactions between monomers such as van der Waals interactions are included in
this expression of 
Uch because the magnitude of any direct interaction in a given
small volume is proportional to the square of the monomer density. Therefore,
Eq. 1.61 can be written as veff (N 2�R 3), in general. Note that the effective excluded
volume (veff) is negative when the attractive interaction dominates, which occurs
when the monomers prefer other monomers to solvent molecules. In the following,
we take veff � b3 � 0 for simplicity unless otherwise specified.

The interactions we are considering here are between monomers that may be
widely apart along the chain contour. To distinguish these interactions from the
short-range interactions such as the restriction on the bond angle and the dihedral an-
gle we considered in Section 1.2.3, we call them long-range interactions (Fig. 1.35).
The “long” and “short” do not refer to the distance between the monomers in space.
They refer to the distance along the backbone of the polymer chain. Unlike the
short-range interactions that are always present, the long-range interactions do not
manifest themselves unless another monomer happens to come close. It is rather the
large probability of this event that makes the long-range interactions dominant in the
statistical properties of the polymer chain. The presence of many other monomers in
a small volume of R3, due to the chain connectivity, gives rise to the dominance of
the long-range interactions even in the dilute solution limit.

The excluded volume is not limited to a pair of monomers on the same chain (in-
trachain interaction). It exists equally for a pair of monomers on different chains
(interchain interaction). At higher concentrations, the interchain interaction is the
dominant part of the excluded volume effect.


Uch�kBT 	 b3N2�R3

Figure 1.35. Short-range interaction and long-range interaction on a polymer chain.

short-range
interaction

long-range
interaction



1.4.2 Dimension of a Real Chain

1.4.2.1 Flory Exponent It is easy to expect that the excluded volume effect
“swells” the chain compared with the dimension it would take were it not for
the excluded volume effect. The swelling becomes more serious with an in-
creasing contour length. We can see 
Uch�kBT to increase with N in Eq. 1.61. With
R 	 bN1/2, the dimension of the ideal chain, we have 
Uch�kBT 	 N1/2.

When we write the radius of gyration of the real chain consisting of N
monomers as Rg � bN �, the exponent � is greater than 0.5, the exponent for the
ideal chain. In fact, � was found to be around 0.59. Using the approximate value,
0.6 � 3/5, is more common:

(1.62)

The numerical coefficient is dropped again. Within this level of approximation, the
same formula applies to the end-to-end distance RF of the real chain.

The exact exponent was estimated in the renormalization group theory.2 The
proof is difficult. Fortunately, however, Flory correctly obtained the approximate �
in a simple method.3 The exponent � is called the Flory exponent. Below we
briefly review his method.

Flory expressed the free energy of the real chain as a function of the overall di-
mension of R. Here, R is not the average dimension but is allowed to change as the
shape of the chain changes. The free energy consists of two terms—one is the
entropy due to the freedom for different chain conformations and the other is 
the interaction mostly due to the excluded volume. In Section 1.3.3, we obtained
the entropy term as S 	 –kBR2�(Nb2) [Eq. 1.57 with (r – r
)2 � R2 and RF

2 � Nb2;
the numerical coefficient is dropped here]. The interaction term is given by Eq.
1.61. Then the free energy of the chain (Ach) is given as

(1.63)

Figure 1.36 is a sketch of Ach�kBT. The two terms on the right-hand side have the
opposite R dependence. The interaction becomes weaker as the monomer density
becomes lower with an increasing R, but the entropy term gains. As a result, there is
a minimum in Ach. The R that minimizes Ach is the most probable value of R for a
given N. The excluded volume chain will have that dimension. Thus RF can be ob-
tained from �(Ach�kBT )��R �R � RF

� 0 as RF 	 bN 3/5, reproducing Eq. 1.62.
The ratio of Rg

2 to RF
2 is insensitive to the excluded volume effect. The renor-

malization group theory gives2

(1.64)

In the ideal chain, the ratio is 1 (Eq. 1.29).

6Rg
2

RF
2 � 0.952

Ach

kBT
	

R2

Nb2 � b3 N2

R3

Rg 	 bN�   � � 0.59 or 3�5   real chains
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Note that the chain dimension thus obtained is independent of the temperature.
For this reason, the real chains are often called athermal chains. The independence
results from the fact that both the elasticity and the excluded volume are entropic in
origin. The two terms on the right-hand side of Eq. 1.63 are independent of T. In
some polymer solutions, however, the interaction is enthalpic. Dividing the interac-
tion by kBT makes the interaction term in Eq. 1.63 reciprocally proportional to T.
Consequently, the polymer chain dimension depends on the temperature. In Section
2.3, we will see this effect.

1.4.2.2 Experimental Results Experiments conducted on dilute polymer
solutions verified that the chain dimension follows Eq. 1.62. Figure 1.37 shows a

R

A
ch

/k
B

T

elasticity interaction
RF

Figure 1.36. Free energy of a chain, Ach, as a function of the chain dimension R. The free
energy consists of the elastic energy and the interaction.

Figure 1.37. Radius of gyration Rg of polystyrene in toluene and benzene, plotted as a
function of molecular weight M. The dashed like is the optimal fit by a power relationship.
(From Ref. 2.)
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typical result for polystyrene in toluene and benzene at around room temperature.2

The latter is a typical athermal chain. The data were obtained in lightscattering
experiments that can measure Rg and the average molecular weight (M) of a poly-
mer chain in a dilute solution, as we will see in Section 2.4. All the data fall on a
straight line in the double logarithmic scale. Curve fitting yields

(1.65)

The exponent is in agreement with the theoretically predicted value. At lower
molecular weights (M � 104 g�mol), Rg is smaller than the one given by this equa-
tion. There is a slight difference in the coefficient and the exponent from solvent to
solvent, but the difference is small in a wide range of solvents that dissolve the
polymer easily.

The coefficient and the exponent are quite different for other polymers. For
instance, linear high-density polyethylene in trichlorobenzene at 135°C has the
following Rg:4

(1.66)

Figure 1.38 shows the dependence. The data were obtained by using an on-line
lightscattering detector in size exclusion chromatography. In the study, Rg and M
were measured simultaneously and instantaneously as the polymer was separated in

Rg �nm � 0.0335 � (M�(g�mol))0.553  polyethylene in trichlorobenzene

Rg�nm � 0.01234 � (M�(g�mol))0.5936  polystyrene in toluene and benzene
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Figure 1.38. Radius of gyration Rg of linear high-density polyethylene in trichlorobenzene,
plotted as a function of molecular weight M. The gray line is the optimal fit by a power rela-
tionship. (From Ref. 4.)
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column chromatography (Section 2.5). Compared with polystyrene of the same M,
polyethylene has a greater Rg primarily because its monomer molecular weight is
lower.

1.4.3 Self-Avoiding Walk

A polymer chain with an excluded volume can be modeled by a self-avoiding walk
(SAW) on the lattice. Unlike the random walker we have seen in Section 1.2 for the
ideal chain, this walker is not allowed to visit the sites it has already visited. Its tra-
jectory is close to the conformation of a real chain with excluded volume on the
lattice. For the SAW to represent a real chain, the SAW must be equilibrated by
moving the chain around on the lattice. Figure 1.39 illustrates a difference between
the random walk and the SAW on a square lattice. Apparently, the dimension of the
latter is greater; The excluded volume swells the chain. SAW is widely used in
computer simulations to calculate properties of the polymer chain that are difficult
to obtain in experiments.

Figure 1.40 shows a typical result of the simulation.5 An N-step SAW was gener-
ated on a cubic lattice of lattice unit b. After equilibration, the root-mean-square

Figure 1.39. Polymer chain on a square lattice. a: Random walk for an ideal chain. b: Self-
avoiding walk for a real chain.

Figure 1.40. Radius of gyration Rg of a self-avoiding walk on a cubic lattice of lattice unit b,
plotted as a function of the number N of the steps. The solid line is the optimal fit by a power
relationship. (From Ref. 5.)
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radius of gyration, Rg, was calculated over many different arrangements of the
chain. Again, the data are on a straight line in the double logarithmic scale. Curve
fitting gives

(1.67)

Unlike in Figure 1.36, a good fitting persists to N as small as 9. 
A difference between SAW and the Gaussian chain is also evident in 

the distribution of the end-to-end distance R. Figure 1.41 compares R2W(R),
where W(R) is the distribution function for R. Note that 4�R2W(R) dR gives
the probability to find the end-to-end distance between R and R � dR. In the
Gaussian chain, W(R) � G(R, 0; N), where G is given by Eq. 1.34. The SAW 
of N � 199 steps was generated on a tetrahedral lattice.6 In the figure, the
Gaussian chain has a broader distribution, especially at large R. It is one of
the shortcomings of the Gaussian chain model to describe the conformation of the
real chain. 

1.4.4 PROBLEMS

Problem 1.11: A self-avoiding walk (SAW) generated on a lattice is slightly
different from the trace of a real chain on the same lattice. Explain why.

Solution 1.11: The environment for a growing chain end of SAW changes as
more monomers are added to the chain and more sites become unavailable to
the next monomer.

Rg �b � 0.4205 � N0.5934  SAW on a cubic lattice
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Figure 1.41. Distribution of the end-to-end distance. R2W(R) is plotted as a function of
R�RF. Symbols were obtained in computer simulation; the solid line represents the distribu-
tion for the Gaussian chain. (From Ref. 6.)
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Problem 1.12: Assume that we can use the expression for the mean square dis-
tance between the two ends of a real chain (RF

2 � b2N 2� ) also for the mean
square distance between two monomers, i.e., 〈(ri � rj)2〉 � b2 � i � j �2�.
Calculate Rg

2 of the real chain. In Eq. 1.25, replace the sum with a double
integral. What is 6Rg

2�RF
2 for n � 0.59? Why do you think it is different from

the one calculated in a more rigorous theory (renormalization theory)?

Solution 1.12:

The real chain is more rigid over a short distance, which makes a contribution
of close pairs of i and j greater than it is in the above calculation.

Problem 1.13: We can apply Flory’s method to find the Flory exponent for the
dimension of a two-dimensional excluded-volume chain. In two dimensions,
the entropy term is the same as that of the three-dimensional chain, but the in-
teraction term changes to 
Uch�kBT � b2R2(N�R2)2 � b2N2�R2.

Solution 1.13:

The derivative is zero at the free energy minimum:

From which we obtain R � bN3/4.

1.5 SEMIRIGID CHAINS

1.5.1 Examples of Semirigid Chains

In the preceding sections, we assumed that the polymer chain is flexible and coil-
shaped. However, some linear chains have an inherent backbone rigidity. In contrast
to flexible chains that look like a cotton thread, the inherently rigid chains resemble a
fishing thread. These polymers are called semirigid polymers or semiflexible poly-
mers. There are several mechanisms that support the backbone rigidity (Fig. 1.42):
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(a) �-Conjugation in the valence electrons of the main chain. The delocalized
electrons prefer a straight backbone. Polyacetylene, poly(p-phenylene), and
polydiacetylene are typical of these polymers. Side groups (R,R�) are at-
tached to make these polymers soluble in solvents without compromising
the rigidity.

(b) Bulky side groups. Bulky pendant groups grafted at high density to the main
chain force the chain to adopt an extended conformation. Poly(n-hexyl iso-
cyanate) belongs to this group.7

(c) Hydrogen bonding. Hydrogen bonding between hydrogen donors and
acceptors on the main chain or side groups locks the chain into a specific
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Figure 1.42. Examples of a wormlike chain. a: Chain with a �-conjugated backbone
[poly(p-phenylene) and polydiacetylene]. b: Chain with a bulky side chain [poly(n-hexyl iso-
cyanate); also helical]. c: Helical chain (double-stranded DNA). d: Polyelectrolyte
[poly(styrene sulfonate); ionized in neutral water]. The rigidity is supported by the high den-
sity of negative charges on the backbone. (b is from Ref. 7.)

Publishers Note: Permission to reproduce this image online was not granted by the 
copyright holder. Readers are kindly asked to refer to the printed version of this chapter.
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arrangement, mostly into a straight conformation. The bonding can be
between immediate neighbors or between monomers a few units apart. 
�-Helix forming synthetic polypeptides such as poly(�-benzyl-L-glutamate)
and double-stranded DNA fragments belong to this category. These
polymers may change into flexible coils at high temperatures (helix-coil
transition).

(d) Coulomb repulsions. Same charges distributed along the chain at high den-
sity repel each other to extend the otherwise flexible chain. Strong polyelec-
trolytes such as poly(styrene sulfonate) in a neutral, salt-free solution at low
concentrations belong to this category.

The rigidity depends on the solvent, temperature, and additives. When the chain
is straight, the polymer is called a rodlike molecule.

1.5.2 Wormlike Chain

1.5.2.1 Model In Section 1.2.3, we looked at a freely rotating chain with a fixed
bond angle � – � b but an unrestricted dihedral angle. When the bond angle is close
to � and the bond length b is short, this model can represent a semirigid chain, as
shown below. The orientation correlation of the ith stick and the jth stick was
obtained as 〈ui�uj〉 � cos� i – j ��b, where ui is the unit vector parallel to the ith stick
(Eq. 1.31). We now decrease �b. When �b « 1, the correlation between u and u
 at
two points separated by l � b � i – j � along the contour is 〈u�u
〉 � (1 – �b

2�2)l/b. We
take the limit of b : 0 while holding 2b��b

2 unchanged. Then,

(1.68)

where L # 2b��b
2, and (1 � bx)1/b : ex (b : 0) with x � �1�L was used.

In the limit, the conformation of the chain is not zigzag but rather
a smooth curve in a three-dimensional space, as illustrated in Figure 1.43.
This model is called a wormlike chain or a Kratky-Porod model. A continuous

〈u �u
〉 � [(1 � b�L)1�b]l : exp(� l�L)

Figure 1.43. Conformation of a wormlike chain is specified by r(s). Its unit tangential vec-
tor is u(s).

s

u(s)s = 0
r(s)

s = Lc



variable r(s) describes the conformation, where s is measured along the contour
from one of the chain ends (0 � s � Lc). The tangential vector u(s) of unit length
at s is given by

(1.69)

and represents the local orientation of the segment in the semirigid chain. As in the
bead-stick model, the correlation between u(s) and u(s
) of two segments at s and
s
 decreases to zero with a growing distance between the two segments along the
contour:

(1.70)

where Lp is called the persistence length. The correlation is lost exponentially as
shown in Figure 1.44. The wormlike chain is described by two parameters, Lp

and Lc (the contour length). The chain can be realized in a computer modeling
by a bead-stick model of Lc�b sticks of length b (Lc�b » 1) with a bond angle of 
� – �b � � – (2b�Lp)1/2.

1.5.2.2 End-to-End Distance We now calculate the end-to-end distance RF. The
end-to-end vector R is related to u(s) by

(1.71)

Therefore,

(1.72)〈R2〉 ��Lc

0
 �Lc

0
〈u(s)u(s
)〉 d s d s
 � 2�Lc

0
ds�s

0
d s
〈u(s)�u(s
)〉

R � r(Lc) � r(0) � �Lc

0
u(s)d s

〈u(s)�u(s
)〉 � exp(� �s � s
 � �Lp)

u(s) �
dr(s)

d s
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Figure 1.44. Correlation of the tangential vector is lost with an increasing segment distance.
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With Eq. 1.70, we obtain

(1.73)

Two limiting cases are interesting. When Lp » Lc, i.e., the chain is either sufficiently
rigid or short,

(1.74)

In the limit of Lc�Lp : 0, the wormlike chain is a rod (Lc � RF). When Lc » Lp, i.e.,
the chain is sufficiently flexible or long,

(1.75)

In the limit of Lc : �, RF 	 Lc
1/2, the same as the ideal chain. Comparison with

Eq. 1.29 (Lc � bN ) gives an effective segment length of 2Lp. The wormlike chain
behaves like an ideal chain of a bond length of 2Lp when Lc » Lp. The segment
length defined in this way is called the Kuhn segment length.

1.5.2.3 Radius of Gyration To calculate the radius of gyration of the wormlike
chain, we use a slightly different version of Eq. 1.25:

(1.76)

Since [r(s) – u(s
)]2 � 2Lp[ �s � s
� � Lp (exp(��s � s
��Lp) �1)] has been al-
ready obtained in Eq. 1.73, it is easy to calculate Rg. The result is

(1.77)

In the short-chain or the rigid-chain limit (Lc�Lp « 1),

(1.78)

In the long-chain limit or the flexible-chain limit (Lc�Lp » 1),

(1.79)Rg
2 �

1

3
 LpLc�1 �

3Lp

Lc
 � ����

Rg
2 �

1

12
 Lc

2 �1 �
Lc

5Lp
 � ����

Rg
2 �

1

3
 Lp Lc � Lp

2 � 2 
Lp

3

Lc
 �1 �

Lp

Lc
 [1 � exp(�Lc �Lp)]�   wormlike chain

Rg
2 �

1

2Lc
2 �Lc

0
 �Lc

0
[r(s) � r(s
)]2

 d s ds
 �
1

Lc
2 �Lc

0
 d s�s

0
ds
[r(s) � r(s
)]2

 

RF
2 � 2LcLp�1 �

Lp

Lc
 � ����

RF
2 � Lc

2�1 �
Lc

3Lp
 � ����

RF
2 � 2Lp[Lc � Lp(exp (�Lc�Lp) � 1)]     wormlike chain



As in RF
2, 2Lp � b makes the wormlike chain in the asymptote of Lc�Lp » 1 have

the same Rg as the ideal chain of the same Lc.
Figure 1.45 shows how RF

2 and Rg
2 change with Lc�Lp. The slope shows an

crossover from that of a rigid rod (slope � 2) to that of a flexible chain (slope � 1)
for both RF

2 and Rg
2. The value of 6Rg

2�RF
2 increases from 1/2 to 1 with an increas-

ing Lc�Lp. The crossover occurs at around Lc/Lp 	 1.
Figure 1.46 shows how Rg changes with Lc�Lp. Parts a and b are the plots of

Rg
2�(Lc

2�12) and Rg
2�(LpLc�3) as a function of Lc�Lp, respectively. Figure 1.46a

indicates how the chain dimension decreases from that of the rigid rod conforma-
tion of the same Lc as the chain becomes longer or more flexible. Figure 1.46b
shows how the chain approaches an ideal chain as Lc�Lp increases. Because Lc 	 M,
the two plots are essentially the plots of Rg

2�M 2 and Rg
2�M, respectively, as a func-

tion of M.

1.5.2.4 Estimation of Persistence Length As we will learn in Section 2.4, the
lightscattering experiments for different molecular weights of a semirigid polymer
give the estimates of Rg and M for each fraction of the polymer. From the
dependence of Rg on M, we can estimate Lp. For this purpose, we rewrite Eq. 1.77
into

(1.80)

where mL � M�Lc is the molecular weight per unit length of the chain contour.

Rg
2

M
�

Lp

3mL
�

Lp
2

M
�

2Lp
3mL

M2 �1 �
Lp mL

M
 [1 � exp (�M�(Lp mL))]�
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Figure 1.45. Mean square end-to-end distance RF
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2 (dashed line) reduced by Lp

2, plotted as a function of Lc�Lp.
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An example of the lightscattering studies is shown in Figure 1.47 for poly
(n-hexyl isocyanate) in hexane.8 The data are on the curve shown in Figure 1.46b.
Curve-fitting of the data by Eq. 1.80 gives the estimate of the two parameters as 
Lp � 42 nm and mL � 715 g�(mol·nm). In Figure 1.47, Rg of poly(n-hexyl iso-
cyanate) for M � 105 g�mol is 31 nm. This value is much greater than those of
polystyrene and polyethylene of the same M (compare Fig. 1.47 with Figs. 1.37
and 1.38).

Examples of Lp thus estimated are listed in Table 1.3 for some semirigid poly-
mers. The persistence length depends on the solvent, the temperature, the concen-
tration, and, for polyelectrolytes, on the ionic strength and pH.

1.5.3 PROBLEMS

Problem 1.14: What is Lp in the freely rotating chain with bond length b and
bond angle � � �b?

0

1

R
g2  / (

L
c2 /1

2)

0 10 20 30 40 50

Lc / Lp

R
g2  / (

L
cL

p/
3)

0

1

a

b

Figure 1.46. Mean square radius of gyration, reduced by (a) Lc
2�12 and (b) LpLc�3, is plotted

as a function of Lc�Lp. When Lc�Lp « 1, the wormlike chain is rodlike. When Lc�Lp » 1, the
wormlike chain is a linear flexible chain.



Solution 1.14: For two bonds ui and uj separated by s, � i � j � � s�b. Then,

Comparison with Eq. 1.70 gives

Problem 1.15: What is the expectation of the projection of the end-to-end vec-
tor R onto the tangential vector u0 � u(0) at the end of a wormlike chain?

Solution 1.15: The projection is given by

Problem 1.16: Nonreverse random walk (NRRW) is often used in lattice simu-
lations. The random walker can choose any direction except for returning to
the preceding site. Otherwise, the walker can return to the site it visited ear-
lier. We can expect that the trajectory is between that of an ideal chain and
that of an excluded volume chain. For a cubic lattice of lattice unit b, assume
that the random walker chooses one out of the five directions at random and
answer the following questions.

(1) What is 〈
ri � 
ri�1〉? How about 〈
ri � 
rj〉?
(2) What is the mean square displacement of N steps when N » 1?

(3) The nonreverse condition makes NRRW somewhat rigid. What is the per-
sistence length?

 � �Lc

0
exp(�s�Lp) d s � Lp[1 � exp(�Lc �Lp)]

〈R�u0〉 � 〈�Lc

0
u(s) d s�u0 〉 � �Lc

0
〈u(s)�u(0)〉 d s

Lp �
b

� ln(cos �b)

〈u(s)�u(0)〉 � (cos �b)s�b � exp[(s�b)ln(cos �b)]
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TABLE 1.3 Persistence Length of Some Semirigid Polymers

Polymer Solvent Lp�nm

poly(p-phenylene)a toluene 13
poly(n-hexyl isocyanate)b hexane 42
DNAc aqueous ~50
poly(�-benzyl-L-glutamate)d DMF ~200

aS. Vanhee et al. Macromolecules 29, 5136 (1996).
bH. Murakami et al. Macromolucules 13, 345 (1980).
cB. Zimm, Macromolecules 31, 6089 (1998).
dE. Temyanko et al. Macromolecules 34, 582 (2001).
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Solution 1.16:
(1) 〈
ri · 
ri+1〉 � b2�5. 〈
ri · 
rj〉 � b2�5� i� j �.

(2)

(3) Equate 〈ui · uj〉 � (1�5)� i� j � with 〈ui · uj〉 � exp(�b�i � j��Lp). Then, we
get Lp � b� ln 5. It is close to (3�4)b estimated from (2).

1.6 BRANCHED CHAINS

1.6.1 Architecture of Branched Chains

There are different architectures in branched chains as shown in Figure 1.48. A
star-branched chain or star polymer (a) consists of a core and arms of a more
or less similar length. A two-arm star polymer is essentially a linear polymer. A
comb polymer (b) consists of a linear-chain backbone and many small combs
stemming from trifunctional units distributed along the backbone. The joints may
be uniformly spaced. The comb length is more or less uniform. The comb polymer
with a uniform distribution of branching points and a uniform distribution of
branching length can be prepared by polymerizing monomers that have a long side
chain.

Copolymerization of monomers having a side chain with side chain-free
monomers is one of the methods to introduce randomness in the branching points.
In the random-branched chain (Figure 1.48, c and d), branching points are dis-
tributed randomly. The branches may have further branches, although its probabil-
ity is usually low. The branching density can be controlled by changing the mixing
ratio of the two types of monomers. It is difficult to pick up the main chain or the

〈
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Figure 1.47. Mean square radius of gyration reduced by molecular weight M for different
fractions of poly(n-hexyl isocyanate) in hexane. The optimal curve fitting by the wormlike
chain model is shown as a solid line. (From Ref. 8.)



backbone in the random-branched chain. The length of the branches distinguishes
long-chain branching (c) from short-chain branching (d). Long-chain branching is
sometimes naturally introduced in the chain-reaction polymerization. When the
frequency of branching is high, then the chain is called a highly branched chain or
hyperbranched chain.

There is a different class of branched polymer. In a dendrimer shown in
Figure 1.49, every repeating unit is trifunctional. Starting at the center, the number
of monomers in a layer (generation) increases twofold every generation.

1.6.2 Dimension of Branched Chains

The best quantity to characterize the overall dimension of the branched chain is the
radius of gyration, Rg; The end-to-end distance cannot be well defined for nonlinear
chains. The branching parameter gg is defined as 

(1.81)gg #
Rgb

2

Rgl
2    branching parameter
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a b

c d

Figure 1.48. Architectures of branched polymers: star polymer (a), comb copolymer (b),
short-chain branching (c), and long-chain branching (d).

Figure 1.49. Dendrimer.
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where Rgb
2 is the mean square radius of gyration for the branched chain, and

Rgl
2 is the mean square radius of gyration for the linear chain. The ratio is

calculated for the two polymers of the same molecular weight. Branching
makes the monomers more congested around the center of mass. Therefore 
gg � 1.

For demonstration, we calculate here gg for an nA-arm star polymer. We
assume that each arm is an ideal chain and has the same number of monomers,
N1 (N1 » 1). Let rij be the position of the jth monomer ( j � 0, 1, . . . , N1) on
the ith arm (i � 1, 2, . . . ,nA), as illustrated in Figure 1.50. The core is at
ri0. With the use of Eq. 1.25, the mean-square radius of gyration Rgb

2 is ex-
pressed as

(1.82)

where the core is not included in the sum. The mean square of the monomer dis-
tance is calculated for monomers on the same arm and those on difference arms
separately (see Figure 1.50):

(1.83)

 � 1
3 b

2nAN1(N1 � 1) (3nA N1 � 2N1 � 1)

 � b2�nA 

N1

j,n�1
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From Eqs. 1.82 and 1.83, we have

(1.84)

where N1 » 1 was used, and N � nAN1 is the total chain length. For linear polymer
(nA � 2), the mean-square radius of gyration is Rgl

2 � b2N�6. Thus,

(1.85)

Figure 1.51 shows a plot of gg as a function of nA. As the number of arms in-
creases, the chain becomes more compact and therefore gg decreases.

Branching is widely observed in polyolefins. Figure 1.52 shows Rg of branched
polyethylene as a function of molecular weight M of the polymer.9 As in Figure
1.38, size-exclusion chromatography with an on-line light-scattering detector was
employed to measure Rg and M simultaneously for every fraction separated in the
chromatography. Different sets of data (distinguished by different symbols in the
plot) were obtained by changing the reaction pressure. Each set follows approxi-
mately a power law of Rg � M 0.59. We can estimate the branching parameter gg for
each sample by comparing Rg at some value of M.

1.6.3 PROBLEMS

Problem 1.17: Calculate Rg of a ring polymer (also called a cyclic polymer)
consisting of N segments of length b. Assume Gaussian statistics for any part
of the chain.

gg �
1

nA
 �3 �

2

nA
� branching parameter

nA-arm star

Rgb
2 �

b2(N1 � 1)

6nA N1
 (3nA N1 � 2N1 � 1) 	 b2 

N

nA
 � 1

2
�

1

3nA
�
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Figure 1.51. The branching parameter of a star polymer, plotted as a function of the number
of arms, nA.
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Solution 1.17:

r

r′

n
N−n

Two segments at r and r
 separated by n segments on one side and N � n
segments on the other side are distributed with a probability proportional to

where 1�n
 � 1�n � 1�(N – n) � N�[n(N � n)]. When normalized, the
probability is given by G(r, r�; n
). The average of (r � r
)2 is

� N�1�N

0
dn n
b2 � N�1b2�N

0
dn

n(N � n)

N
�

1

6
 Nb2

〈(r � r
)2〉 � N�1�N

0
dn�dr(r � r
)2 G(r, r
; n
)

exp ��
3(r � r
)2

2nb2 � exp ��
3(r � r
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2(N � n)b2 � � exp ��
3(r � r
)2
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Figure 1.52. Radius of gyration Rg of branched polyethylene prepared at different reaction
pressures, plotted as a function of the molecular weight M. (From Ref. 9.)



Thus,

Problem 1.18: A comb polymer has nA anchors along its backbone, interspaced
by Ns monomers. Each comb consists of Nc monomers. What is Rg of this
comb polymer, when all monomers have an equal mass? Assume that all parts
of the comb polymer are ideal, each monomer has a size of b, and Ns, Nc,
nA » 1.

Solution 1.18:

R2
g,ring � 1

2 〈(r � r
)2〉 � 1
12 Nb2
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Ns

rim

sjn
Nc

Let rim be the position of the mth monomer on the ith comb and sjn be the po-
sition of the nth monomer on the jth block on the main chain. 1 � m � Nc,
1 � n � Ns, 1 � i, j � nA. There are a total nA(Nc � Ns) monomers in the
chain. The mean square distance between the two monomers has four parts:
SA (two monomers on the same comb), SB (two monomers on different
combs), SC (two monomers on the main chain), and SD (one monomer on the
comb, the other on the main chain):
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We find that SA « SB. The means square distance between two monomers is

Thus, Rg
2 is given by

Note that the second term in the square bracket is negligible when nANs » Nc. The
chain dimension is determined by the main chain only.

1.7 MOLECULAR WEIGHT DISTRIBUTION

1.7.1. Average Molecular Weights

1.7.1.1 Definitions of the Average Molecular Weights Nearly all of polymer is
a mixture of molecules with a different degree of polymerization. This polydisper-
sity is absent in some synthetic oligomers and some polymers of biological origin
such as proteins. Monodisperse polymers refer to those with a single molecular
weight. They are exceptions. Polymers are usually polydisperse and have a molecu-
lar weight distribution. A few representative values are used as a typical molecular
weight of the polymer. We learn here about average molecular weights.

Let the sample of the polymer consist of ni chains of exact molecular weight Mi,
where the ith component has a degree of polymerization i. The difference between
Mi and Mi�1 is the mass of the repeating unit. The number-average molecular
weight Mn is defined as

(1.86)

The weight-average molecular weight Mw is defined as

(1.87)

Note that ni��ni gives the number fraction of the ith component and ni

Mi��ni Mi is its weight fraction. For i » 1, Mi 	 i because the chain ends are only a
small part of the long chain; therefore, the weight fraction is given by ini�� ini as
well. It is not necessary that ni be the actual number of polymer molecules, but ni

Mw � 

i

ni Mi
2 � 


i

ni Mi  weight-average molecular weight

Mn � 

i

 ni Mi � 

i

 ni  number-average molecular weight

Rg
2 �

1

2
 b2� 1

3
 nANs �

Nc(Nc
2 � NsNc � Ns

2 )

(Ns � Nc)2 �

SB � SC � 2SD

nA
2(Ns � Nc)2 � b2� 1

3
 nANs �

Nc(Nc
2 � Ns Nc � Ns

2 )

(Ns � Nc)2 �

 	 b2�1
3 nA

3Ns
2Nc � 1

2 nA
2Ns Nc(Ns � Nc)�



must be proportional to the number. Figure 1.53 illustrates the difference between
the number fraction and the weight fraction. The total height of the bars at each i
gives the weight factor in calculating the average. In the number average, each
polymer chain is counted equally regardless of its length. In the weight average, a
longer chain is counted with a greater proportion.

Also used is the z-average molecular weight Mz further weighted with Mi:

(1.88)

For a perfectly monodisperse polymer, Mn � Mw � Mz. Otherwise,
Mn � Mw � Mz. The ratio of Mw to Mn is often used to express how polydisperse
the polymer sample is. The ratio is called polydispersity index, often abbreviated
as PDI:

(1.89)

Unless the polymer is monodisperse, PDI � 1. A sample with a greater PDI has a
broader molecular weight distribution.

A continuous version of the molecular weight distribution is also used in the def-
inition of the average molecular weights. The discrete variable Mi is now replaced
by a continuous variable M, and ni is replaced by f(M), where f(M)dM is propor-
tional to the number of polymer molecules with molecular weights between M and

PDI �
Mw

Mn
� 


i

ni 

i

ni Mi
2��


i

ni Mi�
2  polydispersity index

Mz � 

i

ni Mi
3 � 


i

ni Mi
2  z-average molecular weight
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M � dM. Now the three definitions of the average molecular weight are

(1.90)

(1.91)

(1.92)

1.7.1.2 Estimation of the Averages and the Distribution Osmometry (mem-
brane or vapor pressure) counts the number of independently moving units (poly-
mer chains) per volume and therefore can be used to estimate Mn. A proton NMR
spectrum can also give Mn. If the polymer is end-functionalized, titration can give
an estimate of Mn. In Section 2.4, we will learn that light scattering gives an esti-
mate of Mw.

Recently, mass spectroscopy has been increasingly applied to the analysis of the
molecular weight distribution of polymers. Development of a soft ionization
method that allows a whole polymer chain to be ionized without fragmentation has
facilitated the application. The method is called matrix-assisted laser desorption
ionization (MALDI) and usually coupled with time-of-flight (TOF) mass analyzer.
Figure 1.54 shows an example of the mass spectrum.10 The sample is poly(ethylene
glycol) of a nominal molecular weight of 2,000 g/mol. The peaks are interspaced
by the monomer molecular weight of 44 g/mol. The width of each peak is due to
the presence of isotopes (mostly 13C). The application has been limited, however, to

Mz � �M3f (M) dM��M2f (M) dM

Mw � �M2f (M) dM��M f (M) dM

Mn � �M f (M) dM��f (M) dM

Figure 1.54. Example of a mass spectrum of a polymer obtained in MALDI-TOF mass
spectrometry. Poly(ethylene glycol) of a nominal molecular weight of 2,000 g/mol is shown.
(From Ref. 10.)
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polymers with a narrow molecular weight distribution or with molecular weights
less than a few tens of thousand g/mol. Ions consisting of a single molecule but
with multiple charges and ions consisting of more than one polymer molecules
cause significant ghost peaks at twice as large m/z, half as large m/z, and so forth. A
sample with a broad molecular weight distribution makes these ghost peaks over-
lap. Furthermore, there is a question of the molecular weight-dependent ionization
efficiency.

Size exclusion chromatography has been the mainstay in the analysis of the mo-
lecular weight distribution. Although the resolution is poorer than that of mass
spectrometry by orders of magnitude, the chromatographic separation gives an un-
biased molecular weight distribution. We will learn about the chromatographic
method in Section 2.5.

1.7.2 Typical Distributions

1.7.2.1 Poisson Distribution We now calculate the average molecular weights
for some typical distributions of a linear polymer. The examples are a Poisson
distribution and an exponential distribution in a discrete space and a log-normal
distribution in a continuous space.

In the Poisson distribution, the number fraction of the ith component is given by

(1.93)

where n is the total number of chains and a is a constant. A greater a makes the dis-
tribution heavier at larger values of i. Figure 1.55 shows the Poisson distributions
with a � 3 and 10. For simplicity, we assume that Mi � iM1, where M1 is the
monomer molecular weight. Then, Mn is calculated as

(1.94)Mn � 

�

i�0
Mi ni 

�n � M1e�a 

�

i�0
iai�i! � M1e�a  a


�

i�1
ai�1�(i � 1)! � M1

 a

ni�n � e�aai�i!   (i � 0, 1, 2 , . . .)
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The constant a is the number-average degree of polymerization. Likewise,

(1.95)

Thus Mw � (1 � a)M1. Note that Mn and Mw differ only by M1. Therefore,

(1.96)

PDI decreases toward 1 as Mn increases. Figure 1.56 shows Mn and Mw together
with its parent Poisson distribution with a � 10. If a � 1,000, then PDI � 1.001.
Polymers prepared in living polymerization are known to have a distribution close
to the Poisson distribution. 

1.7.2.2 Exponential Distribution In the exponential distribution, the number
fraction of the ith component is given by

(1.97)

where a is a constant (a � 1). ni decreases with an increasing i. With Mi � iM1, Mn

is calculated as

(1.98)Mn � 

�

i�1
Mi ni 

�n � M1(1 � a)

�

i�0
iai�1 �

M1

1 � a

ni 
�n � (1 � a)ai�1   (i � 1, 2 , . . .)

PDI � 1 �
1

a
� 1 �

M1

Mn



�

i�0
Mi

2ni 
�n � M1

2e�a�a2 

�

i�2
ai�2�(i � 2)! � a


�

i�1
ai�1�(i � 1)!� � M1

2(a2 � a)

Figure 1.56. Number fraction and weight fraction of the Poisson distribution. Mn and Mw

are also indicated.
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To have a high molecular weight, a must be close to 1. Likewise,

(1.99)

which gives Mw � M1(1 � a)�(1 � a). Thus the polydispersity is

(1.100)

As Mn increases, PDI increases to 2. Polymers prepared in condensation polymer-
ization follows this distribution. In the latter, a is the probability for the reactive end
to add another monomeric unit, not the terminator.

Figure 1.57 compares the weight fraction distribution of the Poisson distribution
and the exponential distribution with the same Mw. The abscissa is on a logarithmic
scale; therefore, the ordinate is the weight fraction � i. The difference in the width
between the two distributions is large.

1.7.2.3 Log-Normal Distribution Size-exclusion chromatography (Section 2.5)
is widely used to obtain a continuous distribution of the molecular weight. The
direct signal from the detector is proportional to the mass of the polymer in the
relevant fraction, and the signal plotted as a function of time is close to the weight
fraction on a logarithmic scale of M. Therefore, we usually display d��d ln M as a
function of ln M, where � is the cumulative weight fraction defined as

(1.101)�(M) # �M

0
M f (M)dM

PDI � 1 � a � 2 �
M1

Mn



�

i�1
Mi

2ni 
�n � M1

2 (1 � a)

�

i�0
i2ai�1 � M1

2 
1 � a

(1 � a)2
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Then, what is displayed is M 2f(M). The log-normal distribution is a normal distri-
bution for M 2 f(M) with a random variable of ln M:

(1.102)

where is the peak molecular weight on the log scale and �2 is the variance. The
weight distribution function is normalized:

(1.103)

The distribution is shown in Figure 1.58. We notice that the log-normal distribu-
tion has almost the same shape as that of the Poisson distribution or the exponential
distribution. The similarity is due to the law of large numbers.

Other relevant integrals are calculated as follows:

(1.104)

(1.105)

Thus,

(1.106)Mn � M exp(�� 
2�2),  Mw � M exp(� 

2�2),  PDI � exp(� 
2)

 � M exp(� 
2�2)

�M2f (M) dM�(2�� 
2)�1�2�exp ��(ln M� ln M�� 

2)2�2� 
2� ln M�� 

2�2� d ln M

 � (1�M)exp(� 
2�2)

 �f (M) dM � (2�� 
2)�1�2�exp ��(ln M � ln M � � 

2)2�2� 
2 � ln M � �2�2�d ln M

�Mf (M)dM � �M2f (M)d ln M � 1

M

M2f (M) � (2�� 
2)�1�2 exp ��(ln M � ln M )2�2� 

2�

σ

ln M

dΣ
/d

 ln
 M

 =
 M

2 f(
M

)

ln M

Figure 1.58. Log-normal distribution.



1.7.3 PROBLEMS

Problem 1.19: The peak of the molecular weight distribution in Fig. 1.54 is
around 2,100 g/mol. Compare the plot in the figure with the Poisson distribu-
tion with this peak molecular weight.

Solution 1.19: The dashed line was calculated for DP � 48.
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Problem 1.20: Find the molecular weight of the polymer that maximizes the
number fraction in the Poisson distribution (Eq. 1.93). Assume that i » 1.

Solution 1.20:

At the peak,

The value of i that gives the peak is a. The peak molecular weight is aM1.

Problem 1.21: Show that the polydispersity of an nA-arm star polymer, PDIstar,
is related to the polydispersity of the arm, PDIarm, as

Solution 1.21: Let f(M) be the normalized number distribution of the molecular
weight of each arm. The molecular weight Mstar of the star polymer is the sum

PDIstar � 1 �
PDIarm � 1

nA

0 �
�

� i
 ln (ni�n) � ln a � (ln i � 1) � 1 � ln (a�i)

ln (ni�n) � �a � i ln a � ln i! 	 �a � i ln a � i(ln i � 1)
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of the molecular weights Mj of the arm ( j � 1 , . . . ,nA):

From definition,

The denominator and the numerator are calculated respectively as

Then,

1.8 CONCENTRATION REGIMES

1.8.1 Concentration Regimes for Linear Flexible Polymers

In a crude approximation, each linear polymer chain occupies a space of a
sphere or a cube of a linear dimension of Rg, as illustrated in Figure 1.59. Each

 �
1

nA
 
�M1

2  f (M1)dM1

��M1 f (M1)dM1�
2

� 1 �
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monomer occupies a volume of �b3. The volume fraction of the monomers in
this volume is

(1.107)

The exponent 1 � 3� is �1�2 for an ideal chain and �4�5 (or �0.77 for � � 0.59)
for a real chain. The monomer volume fraction decreases as the chain becomes
longer. The real chain is expanded; therefore, the decrease is steeper than that of the
ideal chain. The monomer volume fraction is low in the sphere. It is 0.029 at
N � 100 and 0.0049 at N � 1,000 for the real chain.

At low concentrations, these spheres or cubes are separated from each other. As
the concentration c (mass concentration; expressed in g/mL, for instance) increases,
they become congested and eventually touch each other. At the so-called overlap
concentration (c*), the whole volume of the solution is packed with these spheres.
The overall concentration of the solution is equal to the concentration in the sphere
given by Eq. 1.107 at the chain overlap. Thus c* � N 1�3�. More quantitative defini-
tions of c* are usually used:

(1.108)

(1.109)

c* [�] � 1 (1.110)

where M�NA is the mass of each chain, with NA being the Avogadro’s number. The
last equation relies on the intrinsic viscosity [�] of the polymer, which we will fur-
ther discuss in Section 3.3.

Figure 1.60 depicts three ranges of concentration c: c « c*, c 	 c*, and c » c*.
When c is below c*, the solution is called dilute. At c « c*, the chains are separated

c*�√2Rg�3
�

M

NA

c*� 4�

3
 Rg

3� �
M

NA

Nb3

Rg
3 	

Nb3

(bN�)3 � N1�3�
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Rg

Figure 1.59. A polymer chain has a volume approximately of a sphere of radius Rg.
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from each other and behave more or less independently. The polymer chain inter-
acts primarily with the solvent molecules. The solution is close to an ideal solution.
The situation is different at concentrations above c*. The solution in this regime is
called semidilute. At c » c*, chains are overlapped and entangled. Their mobility is
greatly reduced compared with the chains in dilute solutions. The thermodynamic
properties of the semidilute solutions are greatly different from those of an ideal so-
lution extrapolated to the same concentration. In polymer solutions, deviation from
the ideal solution takes place at a low concentration in terms of the volume fraction
or the mass concentration. The existence of the semidilute regime is characteristic
of the polymer solutions. At a higher concentration c**, the solution enters a so-
called concentrated regime in which each segment of the polymer chain does not
have a sufficient space available. Typically, the volume fraction of the polymer at
c** is between 0.2 and 0.3. For a polymer of a sufficiently high molecular weight,
there is a broad range of concentrations between c* and c**. For polystyrene of M �
3 � 105 g/mol that has Rg � 21 nm, for instance, Eq. 1.108 gives c* � 0.013 g/mL,
and c** is 0.2 to 0.3 g/mL.

We rely on Rg to define c*. This provision allows us to apply the same definition
to solutions of nonlinear polymers such as star polymer, a branched polymer, and a
spherical polymer. As chains become more spherical, Rg decreases compared at the
same molecular weight. Then, the overlap occurs at a higher concentration.

1.8.2 Concentration Regimes for Rodlike Molecules

The concentration regimes are different for rigid-chain polymers. Here we consider
solutions of rodlike molecules (the contour length L » Lp). A thin rodlike molecule
of length L occupies a volume of L3 to allow tumbling of the molecule without col-
liding with other molecules. The overlap concentration c* is then given by

(1.111)

The dilute solution, the solution at c*, and the semidilute solution are illustrated
in Figure 1.61. Compared with a linear flexible chain, c* is much lower. Because

c*L3 �
M

NA

Figure 1.60. Concentration regimes for solutions of linear flexible polymers: dilute solution,
c « c*; solution at the overlap concentration c 	 c*; semidilute solution, c » c*.

Rg

c « c* c ≅ c* c » c*



L � M, c* � M�2. As expected, the effect of neighboring polymer molecules is
more evident in its motion, rather than it is in the thermodynamic properties. 

At higher concentrations, the solution loses isotropy and turns into a nematic
liquid crystal. In the nematic phase, the molecules are more or less aligned along
one axis, but their centers are still randomly distributed.

1.8.3 PROBLEMS

Problem 1.22: How does c* of a wormlike chain with Lp and Lc depend on the
molecular weight M? 

Solution 1.22:

where mL � M�Lc is the molecular weight per length along the chain contour
and therefore independent of M. When Lc « Lp, Rg 	 Lc. Therefore, c* �
Lc�Lc

3 � Lc
–2 � M –2. When Lc » Lp, Rg 	 (LcLp)1/2. Therefore, c* �

Lc�(LcLp)3/2 � (Lp
3Lc)�1/2 � M–1/2.

Problem 1.23: The overlap concentration can also be defined for a solution of a
polydisperse polymer. We impose the condition that the whole volume of the
solution be filled with cubes of volume equal to (radius of gyration)3 for each
chain. Find the concentration ci of component i at the chain overlap.

Solution 1.23: Let ni chains of component i be present in the solution of volume
V. At the chain overlap,

a

i

ni 
Rg,i

3 � V

c* 	
M

NA
 Rg

�3 �
mL

NA
 Rg

�3Lc
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L

Figure 1.61. Concentration regimes for solutions of rodlike polymers: dilute solution, c « c*;
solution at the overlap concentration c 	 c*; semidilute solution, c » c*.
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where a is a constant and Rg,i is the radius of gyration for component i. In the
solution of a single component i, the condition is given by

where ni
* is the number of chains at the overlap in the monodisperse solution.

Thus,

which is identical to

where ci
* is the overlap concentration for the solution of monodisperse

polymer i, and ci is the concentration of component i in the solution.



i

ci

ci
* � 1



i

ni

ni
* � 1

ani
* Rg,i

3 � V
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2
Thermodynamics of Dilute 
Polymer Solutions

2.1 POLYMER SOLUTIONS AND THERMODYNAMICS

For a given polymer, there are solvents that dissolve the polymer well and solvents
that do not dissolve the polymer. The former solvents are called “good solvents”
and the latter “nonsolvents”. Table 2.1 lists a typical good solvent and a nonsolvent
for polystyrene, poly(methyl methacrylate), and poly(ethylene glycol). Polymer
Handbook11 has a long list of solvents and nonsolvents for many polymers. The
concentration of the polymer in the good solvent can be as high as 100%, yet the
solution remains clear and uniform. Adding a nonsolvent to the solution causes
the polymer to precipitate, if the nonsolvent mixes with the good solvent. A solvent
with an intermediate quality dissolves the polymer to some extent.

Like low-molecular-weight solutes, a polymer dissolves in a solvent when solva-
tion lowers the free energy. A good solvent lowers the free energy substantially. A
nonsolvent increases the free energy.

Amorphous polymers (transparent in the solid state; to be precise, it is not a
solid but rather a supercooled liquid) are usually easy to dissolve in the good sol-
vent. In contrast, crystalline and semicrystalline polymers (opaque in the solid
state) are sometimes not easy to dissolve. Within a crystallite, polymer chains are
folded into a regular, thermodynamically stable arrangement. It is not easy to un-
fold the chain from the self-locked state into a disordered state in solution even if
the latter state is thermodynamically more stable. Heating may help the dissolution
because it facilitates the unfolding. Once dissolved, polymer chains take a random-
coil conformation unless the chain is rigid.

Polymer Solutions: An Introduction to Physical Properties. Iwao Teraoka
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-38929-3 (Hardback); 0-471-22451-0 (Electronic)



Thermodynamic properties of the polymer solution depend on how “good” the
solvent is for the polymer as well as on the polymer itself. The interaction between
the solvent and the polymer and the degree of polymerization dictate the properties,
as we will see in the following sections of this chapter. We will examine the mean-
field theory to understand the features of polymer solutions that are distinctly
different from those of the other solutions. We will then examine static light scatter-
ing and size exclusion chromatography. These techniques belong to the most often
used experimental methods to study dilute polymer solutions and to characterize
the polymer in a state isolated from other polymer molecules. Our attention will be
directed to understanding the measurement principles.

As we have learned in Section 1.8, there are a few concentration regimes in the
polymer solution. Chapter 2 will primarily focus on the thermodynamics of dilute
solutions, that is, below the overlap concentration, although we will also look at
how the thermodynamics of the solution deviates from that of the ideal solution
with an increasing concentration. Properties characteristic of nondilute solutions
will be examined in detail in Chapter 4.

2.2 FLORY–HUGGINS MEAN-FIELD THEORY

2.2.1 Model

2.2.1.1 Lattice Chain Model Dissolution of a polymer into a solvent lowers the
free energy of the polymer–solvent system when the enthalpy decreases by dissolu-
tion or, if it does not, when the product of the temperature and the entropy of mix-
ing is greater than the enthalpy of mixing. Miscibility is much lower in polymer–
solvent systems because adding solvent molecules to the polymer does not increase
the entropy as much as it does to the low-molecular-weight solutes. Solvents that
dissolve a given polymer are often limited to those that preferentially surround the
polymer chain. We will learn in this section how small the entropy gain is in
the polymer–solvent mixture. We will also learn what phenomena characteristic
of polymer solutions are expected. 

Miscibility of the polymer with a given solvent is well explained in the mean-
field theory.3 The theory is an extension of the lattice fluid theory originally devel-
oped to explain the miscibility of two low-molecular-weight liquids. Flory
pioneered the application of the mean-field lattice fluid theory to polymer solutions.
The simplest version of this lattice chain theory is generally referred to as 
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TABLE 2.1 Good Solvents and Nonsolvents for Some Polymers

Polymer Crystallinity Good Solvent Nonsolvent

Polystyrene Amorphous Toluene Methanol
Poly(methyl methacrylate) Amorphous Tetrahydrofuran Methanol
Poly(ethylene glycol) Crystalline Water (cold) Ether
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Flory–Huggins mean-field theory. A similar mean-field theory successfully de-
scribes thermodynamics of polymer blends and, with some modifications, diblock
copolymers and their blends with homopolymers. 

The mean-field theory for the polymer solution compares the free energy of the
polymer–solvent system before mixing and the free energy after mixing. We con-
sider a simple situation: the polymer is a monodisperse homopolymer and is in an
amorphous state or in a liquid state (melt) before mixing.

The Flory–Huggins theory uses the lattice model to arrange the polymer chains
and solvents. We have looked at the lattice chain model in Section 1.4 for an
excluded-volume chain. Figure 2.1 shows a two-dimensional version of the lattice
model. The system consists of nsite sites. Each site can be occupied by either a
monomer of the polymer or a solvent molecule (the monomer and the solvent mole-
cule occupies the same volume). Double occupancy and vacancy are not allowed. A
linear polymer chain occupies N sites on a string of N–1 bonds. There is no prefer-
ence in the direction the next bond takes when a polymer chain is laid onto the lat-
tice sites (flexible). Polymer chains consisting of N monomers are laid onto empty
sites one by one until there are a total nP chains. Then, the unoccupied sites
are filled with solvent molecules. The volume fraction � of the polymer is related
to nP by

(2.1)

and the number of the solvent molecules nS is given by

(2.2)

See Table 2.2 for summary.

nS � nsite(1 � �)

nP � nsite� � N

Figure 2.1. Lattice model for polymer solution. Gray sites are occupied by polymer chains,
and white sites are occupied by solvent molecules.

site

solvent

polymer



Before mixing, the polymer occupies the volume of nPNvsite and the solvent oc-
cupies the volume of nSvsite, where vsite is the volume per site. The total volume
nsitevsite does not change upon mixing (incompressible). Thus, the enthalpy of mix-
ing �Hmix in the constant-pressure process is equal to the change in the internal en-
ergy, �Umix, and the Gibbs free energy change �Gmix is equal to the Helmholtz free
energy change �Amix.

2.2.1.2 Entropy of Mixing Flory counted the number of possible arrangements
of nP chains on nsite sites and compared it with the number of arrangements on nPN
sites before mixing, that is, in the melt. Thus, he obtained the entropy of mixing
�Smix per site as

(2.3)

This expression is similar to the entropy of mixing for two gaseous substances. The
difference is that the volume fraction appears in the argument of logarithm, in place
of the mole fraction. Note that the first term is divided by the chain length. The di-
vision by a large N makes �Smix small, especially at low concentrations (� « 1; the
second term is near zero) compared with �Smix for N � 1 (mixture of two solvents).
The division also makes �Smix asymmetric with respect to � � 1�2. As shown in
Figure 2.2, longer chains decrease �Smix at low � and shift the maximum to the
right. At N � 100, the plot is already close to the one for N � � in which the en-
tropy of mixing is determined by solvent molecules only.

We can show that �Smix given by Eq. 2.3 is greater than the entropy of mixing
for an ideal solution of nP solute molecules and nS solvent molecules (Problem 2.1).
The difference is due to a greater number of conformations a polymer chain can
take when the requirement that all the sites be occupied by the monomers is lifted. 

2.2.1.3 � Parameter The entropy of mixing is small for polymer–solvent
systems, especially at low concentrations. Therefore, the change in the interactions
upon mixing (� enthalpy of mixing) governs the miscibility. The interactions we
are considering here are short-ranged ones only, typically van der Walls interactions
(also known as dispersions), hydrogen-bonding, and dipole–dipole interactions. 

The lattice fluid model considers interactions between nearest neighbors only.
The interactions reside in the contacts. We denote by �SS, �PP, and �PS the interac-
tions for a solvent–solvent (S–S) contact, a polymer–polymer (P–P) contact, and a
polymer–solvent (P–S) contact, respectively. Mixing the solvent and polymer
changes the overall interaction energy through rearrangement of contacts. 
Figure 2.3 illustrates the change in the two-dimensional rendering of the lattice.

��Smix  
�(kB  

nsite) �
�

N
 ln� 	 (1 � �) ln (1 � �)  Flory –Huggins
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TABLE 2.2 Lattice Chain Model

Volume Fraction Number of Molecules

Polymer � nP � nsite��N
Solvent 1 � � nS � nsite(1 � �)
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Before mixing, there are four P–P contacts and four S–S contacts between a total of
eight sites. Mixing replaces two P–P contacts and two S–S contacts with four P–S
contacts. The interaction energy on these eight bonds changes from 4�SS 	 4�PP to
4�PS 	 2�SS 	 2�PP. The difference is 4�PS � 2(�SS 	 �PP). Per newly created P–S
contact, the change is �PS � (�SS 	 �PP)�2. The � (chi) parameter, also called
Flory’s � parameter or Flory–Huggins � parameter, is defined as the product of
the lattice coordinate Z and the energy change reduced by kBT:

(2.4)

A positive � denotes that the polymer–solvent contacts are less favored com-
pared with the polymer–polymer and solvent–solvent contacts (see Fig. 2.4). A
negative � means that polymer–solvent contacts are preferred, promoting solvation
of the polymer. In general, � decreases its magnitude with an increasing tempera-
ture because of kBT in the denominator, but the pair interactions also depend on the
temperature in a manner characteristic of each polymer–solvent system. In a
hydrogen bonding pair, for instance, � usually changes from negative to positive
with increasing temperature.

� � Z [�PS � (�PP 	 �SS) � 2] � kBT
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Figure 2.2. Entropy of mixing per site, �Smix�(kBnsite), plotted as a function of polymer
volume fraction �. The number adjacent to each curve denotes N.
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Figure 2.3. Change in the contacts between nearest neighbors when a polymer chain mixes
with solvent molecules.



There are nsite sites, each with Z bonds. The product Znsite is twice as large as the
total number of bonds in the mixture because Znsite counts each bond twice. Thus,
Z�2 is the number of bonds per site. In the two-dimensional square lattice, the num-
ber is 2. In the three-dimensional cubic lattice, it is 3.

2.2.1.4 Interaction Change Upon Mixing For a site occupied by a monomer, two
of its Z neighbors are always adjacent monomers on the same chain, except for the
chain ends. Other monomers on the same chain are also likely to occupy some of the
other neighbors. The mean-field theory neglects this fact and calculates the change
in the interaction, �Umix, by mixing NnP � nsite� unconnected monomers and
nS � nsite(1 � �) solvent molecules at random. The probability for a given bond to be
a P–P contact is �2, the probability for the S–S contact is (1 � �)2, and the probabil-
ity for the P–S contact is 2�(1 � �). Thus, the change �Umix in the internal energy is

(2.5)

The change per site is

(2.6)

As shown in Figure 2.5, �Umix maximizes at � � 1�2. The sign of �Umix is the
same as that of �.

�Umix depends on the interaction through �. A system with the same � has the
same �Umix. For instance, a mixture with �PP � �1 and �PS � �SS � 0 is thermo-
dynamically equivalent to a mixture with �PP � �SS � 0 and �PS � ��1�2.

Another way to arrive at Eq. 2.5 in the mean-field approximation is to tally all
the contacts before and after the mixing. Table 2.3 lists the probability for a bond in
the polymer–solvent system to be a P–P, P–S, or S–S contact before and after the
mixing. The average contact energy is ��PP 	 (1 � �)�SS before the mixing. After
the mixing, it changes to �2�PP 	 2�(1 � �)�PS 	 (1 � �)2�SS. The difference is
�(1 � �)(2�PS � �PP � �SS). For a total Znsite�2 bonds, we obtain Eq. 2.5.

�Umix  
� (nsite 

kBT) � �� (1 � �)  Flory –Huggins

�Umix �
Z nsite

2
 [�PS � (�PP 	 �SS) � 2]
2� (1 � �)
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Figure 2.4. Negative � promotes mixing of polymer with the solvent, whereas positive �
prefers polymer–polymer and solvent-solvent contacts to polymer–solvent contacts.



FLORY–HUGGINS MEAN-FIELD THEORY 75

A solution with � � 0 is called an athermal solution. There is no difference be-
tween the P–S contact energy and the average energy for the P–P and S–S contacts.
In the athermal solution, �Umix � �Hmix � 0 regardless of �. We can regard that
the polymer chain is dissolved in a sea of monomer molecules. Note however that,
in an actual polymer–solvent system, the monomer before polymerization is chemi-
cally different from the repeating unit in the polymer. For instance, an oxyethylene
repeating unit (–CH2 –CH2 –O–) in poly(ethylene glycol) is different from ethyl-
ene oxide or ethylene glycol.

2.2.2 Free Energy, Chemical Potentials, and Osmotic Pressure

2.2.2.1 General Formulas From Eqs. 2.3 and 2.6, the Helmholtz free energy of
mixing, �Amix � �Umix � T�Smix, per site is given as

(2.7)

For a total nsite sites,

(2.8)

or

(2.9)�Amix  
� (

 
kBT ) � nP ln� 	 nS ln(1 � �) 	 � nS�

�Amix  
� (

 
kBT ) � nP ln� 	 nS ln(1 � �) 	 � NnP 

(1 � �)

� Amix

nsitekBT
�

�

N
 ln � 	 (1 � �) ln (1 � �) 	 � � (1 � �) Flory–Huggins

Figure 2.5. Change in the interaction by mixing, �Umix�(kBTnsite), plotted as a function of
polymer volume fraction �. The plot is shown for a positive �.

TABLE 2.3 Probability of Nearest-Neighbor Contacts
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The following identities are useful:.

(2.10)

(2.11)

The chemical potential difference ��P of the polymer chain between the solution
and the polymer melt is calculated from Eqs. 2.9 and 2.10 as

(2.12)

where �Gmix � �Amix was used. Likewise, the chemical potential difference ��S of
the solvent molecule between the solution and the pure solvent is calculated from
Eqs. 2.8 and 2.11 as 

(2.13)

Then, with Eq. 2.A.4 (v* = vsite in the lattice chain model), the osmotic pressure �
is given as

(2.14)
�vsite

kBT
�

�V

nsitekBT
�  

�

N
� ln(1 � �) � � � ��2  Flory–Huggins
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Figure 2.6. Chemical potential ��P of the polymer chain plotted as a function of ln� for the
ideal solution (dashed line) and for nonideal solutions of � � 1�2, � � 1�2, and � � 1�2.
An increase in N inflates the deviation of the solid lines from the dashed line.
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where V = vsite nsite is the volume of the solution. Membrane osmometry and vapor
pressure osmometry measure the osmotic pressure (Appendix 2.A).

2.2.2.2 Chemical Potential of a Polymer Chain in Solution When ,
Eq. 2.12 is rearranged to

(2.15)

The first term is the chemical potential of the ideal solution. N(� � 1) is just a con-
stant and therefore irrelevant to the further discussion. N[(1 � 2�)� 	 ��2] repre-
sents the nonideal part. Figure 2.6 illustrates how ��P changes with �. At low
concentrations, ��P�kBT � ln �, and the solution is nearly ideal. As � increases,
the nonideal term increases its magnitude. The shape of the plot depends primarily
on whether � � 1�2. When � � 1�2 on the one hand, the nonideal terms are posi-
tive and the plot deviates upward compared with the ideal solution. When � � 1�2
on the other hand, the leading term in the nonideal part is negative and therefore the
plot deviates downward. At higher concentrations, the positive second-order term
lets the plot eventually cross the line for the ideal solution. The nonideality
minimizes at � � 1�2.

The deviation from the ideal solution is magnified by N. A small difference of �
from 1�2 shows up as a large nonideality when N is large. Thus the polymer solu-
tions, especially those of high-molecular-weight polymers, can be easily nonideal.
When � � 1�2, in particular, N(1 � 2�) can be easily as large as to cause a dip in
the plot of ��P.

Equations 2.7, 2.14, and 2.15 serve as a starting point for further discussion of
thermodynamics of the polymer solution in the lattice fluid model. Another ap-
proach to the thermodynamics based on these equations is given in Appendix 2.B.

The Flory–Huggins theory neglects the chain connectivity, the chain rigidity, and
the shape of the monomer. Modifications to the Flory–Huggins theory are possible
by taking into account these effects.12,13 The chain rigidity can be incorporated by
giving preference to straight bonds over angled ones, for instance.

2.2.3 Dilute Solutions

2.2.3.1 Mean-Field Theory In this subsection, we consider dilute solutions. When
� « 1, ln(1–�) � �� � (1�2)�2 � (1�3)�3 � 
 
 
 . Then, Eq. 2.14 is rewritten to

(2.16)

In the low concentration limit, Eq. 2.16 gives the osmotic pressure �ideal of the ideal
solution:

(2.17)�ideal �
nsite�

NV
 kBT

�V

nsite 
kBT

�
�

N
	 �1

2 � ���2 	 1
3�

3 	 
 
 
     Flory–Huggins, dilute solution

��P�(kBT) � ln � 	 N [� � 1 	 (1 � 2�)� 	 ��2]  Flory–Huggins

N » 1



Thus the ratio of � to �ideal compared at the same concentration is

(2.18)

The ratio is often called the (osmotic) compressibility.
Figure 2.7 shows ���ideal as a function of �. Three curves with � � 0.4, 0.5,

and 0.55 are plotted for chains of N � 100. The upward or downward deviation of
� from �ideal depends on whether � � 1�2. When � � 1�2, the solution is close to
ideal. A small enthalpic penalty (� � 1�2 � 0; P–S contacts are disfavored) of mix-
ing is compensated by the entropy of mixing, which gives rise to the coefficient 1�2
in the linear term of Eq. 2.18. When � � 1�2, the entropy of mixing is not suffi-
cient to offset the increase in the interaction due to unfavorable polymer–solvent
contacts. Then, the polymer–polymer contacts are promoted, effectively lowering
the osmotic pressure. At higher concentrations, the positive (N�3)� 2 drives �
above �ideal. When � � 1�2, in contrast, the entropy dominates, and � � �ideal in
the entire range of � (Problem 2.6). As � decreases and turns negative, the
polymer–solvent contacts are favored also in terms of the interaction. Then, � is
even greater. It is apparent in Eq. 2.18 that the deviation from �ideal is magnified by
N. The nonideality is large in polymer solutions.

2.2.3.2 Virial Expansion To compare the theory with experiments, � needs to
be expressed in terms of mass concentration c, typically in g�L or mg�L. Using the
identity

(2.19)c �
M

NAN
 

�

vsite

�

�ideal
� 1 	 N ��1

2 � ��� 	 1
3�
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78 THERMODYNAMICS OF DILUTE POLYMER SOLUTIONS

0

1

2

3

0 0.05 0.1 0.15 0.2

0.5
0.4

0.55

ideal

φ

Π
/Π

id
ea

l

χN = 100 =

Figure 2.7. Osmotic compressibility (���ideal) plotted as a function of � for the ideal solution
(dashed line) and nonideal solutions with N � 100 and � � 0.4, 0.5, and 0.55 (solid lines).
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where M�(NAN) is the mass of the monomer (not molar mass), ��(NAkBT ) is, in
general, expanded in a power series of c:

(2.20)

In this virial expansion, A2 is the (osmotic) second virial coefficient, and A3

is the third virial coefficient. A positive A2 deviates � upward compared with that
of the ideal solution (�ideal�(NAkBT ) � c�M). When A2 � 0, the solution is close to
the ideal solution in a wide range of concentrations. Figure 2.8 illustrates how �
deviates from that of the ideal solution, depending on the sign of A2. The meanings
of A2 and A3 will become clearer when we express them in the lattice model by
comparing Eqs. 2.18 and 2.20:

(2.21)

(2.22)

Table 2.4 summarizes the relationship between A2 and �. A2 is a measure of the
nonideality of the solution. A2 � 0 when the entropy of mixing compensates repul-
sive polymer–solvent interactions or attractive polymer–polymer interactions. 

As seen in the expansion of ��(NAkBT ) � (c�M)[1 	 A2Mc 	 A3Mc2 	

 
 ],
the magnitude of A2Mc tells how much thermodynamics of the solution deviates
from that of the ideal solution. A solution with a greater A2M will develop a

A3 � 1
3 
(NAvsite)2(N�M)3

A2 � �1
2 � ��NAvsite(N�M)2

�

NAkBT
�

c

M
	 A2c2 	 A3c3 	
 
 
   virial expansion

Figure 2.8. Osmotic pressure � plotted as a function of polymer concentration c for the
ideal solution (dashed line) and nonideal solutions with A2 � 0, �0, and �0 (solid lines).
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TABLE 2.4 Relationship Between A2 and �

A2 � �

	 ��ideal �1/2
0 ��ideal �1/2
� ��ideal �1/2



nonideality at a lower mass concentration. Separately in Section 1.8, we defined the
overlap concentration c*. We expect that c�c* gives another measure of the nonide-
ality. It is then natural to expect

(2.23)

This equality applies to a sufficiently good solvent only in which A2M dominates
over the third term. Because c* � (M�NA)�Rg

3 (Eq. 1.108) and Rg � b(M�Mb)� with
Mb being the molecular weight of the segment, c* � Mb

3��(NAb3M 3��1). With Eq.
2.23, we obtain

(2.24)

The exponent on M is �1�5 or �0.23. We thus find that A2 decreases with M, but
its dependence is weak. This dependence was verified in experiments.14

Likewise the virial expansion of ���ideal in terms of � allows us to find the
overlap volume fraction �* as �* � [N(1�2–�)] �1. This result is, however, wrong.
We know that �* should rather be �N � 4�5 or �N �0.77 for real chains in a good sol-
vent. Here, we see a shortcoming of the mean-field theory.

2.2.4 Coexistence Curve and Stability

2.2.4.1 Replacement Chemical Potential As � exceeds 1�2 and increases fur-
ther, A2 becomes negative and its absolute value increases. The unfavorable poly-
mer–solvent interaction can be sufficiently strong to cause the solution to separate
into two phases. We will examine the phase diagram of the solution in the mean-
field theory for a system of a fixed volume.

In the lattice model, we cannot change nP and nS independently. A polymer
chain, when added to the system, replaces N solvent molecules, thereby holding the
total volume unchanged. It is convenient to introduce a replacement chemical po-
tential �� rep # ��P � N��S. It is the change in the free energy of the solution
when the polymer increases its concentration by removing N solvent molecules and
placing a polymer chain. From Eqs. 2.12 and 2.13, ��rep is expressed as

(2.25)

This ��rep is also calculated directly from �Amix (Eq. 2.7) using

(2.26)

because an increase in nP (increase in �) implies a decrease in nS at constant V.
The plot of ��rep�(kBT) is shown in Figure 2.9 for N � 100. The three lines are

for � � 0.595, 0.605, and 0.615. When the plot has a dip as for � � 0.615, the
solution can be unstable. In the range of � where the tangent to the plot of ��rep has

��rep

kBT
� � 



nP
 
�Amix

kBT �
T,V

�
N

nsite
 





�
 
�Amix

kBT

��rep

kBT
� ln� 	 1 � N � N ln(1 � �) 	 �N(1 � 2�)

A2 �
NAb3M3��2
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a negative slope, the solution is unstable; As a polymer chain is brought into the sys-
tem, its chemical potential drops, thereby promoting further influx of the polymer.
This situation is not physical, and, therefore, a negative slope in ��rep indicates
instability. In Figure 2.10, the system is stable in the range of a positive slope
(� � �A or �B � � in the figure) and unstable in the other range (�A � � � �B).

2.2.4.2 Critical Point and Spinodal Line The boundaries to the instability, �A

and �B, can be found from ���rep��� � 0. They are the two roots of the quadratic
equation in the lattice model:

(2.27)

The instability condition is given as

(2.28)
1

�
�

N

1 	 �
� 2
N

1
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Figure 2.9. Replacement chemical potential �� rep�(kBT ), plotted as a function of � for 
N � 100 and 
 � 0.595, 0.605, and 0.615. At 
 � 0.595, the plot is an increasing function of
�. At 
 � 
c � 0.605, the plot has a stagnant point at � � �c. At 
 � 0.615, the tangent to
the plot is negative in 0.060 � � � 0.135.
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Figure 2.10. The solution is unstable between �A and �B, where ��rep decreases on
increasing �. 



The same condition can be obtained from the stability of an open system that al-
lows nP and nS to change independently (Problem 2.10).

We can regard Eq. 2.27 as expressing 
 at the stability– instability boundary as a
function of �. The dependence is indicated by a curve in Figure 2.11. The curve is
asymmetric because N » 1. The unstable region (Inequality 2.28) is indicated by the
shaded area. The curve that separates the stable region from the unstable region min-
imizes to 
c at � � �c. This point is called the critical point. When 
 � 
c, Eq. 2.27
has two roots, �A and �B, given as the intersections of the curve with the horizontal
line at 
, and the plot of ��rep(�) has a dip, as seen in the curve of 
 � 0.615 in Fig-
ure 2.9. When 
 � 
c, there is only one root: � � �c. The horizontal is tangential to
the curve at � � �c. The plot of ��rep(�) has a stagnant point at � � �c indicated
by a circle on the curve of 
 � 0.605 in Figure 2.9 and has a positive slope every-
where else. When 
 � 
c, Eq. 2.27 does not have real roots, and ��rep is an increas-
ing function of � in the entire range, as for the curve of 
 � 0.595 in Figure 2.9. The
solution is stable in the whole range of �. The line that separates the stable region
from the unstable region is called the spinodal line. It is represented by Eq. 2.27.
Table 2.5 summarizes the behavior of ��rep(�) and stability of the solution.

2.2.4.3 Phase Separation When 
 � 
c and �A � � � �B, the instability sepa-
rates the solution spontaneously into two phases with different polymer volume
fractions �1 and �2 (�1 � �2). The latter are determined from the condition that
��P and ��S be the same between the two phases. Both the polymer chain and the
solvent molecule are free to leave one of the phases and enter the other phase
(dynamic equilibrium). Figure 2.12 shows ��rep, ��P, and ��S on a common �
axis. As proved in Problem 2.10, the region of the negative slope in ��P and the re-
gion of the positive slope in ��S (i.e., (���S��nS)nP

� 0) coincide. Because
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Figure 2.11. Plot of 
 at ���rep��� � 0 as a function of �. The curve minimizes to 
c at �c.
When 
 � 
c, the derivative is zero at �A and �B. The solution is unstable in the shaded
region above the curve and stable in the other region.

TABLE 2.5 � parameter and stability


 ��rep(�) Stable Unstable


 � 
c always increasing everywhere —

 � 
c stagnant at � � �c � � �c � � �c


 � 
c having a dip � � �A, �B � � �A � � ��B
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��P(�1) � ��P(� 2) and ��S(�1) � ��S(�2), the two phases have the same ��rep.
At �1 and �2, replacing N solvent molecules with a polymer chain or the other way
around does not change the overall free energy. It can be shown that the average of
��rep(�) for � between �1 and �2 is equal to ��rep(�1) � ��rep(�2) (Problem
2.11). Therefore, the two shaded parts in Figure 2.12 have an equal area. This situa-
tion is the same as the constant-pressure line for the vapor-liquid coexistence in the
isothermal process of a single-component system (Maxwell construction). We can
find �1 and �2 from this equality of the areas. It is, however, easier to find �1 and
�2 from ��P(�1) � ��P(�2) and ��S(�1) � ��S(�2), although solving these two
equations simultaneously requires numerical computation.

When 
 � 
c and � is either between �1 and �A or between �B and �2, the solu-
tion is still stable (���rep��� � 0). The chemical potential of either the polymer
chain or the solvent molecule is, however, higher than the counterpart at �1 and �2:
In �1 � � � �A, ��P(�) � ��P(�1) � ��P(�2), as seen in Figure 2.12. The poly-
mer chain is ready to move into one of the two phases with �1 and �2, if they exist,
to lower its chemical potential. In �B � � � � 2, ��S(�) � ��S(�1) � ��S(� 2).
The solvent molecule is ready to move into one of the two phases. The solution will
separate into two phases with �1 and �2 if the separation lowers the overall free
energy of the system.

Now we examine whether the free energy decreases by the phase separation. For
this purpose, we plot in Figure 2.13 the free energy �Gmix given by Eq. 2.7 with
�Gmix � �Amix as a function of �. We compare �Gmix for the single-phase solution
at � and a two-phase solution with �1 and �2. Equation 2.26 tells that the slope
of the curve is essentially ��rep. Together with the result of Problem 2.11, we find
that the curve has a cotangent line at �1 and �2 (Problem 2.12). The inflexion
points of the curve are at �A and �B where ���rep��� � 0 or �2�Gmix���2 � 0.
Between �1 and �2, the curve is located higher than the cotangent line. 

Figure 2.12. Plot of ��rep, ��P, and ��S 
 1000, vertically displaced for easy comparison,
when ��rep has a dip. The three curves share �A and �B, which give the local maximum and
local minimum of each curve. The two parts in the shaded area have an equal area. The
chemical potential is equal between �1 and �2 for each of ��rep, ��P, and ��S.

φ1 φ2φΒφΑ
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In the two-phase solution, the volumes V1 and V2 of the two phases are deter-
mined by the distance of � to �1 and �2 (lever rule):

(2.29)

When � � �2, V1 is zero and the whole solution is in phase 2; When � � �1,
V2 � 0. Adding the polymer to a single-phase solution of �1 creates a new phase
with �2. The lever rule requires that the two-phase solution with � in the range of
�1 � � � �2 have �Gmix on the cotangent line in Figure 2.13 (Problem 2.13).
Therefore, the solution in that range, even if it is in the stable region of �, can lower
the total free energy by separating into two phases.

The phase separation in the stable region does not occur spontaneously, however.
Therefore, we say that the solution with �1 � � � �A or �B � � � �2 is
metastable. The separation requires an external perturbation, such as stirring or the
presence of dust particles. Fortunately, these perturbations are usually present in the
solution. Therefore, a solution in the range of �1 � � � �2 separates into two
phases spontaneously or not, as illustrated in Figure 2.14. Many domains in the
two-phase solution coalesce into two macroscopic domains.

2.2.4.4 Phase Diagram Figure 2.15 shows the curve for �1 and �2 and the
curve for �A and �B. The figure is essentially the phase diagram of the solution in

V1

V2
�

�2 	 �

� 	 �1
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Figure 2.13. Free energy of mixing �Gmix, plotted as a function of � when ��rep has a dip.
The difference between �Gmix and the cotangent at �1 and �2 is magnified.

Figure 2.14. Polymer solution with � between �1 and �2 separates into two phases with �1

and �2. The multiple domains coalesce into two macroscopic phases.
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the Flory–Huggins mean–field theory. The two curves share the apex at �c and 
c.
The lower curve for �1 and �2 demarcates the single-phase regime from the two-
phase regime and therefore is called the coexistence curve (or a binodal line). The
upper curve (spinodal line) is for �A and �B. Above the spinodal line, the system is
unstable and spontaneously separates into two phases. Above the coexistence curve,
the phase-separated state is thermodynamically more stable than the single-phase
state is. Solutions in the two regions between the two curves are metastable.

A solution with 
 � 
c is in a single phase in the entire range of concentrations.
When 
 � 
c, the solution has a miscibility gap. Usually we cannot prepare a sin-
gle-phase solution with � between �1 and �2. The phase with �1 is a solution satu-
rated with the polymer (the concentration of polymer cannot be higher), and the
phase with � 2 is a solution saturated with the solvent (the concentration of solvent
cannot be higher). 

Now we look at how 
c and �c change with N. From Eq. 2.27 and �
��� � 0,
we obtain

(2.30)

at

(2.31)

Figure 2.16 shows how 
c approaches 1�2 with an increasing N and how �c

approaches zero. Both of them decrease in N 	1�2.
Solid lines in Figure 2.17a are the spinodal lines for N � 32, 100, 316, and 1,000.

The critical point on each spinodal line is on the curve given by 
c � 1�[2(1 	 �c)2]

�c �
1

1 � N1�2 � N	1�2


c �
(1 � N1�2)2

2N
� 1

2 � N	1�2

Figure 2.15. Spinodal line and the coexistence curve in the mean-field theory. The solution
is unstable in the darkly shaded region, metastable in lightly shaded region, and stable in the
other region.
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(dashed line). As N increases, the spinodal line approaches the ordinate and the hori-
zontal at 
 � 1�2. Figure 2.17b shows corresponding coexistence curves. Both the
spinodal lines and the coexistence curves are skewed toward �c « 1 because N » 1.
For N � 1 (mixture of two small-molecule liquids), �c � 1�2 and 
c � 2. The spin-
odal line and the coexistence curve are symmetric with respect to �c � 1�2.

The theta condition refers to the critical condition in the long-chain limit,
N : �. A solvent that gives the theta condition to a given polymer is called a theta
solvent. In the mean-field theory, a solvent that provides the polymer with 
 � 1�2
is the theta solvent. In general, theta condition is determined from A2 � 0 (see
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Figure 2.16. As N increases, 
c approaches 1�2, and �c decreases to zero.

Figure 2.17. Spinodal lines (a) and coexistence curves (b) for N � 32, 100, 316, and 1,000.
The open circles indicate the critical point for each N. It approaches 
 � 1�2 and � � 0
along the dashed line as N increases.
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Eq. 2.21). When it has a molecular weight dependence, its high molecular weight
limit gives the theta condition. In the mean-field theory, the condition is independ-
ent of the molecular weight.

A solvent with 
 sufficiently smaller than 1�2 (A2 is positive and sufficiently
large), including negative 
, is called a good solvent. A solvent with 
 � 1�2
(A2 � 0) is called a poor solvent. As 
 increases, the solvent becomes unable to
dissolve the polymer. Then, it is called a nonsolvent. Figure 2.18 illustrates
the ranges of these solvents together with the phase diagram. Along the horizontal
line of 
 � 1�2, A2 � 0. Note that, in the theta solvent, polymer chains with a finite
length (all polymers have a finite length) are still dissolved in the solvent in the en-
tire range of concentrations. For a polymer solution to separate into two phases, A2

has to be sufficiently negative, especially when its molecular weight is low.

2.2.5 Polydisperse Polymer

Almost all the polymer is polydisperse. We consider here the osmotic pressure of
the solution of a polydisperse polymer.

Before mixing the polymer with the solvent, the polymer is already a mixture
consisting of ni chains of Ni beads for component i. This mixture is further mixed
with nS solvent molecules. The entropy of mixing of the polydisperse polymer with
nS solvent molecules is obtained as

(2.32)	�Smix  
� (kB 

nsite) � � 

i

�i

Ni

 ln �i � (1 	 �) ln (1 	 �)

Figure 2.18. Good solvent (A2 � 0, 
 � 1�2), theta solvent (A2 � 0, 
 � 1�2), and poor
solvent (A2 � 0, 
 � 1�2).
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where �i � niNi�nsite, � � �i�i (the sum is with respect to i), and nsite � nS �
�i(niNi). The energy of mixing is the same; we can naturally assume that P–P inter-
actions are the same between chains of different lengths. Then, the free energy of
mixing per site is

(2.33)

Following the method we used in Section 2.2.2, the chemical potential of the sol-
vent molecule, ��S, is calculated, from which we obtain the osmotic pressure
(Problem 2.14):

(2.34)

In the dilute solution limit, the solution is ideal:

(2.35)

It is now apparent that the osmotic pressure counts the total number of polymer
chains. Colligative properties such as the osmotic pressure give, in general, a
measure for the number of independently moving species per unit volume of the
solution.

If we force the ideal solution of the polydisperse polymer to have the osmotic
pressure of a solution of a monodisperse polymer consisting of 〈N 〉 beads dissolved
at volume fraction �, then

(2.36)

which leads to

(2.37)

Thus we find that 〈N 〉 is the number average of Ni. The molecular weight estimated
from the measurement of the osmotic pressure and Eq. 2.20 in the dilute solution
limit is therefore the number-average molecular weight.

In Eq. 2.35, the nonideal terms depend on � only. Then polydispersity affects the
ideal solution part, but not the nonideal part, in the Flory–Huggins mean–field theory.

〈N 〉 �

�
i

�i

�
i

�i  
�Ni

�

�
i

Ni 
ni

�
i

ni

� 

i

�i

Ni

�
�

〈N 〉

�idealV

nsite 
kBT

� �
i

�i

Ni

�V

nsite 
kBT

� � 

i

�i

Ni

	 ln(1 	 �) 	 � 	 
�2 polydisperse

�Amix  
� (nsite 

kBT) � � 

i

�i

Ni

 ln�i � (1 	 �)ln(1 	 �) � 
�(1 	 �)  polydisperse
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2.2.6 PROBLEMS

Problem 2.1: Calculate the entropy of mixing �Smix,id for an ideal solution that
consists of nP � nsite��N solute molecules and nS � nsite(1 	 �) solvent mol-
ecules. Compare it with �Smix given by Eq. 2.3. [Note: the entropy of mixing
for a rigid-chain polymer and a solvent is given approximately by �Smix,id, be-
cause dissolution does not provide the polymer molecule with an additional
freedom in the conformation compared with the state without solvent, except
for the orientational freedom. The latter is negligible compared with the free-
dom a flexible chain would acquire when mixed with solvent molecules.]

Solution 2.1: The entropy of mixing is given as

where xP � (��N)�(1 	 � � ��N) and xS � (1 	 �)�(1 	 � � ��N ) are
the mole fractions of the polymer and solvent, respectively. Then,

With Eq. 2.3,

Let F(x) # x ln(��x) � (1 	 � � x) ln(1 	 � � x), where x # ��N ranges
between 0 (N � �) and � (N � 1). Simple algebra shows that dF�dx �
ln[��(x(1 	 � � x))] is always positive. Then, with F(�) � 0, F(x) � 0 for
all 0 � x � �. Therefore, �Smix,id � �Smix.

Solid lines in the figure below show the plot of �Smix,id for N � 1, 3, 10,
and 100. Dashed lines are �Smix for N � 1, 3, 10, and 100. For N � 1, �Smix,id

� �Smix. For the other values of N, �Smix,id is smaller compared with �Smix.
As N increases, the plot of �Smix,id approaches zero in the entire range of �. In
contrast, �Smix for flexible chains remains finite in the limit of N : �. For
the rodlike molecule with a large N to dissolve (to make �Amix negative),
�Hmix must be negative.

  � (1 	 � � � � N) ln(1 	 � � � � N)

 �Smix,id  
�(kB 

nsite) � �Smix  
� (kB 

nsite) � (��N ) ln N 

	 (1 	 � � ��N) ln(1 	 � � ��N)

 � (� �N) ln� � (1 	 �) ln(1 	 �) 	 (� �N ) ln N

	 (1 	 � � � � N) ln (1 	 � � � � N)

 � (� �N) ln(� �N) � (1 	 �) ln(1 	 �)

� (1 	 �)ln 
1 	 �

1 	 � � � �N

 	�Smix,id  
�(kB 

nsite) �
�

N
 ln 

� �N

1 	 � � � � N

	�Smix,id  
� kB � nP ln xP � nS ln xS � (nsite� �N) ln xP � nsite(1 	 �) ln xS
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Problem 2.2: We used Table 2.3 to calculate �Umix of a homopolymer with a
solvent. Use the same method to show that Eq. 2.6 holds for a binary solution
of an A–B copolymer (its volume fraction is �) and a solvent S in the 
mean-field approximation with the effective 
 parameter given as
xa
as � xb
bs 	 xaxb
ab. Here xa and xb are the mole fractions of monomers A
and B in the copolymer (xa � xb � 1), respectively, 
 js is the 
 parameter for
a binary solution of a homopolymer of j and solvent S, and 
ab is the 
 pa-
rameter for a binary mixture of the two homopolymers.

Solution 2.2:

Probability of Nearest-Neighbor Contacts

Probability Probability
Contact Energy before mixing after mixing

A–A �aa �xa
2 �2xa

2

A–B �ab 2�xax b 2�2xaxb

B–B �bb �xb
2 �2x b

2

A–S �as 0 2�(1 	 �)xa

B–S �bs 0 2�(1 	 �)xb

S–S �ss 1 	 � (1 	 �)2

The change in the average energy per bond is 

	 xa 
xb(2�ab 	 �aa 	 �bb)]

�� (1 	 �)[xa(2�as 	 �aa 	 �ss) � xb(2�bs 	 �bb 	 �ss)

� �as2� (1 	 �)xa � �bs2� (1 	 �)xb � �ss[(1 	 �)2 	 (1 	 �)]

�aa(�2 	 �)xa
2 � �ab(�2 	 �)2xaxb � �bb(�2 	 �)xb

2
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Then,

In terms of 
 parameter,

Comparison with Eq. 2.6 leads to 
 � xa
as � xb
bs 	 xaxb
ab.

Problem 2.3: Verify that Eq. 2.7 with �Amix � �Gmix and Eqs. 2.12 and 2.13
satisfy .

Solution 2.3:

Problem 2.4: The osmotic pressure of the polymer solution can also be obtained
by using the formula (see Appendix 2.B):

Use the identity ���nsite �	(��nsite )���� that applies to changes at a fixed
number of solute molecules to derive Eq. 2.14.

Solution 2.4: Use Eq. 2.7. At a fixed nP,

�

kBT
� 	

1

vsite
 �	

�

nsite
� 

�

��
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N

�
 

�Amix

nsite 
kBT

�
�2

vsite
 

�

��
 

1

�
 

�Amix

nsite 
kBT

�

kBT
� 	� �

�V
 
� Amix

kBT �
T, np

� 	
1

vsite
� �

�nsite
 
� Amix

kBT �
T, nP

 � nsite� �

N
 ln � � (1 	 �)ln(1 	 �) � 
� (1 	 �)�

� (1 	 �)(ln(1 	 �) � (1 	 1�N) � � 
�2)�
 � nsite� �

N
 (ln� 	 (N 	 1)(1 	 �) � 
 N(1 	 �)2)

� nS[ ln (1 	 �) � (1 	 1�N) � � 
�2]

 
nP��P � nS��S

kBT
� nP [ln� 	 (N 	 1)(1 	 �) � 
 N(1 	 �)2]

�Gmix � nP��P � nS��S

�Umix

nsite 
kBT

� � (1 	 �)(xa
as � xb
bs 	 xaxb
ab) 

 � xb(2�bs 	 �bb 	 �ss) 	 xaxb(2�ab 	 �aa 	 �bb)]

 �Umix �
Z nsite

2
 � (1 	 �)[xa(2�as 	 �aa 	 �ss)



Problem 2.5: Show that . The left-hand side is
the Gibbs free energy change in the process that “vaporizes” the polymer
in the condensed amorphous state into a total volume of V (�Vmix �
V(1 	 �)).

Solution 2.5: From Eqs. 2.7 and 2.14,

In the last equality, Eq. 2.12 was used.

Problem 2.6: Equation 2.18 tells that � � �ideal when 
 � 1�2 in the dilute
solution (� « 1). Use Eq. 2.14 to verify that it is also the case in the whole
range of �.

Solution 2.6: From Eq. 2.14,

Since f(0) � 0 and

in the whole range of � when 
 � 1�2, we find that f(�) � 0 for 0 � � � 1.

Problem 2.7: What is the free energy of mixing that corresponds to the virial ex-
pansion of the osmotic pressure given by Eq. 2.20? Also show that the �Amix

you obtained reproduces Eq. 2.7 with A2 and A3 given by Eqs. 2.21 and 2.22.

d  f

d�
�

1

1 	 �
	 1 	 2
 � �

� [1 	 2
 (1 	 �)]

1 	 �
� 0

(� 	 �ideal)V

nsite 
kBT

� 	ln (1 	 �) 	 � 	 
 �2 # f (�)

 � 
 N(1 	 �)2� �
nP��P

nsite 
kBT

�
�

N
 �ln � 	 (N 	 1)(1 	 �)

� (1 	 �)� �

N
	 ln(1 	 �) 	 � 	 
 �2�

 
�Amix � �V(1 	 �)

nsite 
kBT

�
�

N
 ln � � (1 	 �) ln(1 	 �) � 
 � (1 	 �)

�Amix � �V(1 	 �) � nP��P

 �
1

vsite
 � �

N
	 ln(1 	 �) 	 � 	 
�2�

 �
�2

vsite
 

�

��
 � 1

N
 ln� � (�	1 	 1) ln(1 	 �) � 
(1 	 �)�
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Solution 2.7: At a constant cV, that is, at a constant nP,

With Eq. 2.20,

Integration with respect to c at constant cV yields

With Eqs. 2.19, 2.21, and 2.22, and neglecting the constant terms,

Equation 2.7 is expanded with respect to � as

The above two equations are identical except for the linear term that becomes
a constant term upon differentiation.

Problem 2.8: Show that and in the lattice
chain model, where vsp is the specific volume of the polymer in solution.

Solution 2.8: From Eq. 2.21,

where NAvsiteN is the molar volume of the polymer chain, and M is the molar
mass of the polymer. The ratio, NAvsiteN�M, is the reciprocal of the density of
the polymer. In the solution, it is the specific volume (vsp ), that is, the
increment in the solution volume when a unit mass of the polymer is added.

A2M � � 1

2
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NAvsite 
N

M
 N

A3M � 1
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2A2M � (1
2 	 
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 ln � � (
 	 1)� � �1
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�3 � � � �
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Likewise,

Problem 2.9: Use the Gibbs-Duhem theorem

to find ��P for the virial expansion of � given by Eq. 2.20.

Solution 2.9: The Gibbs-Duhem theorem is rewritten to

From Eq. 2.A.4,

Combining the two equations yields

Here, nSv*�(nPM�NA) is the ratio of the total volume of the solvent to the total
mass of the polymer. Assuming that the volume V of the solution is given by

with vsp being the specific volume of the polymer in solution (see Problem
2.8), we find

where c � (nPM�NA)�V is the mass concentration of the polymer. Thus,

Upon integration,

��P

kBT
� ln c � (2A2 

M 	 vsp)c � (3A3 
M � 2 	 A2 

Mvsp) c2 � � � �

d

dc
 
��P

kBT
�

1

c
� (2A2 

M 	 vsp) � (3A3M 	 2A2 
Mvsp)c �� � �

nSv*

nP 
M �NA

�
1

c
	 vsp

V � nSv* � (nP 
M � NA)vsp

d

dc
 
��P

kBT
�

nSv*

nP 
M � NA

 (1 � 2A2 
Mc � 3A3Mc2 � � � �)

��S
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� 	NAv* � c

M
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d��P

dc
� nS

d��S

dc
� 0

nP 
d��P � nSd��S � 0
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N)2

M2 N �
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3  Nvsp
2
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Problem 2.10: For a lattice fluid system that allows nP and nS to change inde-
pendently (total volume is not fixed),

gives the boundary of the stable state. Show that this condition is equivalent
to Eq. 2.27. Show also that ���P��nP and ���S��nS share the sign.

Solution 2.10: Because

, etc.

the second part of the condition always holds when the first part holds. From
Eq. 2.12, the first part is calculated as 

Rearrangement gives Eq. 2.27. Likewise,

is equivalent to Eq. 2.27.
Comparison of the above two equations yields

Because ����nP and ����nS have the opposite sign, ���P��nP and
���S��nS have the same sign.

Problem 2.11: Use Gibbs-Duhem equation (in Problem 2.9) to show that

where ��P(�1) � ��P(� 2) and ��S(�1) � ��S(� 2).

Solution 2.11: The Gibbs-Duhem equation 
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leads to

Using integral by parts,

Problem 2.12: Use the result of Problem 2.11 to show that the plot of �Gmix

has a cotangent line at �1 and �2 (see Fig. 2.13).

Solution 2.12: The slope of the line that connects the two points on �Gmix�
(nsitekBT ) at �1 and � 2 is

where Eq. 2.26 and the result of Problem 2.11 were used. The last part of the
above equation is the slope of the �Gmix �(nsitekBT ) at �1 and �2 according to
Eq. 2.26.

Problem 2.13: Use the lever rule to show that the two-phase solution has its
�Gmix on the cotangent line (see Fig. 2.13).

Solution 2.13: From Eq. 2.29, the total free energy of the two-phase solution is
given as 

which represents a straight line through the two points [�1, �Gmix(�1)] and
[� 2, �Gmix(� 2)] in the figure.

Problem 2.14: Derive Eq. 2.34 from Eq. 2.33.
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Solution 2.14: For a total nsite sites,

Using the identities

the chemical potential of the solvent molecule is calculated as

Then, with Eq. 2.A.4, the osmotic pressure is obtained as

Problem 2.15: Show that the chemical potential of component i of the poly-
disperse polymer in the solution is given as

Solution 2.15: First, we rewrite Eq. 2.33 into

Using the identities
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and

��i is calculated as

Problem 2.16: The osmotic pressure of the lattice polymer solution is, in gen-
eral, given in the virial expansion with respect to �:

Assume that the second virial coefficient B2 is susceptible to the environmen-
tal change but its effect on the higher-order coefficients (B3, B4, . . . ) is weak.
What are the values of B2 and � at the critical condition?

Solution 2.16: From Eq. 2.A.4,

As we have seen in Problem 2.10, the spinodal line is given by

Let . The plot of f(�) depends
on B2. The system is stable if f(�) � 0 for all � � 0. At B2 � B2c, the plot of
f(�) is tangent on the � axis at � � �c. The critical condition is therefore
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given as 

which leads to

,

2.3 PHASE DIAGRAM AND THETA SOLUTIONS

2.3.1 Phase Diagram

2.3.1.1 Upper and Lower Critical Solution Temperatures The quality of the
solvent for a given polymer can be changed either by changing the temperature
or by changing the mixing ratio of a good solvent to a poor solvent. When the
temperature is changed, it is customary to draw a coexistence curve on a tempera-
ture–composition plane.  We use the temperature for the ordinate in place of 
, be-
cause of convenience. Any scale can be used to represent the composition: mass
concentration, volume fraction, molar fraction, mass fraction, and so forth. 

There are different types of phase diagram. Figure 2.19a shows the most com-
monly observed diagram. The parabolic coexistence curve is inverted from the one
on the 
 	 � plane in the figures in Section 2.2 because increasing T decreases 
 in
general. The temperature at the critical condition is called the critical temperature.
The phase diagram has the critical temperature (Tc ) at the highest point on the co-
existence curve. Therefore, the critical temperature is referred to as the upper criti-
cal solution temperature (UCST). The phase diagram shown in Figure 2.19a is
called a UCST-type phase diagram. At high temperatures, the solution is uniform
and therefore transparent. At T � Tc the system has a miscibility gap. When cooled
to temperatures below the coexistence curve, the solution separates into two phases.
Each of the two phases is uniform, but they have different compositions. A poly-
mer–solvent system with a near-constant and positive �� � �PS 	 (�PP � �SS)�2
will yield a UCST. Note 
 � Z���kBT in Eq. 2.4.

An inverted phase diagram shown in Figure 2.19b is observed in some
polymer–solvent systems. Because Tc is at the lowest point on the coexistence
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curve, this Tc is called the lower critical solution temperature (LCST). The phase
diagram shown in Figure 2.19b is called a LCST-type phase diagram. A polymer
soluble in water due to hydrogen bonding usually has an LCST-type phase diagram
because the hydrogen bonding disrupts at higher temperatures. 

It can happen that the coexistence curve is closed and has both UCST and LCST,
as shown in Figure 2.20. The solution is in a single phase exterior to the loop but in
two phases within the loop.

It is common to all three types of the phase diagram that the system is in a single
phase at compositions close to the vertical line at � � 0 or the other vertical line at
� � 1. The majority component can always accommodate a small amount of the
minority component with a help from the entropy of mixing.

2.3.1.2 Experimental Methods The cloud-point method is commonly used to
determine the phase diagram. Let us consider a solution that has a UCST-type
phase diagram. We prepare solutions at different concentrations and bring them into
a single phase by heating. The solutions are then cooled slowly. In Figure 2.21, the
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Figure 2.19. Phase diagram of polymer solution on temperature–composition plane. a:
UCST-type phase diagram. b: LCST-type phase diagram. The critical point is at the apex of
the coexistence curve and is specified by the critical temperature Tc and the critical composi-
tion �c.

Figure 2.20. A phase diagram can show both upper and lower critical solution temperatures.
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polymer–solvent system changes its state along a vertical line. As the temperature
crosses the coexistence curve, the solution becomes turbid, indicating microscopic
heterogeneity. The point is called the cloud point. The turbidity is due to scattering
of light by a difference in the refractive index between the two phases. When left
for a sufficiently long time, the polymer–solvent system separates into two macro-
scopic phases, each of which is uniform and therefore transparent. The lighter
phase is now on top of the heavier phase. In some solutions, crystallization of the
polymer occurs simultaneously as the polymer-rich phase separates. The crystallite
that has grown from a solution may be clear. By connecting the cloud points meas-
ured for solutions of different concentrations, we can obtain the coexistence curve
and construct the phase diagram.

Naked eyes can easily detect the cloudiness. A more sophisticated method will
use a photodetector. A polymer solution in a single phase is prepared in a cuvette.
The intensity of the light transmitted through the solution, or the intensity of light
scattered, typically at 90°, is continuously monitored as the temperature is lowered
across the coexistence curve. The scattering intensity shoots up and the transmis-
sion drops as the solution becomes turbid.

Atactic polystyrene in cyclohexane is the most famous example of polymer solu-
tions that exhibit a UCST-type phase diagram. Figure 2.22 shows the phase dia-
grams for different molecular weights of polystyrene.15 For each molecular weight,
the critical point is at the highest point of the curve. As the molecular weight in-
creases, the critical temperature (Tc) becomes higher and the critical volume frac-
tion �c decreases. The extrapolate of Tc to infinite molecular weight is about
35.4°C. 

2.3.2 Theta Solutions

2.3.2.1 Theta Temperature For a given polymer–solvent system, the light-
scattering experiment at different concentrations gives an estimate of A2 at the
temperature of the measurement, as we will learn in the following section. In a sys-
tem that has a UCST-type phase diagram (Fig. 2.23a), the sign of A2 changes from

Figure 2.21. Cloud point is defined as the temperature at which the solution becomes turbid
as the solution in a single phase is brought into the two-phase regime. Illustration is given for
the UCST-type phase diagram.
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positive to negative as the temperature drops below a certain level. The temperature
at which A2 � 0 is called the theta temperature and expressed by T� or �. The sol-
vent at T� is a theta solvent for the polymer. The theta temperature thus defined is
identical to the extrapolate of Tc to infinite molecular weight of the polymer. The
latter is another definition of T�. In a solution of a polymer in g/mol of a finite
molecular weight with UCST, Tc � T�.

In polymer solutions with LCST, the critical temperature Tc is higher than T�

(Fig. 2.23b). The sign of A2 changes from positive to negative as the temperature
exceeds T�. 

The theta temperature is different for each combination of polymer and solvent.
Table 2.6 lists T� for some polymer solutions.11 Each system has its own theta tem-
perature, although it may not be reached in the liquid phase of the solvent or below
the decomposition temperature of the polymer. 

There is a slight molecular weight dependence of the temperature that renders
A2 � 0 when the molecular weight is not sufficiently high. The dependence is much
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Figure 2.22. Coexistence curves determined from the cloud-point method (circles) for solu-
tions of polystyrene of different molecular weights in cyclohexane. The abscissa is the vol-
ume fraction of polystyrene. The molecular weight of the polymer in g/mol is indicated adja-
cent to each curve. (From Ref. 15.)

TABLE 2.6 Theta Conditions

Polymer Solvent Temperature Type

polystyrene cyclohexane �35°C UCST
polystyrene trans-decahydronaphthalene �21°C UCST
poly(methyl methacrylate) acetonitrile �44°C UCST
poly(N-isopropyl acrylamide) water �30°C LCST
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smaller compared with the dependence of Tc on the molecular weight. Therefore,
the light-scattering experiments do not need to be repeated on polymer fractions of
different molecular weights to find T�. Measurement of A2 on a single fraction of
the polymer should suffice.

Figure 2.24 shows an example of A2 obtained in the light-scattering experiments
at several different temperatures near T� for a solution of polystyrene in cyclo-
hexane.16 Apparently, A2 � 0 at around 35.7°C for the solution. The temperature
agrees with the extrapolate of Tc within experimental errors.

2.3.2.2 Properties of Theta Solutions Solutions in the theta condition have
A2 � 0. When A2 � 0, the second-order term in ���ideal � 1 � A2Mc � A3Mc2

� 			 (Eq. 2.20) is absent. The nonideality of the solution does not become apparent
until the third-order term A3Mc2 becomes sufficiently large. The osmotic pressure is
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Figure 2.23. Relationship between the theta temperature T� with the critical temperature Tc.
a: UCST-type phase diagram. b: LCST-type phase diagram. The second virial coefficient A2

changes its sign at T � T�.

Figure 2.24. Second virial coefficient A2 for polystyrene in cyclohexane at different temper-
atures near the theta temperature. (From Ref. 16.)
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close to that of the ideal solution in a wide range of concentrations. The near ideal-
ity of the theta solution is not limited to the osmotic pressure.

The chain dimension such as Rg and RF in theta solution increases with the mo-
lecular weight M just as the ideal chains do. Figure 2.25 shows an example ob-
tained for polystyrene in cyclohexane at 35.4°C.2 The data for Rg are plotted as
solid circles. For reference, Rg in the good solvent is plotted as open circles (same
as Fig. 1.37). The polymer chain in the theta solvent is shrunk compared with the
good solvent. The curve fitting (for M � 107 g�mol) gives

(2.38)

close to the predicted Rg 
 M 1�2.
In Section 1.4.2, we derived RF � bN 3�5 for an excluded-volume chain using

Flory’s method. Here, we use a similar method to derive RF � bN 1�2 for theta
chains. The difference in the free energy Ach of the chain is in the second term of
Eq. 1.63. For the theta chains, binary interaction is effectively absent (A2 � 0) and
therefore the leading term in the polymer–polymer interaction is b6R3(N�R3)3 �
b6N 3�R6, which is due to the ternary interactions. Then, Ach is given as

(2.39)

Ach minimizes when �(Ach�kBT )��R �R�RF
� 0, that is, RF � bN 1�2, reproducing the

experimental results. The relationship becomes questionable when N is large, how-
ever. See Problem 2.17.

The nature of the theta solvent can be better understood in the lattice chain
model. We choose the interaction with a solvent to be zero: �PS � �PP � 0. Then

 � �(Z�2)�PP�kBT. The theta condition, 
 � 1�2, is realized by �PP�kBT � �1�Z.

Ach

kBT
�

R2

Nb2 � b6
 

N3

R6

Rg  
� nm � 0.02675 � (M �(g �mol))0.5040  polystyrene in cyclohexane, 35.4�C
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Figure 2.25. Radius of gyration Rg of polystyrene in cyclohexane at the theta temperature
(35.4°C), plotted as filled circles as a function of molecular weight. Open symbols indicate
Rg of polystyrene in toluene and benzene (good solvents) and are the same as those in Figure
1.37. A slope of 1�2 is indicated in the figure. (From Ref. 2.)
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This negative interaction in the monomer–monomer contact promotes association
between monomers and contracts the polymer chain. The repulsive interaction due
to the excluded volume is compensated by the attractive �PP.

However, the Flory–Huggins theory is an approximate theory based on random
mixing of monomers. The interaction for the theta condition is slightly different in
the computer simulation on the cubic lattice:17

(2.40)

Figure 2.26 compares a plot of the root mean square end-to-end distance RF for
polymer chains on the cubic lattice for the theta chains with a plot for athermal
chains.18 The chain contraction in the theta condition is evident. The data for the
theta solution follow a power law of RF � N1�2 when N » 1.

2.3.3 Coil-Globule Transition

As the solvent quality turns poorer to the polymer from the theta condition, poly-
mer–solvent contacts become more unfavorable, and the chain contracts even more.
Eventually, the random-coil conformation changes to a globular shape to minimize
the polymer–solvent contacts and maximize the contacts between monomers. The
chain dimension should be now proportional to N1�3, as expected for a packed
sphere. When N is sufficiently large, the change from Rg � bN 1�2 to bN1�3 is rather
abrupt; therefore, it is called coil-globule transition. Figure 2.27 summarizes how

�PP 
�kBT � �0.2693 theta condition, cubic lattice simulation
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Figure 2.26. End-to-end distance RF of self-avoiding walks on the cubic lattice, plotted as a
function of the number of bonds, N, of the chain. The solid line and the dashed line represent
the theta chains and athermal chains, respectively. The dash-dotted line has a slope of 1�2.
(From Ref. 18.)



the chain dimension changes with A2. It is not easy to observe the transition in
experiments because, as the intrachain attraction becomes stronger, the interchain
attraction becomes stronger as well, leading to formation of aggregates. Then, the
light-scattering measurements give the size of the aggregate, not a single chain
dimension.

Figure 2.28 is a rare example of a successful observation.19 It shows how Rg of
poly(N-isopropyl acrylamide) in water changes with the solvent quality. The solu-
tion exhibits an LCST-type phase diagram with T� � 30.5°C. At T « T� , the solvent
is good to the polymer and the chains are swollen. As T rises, the solvent quality
becomes poorer and Rg decreases. At T � Tc � 32°C, Rg is nearly independent of
temperature. A slight hysteresis was observed. 

Most protein molecules are globular. Strong interactions due to hydrogen
bonding and S–S linkage force the protein to take a specific structure close to a
globule.
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Figure 2.27. Molecular-weight (M) dependence of the radius of gyration Rg changes as the
solvent quality, and therefore the second virial coefficient A2, change.

Figure 2.28. Contraction and swelling of linear poly(N-isopropyl acrylamide) chains in
water by cooling and heating. The radius of gyration Rg is plotted as a function of tempera-
ture T. (From Ref. 19.)
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2.3.4 Solubility Parameter

The interaction between a polymer and a solvent is often expressed by a solubility
parameter. The solubility parameter �i of substance i is defined as

(2.41)

where �Ei
vap is the molar energy of vaporization and Vi is the molar volume of sub-

stance i. Figure 2.29 shows a partial list of the solubility parameter expressed in
(MPa)1�2 and (cal�cm3)1�2.11 Simple thermodynamics on the binary mixture gives
the 
 parameter expressed by the solubility parameters:

(2.42)

where subscripts S and P stand for solvent and polymer, respectively.
Equation 2.42 illustrates that the polymer and the solvent mix when their solu-

bility parameters are close and do not when they differ a lot. However, this is not al-
ways the case. For instance, polyethylene and 1,4-dioxane have similar solubility
parameters but do not mix partly because of crystallinity of polyethylene.
Poly(methyl methacrylate) dissolves well in tetrahydrofuran, although the solubility
parameters are greatly different. Furthermore, Eq. 2.42 is always positive. It fails to
describe specific interactions that may make 
 negative such as the hydrogen bond-
ing. We should regard Eq. 2.42 as one of the possible ways to describe 
 for some
polymer–solvent systems.


 �
VS

NAkBT
 (� S � � P)2 � 0.34

�i # (� E vap
i � Vi)1�2

Figure 2.29. Solubility parameters of some solvents and polymers, given in (MPa)1�2 and
(cal�cm3)1�2.
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2.3.5 PROBLEMS

Problem 2.17: We apply Flory’s method (Section 1.4) to find how much a
small deviation from the theta condition changes the end-to-end distance. For
this purpose, we express the free energy per chain that has an end-to-end dis-
tance R by

where � � 0 at theta. Treat the last term as a perturbation and evaluate its ef-
fect on RF.

Solution 2.17: At R � RF,

which leads to

Treat the second term as a perturbation:

where R was replaced by the unperturbed dimension, bN 1�2. Even when � is
close to zero, RF may deviate from bN 1�2 as N increases. The deviation
is more serious for high-molecular-weight fractions.

2.4 STATIC LIGHT SCATTERING

2.4.1 Sample Geometry in Light-Scattering Measurements

Light scattering has been widely used to characterize polymer chains in a solution.
We can find the weight-average molecular weight (Mw), the radius of gyration (Rg),
and the second virial coefficient (A2). We can also learn about the shape of the poly-
mer molecule—whether it is spherical, random-coiled, or rodlike. These quantities
are difficult to obtain with other methods. Commercial instruments are available.

Figure 2.30 shows a sample geometry. A cylindrical test tube containing a clear
polymer solution is immersed in a glass vat filled with a fluid that has a refractive
index close to that of the glass. The fluid is called an index-matching liquid and is
thermostatted. A coherent, collimated laser beam enters the index-matching liquid
through the vat and then into the test tube. Nearly all of the incoming photons travel
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straight through the index-matching liquid and the polymer solution, forming a
strong, unscattered (or forward-scattered) beam. The molecules in the beam path
scatter a tiny fraction of the photons in all directions. The intensity of the scattered
beam is detected by a photodetector, typically a photomultiplier, placed horizon-
tally at an angle � (scattering angle) from the forward-scattering direction. To pre-
vent streak scattering at the air-glass interface, the glass vat has a planar cut at each
side of the path of the direct beam.

Figure 2.31 is a top view of the sample geometry. The incident beam has a wave
vector ki. The wave vector is parallel to the propagation direction of the beam and
has a magnitude of 2��(��nsol), where ��nsol is the wavelength of light in the sol-
vent of refractive index nsol, with � being the wavelength of light in vacuum. The
wave vector ks of the scattered beam has nearly the same magnitude as that of ki. In
the static light scattering (often abbreviated as SLS) in which the molecules are
assumed to be motionless, the two magnitudes are exactly equal. In reality, motions
of the molecules make ks different from ki, but the change is so small (typically less
than 0.01 ppm) that we can regard �ki � � �ks �. The change in the wave vector upon
scattering is called the scattering vector. The scattering vector k is defined as

(2.43)

The inset of Figure 2.31 allows the magnitude of �k � � k to be conveniently
calculated as

(2.44)k �
4� nsol

�
 sin 

�

2
  scattering wave vector

k # ks � ki

photodetector
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scattered

beam

incident
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Figure 2.30. Schematic of the geometry around a sample cell in a light-scattering measure-
ment system. A photodetector detects the light scattered by a polymer solution in the beam
path into a direction at angle � from the forward direction. The vat is filled with an index-
matching liquid.



For the forward-scattered beam, k � 0. With an increasing �, k increases. Figure
2.32 shows how k changes with � for water (nsol � 1.331) at 25°C and He-Ne laser
(� � 632.8 nm) as a light source and for toluene (nsol � 1.499) at 25°C and Ar�

laser (� � 488.0 nm; there is another strong beam at 514.5 nm). For the first sys-
tem, k spans from 3.46 � 106 m �1 at � � 15° to 2.56 � 107 m �1 at � � 150°.

Two pinholes or two vertical slits are placed along the path of the scattered beam
to restrict the photons reaching the detector to those scattered by the molecules in a
small part of the solution called the scattering volume. The scattering volume is an
intersection of the laser beam with the solid angle subtended by the two pinholes
(Fig. 2.33).

Polymer molecules, especially those with a high molecular weight, scatter the
light strongly. In the following subsections, we will first learn the scattering by
small particles and then find why it is strong for the polymer molecules. We will
also learn what characteristics of the polymer molecules can be obtained from the
scattering pattern.

2.4.2 Scattering by a Small Particle

Small particles (solvent molecules and monomers constituting the polymer) sus-
pended in vacuum can scatter the light. They are called scatterers. An electromag-
netic wave, also called radiation, enters the isotropic particle to cause polarization
in the direction of the electric field of the incident wave (Fig. 2.34). The polariza-
tion is a displacement of the spatial average of the positively charged nuclei with
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Figure 2.31. Top view of the geometry around the sample cell. The wave vector ki of the in-
cident beam changes to ks when scattered. Two pinholes or two slits specify the scattering
angle. The inset defines the scattering wave vector k.
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respect to the negatively charged electrons. The polarization, oscillating with the
frequency of the radiation, serves as a broadcasting station that emits a weak radia-
tion in all directions. The scattered radiation has the same frequency as that of the
incident radiation. This mechanism of scattering is called Rayleigh scattering.

Figure 2.34 shows the relationship between the vertically polarized incident
beam of intensity I0 and the radiation scattered by the vertically polarized particle.
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Figure 2.32. The magnitude k of the scattering wave vector plotted as a function of the scat-
tering angle � for water at 25°C and � � 632.8 nm and for toluene at 25°C and � � 488.0 nm.

Figure 2.33. Scattering volume is an intersection of the laser beam with the solid angle sub-
tended by the two pinholes.
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At a distance r from the particle and at angle �� from the vertical, the intensity I of
the scattered light is given by

(2.45)

where � is the polarizability of the particle in SI unit and �0 � 8.854 � 10 – 12 F/m
is the electric permittivity of vacuum. Most measurement systems detect the light
scattered horizontally and therefore �� � ��2.

The polarizability � is proportional to the volume of the particle. The light scat-
tered by a single atom or a small molecule is too weak to be detected in the visible
range of light, even if the volume has many of these particles. A strong scattering
by these small particles can occur in the X-ray range, where � is sufficiently small.
To have a strong scattering in the visible range, the volume of the scatterer must be
sufficiently large. Then, it is necessary to take into account the interference between
the beams scattered by different parts of the scatterer. We will see this effect first
for a single polymer chain. The scatterer does not have to be filled like a solid
sphere to cause the strong scattering. A string of monomers can also scatter the
light strongly.

In Eq. 2.45, I�I0 
 ��4. The Rayleigh scattering is a lot stronger for light of a
shorter wavelength. The sky is blue because the scattering is stronger toward the
short-wavelength end of the visible spectrum. Each molecule of the atmosphere is
too small to scatter the visible light effectively. What we see as the blue sky is due
to density fluctuations in the atmosphere.

2.4.3 Scattering by a Polymer Chain

Scattering by a larger molecule is stronger, because beams scattered by different
parts of the molecule can interfere constructively. We consider here how the
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r2   Rayleigh scattering, vacuum
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Figure 2.34. Vertically polarized beam causes polarization in the particle, which radiates
into different directions. Angle �� is defined as the angle between the electric field of the in-
cident bream and the scattering direction. The particle size is drawn much larger than it is
relative to the wavelength of light.
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interference affects the overall scattering intensity for a single polymer chain. We
model the chain as a sequence of N motionless monomers each of which scatters
the radiation. Figure 2.35a is a two-dimensional rendering of the polymer chain.
The incident light is a plane wave with a wave vector ki and an electric field Ei os-
cillating with an angular frequency � in the direction perpendicular to ki (any direc-
tion in the plane perpendicular to ki). At position r and time t, Ei is given by

(2.46)

where Ei0 is the complex amplitude of the field. The intensity of the light is calcu-
lated as the product of Ei0 and its complex conjugate. The photons on a plane per-
pendicular to ki are assumed to be all in phase (coherent). It means that their elec-
tric fields oscillate without a delay to each other. A laser beam has a large area of
coherence.

These photons enter the monomers to cause polarization on each of them. Be-
cause monomers are located at different positions along the beam path, the Ei

that causes the polarization at a given time is different from monomer to
monomer. Therefore, compared at the same time, the phase of the oscillating po-
larization is different for each monomer. The scattered radiation Esi caused by the
polarization on the ith monomer at ri at time ti and traveling with a wave vector
ks is given by

(2.47)

where Esm is the complex amplitude of the beam scattered by a single monomer and
propagating in the direction of ks. Note that Esi is one of many radiations emanating
from the ith monomer. The same phase of the plane wave that has caused Esi travels
further and causes Esj in the same propagation direction as Esi by polarization of the

Esi � Esm exp [i(ks 	(r � ri) � �  (t � ti))]

Ei � Ei0 exp [i(ki	r � � t)]

Figure 2.35. A polymer chain, on exposure to an incoming plane wave of radiation, scatters
light. (a) A beam path for the incoming light and a beam path for the scattered light are
drawn for two monomers i and j at ri and rj on the chain. The difference in the path length is
lj – li. b: Polarizations at monomers i and j as a function of time t. The phase difference is kilj

in the geometry in a.
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jth monomer at rj at time tj:

(2.48)

Figure 2.35b compares the change of the polarizations with time on monomers i
and j.

The photodetector detects the total amplitude of the radiation scattered by differ-
ent monomers. The total electric field of the scattered light is Es1 � Es2 �· · ·� EsN.
Before adding all of them, we first consider the sum of Esi and Esj:

(2.49)

where �ij is the phase difference between the two beams and given as

(2.50)

Now Esm[1 � exp(i�ij)] is the complex amplitude for Esi � Esj. Depending on �ij ,
1 � exp(i�ij) can vary widely. This phenomenon is called interference. Figure 2.36
shows how the real and imaginary parts of 1 � exp(i�ij) change with �ij.
When �ij � 0, �2�, �4� , . . . , we have 1 � exp(i�ij) � 2, and the amplitude
maximizes (constructive interference). When �ij � ��, �3� , . . . , in contrast,
1 � exp(i�ij) � 0, and the amplitude is zero (destructive interference). The interfer-
ence is in-between at other angles of �ij.

For the chain configuration in Figure 2.35a,

(2.51)

where c is the velocity of light, lj is defined in the figure, and is the unit vector
parallel to ki. Thus,

(2.52)�ij # (ks � ki)	(ri � rj) � k 	(ri � rj)

k̂i

� (tj � ti) � � lj  
�c � k lj � kk̂i	(rj � ri) � �ki	(ri � rj)

�ij # ks 	(ri � rj) � � (ti � tj)

Esi � Esj � Esm[1 � exp (i�ij)] exp [i(ks 	(r � ri) � � (t � ti))]

Esj � Esm exp [i(ks 	(r � rj) � � (t � tj))]
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Figure 2.36. Real and imaginary parts of 1 � exp(i�ij) are shown for � ij as a parameter. When
� ij � 2m� (m � 0, �1, �2, . . . ), 1 � exp(i� ij) � 2, and the interference is constructive.
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The �ij can also be calculated from the difference in the path length between the two
beams reaching the detector. The difference is lj � li as seen in Figure 2.35a. The
corresponding phase difference is �ij � (��c)(lj � li), which is equal to Eq. 2.52.

For 1 through N monomers,

(2.53)

Thus we find that the complex amplitude of the light scattered by the whole chain is
modified by a factor of �N

i�1exp(i�1i). The square of the magnitude of the factor de-
termines how the beams scattered by the N monomers interfere. Thus the intensity
of the light scattered by the whole chain is proportional to

(2.54)

If the monomers are isotropic particles with the same polarizability �, the intensity
I of horizontally scattered light (�� � ��2 in Eq. 2.45) is

(2.55)

At low angles, exp[ik ·(ri – rj)] � 1 and I�I0 is increased by a factor of N 2 com-
pared with a single monomer. The constructive interference between photons scat-
tered by different parts of the polymer chain causes this N 2 dependence. If each
part scatters the light independently, then I�I0 would increase only by a factor of N.

2.4.4 Scattering by Many Polymer Chains

The scattering volume contains many polymer chains. We consider here how these
chains collectively contribute to the total scattering intensity. We forget for now the
presence of solvent molecules as we did in the preceding section and assume that
the polymer chains are suspended in vacuum to scatter the light. To obtain the for-
mula for the scattering intensity by a single polymer chain, we did not invoke con-
nectivity of monomers. The formula, Eq. 2.55, can easily be extended to a system
of nP chains (nP » 1), each consisting of N monomers. We denote by rmi the position
of the ith monomer of the mth chain. Equation 2.54 now reads

(2.56)� �
nP

m�1
 �

N

i, j�1
 exp[ik	(rmi � rmj)] � �

nP

m�n�1
 �

N

i, j�1
 exp[ik	(rmi � rnj)]

�
nP

m,n�1
 �

N

i, j�1
 exp[ik	(rmi � rnj)]

I

I0
�

�2

�4
 

�2

�0
2  

1

r2 �
N

i, j�1
exp[ik	(ri � rj)]

� �
N

i,j�1
exp[ik	(ri � rj)]

��N
i�1

exp(i�1i)�2 � �
N

i�1
exp[� ik	(r1 � ri)]�

N

j�1
exp[ik	(r1 � rj)]

�
N

i�1
Esi � Esm 

exp[i(ks 	(r � r1) � � (t � t1))]�
N

i�1
exp (i�1i)



The first term is a contribution from two monomers on the same chain, and the sec-
ond term is a contribution from two monomers on different chains. There are vari-
ous chain configurations occurring simultaneously on different chains. The summa-
tions in Eq. 2.56 can therefore be replaced by statistical averages:

(2.57)

where nP(nP � 1) was approximated by nP
2 in the second term. The average in the

first term is taken with a statistical weight of a configuration for a single chain. The
average in the second term is taken with a weight of configurations for the two
chains. The latter configurations refer to the relative position of the two chains and
the monomer arrangement of each chain.

At low concentrations, polymer chains are sufficiently separated from each
other. Interference by monomers on different chains are cancelled out on the aver-
age; therefore, the second term is negligible compared with the first term. Thus, the
scattering intensity I(k) is given by

(2.58)

where the index “1” was dropped in r1i. The summation factor in Eq. 2.58 divided
by N is called the (single-chain) static structure factor S1(k):

(2.59)

In the absence of constructive interference between different monomers, only terms
with i � j would survive and therefore S1(k) would be equal to 1. The interference
makes S1(k) and I(k) depend on k. With S1(k), Eq. 2.58 becomes to
I(k)�I0 � (� 2��4)(���0)2r �2nP NS1(k). Note that uncorrelated nPN monomers in so-
lution have I(k)�I0 � (� 2��4)(���0)2r �2nPN. Thus we find that S1(k) indicates how
much the interference from different parts of the chain increases I(k).

The static structure factor (also called scattering function) that applies also to
finite concentrations is obtained from Eq. 2.57 as

(2.60)

The second term is due to correlations between different chains. Note that chains 1
and 2 have to be nearby to scatter beams that interfere constructively. At low

 � S1(k) �
nP

N �
N

i,j�1
〈exp[ik	(r1i � r2j)]〉

 S(k) �
1

nPN �
nP

m,n�1
 �

N

i,j�1
〈exp[ik	(rmi � rnj)]〉

S1(k) �
1

N �
N

i, j�1
〈exp [ik	(ri � rj)]〉 single-chain static structure factor

I(k)

I0
�
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concentrations, the statistical average for different chains is mostly zero, and S(k)
becomes identical to S1(k). The interference between different chains becomes
more significant with an increasing concentration.

2.4.5 Correlation Function and Structure Factor

2.4.5.1 Correlation Function We now find how the structure factor is related to
the local segment density �(r) defined by

(2.61)

The segment density (monomer density) counts the number of monomers per unit
volume locally. Integration of the right-hand side over the entire volume gives nPN,
which is the total number of monomers in volume V, as it should be. Thus
� � 〈�(r)〉 � nPN�V is the global segment density. Mathematically, �(r) itself can
be a continuous distribution, although the definition given here is for a discrete dis-
tribution of the monomers.

The pair distribution function is the statistical average of the product of the
densities at r1 and r2:

(2.62)

where the last equality holds for a macroscopically homogeneous solution (the
system can be microscopically heterogeneous, but after taking statistical average,
the system gains a translational symmetry). The pair distribution function depends
on r1 � r2. Then, 〈� (r)�(0)〉 is called the autocorrelation function (or correlation
function) of the segment density.

When the solution is isotropic in addition, 〈� (r)�(0)〉 � 〈�(r)�(0)〉 is a function
of the distance r � �r � only.

2.4.5.2 Relationship Between the Correlation Function and Structure Factor
The statistical average in the definition of the structure factor S(k) in Eq. 2.60 is
taken with respect to the pair distribution. With Eq. 2.62, Eq. 2.60 is rewritten to

(2.63)

 �
V

nP 
N
	

V
〈�(r)�(0)〉 exp (ik	r) dr

 �
1

nPN
	

V
dr1	

V
dr2〈�(r1)�(r2)〉 exp [ik 	(r1 � r2)]

 S(k) �
1

nPN
	

V
dr1	

V
dr2 �

nP

m,n�1
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N

i,j�1
〈�

m,i
� (r1 � rmi)�

n, j

� (r2 � rnj) 〉 exp[ik	(r1 � r2)]

〈� (r1)� (r2)〉 � �
nP

m,n�1
 �

N

i, j�1
〈�

m,i
�(r1 � rmi)�

n, j

�(r2 � rnj) 〉 � 〈�(r1 � r2)�(0)〉

�(r) � �
m,i

� (r � rmi)



With the average density � � nPN�V, Eq. 2.63 leads to

(2.64)

Note that �(0)�� is the segment density at r � 0 normalized by the average. We
can therefore interpret 〈�(r)�(0)〉�� as measuring the average number of monomers
per volume at r when there is already a monomer at r � 0.

Equation 2.64 illustrates that the static structure factor, and hence the scatter-
ing pattern obtained in the light-scattering experiments, is the Fourier transform
(see Appendix A2) of the autocorrelation function of the local segment density.
S(k) indicates which wave vector components are present in the correlation
function.

If the local segment density were continuously distributed at a uniform density
�, then 〈�(r)�(0)〉�� � � and S(k) � (2�)3��(k). A uniform medium does not scat-
ter the light at all (or forward scattering only). Another view is that S(k) is essen-
tially the average of exp[ik · (r1 � r2)] weighted with the pair distribution function
〈�(r1)�(r2)〉.

If N � 1 (only nonbonded small particles are present) and correlation between
scatterers is absent, that is, 〈�(r)�(0)〉�� � � (r), then S(k) � 1. The scattering is
uniform at all angles. This pattern is observed in the scattering by a solvent. The
wavelength � of visible light is too long to detect any correlations among small par-
ticles. On the length scale of �, 〈�(r)�(0)〉�� � �(r).

From Eq. A2.7, we find that the inverse-Fourier transform of S(k) gives the cor-
relation function of the segment density:

(2. 65)

In the isotropic solution, the above Fourier transform and inverse-Fourier transform
are

(2.66)

(2.67)

In practice, the relationships between the structure factor and the local monomer
concentration c(r) are more useful. The local concentration is related to �(r) by

(2.68)c(r) �
M

NAN �
m,i

�(r � rmi) �
M

NAN
�(r)

〈�(r)�(0)〉 �
�

2� 2 	�

0
S(k) 

sin kr

kr
 k2 dk isotropic

S(k) �
4�

� 	�

0
〈�(r)�(0)〉 

sin kr

kr
 r2 dr isotropic

〈�(r)�(0)〉 �
�

(2�)3
	S(k) exp (� ik	r) dk   segment density correlation

S(k) �
1
� 	V

〈�(r)�(0)〉 exp (ik	r) dr
    static structure factor
    by segment correlation
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where M is the molecular weight of the polymer chain. The relationships between
S(k) and c(r) are

(2.69)

where c � 〈c〉 � MnP�(NAV ) is the average concentration, and

(2.70)

2.4.5.3 Examples in One Dimension Before leaving this subsection, we look at
the relationship between the density autocorrelation function and the structure fac-
tor for some examples in one-dimensional isotropic systems. Figure 2.37 shows
four pairs of 〈�(x)�(0)〉 and S(k). Isotropy makes the autocorrelation function an
even function of x. 

In panel a, 〈�(x)�(0)〉 is a constant plus a cosine function with a period of a. This
correlation function is observed when �(x) changes sinusoidally. The Fourier trans-
form converts the constant into �(k) and cos(2�x�a) into �(k–2��a). In part b,
〈�(x)�(0)〉 has a harmonic at k � 4��a. The density correlation is slightly distorted
from the cosine function.

Panel c shows 〈�(x)�(0)〉 that consists of more harmonics with a fundamental
wave vector being 1�4 of that shown in panels a and b. 〈�(x)� (0)〉 has a period
equal to the window of x shown, but, within the period, it looks like a decaying

〈c(r)c(0)〉 �
c M

(2�)3NAN
	S(k) exp (�ik	r) dk

S(k) �
NAN

c M
	

V
〈c(r)c(0)〉 exp(ik	r) dr

Figure 2.37. Segment density autocorrelation function 〈�(x)�(0)〉 and structure factor S(k) for
four examples of distribution in one dimension. The autocorrelation functions are cosine �
constant (a), with a harmonic (b), with more harmonics (c), and exponential decay (d).
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function. Panel d is for an exponentially decaying autocorrelation function with a
correlation length  for all x ! 0. Its Fourier transform is a Lorenzian: 1�[1 �
(k )2]. We notice that 〈� (x)� (0)〉 and S(k) in panel c resemble the counterparts in
panel d. In fact, we can construct exp(�x� ) by overlapping many cosine functions
as in panel c. S(k) 
 1�[1 � (k ) 2] tells how to overlap these cosine functions of
different k.

In the following subsections, we will examine the scattering from polymer
chains in three dimensions. Chain connectivity gives rise to a specific pattern in the
correlation and the scattering, depending on the conformation.

2.4.6 Structure Factor of a Polymer Chain

2.4.6.1 Low-Angle Scattering At low scattering angles, that is, when k is small,

(2.71)

Then, Eq. 2.59 is rewritten to

(2.72)

where was used. In this equation,

(2.73)

where , and the x direction is taken to be parallel to k. The isotropy of the
chain configuration [〈(xi – xj)2〉 � 〈(yi – yj) 2〉 � 〈(zi – zj) 2〉] was used in the last
equality. Thus S1(k) is further converted to

(2.74)

where Eq. 1.25 (N » 1) was used. It is usually rewritten to

(2.75)

The last expression compensates the neglect of the higher-order terms in Eq. 2.72 to
some extent.

We did not assume any specific chain conformation or a chain model to derive
Eqs. 2.74 and 2.75. The formulas apply to any chain conformation. When the recip-
rocal of the light-scattering intensity is plotted as a function of k2, the slope in the
small k limit is equal to Rg

2�3, as illustrated in Figure 2.38.

S1(k) �
N

1 � k2Rg
2� 3

 kRg�1, any conformation

S1(k) � N � k2 1

6N �
N

i, j�1
〈(ri � rj)2〉 � 	 	 	 � N(1 � k2Rg

2�3 � 	 	 	)

k̂ � k �k

〈[k 	(ri � rj)]2〉 � k2〈[k̂	(ri � rj)]2〉 � k2〈(xi � xj)2〉 � 1
3 
k2〈(ri � rj)2〉

〈ri � rj〉 � 0

S1(k) � N �
1

2N �
N

i, j�1
〈[k 	(ri � rj)]2〉 � 	 	 	

exp[ik	(ri � rj)] � 1 � ik	(ri � rj) � 1
2[k	(ri � rj)]2 �	 	 	
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2.4.6.2 Scattering by a Gaussian Chain It is possible to calculate S1(k) in the
whole range of k for a Gaussian chain without approximations. A continuous ver-
sion of Eq. 2.59 is needed for the definition of S1(k).

(2.76)

where the statistical average in the integrand is taken with respect to r and r�, the
spatial positions of the segments at distance n and n�, respectively, from the chain
end (Fig. 2.39). Because a partial chain between the two segments is also a Gaussian
chain (see Section 1.3 and Eq. 1.34),

(2.77)�  exp (�1
6 
k2

 �n � n� � b2)

�exp ��
3(r � r�)2

2 �n � n� � b2 �
〈exp[ik�(r � r�)] � �d(r � r�) exp[ik�(r � r�)](2� �n � n� � b2�3)�3�2

S1(k) �
1

N
�N

0
dn�N

0
dn� 〈exp[ik �(r � r�)]〉

1
/S

1(
k

)

0 k2

slope = Rg2/3

Figure 2.38. Reciprocal of the single-chain structure factor S1(k) plotted as a function of the
square of the scattering vector k has a slope equal to Rg

2�3 at low angles.

Figure 2.39. Scattering by two monomers at r� and r at distances n� and n along the chain
from its end interferes.
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which is essentially the Fourier-transform of the Gaussian probability density.
Because the probability density is isotropic, its Fourier transform is also isotropic.
The double integral with respect to n and n� leads to

(2.78)

where f D(x) is called a Debye function and defined as

(2.79)

At x » 1, fD(x) � 2x �2. At x « 1, fD(x) � 1–x2�3, in agreement with Eq. 2.74.
Figure 2.40 shows N�S1(k) � N�S1(k) � [ fD(kRg)]�1 as a function of kRg. The slope
is 1�3 at low scattering angles and 1�2 at high angles.

The density autocorrelation function for two segments on the Gaussian chain is
given as

(2.80)

After some calculations (see Appendix 2.C), Eq. 2.80 with r� � 0 simplifies to

(2.81)

where u � (r�2Rg)2 and the error function Erfc(x) is defined by

(2.82)Erfc(x) # �	

x
exp(� t2) d t

1
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Figure 2.40. Reciprocal of the static structure factor S1(k) of a Gaussian chain. N�S1(k) is a
linear function of k2 at both kRg « 1 and kRg » 1 but with different slopes.
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Now we examine 〈
 (r)
 (0)〉�
 in the small r and large r asymptotes. When
x « 1, Erfc(x) � � 1�2�2 � x. Then, at short distances,

(2.83)

This relationship can also be intuitively obtained in the following discussion. When
r � Rg, a partial chain of n segments is contained in the sphere of a radius r �
bn1�2�2. The average segment density within the sphere is

(2.84)

When x » 1, Erfc(x) � exp(�x2)[1�(2x) � 1�(4x3) � 3�(8x5)]. Thus, over long
distances, the correlation is lost exponentially:

(2.85)

Figure 2.41 is a plot of r2〈
 (r)
(0)〉�
. The prefactor r2 is for the surface area of
the sphere of radius r. Note that 4�r 2〈
 (r)
 (0)〉�
dr is the probability of finding
another segment at distance between r and r � dr from a given segment for this
isotropic autocorrelation function. When r « Rg, r 2〈
 (r)
(0)〉�
 is proportional
to r. When r » Rg, r 2〈
 (r)
(0)〉�
 
 r – 2 exp[�(r�2Rg )2]. The probability peaks at 
r�Rg � 0.74. The other segments can be most probably found at a distance of 
r � 0.74 � Rg.

1
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Figure 2.41. Probability distribution for the distance r of other segments from a given seg-
ment in a Gaussian chain. The segment density autocorrelation function 〈
 (r)
 (0)〉�
 multi-
plied by r 2 is plotted as a function of r�Rg. Short-distance and long-distance asymptotes are
indicated.



2.4.6.3 Scattering by a Real Chain At low-scattering angles, S1(k) of a real
chain is essentially the same as that of the Gaussian chain when plotted as a func-
tion of Rg, as we have seen in Section 2.4.6.1. At high angles, however, S1(k) of the
real chain does not follow k �2 dependence. Intuitively, S1(k) at large k can be ob-
tained from the pair distribution function of two segments within a sphere of radius
Rg. For the real chain with r � bn
, Eq. 2.84 changes to

(2.86)

The correlation decays as r �4�3 (or r �1.31) with an increasing r at short distances in a
real chain, as opposed to r �1 in the Gaussian chain. Figure 2.42 compares
r2〈
(r)
(0)〉 for the real chain obtained in the computer simulation20 and the
Gaussian chain. What is plotted here is r2〈
(r)
(0)〉, which is proportional to
the probability of finding a segment at r from another segment at r � 0. At r « Rg,
the real chain has a slightly higher value (r0.69 vs. r1). The peak position relative to
Rg is greater for the real chain. The monomers are more spread in the real chain.
However, the difference is small. 

The Fourier transform of Eq. 2.86 by Eq. 2.66 gives

(2.87)

The integrand is valid only for r � Rg, but, at large k (kRg » 1), sinkr is a rapidly
varying function, especially for large r (r � Rg). Therefore, the contribution of
the integral from r � Rg is negligible, and we can use the same integrand from 

S1(k) �
4�

k
 b�1�
�r1�
�2 sin k r d r

1

  〈
(r)
(0)〉 �

n

r3 � r1�
�3b�1�
   (r � Rg)
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chain.
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r � 0 to 	:

(2.88)

See Appendix A3. At high angles, S1(k) 
 k – 1�
 � k – 5�3.
Figure 2.43 compares S1(k)�N � S1(k)�N obtained in the cubic lattice Monte

Carlo simulations for a real chain and the Debye function.5 At kRg � 1, S1(k)�N of
the real chain follows the Debye function, but, at large kRg, S1(k)�N deviates from
the Debye function (slope �2) and follows 
k �1.69 as predicted.

2.4.6.4 Form Factors The plot of S1(k) as a function of k2 at small k gives the
radius of gyration for any conformation, but, beyond that range, S1(k) depends on
the conformation. For a Gaussian chain, S1(k) follows the Debye function. Equa-
tions 2.59 and 2.76 allow us to calculate S1(k) for other conformations. Let us first
define a form factor P(k) by

(2.89)

It is also called a shape factor or an internal structure factor. For a Gaussian chain, it is

(2.90)PGaussian(k) � fD(kRg)

P(k) #
S1(k)
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�
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�2 sin k r d r

Figure 2.43. Comparison of S1(k) of a self-avoiding walk on a cubic lattice obtained in com-
puter simulation with a Debye function. When S1(k)�N is plotted as a function of kRg, the
Debye function describes S1(k) of a self-avoiding walk at low angles, but they have different
dependences at high angles. The self-avoiding walk follows the power law of S1 
 k – 1.69 as
predicted by the theory. (From Ref. 5.)
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Let us calculate P(k) for a spherical molecule of radius Rs stuffed uniformly
with monomers that scatter light with the same intensity. Now we use Eq. 2.76 to
directly integrate with respect to r and r� in the sphere:

(2.91)

where the integral is carried out over the volume Vsp � (4��3)Rs
3 of the sphere.

After some calculations (Problem 2.19), we find that

(2.92)

For a rodlike molecule with length L, it can be shown that (Problem 2.20)

(2.93)

Figure 2.44 summarizes P(k) � P(k) for three polymer conformations of a sim-
ple geometry. Figure 2.45 compares PGaussian(k), Psphere(k), and Prod(k) plotted as a
function of kRg. The three factors are identical for kRg « 1 as required. At higher
kRg, the three curves are different.

We now calculate the form factor Pstar(k) for an nA-arm star polymer with a
uniform arm length N1. When calculating the average of exp[ik · (r � r�)], it is
necessary to distinguish two cases for r and r�: (1) being on the same arm and (2)
being on different arms. The former takes place with a probability of 1�nA. Then,

(2.94)

where the subscripts 1 and 2 correspond to the two cases, and 〈〈exp[ik·(r � r�)]〉〉
stands for the average of 〈exp[ik · (r � r�)]〉 with respect to the two monomers over

Pstar(k) �
1

nA
 〈〈exp[ik�(r � r�)]〉〉1 � �1 �

1

nA
�〈〈exp[ik�(r � r�)]〉〉2

Prod(k) � x�1�2x

0

sin z

z
 dz � � sin x

x �
2 with x � kL�2

Psphere(k) � [3x�3(sin x � x cos x)]2 with x � kRs

Psphere(k) �
1

Vsp
2 �

Vsp

dr�
Vsp

dr� exp[ik�(r � r�)] � � 1

Vsp
2 �

Vsp

dr exp(ik�r)�
2
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Figure 2.44. Polymers with a simple geometry and their form factors.
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the length of the arm(s). Using, Eq. 2.78, we have

(2.95)

where Rg1
2 � N1b2�6 � Rg

2�(3 � 2�nA) is the mean square radius of gyration of the
arm, with Rg being the radius of gyration of the whole star polymer (see Eq. 1.84).
In the second average,

(2.96)

where r0 is the position of the core of the star polymer, and the average in the last
equation is calculated for a single arm as

(2.97)

Thus,

(2.98)

The difference in Pstar(k) between a 2-arm star (� linear chain) and a 6-arm star
is not as striking as the difference between a Gaussian chain and a rodlike mole-
cule. At low kRg, all the curves overlap (not shown), as required. At kRg1 » 1, the
second term becomes negligible, and the scattering comes mostly from two nearby
monomers on the same arm. The difference in Pstar(k) is, however, clearly seen in
the plot of (kRg)2Pstar(k) as a function of kRg. Figure 2.46 compares the form factor

Pstar(k) �
1

nA
 fD(kRg1) � �1 �

1

nA
��(kRg1)�2[1�exp(�(kRg1)2)]�2
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1
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0
d n exp( � 1

6 
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1
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Figure 2.45. Form factor P(k) for a spherical molecule, a rodlike molecule, and a Gaussian
chain, plotted as a function of kRg.
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for star polymers with nA � 2, 3, 4, 5, and 6. For nA � 3, (kRg)2Pstar(k) approaches
the asymptote of 14�9 at high kRg. For nA � 4, there is a peaking at around kRg �
2. The peaking, also observed in a spherical molecule, indicates the compactness of
the polymer molecule. 

2.4.7 Light Scattering of a Polymer Solution

2.4.7.1 Scattering in a Solvent We have assumed so far that polymer chains and
particles are suspended in vacuum. Now we consider the light scattered by a fluid
or, in general, a continuous dielectric medium of scattering volume V. Scattering by
particles suspended in a solvent is obtained from the Rayleigh scattering formula
for particles in vacuum. In a medium with a refractive index n, the wavelength is
��n and the electric permittivity is �0n2. In Eq. 2.45, we change � to ��n, �0 to � �
�0n2, and � to �ex, where �ex is the excess polarizability of the suspended particle
relative to the surrounding medium. The result is

(2.99)

In effect, � is replaced by �ex, but no other changes. The wavelength � refers to the one
in vacuum. The other equations (Eqs. 2.55 and 2.58) are rewritten in the same way.

It is more convenient to extend Eq. 2.99 to include spatial fluctuations in �ex.
Every part of the scattering volume has naturally occurring fluctuations in the den-
sity and, for solutions, also in the concentration, as illustrated in Figure 2.47. The
density and concentration are slightly different from place to place. The density
fluctuations and concentration fluctuations cause fluctuations in �ex through fluc-
tuations ��r in the relative electric permittivity �r � ���0 (also called dielectric

I
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� 
2

(� �n)4
 

�ex
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(�0n2)2  
sin2��

r2 �
� 2
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Figure 2.46. Plot of (kRg)2Pstar(k) of an nA-arm star polymer as a function of kRg. The num-
ber adjacent to each curve indicates nA.
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constant) because the latter is determined by the number of charges (electrons and
protons) in a unit volume. The Clausius-Mossotti equation gives the extra polariz-
ability d�ex due to ��r of a small volume dr at r as d�ex � �0��rdr, when �r is not
too large (which is the case in water and most organic solvents; Problem 2.24).
Note that d�ex can be either positive or negative depending on the sign of ��r. Be-
cause �r � n2 in the visible range of the spectrum, d�ex(r) � 2�0n�n(r)dr. As the
refractive index fluctuation �n is different from place to place in the volume, d�
also depends on r. Similar to the calculation of interference of light scattered by
different parts of a polymer chain in Section 2.4.3, we can calculate contributions
from different parts of the volume. The extension of Eq. 2.55 gives the total scat-
tering intensity I as

(2.100)

where the integrals are calculated over the scattering volume V (Fig. 2.33).

2.4.7.2 Scattering by a Polymer Solution Light-scattering study of a polymer is
usually carried out by first measuring the scattering intensity IS of the pure solvent
at different angles � and then repeating the procedure on polymer solutions to
obtain the scattering intensity I at different angles. The excess scattering (Iex) is de-
fined by Iex � I � IS (Fig. 2.48). Usually IS is flat, if V is constant, by the reason
explained in Section 2.4.5.

In Eq. 2.100, �n(r) has two components: �dn(r) and �cn(r). The former is due
to density fluctuations of the fluid that appears also in IS. The latter is caused by
concentration fluctuations of the polymer and is unique to the solutions. The excess
scattering Iex is due to �cn(r):

(2.101)
Iex
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4� 2
 n2

�4r2
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V
dr1�
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dr2 〈�c 

n(r1)�c 
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 �
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Figure 2.47. Spatial variations of the local solvent density and the polymer concentration lead
to fluctuation in the excess polarizability � ex. The plot in b shows � ex along the white line in a.
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where the statistical average is taken with respect to the concentration fluctuations.
We set the reference for n to the refractive index of the solvent. The refractive index
fluctuation �cn(r) is related to the concentration fluctuation �c(r) by

(2.102)

where dn�dc is called the differential refractive index (or specific refractive in-
dex increment). It expresses how much the refractive index of the polymer solution
increases as the concentration c of the polymer increases. Each polymer–solvent
pair has its own value of dn�dc. It also depends on the temperature and the wave-
length. Roughly, dn�dc is approximated by

(2.103)

where npolymer and nsolvent are the refractive indices of the bulk polymer in the amor-
phous state and of the solvent, respectively, and vsp is the specific volume of the
polymer in the solution. If the volumes of the polymer and the solvent are additive,
vsp is the reciprocal of the density of the polymer.

Note that dn�dc can be positive or negative, depending on whether the polymer
has a higher refractive index than the solvent does. As we will see below, the
scattering intensity is proportional to (dn�dc)2. A greater contrast in the refractive
index between the polymer and the solvent gives a stronger scattering. In some
polymer–solvent systems, dn�dc is near zero, making the excess scattering near
zero. Then, the polymer is optically indistinguishable from the solvent. This condi-
tion is called index matching. A solvent isorefractive with the polymer makes the
polymer invisible. 

d n

dc
� (npolymer � nsolvent)vsp

�c  
n(r) �

d n

dc
�c(r)
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2.4.7.3 Concentration Fluctuations With Eq. 2.102, Eq. 2.101 is rewritten to

(2.104)

with �cc(k) being the Fourier transform for the correlation function of the concen-
tration fluctuations:

(2.105)

We consider �cc(k) in the limit of k � 0 and in the low concentration limit separately.
First, at k � 0,

(2.106)

where �ctot is the fluctuation in the overall concentration in the scattering
volume. It is not the local concentration fluctuation �c(r) � c(r) � 〈c〉 with
〈c〉 � Mnp�(NAV ) defined in Eq. 2.68. The scattering volume is not in any con-
tainer, and the solvent and solid molecules are free to leave the volume and enter
the volume from the surroundings. The system is open to exchange of matter. Now
we use the osmotic compressibility requirement for an open system in general:

(2.107)

The relationship can be obtained from the statistical mechanics for the open system
(Problem 2.25). From the virial expansion of � given in Eq. 2.20,

(2.108)

From Eqs. 2.106–2.108, we find

(2.109)

Next, we consider �cc(k) for a small k in the low-concentration limit. Because
〈�c(r1) �c(r2)〉 � 〈c(r1)c(r2)〉 � c2, Eq. 2.70 leads to

(2.110)〈�c(r1)�c(r2)〉 �
c M
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Then, Eq. 2.105 leads to

(2.111)

where Eq. A1.8 was used. The second term is nonzero only at k � 0 (forward scat-
tering). Because Iex(k)�I0 � �cc(k), the negative sign for this term indicates how the
concentration fluctuations decrease the intensity of unscattered light. We neglect
this second term because it is not what is detected by the photodetector in the static
light scattering experiments. We thus find from Eq. 2.75 that, at small k,

(2.112)

Combining Eqs. 2.109 and 2.112, we obtain �cc(k) as

(2.113)

This expression applies to small scattering angles and low concentrations.

2.4.7.4 Light-Scattering Experiments From Eqs. (2.104) and (2.113), we fi-
nally obtain

(2.114)

Here we introduce the Rayleigh ratio R� according to

(2.115)

The Rayleigh ratio eliminates the geometry-dependent factors in Iex(k)�I0 such as
the scattering volume V(�) and the detector-sample distance r and retains the fac-
tors related to the solution only. In the actual measurement system, I0 and V(�) can-
not be measured correctly. Therefore, a pure solvent such as benzene and toluene is
used as a calibration standard. See Refs. 21 and 22 for details. With R�, Eq. 2.114 is
rewritten to

(2.116)
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where

(2.117)

The equations we derived in the above assume that the polymer in solution is
monodisperse. Usually, the polymer is polydisperse. M and Rg that we obtain in the
static light-scattering experiments are then averages of M and Rg. Below we find
what kind of averages they are.

For a monodisperse polymer, Iex�I0 � cM–(1�3)k2cMRg
2 in the low concentra-

tion limit. When the solution contains components of molecular weight Mi and
radius of gyration Rgi at concentration ci (c � �ci), the total excess scattering inten-
sity from all the components is

(2.118)

Because ci�c is the weight fraction of component i, �i (ci�c)Mi � Mw by definition.
For Rg

2, ciMi is proportional to the product of the weight fraction and Mi. Thus, the
average for Rg

2 is the z-average.

(2.119)

There is also an effect of the polydispersity on A2, but the effect is usually weak, as
we have seen in Section 2.2.3. 

2.4.7.5 Zimm Plot Here we learn how Mw, 〈Rg
2〉z, and A2 are evaluated in the

light-scattering experiments conducted on solutions of finite concentrations and at
finite scattering angles. The excess scattering intensity is recorded at different scat-
tering angles. The measurement is repeated for several concentrations of the poly-
mer at the same set of angles for a given polymer solution. The intensity data are
converted into Hc�R� and plotted as a function of sin2(��2) � const. � c. The con-
stant is arbitrary. The plot is called a Zimm plot. Open circles in Figure 2.49 illus-
trate the ideal data. Each dashed line represents a series of measurements at a con-
stant angle. Each solid gray line is for those at a constant concentration. The plot
looks like a lattice deformed by a shear. The data obtained at nonzero angles and
nonzero concentrations are extrapolated to � � 0 and c � 0, represented by two
solid dark lines with a common intercept. The intercept gives Mw

�1. The slope of
the c � 0 line is equal to (1�3)(4�n��)2Rg

2�Mw, where we write Rg
2 for 〈Rg

2〉z here.
The slope of the � � 0 line is equal to 2A2�const. Thus, the Zimm plot gives esti-
mates of Mw, Rg, and A2 with no need of other references. If the constant coefficient
on c is large, the sheared lattice can be inverted with the � � 0 line lying below the
c � 0 line. A negative A2 inverts the plot vertically (Problem 2.32).

An example of the actual data is shown in Figure 2.50. The data were obtained for
polyguanidine in tetrahydrofuran.23 The intercept gives Mw � 6.73 � 105 g�mol.
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Figure 2.49. Schematic of the Zimm plot. Results obtained for solutions of different con-
centrations c at different scattering angles � are converted to Hc�R� and plotted as a function
of sin2(��2) � const. � c. The extrapolate to c � 0 has a slope of (1�3)(4�n��)2Rg

2�Mw.
The extrapolate to � � 0 has a slope of 2A2�const. The two extrapolates have a common
intercept of 1�Mw.

Figure 2.50. Example of the Zimm plot. Data were obtained for polyguanidine in tetrahy-
drofuran. (From Ref. 23.)
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The slope of the c � 0 line gives Rg � 99 nm, and the slope of the � � 0 lines gives
A2 � 2.59 � 10 – 3 (mol�cm3)�g2.

When the light-scattering data are available only for one concentration, but the
concentration is sufficiently low, we can regard that the line connecting the meas-
ured data as the c � 0 line in the Zimm plot. The intercept of the line gives Mw and
the slope gives Rg. 

A simpler alternative to estimate A2M is to measure Iex at a sufficiently low angle
(kRg � 1) for solutions of different concentrations and plot Iex�c as a function of c. The
plot is schematically explained in Figure 2.51. The data for low concentrations (c � c*)
will lie on a straight line. The ratio of the slope to the intercept is equal to –2A2M.

2.4.7.6 Measurement of dn�dc To have a good accuracy in the estimates of
Mw, 〈Rg

2〉z, and A2, dn�dc must be evaluated with a high accuracy because the rela-
tive error in dn�dc is doubled in the errors in Mw, 〈Rg

2〉z, and A2. The dn�dc is usu-
ally measured by using a differential refractometer for solutions of the polymer at
different concentrations in the dilute regime. Fitting the plot of �n as a function of
c by a straight line through the origin gives the estimate of dn�dc. The measure-
ment of dn�dc must be done at the same temperature and wavelength as those in the
light-scattering measurements.

Commercial instruments based on two different principles are available. One
uses a vertically divided cell.24 The top view is shown in Figure 2.52a. One of the
chambers contains a reference fluid, typically the pure solvent, and the other cham-
ber contains the sample solution. A laser beam passes the divided cell twice before
reaching a two-part photodetector. The detector is placed so that the beam hits the
two parts equally when the two chambers of the cell have the same refractive index.
A difference in the refractive index in the chambers deflects the beam, resulting in
unequal intensities on the two parts of the detector. Thus the imbalance of the two
intensities gives the refractive index difference �n.

A variant of this scheme is also used. A mirror is on a rotation stage. The mirror
is rotated so that the beam hits the two parts of the detector with the same intensity.
The angle of rotation gives the refractive index difference �n.

Figure 2.51. A plot of Iex�c as a function of c at sufficiently low scattering angles has an
intercept proportional to M and a slope proportional to �2A2M 2. The ratio gives an estimate
of A2M.

Iex/c

intercept ∝ M

slope ∝ −2A
2M 2

c



The other method uses an interferometer.25 In Figure 2.52b, a beam linearly po-
larized at 45° from vertical is split into two beams by a Wollaston prism. One of
the two beams passes a sample cell, and the other beam passes a reference cell.
When there is a difference in the refractive index between the two fluids, one of
the beams is delayed compared with the other, resulting in a phase shift. When the
two beams are coupled by another prism, they form a circularly polarized light. A
quarterwave plate converts it into a linearly polarized beam. With the analyzer (an-
other polarizer) adjusted to be extinct when there is no phase shift, the intensity of
light though the analyzer is proportional to the phase shift. The latter is propor-
tional to �n.

As an alternative, we can use a regular Abbe refractometer that reads the refrac-
tive index of a liquid for a typical light source of a sodium lamp (D line; � � 589.3
nm) at a given temperature. Unlike the differential refractometer, the fluid is ex-
posed to the atmosphere; therefore, this method is not suitable for a solution dis-
solved in a volatile solvent. 

2.4.8 Other Scattering Techniques

2.4.8.1 Small-Angle Neutron Scattering (SANS) Small-angle neutron scattering
(SANS) has become a preferred tool of research for a variety of polymer systems,
including pure and blend bulk polymers, phase-separated systems, miceller suspen-
sions, and solutions, especially concentrated ones. Unlike light scattering, it is
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available only in a limited number of facilities around the globe. Labeling of poly-
mer by deuterium, that is, straight synthesis of the polymer using deuterated com-
pounds, is often required. SANS is therefore best suited where light-scattering
measurements fail, for instance, for opaque systems such as micellar suspensions in
which multiple light-scattering complicates the scattering pattern.

As in light scattering, SANS provides information on static structures of the sys-
tem, but the length scale is smaller. The range of the scattering vector is typically
from 0.02 to 3 nm�1, overlapping with the high end of the scattering vectors in the
light scattering (see Fig. 2.32). It is customary to use symbol q to denote the scat-
tering vector whose magnitude q is given by

(2.120)

where � is the de Broglie wavelength of neutrons and � is the scattering angle. The
particles that scatter neutrons are nuclei. The scattering intensity by each nucleus is
proportional to a scattering length b, which is different from nucleus to nucleus.
For a proton 1H, b � 0 and there is no change in phase upon scattering. With a deu-
terium D � 2H and most other nuclei that constitute polymers, b � 0 and the phase
shifts by � upon scattering.

We can imagine that each atom has a shield of area 4�b2 to block the incident
neutrons and scatter them in all directions. This area is called a scattering cross
section. The cross section of the entire sample is denoted by �. The coherent part
of the scattering intensity Icoh per unit solid angle d� at q is related to the position
ri and the scattering length bi of the ith nucleus by

(2.121)

where �coh is the coherent component of the scattering cross section. Incoherent
component does not interfere to take part in the structure factor. Equation 2.121 is
similar to the structure factor we obtained in the static light scattering. The contrast
factor dn�dc is now replaced by bi.

Now we apply the general formula to a solution of polymer. We consider that the
polymer consists of hydrogenated chains (regular chains) and deuterated chains,
both having the same distribution in the chain length. The coherent scattering by the
solution of total concentration c is given as

(2.122)

where m0 is the mass of a monomer, aH and aD are the scattering lengths
per monomer for hydrogenated and deuterated polymers, respectively, xH and xD are
their mole fractions in the polymer sample (without solvent), and S1(q) and S(q)
are the single-chain and total structure factors, respectively, as we defined earlier in

d Σcoh(q)

d�
�

MwcNA

m0
2  [(aH � aD)2xH 

xD 
S1(q) � (ap � as)2S(q)]

Icoh(q) �
dΣcoh(q)

d�
� 〈


i, j

bi 
bj  

exp [iq �(ri � rj)] 〉

q �
4�

�
 sin 

�

2



the sections on light scattering. The ap and as are defined as

(2.123)

where asH and asD are the scattering lengths of hydrogenated and deuterated
solvent molecules, respectively, and xsH and xsD are their mole fractions in the sol-
vent mixture (without polymer). Note that Mwc�m0

2 in Eq. 2.122 is the same be-
tween hydrogenated and deuterated chains, as long as the molar concentration is
common.

Extraction of S1(q) from I(q) is facilitated by contrast matching in which ap and
as are brought to be equal by choosing an appropriate isotopic mixture of the sol-
vents for a given isotopic mixture of the polymer samples. Because of the factor
xHxD, the scattering intensity maximizes for a 50:50 mixture of the isotopes. Once
we obtain S1(q), the methods used in the analysis of SLS data can be applied, in-
cluding the Zimm plot.

Example of SANS experiments is shown in Figure 2.53.26 The scattering inten-
sity from a hydrogenated dendrimer (xH � 1, xD � 0) normalized by its volume
fraction � is plotted as a function of the scattering vector. At high q, I(q) levels off
to a constant due to incoherent scattering. Mixtures of deuterated (D) and hydro-
genated (H) solvents with different mixing ratios were used as a solvent. Appar-
ently, the contract matching is reached at around 20% of the hydrogenated solvent
in this example. The concentration was sufficiently low for this compact molecule;
thus S1(q) � S(q). The coherent part of the scattering is close to 1�(1 � q 2Rg

2�3)
dependence.

ap � xHaH � xDaD, as � xsHasH � xsDasD
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Figure 2.53. Scattering intensity I in SANS divided by the polymer volume fraction �, plot-
ted as a function of the scattering vector q. The sample was a hydrogenated dendrimer in a
mixture of deuterated (D) and hydrogenated (H) solvents. The D-to-H mixing ratio is indi-
cated in the legend. (From Ref. 26.)
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2.4.8.2 Small-Angle X-Ray Scattering (SAXS) Small-angle X-ray scattering
(SAXS) is, in principle, the same as wide-angle X-ray diffraction (WAXD), broadly
used in crystallography. In SAXS, the scattering angles are low to allow investiga-
tion of structures over the length much longer than 1 Å. The mechanism of scatter-
ing discussed in Section 2.4.2 applies as it is. Unlike WAXD, the intensity of
scattered X-ray is weak. Therefore, a synchrotron radiation source that provides a
strong monochromatic beam is usually used. The scattering vector is given by the
same formula as the one used for SANS, with � being the wavelength of the X-ray.
Note that the relative electric permittivity is nearly equal to unity in the relevant
range of wavelength (to be precise, it is slightly smaller than 1). The magnitude of
the scattering vector is typically 0.2 to 4 nm – 1, much greater than the range avail-
able in static light scattering. Therefore, SAXS is suitable to study local structures
of polymer molecules. The form factor studied at a high q range gives, for instance,
an estimate for the diameter of a rodlike molecule.

2.4.9 PROBLEMS

Problem 2.18: A copolymer chain consisting of Na beads of monomer a and Nb

beads of monomer b has three single-chain structure factors: Saa(k), Sab(k),
and Sbb(k). They are defined as

where N � Na � Nb is the total number of beads in the chain and �i
l specifies

the monomer type:

By definition, �i
a � �i

b � 1. Assume that the copolymer chain follows the
Gaussian statistics and has a common segment length b. Find Saa(k), Sab(k),
and Sbb(k) for (1) a diblock copolymer and (2) a random copolymer in which
the two monomers are placed without correlation to the neighboring
monomers. Also evaluate each of Saa(k), Sab(k), and Sbb(k) in the small k limit
up to the order of k2.

Solution 2.18 (1):

 Saa(k)�
1

N 

N

i, j�1
〈exp[ik�(ri �rj)]�i

a�j
a〉�

1

N 

Na

i, j�1
〈exp [ik�(ri�rj)]〉�

Na
2

N
 fD 

(kRga) 

 �i
a � 1 for i � 1, . . . ,Na and �i

b � 1 for i � Na � 1, . . . ,Na � Nb

�i
l � �1

0
(the i th bead is l )
(otherwise)

Sll�(k) �
1

N 

N

i, j�1
〈exp[ik�(ri � rj)]�l

l�j
l�〉 (l, l� � a,b)



where Rgl
2 � b2Nl�6 (l � a, b) is the mean square radius of gyration of block l.

In the small k limit,

Solution 2.18 (2): �i
a � 1 with a probability of Na�N for any i. Whether the bead i

is monomer a or b is independent of other factors and 〈�i
a〉 � Na�N. Therefore,

where Rg is the radius of gyration of the whole chain. Likewise,

Sbb(k) �
Nb

2

N
 fD (kRg), Sab(k) �

Na 
Nb

N
 fD(kRg)

�
Na

2

N
 fD(kRg) �  

Na
2

N3 

N

i, j�1
〈exp[ik�(ri � rj)]〉

 Saa(k) �
1

N 

N

i, j�1
〈exp [ik�(ri � rj)]〉 〈�i

a〉〈�j
a〉

 Sab(k) �
Na 

Nb

N
 �1 � 1

2 k2(Rga
2 � Rgb

2)�

 Saa(k) �
Na

2

N
 �1 � 1

3 k2Rga
2�, Sbb(k) �

Nb
2

N
 �1 �

1

3
 k2Rgb

2�,

 �
Na 

Nb

N
 � 1 � exp (�k2Rga

2)

k2Rga
2 � � 1 � exp (�k2Rgb

2)

k2Rgb
2 � 

 �
1

N
 �Na

0
dn exp�1

6 
k2 nb2��Na�Nb

Na

dn� exp��1
6  

k2n�b2�
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1

N
 �Na

0
 d n �Na�Nb

Na

dn�exp��1
6 
k2 (n� � n)b2�

 Sab(k) �
1

N 

N

i, j�1
〈exp [ik�(ri � rj)]�i

a�j
b〉 �

1

N 

Na

i�1
  


Na�Nb

 
j�Na�1

〈exp[ik�(ri � rj)]〉

 �
Nb

2

N
 fD 

(kRgb)

Sbb(k) �
1

N 

N

i, j�1
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b〉 �

1

N 

Na�Nb

i, j�Na�1
〈exp [ik�(ri � rj)]〉
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In the small K limit,

Real random copolymers may have a correlation between �i
l of different i.

Problem 2.19: Calculate the form factor for a spherical molecule.

Solution 2.19: Choose the polar axis along k. Then,

Then,

Problem 2.20: Calculate the form factor for a rodlike molecule.

Solution 2.20: Let � be the angle between k and the molecule.

[k(x � x�) # z, kx � y]

�
2

L2 �L

0
dx �x

0
dx� 

sin k(x � x�)

k(x � x�)

 �
1

L2 �L

0
dx�L

0
dx�

sin k(x � x�)

k(x � x�)

 Prod �
1

2L2  �L

0
dx�L

0
dx� ��

0
sin� d� exp [ik(x � x�)cos� ]

 Psphere(k) � �V�1�
v
dr exp (ik�r)�2 � [3(k RS)�3(sin kRS � kRS 

cos kRS)]2

 � 4�k�3(sin kRS � kRS cos kRS)

�
4�

k
 Im� Rs

ik
 exp (i kRS) 	

1

k2   (exp (i kRS) � 1)�

 �
4�

k
 Im�RS

0
r  dr exp (ikr) 

� 2��RS

0
r2

 d r  

2 sin kr

kr

 �
V

dr exp (ik�r) � �RS

0
 r2

 dr��

0
sin� d��2�

0
d
  exp (i kr cos�)

 Sab(k) �
Na 

Nb

N
 �1 � 1

3 k2Rg
2�

Saa(k) �
Na

2

N
 �1 � 1

3 k2Rg
2�, Sbb(k) �
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N
 �1 � 1
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θ
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xx«



Problem 2.21: Verify that the form factor of a two-arm star polymer (nA � 2 in
Eq. 2.98) reproduces the form factor of a Gaussian chain.

Solution 2.21: When nA � 2, with x � kRg1,

21/2Rg1 is the radius of gyration of the two-arm star polymer.

Problem 2.22: Show that Eq. 2.98 reduces to Eq. 2.74 when kRg « 1.

Solution 2.22: In Eq. 2.98, when k is small,

where Eq. 1.84 or Eq. 1.85 was used.

Problem 2.23: Compare the form factor of a sphere and that of a star polymer
by plotting (kRg )2Psphere (k) and (kRg)2Pstar (k) as a function of kRg. Consider
nA � 6, 10, and 20 for the number of arms of the star polymer.

Solution 2.23:

 �1 � �1 �
2

3nA
�(kRg1)2 � 1 � 1

3 (kRg)2

 Pstar(k) �
1

nA
 �1 � 1

3 (kRg1
)2� 	  �1 �

1

nA
��1 � 1

2 (kRg1)2�2

 � 2(21/2x)�2�1�(21/2 x)�2 �1 � exp(�(21/2 x)2)�� � fD(21/2kRg1)

 � x�2 �1 � 1
2  x�2�1 � exp (�2x2)��

 � 1
2 �2x�2�1 � x�2�1 � exp(�x2)�� 	 1

2x
�4[1 � exp(�x2)]2

Pstar � 1
2 fD(x) 	 1

2 �x�2[1 � exp(�x2)]�2

� (kL 	 2)�1�kL

0
 
sin z

z
 dz � � sin(kL 	 2)

kL 	 2 �
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 �
2

k2L2  �kL

0
dy �y

0
dz 

sin z

z
�

2

k2L2  �kL

0
dz 

sin z

z
 (kL � z)
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Problem 2.24: Clausius-Mossotti formula is given as

where v is the volume per molecule. Use this formula to derive d�ex �
�0
�rdr.

Solution 2.24: The contribution to � from a small volume dr is given as

When a fluctuation 
�r in �r causes d� to fluctuate by d�ex,

Comparison of the above two equations leads to

when �r is close to unity.

Problem 2.25: Statistical mechanics for an open system gives the following re-
lationship between the mean square fluctuation in nP, the number of polymer
chains in volume V, and the mean of nP:

Derive Eq. (2.107) using this relationship and the Gibbs-Duhem theorem,
nPd�P 	 nSd�S � 0.

Solution 2.25: From the Gibbs-Duhem theorem,

Because

 �
�S � �
Vm

NA

 
��P

�nP
� �

nS

nP
 
��S

�nP

〈
nP
2〉 � kBT � �nP

��P
�

T,p

d�ex �  3�0 


�r

�r 	 2
 dr �  �0
�rdr

d� 	 d�ex � 3�0 

�r 	 
�r � 1

�r 	 
�r 	 2
  dr

d� � 3�0 

�r � 1

�r 	 2
 dr

�r � 1

�r 	 2
 v �

�

3�0



where Vm is the molar volume of the solvent,

Thus we obtain

where nSVm	NA � V was used.

Problem 2.26: Show that

(another expression for Eq. 2.107).

Solution 2.26: From Eq. 2.105,

Then, with Eqs. (2.106) and (2.107),

Problem 2.27: For a diblock copolymer or a random copolymer consisting of
monomers a and b that have different contrasts to the solvent, the refractive
index fluctuation 
cn(r) due to concentration fluctuation has two parts:

where (dn �dc)l is the differential refractive index of homopolymer l (l � a, b),
and 
cl(r) � cl(r) � cl with cl � 〈cl(r)〉 denotes the concentration fluctuation
of monomer l. Following the procedure in Section 2.4.7.4, we find the
excess scattering intensity from the solution of the copolymer in the low


c 
n(r) � � dn

dc �a

ca(r) 	 � dn

dc �b


cb(r)

�
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1

c
 〈
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c(0)〉 dr �

1
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V

c
 〈
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��
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 dr1�
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concentration limit as

where

with �ab(k) � �ba(k). Because 〈
cl(r1)
cl�(r2)〉 � 〈cl(r1)cl�(r2)〉 � clcl �,

where c � ca 	 cb is the total concentration, M and N refer to the whole
chain, Nl is the number of l monomers in the polymer chain, and Sll�(k) is de-
fined in Problem 2.18. After eliminating the unscattered beam,

Answer the following questions assuming the whole chain follows the
Gaussian statistics.

(1) Show that, for the random copolymer, Eq. 2.114 (in the low concentration
limit) holds with dn/dc replaced by the effective differential refractive index
of the copolymer as a whole, (ca	c)(dn	dc)a 	 (cb	c)(dn	dc)b.

(2) What is the radius of gyration Rg,eff estimated from the linear relationship be-
tween k2 and the reciprocal of the scattering intensity in the small k limit for
the diblock copolymer?

Solution 2.27 (1):

�
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dc �b
�

2

fD(kRg)

	 cb
2� dn

dc �b

2

��
 

fD(kRg)

Iex(k)

I0
�

4� 
2n2

�4r2
 

MV

cNA
 �ca

2� d n

dc �a

2

	 2cacb� d n

dc �a
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MVN
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V
 dr2〈
cl (r1)
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l�(r2)〉 exp[ik�(r1 � r2)](l, l� � a, b)
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dc �a
� d n

dc �b
�ab 
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Solution 2.27 (2): In the small k limit,

with

Problem 2.28: In the preceding question, what happens to the light scattering of
the diblock copolymer solution if the solvent is selected so that (1) (dn/dc)a � 0,
(2) (dn	dc)b � 0, (3) (ca	c)(dn	dc)a 	 (cb	c)(dn	dc)b � 0?

Solution 2.28 (1): Rg,eff � Rgb (a is invisible).

Solution 2.28 (2): Rg,eff � Rga.

Solution 2.28 (3):

Note that Iex (0) � 0. The condition of the zero average differential refractive
index is sometimes called optical theta.

Problem 2.29: What is the scattering from a telechelic
molecule in which two identical small spheres are
attached to the ends of a flexible chain that is isore-
fractive with the solvent? Assume the flexible chain
follows the Gaussian statistics of N segments.

Solution 2.29: Two spheres are at ri and rj, separated by a distance between the
two Gaussian chain ends. The scattering comes from the two spheres only.
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Their structure factor is

Problem 2.30: What is the scattering from a telechelic
molecule in which two identical small spheres are
attached to the end of a rodlike molecule of length L
that is isorefractive with the solvent?

Solution 2.30: Two spheres are at ri and rj separated by L. The scattering comes
from the two spheres only. Let the angle between k and the rod be �.

Problem 2.31: What is the scattering from a spherical mole-
cule of radius RS uniformly coated with a layer of thickness
l? Assume that only the coated layer is visible, i.e., the inte-
rior of the sphere is isorefractive with the solvent, and l « RS.

Solution 2.31: The single-scatterer structure factor is

where N is the number of small molecules that coat the sphere surface.

Problem 2.32: Draw a sketch of the Zimm plot for a solution of a polymer with
the same MW and Rg but with A2 just the opposite in sign to the one shown in
Figure 2.49.

Solution 2.32:

 � N 
4�

4�RS
2l
�RS	 l

RS

r2dr  

sin kr

kr
� N 

sin kRS

kRS
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1
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2l
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0
sin� d��2�

0
d
 exp (ikr cos�)
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0
sin� d�  exp(ikL cos�) � 1 	

sin kL

kL

 � 1 	 exp�� 1
6 Nb2k2� � 1 	 exp (�Rg

2k2)

 � 1 	 �d(r1 � r2)(2� Nb2 	 3)�3	2 exp ��
3(r1 � r2)2

2Nb2 �
 

exp[ik�(r1 � r2)]

  S1 � 1
2 


2

i�1 


2

j�1
〈exp[ik�(ri � rj)]〉 � 1 	 〈exp[ik�(r1 � r2)]〉

Rs

l

c = 0

 = 0θ

1/Mw

H
c/

R
θ

sin2(  /2) + const.    cθ ×



2.5 SIZE EXCLUSION CHROMATOGRAPHY AND CONFINEMENT

2.5.1 Separation System

Size exclusion chromatography (SEC) has been widely used since its introduction
during the 1960s. It offers a simple yet unbiased method to characterize the molec-
ular weight distribution of a polymer. Although it uses a flow system, the separation
principle and the analysis are based on a static property of the polymer molecules in
solution. We briefly look at the separation system here before learning the principle.

Figure 2.54 illustrates the separation system. A high-pressure liquid pump draws
a solvent called a mobile phase from the reservoir and pumps it into a column or
a series of columns at a constant flow rate. At one time, a small amount of a dilute
solution of polymer dissolved in the same solvent is injected into the stream from a
sample loop by changing the position of the injection valve. The column is packed
with porous materials, typically polymeric beads with many tiny through holes
(pores).

The polymer molecules are partitioned between the small confines of the pore,
called the stationary phase, and the interstitial space between the beads (mobile
phase). Polymer molecules with a dimension smaller than the pore size enter the
pore more easily than larger polymer molecules do. As the injected polymer
solution is transported along the column, low-molecular-weight components are
frequently partitioned to the stationary phase, whereas high-molecular-weight com-
ponents remain mostly in the mobile phase (see Fig. 2.55). Therefore, it takes a
longer time for the low-molecular-weight components to reach the column outlet.
The band of the polymer in the mobile phase is narrow when injected but spreads
according to the molecular weight distribution as the solution moves along the
column.

The liquid that comes off the column is called the eluent. A detector with a flow
cell is placed downstream to measure the concentration (mass	volume) of the poly-
mer in the eluent. A differential refractometer is most commonly used to measure
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Figure 2.54. Schematic of the size exclusion chromatography system.
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the difference in the refractive index between the eluent and the pure solvent
(Section 2.4.7). The difference is proportional to the concentration, with dn	dc
being the proportionality constant. If the polymer has an ultraviolet absorption but
the solvent does not, one can use an ultraviolet detector. The absorbance is propor-
tional to the concentration by Beer’s law.

Figure 2.56 shows the signal intensity of the detector plotted as a function of
retention time (tR), the time measured from the injection of the polymer solution.
The retention volume (VR), the cumulative volume of the fluid out of the column
since the injection, can also be used for the abscissa. The curve is called a retention
curve or a chromatogram. The height of a point on the curve above the baseline is
proportional to the concentration at a given retention time. The signal maximizes at
the peak retention time (tp). The integral of the curve is proportional to the total

Figure 2.55. Transport of polymer molecules in the size exclusion column. High-molecular-
weight (MW) components stay mostly in the mobile phase, whereas low-MW components
are partitioned to the stationary phase more frequently.
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Figure 2.56. Typical SEC chromatogram. The signal intensity proportional to the eluent
concentration is plotted.



amount of the polymer injected. The spread of the polymer band by the column is
translated into a broadened chromatogram. Because high-molecular-weight compo-
nents elute earlier, the time axis can be regarded as a reversed molecular weight
axis. 

SEC has other names. When the mobile phase is an organic solvent, SEC is also
called gel permeation chromatography (GPC). When it is aqueous, SEC is also
called gel filtration chromatography (GFC) or aqueous GPC.

2.5.2 Plate Theory

Plate theory is useful to explain the band broadening during the transport of poly-
mer molecules along the column. In the theory, the whole length of the column is
divided into Npl plates of an equal height. Each plate consists of the mobile phase
and the stationary phase. Figure 2.57 explains what is supposed to occur in the
plates. In each plate, the polymer molecules are partitioned between the two phases.
The mobile phase moves to the next plate in a given time t1 (plate height/linear
velocity of the mobile phase), whereas the stationary phase does not. The moved
mobile phase establishes concentration equilibrium with the stationary phase in
the next plate. Equilibration and transport of the mobile phase are repeated in all of
the plates each time. As a result, a completely excluded polymer (too large to enter
the pore) requires a time of t1Npl to reach the outlet. A lower-molecular-weight
polymer molecule needs a longer time to come out of the column.

When equilibrium is reached in the plate, the polymer concentration is cS in
the stationary phase and cM in the mobile phase. Their ratio is called the partition
coefficient K:

(2.124)K # cS  
	cM
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Figure 2.57. Plate theory in column chromatography.
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When the concentration is sufficiently low (cM « c*, overlap concentration), K does
not depend on cM but depends on the ratio of the chain dimension to the pore size. 

The partition ratio k� is defined as the ratio in the number of molecules be-
tween the two phases and given as

(2.125)

where VS and VM are the volumes of the two phases. The polymer molecules are
partitioned with a probability of k�	(1 	 k�) to the stationary phase and with a
probability of 1	(1 	 k�) to the mobile phase. Partitioning in each occurs independ-
ently of the other plates and of the equilibration at other times. If the retention time
of a particular polymer molecule is tR � t1(Npl 	 Nex), then this polymer molecule
has been partitioned Nex times to the stationary phase and Npl times to the mobile
phase before it reaches the outlet. Then,

(2.126)

From Eqs. 2.125 and 2.126, we find that K depends linearly on tR by

(2.127)

as seen in Figure 2.58, where t1Npl is the retention time for a completely excluded
component.

2.5.3 Partitioning of Polymer with a Pore

2.5.3.1 Partition Coefficient Figure 2.59 illustrates equilibrium of polymer
molecules between the pore space (stationary phase) and the surrounding fluid

K �
VM

VS
 � tR

t1Npl
� 1�

k� � Nex  
	 Npl

k� � KVS  
	 VM

tR

K

1

0
t1Npl t1Npl(1+VS/VM)

Figure 2.58. The partition coefficient K has a linear relationship with the retention time 
tR. At tR � t1Npl, K � 0 (total exclusion). K does not exceed 1 in SEC unless there is an at-
tractive interaction between the polymer and the pore surface.



(mobile phase). The concentration equilibrium is reached when the chemical poten-
tial of the polymer molecule becomes equal between the two phases. At low con-
centrations, the solution is ideal. The chemical potential of the polymer molecule
(�M) in the mobile phase of concentration (cM) is given by

(2.128)

where �° is the chemical potential in a reference state of concentration c° in the
ideal solution. When the polymer molecule is brought into the stationary phase, its
entropy changes by 
S and its enthalpy by 
H. The entropy change is related to the
decrease in the available space the centroid of the molecule can reach as well as the
decrease in the total number of conformations. Because of these geometrical re-
strictions, 
S � 0. The enthalpy change is due to interactions of the polymer mole-
cule with the pore surface and can be positive or negative. When the polymer chain
enters the pore, surface–monomer contacts replace some of the monomer–solvent
contacts, resulting in the enthalpy change. The chemical potential in the stationary
phase (�S) of concentration (cS) is then given by

(2.129)

The concentration equilibrium is dictated by �S � �M:

(2.130)

which gives the partition coefficient K � cS	cM:

(2.131)

Because of the specific nature in the three-way interactions between polymer,
surface, and solvent, there is hardly a universal method that allows us to predict 
H

K � exp � 
S

kB
�


H

kBT �

kBT ln(cS  	c�) � T
S 	 
H � kBT ln(cM  	c�)

�S � �� 	 kBT ln(cS  	c�) � T
S 	 
H

�M � �� 	 kBT ln (cM   
	c�)
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Figure 2.59. Polymer chains are partitioned between the stationary phase (pore space) and
the mobile phase (surrounding fluid).

stationary phase mobile phase
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for a given combination of the polymer, surface, and solvent. In contrast, 
S is uni-
versal because it is determined by the geometrical confinement of the polymer mol-
ecule by the pore. In ideal SEC, the stationary phase is designed to provide purely
entropic effects for any combination of polymer and solvent as long as the solvent
is good to the polymer. Then, 
H � 0 and

(2.132)

Because 
S � 0, K � 1. With Eq. 2.127, we then find that tR ranges between t1Npl

and t1Npl(1 	 VS	VM).
In a different mode of chromatography, 
S is rather suppressed and the differ-

ences in 
H between different polymers are utilized to analyze the chemical com-
position of the polymer. If 
H � 0, the pore wall repels the polymer. Otherwise, it
adsorbs the polymer.

Recall that a polymer chain is described by a thin thread in the crudest approxi-
mation. This geometrical object interacts with the pore, another geometrical object.
The confinement effect is manifested in the partition coefficient and the change in
the chain conformation. We can expect an interesting relationship between the
chain and the geometry of the pore. However, the geometry in the porous medium
used in SEC is far from simple. The pore is rather highly tortuous. Theories have
been developed for some simple geometries such as a slit, a square tube, and a
cylinder.

2.5.3.2 Confinement of a Gaussian Chain We learn here how a Gaussian chain
changes upon confinement by various geometries such as a slit, a square tube, and a
cylindrical tube. It is possible to obtain a formula for the partition coefficient in
each of the three geometries.

We first recall that the Gaussian transition probability G(r, r�) given by Eq. 1.34
can be factored into three independent components Gx, Gy, and Gz, where Gz is
given by

(2.133)

for example, for chains with radius of gyration Rg. When the Gaussian chain is
brought into a slit of width d extending in x and y directions (Fig. 2.60), Gx and Gy do
not change because each component is independent. Only Gz experiences a change.
Casassa27 calculated Gz for a one-dimensional random walker starting at z� to reach z
after necessary number of steps without touching the slit walls. The result is

(2.134)

Figure 2.61 compares the two distribution functions for the chain end z when the
other end is at z� � d	2. Rg � d	4 was assumed.
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The partition coefficient Kslit is then calculated as the average of Gz(z, z�; N) with
respect to z and z�:

(2.135)

When Rg » d, the first term dominates:

(2.136)

It is now clear that Kslit decreases sharply as Rg increases and becomes comparable
to d.

Because there is no confinement in the x and y directions, Gx and Gy do not
change. The mean square end-to-end distance does not change its x and y compo-
nents. Thus, the chain dimension R|| along the slit wall is given by

(2.137)

Confinement by a square tube extending in the x direction and having a square
cross section of length d changes each of Gy and Gz in the same way as the slit does

R||
2 � 〈RFx

2〉 	 〈RFy
2〉 � 2

3 Nb2

Kslit � exp[�(� Rg  	d)2]

Kslit � d�1�d

0
dz�d

0
dz�Gz(z, z�) �

8

� 
2 


�

k:odd
 k�2 exp[�(k� Rg  

	d)2]
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R||

d

z x

y

Figure 2.60. Polymer chain confined to a slit of width d. The chain has a dimension of R||

along the slit walls. Its dimension in z direction is bound to d.

0 dz

Figure 2.61. Density profile of the end of the Gaussian chain when the other end is at 
z � d	2. The density is compared for the confined chain (solid line) in a slit of walls at z � 0
and z � d and the unconfined chain (dashed line). Rg � d	4 was assumed.
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on Gz (Fig. 2.62). Confinement in one direction contributes to decreasing the parti-
tion coefficient by a factor of Kslit. The confinement in the y and z directions results
in the partition coefficient of Kslit

2. The chain dimension along the x direction is un-
changed from that of the unconfined chain:

(2.138)

The three relationships in Eqs. 2.136–2.138 apply to other, non-Gaussian ideal
chains. When the ideal chain is sufficiently long, then Eqs. 2.134 and 2.135 also
apply.

The partition coefficient for a cylindrical pore was obtained similarly.27 Like-
wise, the partition coefficient was calculated for a rodlike molecule in some simple
geometries.28 Figure 2.63 compares the partitioning of a Gaussian chain and a rod-
like molecule in a cylindrical pore of radius Rp.29 The plot of K is given as a

R||
2 � 〈RFx

2〉 � 1
3Nb2

Figure 2.62. Polymer chain confined to a square tube of side d. The chain has a dimension
of R|| along the tube. Its dimensions in y and z directions are bound to d.
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Figure 2.63. Partition coefficients K of a Gaussian chain and a rodlike molecule in a cylin-
drical pore of radius Rp as a function of Rg	Rp. (From Ref. 29.)



function of Rg	Rp. At Rg � Rp, only 1 of about 470 Gaussian chains finds itself in
the pore. For the rodlike molecule (Rg � L	121	2; at Rg � Rp, the rod length is
31	2 � pore diameter), this odd is as large as 1 of 23 rods. The rod can align along
the pore channel to fit in.

2.5.3.3 Confinement of a Real Chain The Gaussian chain is folded back into a
dense packing of monomers when confined. In a real chain, overlay of monomers
into the same space is prohibited. We can therefore expect that the real chain is
more extended in the confined space compared with the free space. It is, however,
all but impossible to treat the confinement of the real chain theoretically. We do not
have a formula for the partition coefficient of the real chain even in simple confin-
ing geometries. Fortunately, it is possible to obtain an asymptotic functional rela-
tionship between 
S and the chain length N for sufficiently long chains in a simple
geometrical consideration.

We consider a real chain consisting of N monomers of size b and confined to a
cylindrical pore of diameter d. When the chain dimension Rg in the free solution is
smaller than the pore size, the chain does not feel much of the effect of the pore
wall. As Rg exceeds d, the chain must adopt a conformation extending along the
pore because of the excluded volume effect. As Rg increases further, the confined
chain will look like a train of spheres of diameter d (see Fig. 2.64). The excluded
volume effect prohibits the spheres from overlapping with each other. Therefore,
the spheres can be arranged only like a shish kebab. The partial chain within each
sphere follows a conformation of a real chain in the absence of confinement. The
number nd of monomers in the sphere is then given by

(2.139)

where n � 3	5 was used (we will use the value in this section). The confined chain
consists of N	nd spheres. The length R|| of the chain in the tube is then given as

(2.140)

Unlike a Gaussian chain, R|| increases linearly with N. Note that Rg refers to the ra-
dius of gyration of unconfined chains.

R
 || � d(N	nd) � d N(b 	d )5�3 � d(Rg  

	d)5�3

d � b nd
3�5
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Figure 2.64. Real chain confined to a cylindrical pore of diameter d. The chain is regarded
as a packed array of spheres of diameter d in one dimension. Within each sphere, the chain is
three-dimensional.
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Now we calculate the partition coefficient. The polymer chain consists of N	nd

spheres of size d. This sequence of self-avoiding spheres has the same end-to-end
distance in the three-dimensional space as the chain of N monomers does (Problem
2.33). Therefore, grouping the monomers into spheres of nd monomers does not in-
troduce an artificial change in the statistical property of the chain. How the spheres
are arranged in the three-dimensional space determines the overall conformation of
the chain. We imagine a cubic lattice and place the spheres on the grid points sepa-
rated by d. In the absence of the cylindrical pore, the number of possible grid points
available to place the next sphere is five (six minus one, one being the preceding
sphere; see Fig. 2.65 (a)). Thus the total number of the arrangement of the N	nd

spheres is roughly 5N	nd. The condition that the spheres do not overlap decreases the
total number, but the correction is small. Within the cylindrical pore, in contrast,
there is only one possibility to place the next sphere, once the second sphere is
placed (Fig. 2.65 (b)). There is only one possibility or two for the conformation of
the whole sequence of spheres. The partition coefficient is calculated as the ratio of
the possible numbers of arrangement:

(2.141)

Because K � exp(
S	kB), the entropy change 
S is expressed as

(2.142)

The decrease in the entropy, �
S, grows linearly with N, i.e., a longer chain ex-
periences a greater restriction on its conformation in the pore. It is interesting to see
that the same power law, �
S � N, also applies to the ideal chain if we replace
5	3 � 1	� by 2. The proportionality to N is common between the ideal chain and
the real chain. This result is not a coincidence. If we follow the same discussion as
above to calculate K for the ideal chain, the number of arrangement for the spheres
in the pore is 2N	nd, as opposed to 6N	nd in the free solution. The ratio leads to
�
S	kB � N	nd � (Rg	d )2. The confinement of the Gaussian chain gives the same
relationship: From K � Kslit

2 and Eq. 2.136, we find �
S	kB � (Rg	d )2.

�
S	 kB � �lnK � N	nd � N(b 	d)5�3 � (Rg  	d)5�3

K �
1

5N�nd

Figure 2.65. Conformation of a real chain. When the next sphere is attached to the growing
end, there are five possible positions in the absence of the cylindrical pore (a), but only one is
available within the pore (b).



How about the confinement by the slit? The spheres are arranged in the two-di-
mensional space. The number of arrangements is now 3N	nd. Then, �
S follows the
same scaling relationship as Eq. 2.142 except the numerical coefficient. Figure 2.66
compares the partition coefficients of the Gaussian chain (solid line) and the real
chain (circles) with a radius of gyration Rg in a slit of width d. The coefficients for
the real chain were obtained in lattice computer simulations.5

The linear dimension of the chain in the slit is different from the counterpart in
the cylindrical pore. Because the confined chain follows the conformation of two-
dimensional excluded-volume chain,

(2.143)

Here we used the fact that, in two dimensions, the self-avoiding random walk has
an exponent of 3	4 in the relationship between RF and N (Problem 1.13). We can
also derive the above relationship by applying Flory’s method that we used to de-
rive the chain dimension in three dimensions (Problem 2.34).

As seen in the above examples, confinement lowers the number of dimensions
available to a polymer chain. In the Gaussian chain, on the one hand, the confine-
ment changes the confined components only. The root mean square end-to-end dis-
tance changes only by a numerical coefficient without changing the dependence of
RF on N. In the real chain, on the other hand, the decrease in the dimensionality
changes qualitatively the relationship between N and R|| from that in the free solu-
tion. The confinement manifests the excluded volume effect more prominently.

2.5.4 Calibration of SEC

We have learned in Section 2.5.2 that the retention time tR of SEC increases linearly
with K. We also learned in Section 2.5.3 that K � (1	5)N	nd for the partitioning of

R
 || � d(N	nd)3�4 � d(Rg  

	 d )5�4
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Figure 2.66. Partition coefficients K of a Gaussian chain (solid line) and a real chain (cir-
cles) with a radius of gyration Rg in a slit of width d. The data for the real chain were
obtained in the computer simulation (From Ref. 5).
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the real chain with a cylindrical pore. The porous material used in SEC has a tortu-
ous, interconnected pore structure. The pore resembles a cylindrical pore over a
short distance. 

Figure 2.67a is a plot of K � (1	5)N	nd as a function of N	nd. The plot of K0 for
the Gaussian chain with a cylindrical pore in Figure 2.63 is close to this plot when
the abscissa is changed to (Rg	Rp)5	3 � N and the ordinate is in linear scale. There-
fore, we can extend the use of K � (1	5)N	nd, originally derived for sufficiently
long chains, to shorter chains. The same plot in panel a, when the abscissa is in a
log scale (Fig. 2.67b), is nearly straight in the middle range of K. An SEC column
packed with such porous materials will have a linear relationship between tR and
logM in a certain range of the molecular weight M. The relationship is schemati-
cally depicted in Figure 2.68. The column is therefore able to resolve the molecular
weight distribution in the logarithmic scale, but in a limited range. Above the upper
threshold, tR becomes insensitive to M. This limit is called the exclusion limit.
Polymer chains with a molecular weight higher than the limit do not partition with
the stationary phase and travel the column straight through to elute in t1Npl. Below

Figure 2.67. Sketch of the partition coefficients K of a real chain as a function of the num-
ber of blobs, N	nd. In linear scale (a) and in semi-logarithmic scale (b) of N	nd. The shaded
region in (b) indicates a nearly straight portion of the plot.

0

0.2

0.4

0.6

0.8

1

0 1 2 3
N/nd

1 100.1
N/nd

K

a b

Figure 2.68. Calibration curve of a size-exclusion column. The column can analyze the mo-
lecular weight (MW) of the polymer only in the range indicated by the arrow.
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the lower threshold, tR becomes again insensitive to M. The pore size is too large to
distinguish the polymer chain by its dimension.

The packing material with a greater pore size effectively increases nd and shifts
the range of molecular weight that the column can analyze to a greater molecular
weight. The range can be broadened by mixing packing materials of different
pore diameters at the expense of the resolution. A so-called linear column is pre-
pared in this way. Another way is to connect columns of different pore diameters in
series.

To relate the retention time to molecular weight for a given series of columns,
we use molecular weight standards. They are commercially available. Manufactur-
ers supply the data of Mw, Mn, and Mp, where Mp, the peak molecular weight, is the
molecular weight at the peak of the SEC retention curve. A calibrated column can
convert the retention curve into the plot of the molecular weight distribution. 

2.5.5 SEC With an On-Line Light-Scattering Detector

Since approximately 1990, light-scattering detectors have been increasingly used
as an on-line detector in SEC, providing more detailed information on the poly-
mer chain conformation in the solution state. The detector has a flow cell with a
small cell volume and measures the scattering intensities at different angles. The
advantage of this scheme for characterization of polymer in solution is obvious.
As the column separates the polymer according to molecular weight, each frac-
tion is led to the light-scattering detector for instantaneous measurement of the
scattering intensities [Iex(�)], as illustrated in Figure 2.69. The concentration de-
tector such as a refractive index detector and an ultraviolet absorption detector
connected in series gives the estimate of the polymer concentration c. Then with
the preinput data of dn	dc, a Zimm plot is prepared for each fraction. The plot is
for one concentration only, but it is sufficiently low because of the band broaden-
ing (further dilution) by the SEC column of the already dilute injected solution.
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Figure 2.69. Use of an online light-scattering detector and a concentration detector in series
allows a Zimm plot for every eluent. Thus, the molecular weight and radius of gyration can
be estimated as a function of the retention time without using any standard.
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Thus A2Mc is negligible in Eq. 2.116. Because the measurement is instantaneous,
injection of a broad-distribution polymer sample results in a plot of the molecular
weight M and the radius of gyration Rg as a function of the retention time. Thus
we can obtain a plot of Rg as a function of M. In fact, Figure 1.38 was obtained in
this way.

This method eliminates the need to fractionate the polydisperse polymer on a
preparative scale and run the tedious light-scattering measurements for each frac-
tion. Figure 2.70 shows an example of SEC chromatograms for branched polyethyl-
ene.9 Panel a shows the refractive index signal 
n, which is proportional concentra-
tion, and the light-scattering intensity Iex at 90°. Because Iex � cM, the peak of Iex

appears ahead of the peak in 
n. Panel b shows the molecular weight M, and panel
c plots Rg. At both ends of the chromatogram, the concentration is low. The uncer-
tainty in the estimates of M and Rg are larger at both ends.

Furthermore, an on-line viscosity detector can be connected in tandem to the
concentration detector (and the light-scattering detector). As we will learn in Sec-
tion 3.3, the solution viscosity gives an important piece of information on the state
of polymer molecules in solution.
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Figure 2.70. Typical examples of chromatograms. The solution is branched polyethylene in
tetrahydrofuran. Top: light-scattering intensity Iex (LS; 90°) and refractive index difference

n (RI). Middle: molecular weight M. Bottom: radius of gyration Rg, plotted as a function of
the retention volume VR. (From Ref. 9.)



2.5.6 PROBLEMS

Problem 2.33: An excluded-volume chain of N monomers of size b has a dimen-
sion of RF � bN�. Grouping nd monomers into one “big monomer” makes a
chain of N	nd big monomers with excluded volume. Within each big monomer,
the chain is still an excluded-volume chain of monomer size b. Show that this
coarse-grained chain has the same dimension as that of the original chain.

Solution 2.33: The size of the big monomer is bnd
�. Therefore, the dimension of

the coarse-grained chain is (bnd
� )(N	nd)� � bN �, identical to RF of the origi-

nal chain. The choice of nd is arbitrary.

Problem 2.34: Flory’s method, we learned in Section 1.4 to find the dimension
of the real chain, can be extended to the confined real chain. Find the rela-
tionship between the dimension of the chain along the slit wall or the tube
wall, R ||, and the degree of polymerization N for the confinement by (1) a slit
of width d and (2) a tube of diameter d.

Solution 2.34 (1): The volume for a polymer chain confined to the slit is R||
2d.

Then, the monomer density is N	(R||
2d ). The interaction term in Eq. 1.63 is

now b3N 2	(R||
2d). The free energy Ach of the chain with a dimension of R|| is

Flory’s method given as

At its minimum,

Therefore,

which is identical to Eq. 2.143.

Solution 2.34 (2): In the tube, the volume for the polymer chain is R||d 2. Then,

At its minimum,
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Therefore,

which is identical to Eq. 2.140.

Problem 2.35: Repeat the preceding problem for the theta chains.

Solution 2.35 (1): The interaction term in Eq. 1.63 is b6N3	(R||
2d)2. The free en-

ergy Ach of the chain with a dimension of R|| is given as

At its minimum,

Therefore,

Solution 2.35 (2): The volume is R||d 2. Then,

At its minimum,

Therefore,

Note that these results for the theta chains are different from the chain dimen-
sions of ideal chains in the slit and the tube. The confined ideal chains have
the dimension of �N1	2 in both confining geometries. The difference between
the ideal chain and the theta chain shows up because of the third virial coeffi-
cient A3. Compensation of the excluded volume effect by the attractive poly-
mer–polymer interaction allows the theta chain to have the same dimension
as that of the ideal chain, but it is valid only in the three-dimensional free so-
lution. In spaces of a reduced dimensionality, the same attractive interaction
cannot mask the excluded volume.
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APPENDIX 2.A: REVIEW OF THERMODYNAMICS FOR
COLLIGATIVE PROPERTIES IN NONIDEAL SOLUTIONS

2.A.1 Osmotic Pressure

We briefly review here thermodynamics of a nonideal binary solution. The osmotic
pressure � is the extra pressure needed to equilibrate the solution with the pure sol-
vent at pressure p across a semipermeable membrane that passes solvent only. The
equilibration is attained when the chemical potential of the pure solvent be-
comes equal to the chemical potential �S of the solvent molecule in solute volume
fraction 
 at temperature T:

(2.A.1)

We separate the right-hand side into two parts:

(2.A.2)

where 
�S denotes the change in the chemical potential from . Colligative prop-
erties make 
�S negative. Because the volume of a liquid depends little on the
pressure,

(2.A.3)

with v* being the volume of the solvent molecule in the liquid phase. From Eqs.
2.A.1 to 2.A.3, we find

(2.A.4)

2.A.2 Vapor Pressure Osmometry

The colligative property shows up also in the vapor pressure of the solution. The
vapor pressure p of the solvent above the solution is lower than the vapor pressure
p* of pure solvent. The vapor phase is nearly ideal. Therefore, the chemical poten-
tial of the solvent molecule in the vapor phase is given by �°(T ) 	 kBT ln(p	p°),
where �°(T ) is the chemical potential at a reference pressure p°. The vapor– liquid
equilibrium for pure solvent is dictated by

(2.A.5)��(T ) 	 kBT  ln (p*
 �p�) � �*

S(T, p*)

� � �

�S

v*

�*
S 
(T, p 	 �) � �*

S 
(T, p) 	 �p	�

p
 
��*

S

�p
  dp � �*

S 
(T, p) 	 v*

 �

�*
S

�S 
(T, p 	 �,
) � �*

S 
(T, p 	 �) 	 
�S

�*
S 
(T, p) � �S (T, p 	 �,
)

�*
S
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For a solution with a polymer volume fraction at 
, the equilibrium is given by

(2.A.6)

From Eqs. 2.A.2, 2.A.5, and 2.A.6, we find

(2.A.7)

Because and 
�S � �v*�,

(2.A.8)

The second term on the right-hand side is much smaller compared with the first
term. Thus,

(2.A.9)

This equation gives the principle of vapor pressure osmometry: In place of meas-
uring � directly, we can measure the drop in the vapor pressure of the solvent
above the solution to estimate �. 

APPENDIX 2.B: ANOTHER APPROACH TO THERMODYNAMICS
OF POLYMER SOLUTIONS

Once we have obtained the free energy or the chemical potential expressed as a
function of 
, we can forget that it was derived for a two-component incompress-
ible fluid consisting of polymer and solvent. We can neglect the presence of solvent
molecules and assume that polymer chains are suspended in “vacuum” at volume
fraction 
. The system is essentially a single-component nonideal gas whose free
energy is given by Eq. 2.7. 
Amix is then the free-energy change of “vaporization”
of polymer molecules from their liquid state. The osmotic pressure � can be ob-
tained directly from 
Amix (Problem 2.4). In this scenario, the interaction is present
only between two monomers of polymer: � � �Z �PP	(2kBT ).

The Gibbs free energy change 
Gmix is given by

(2.B.1)

where 
Vmix � V(1 � 
). It can be shown that this 
Gmix is equal to nP
�P (Prob-
lem 2.5). Note that this 
Gmix is different from the one we find in the mixing of nP

polymer chains and nS solvent molecules at a constant total volume.


Gmix � 
Amix 	 �
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kB 
T

�*
S 
(T, p) � �*

S(T, p* ) 	 v*( p � p*)

kBT ln(p	p* ) � 
�S 	 �*
S(T, p) � �*
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��(T) 	 kBT ln ( p	p�) � �S(T, p,
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APPENDIX 2.C: CORRELATION FUNCTION
OF A GAUSSIAN CHAIN

The segment density autocorrelation function the Gaussian chain is calculated as
follows.

(2.C.1)

We change the variable of integration from n� to m � n – n� and then exchange the
order of the double integral:

(2.C.2)

We change the variable of integration further from m to x where x2 � 3r2	(2b2m).
With u # 3r2	(2b2N) � r2	(4Rg

2) and m � Nu	x2, Eq. 2.C.2 is transformed to

(2.C.3)

Using integration by parts, the integral in the second term is changed to

(2.C.4)

Then,

(2.C.5)
1
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3
Dynamics of Dilute Polymer Solutions

3.1 DYNAMICS OF POLYMER SOLUTIONS

In the first two chapters, we learned about thermodynamics (free energy, osmotic
pressure, chemical potential, phase diagram) of polymer solutions at equilibrium
and static properties (radius of gyration, static structure factor, density correlation
function) of dissolved polymer chains. This chapter is about dynamics of polymer
solutions. Polymer solutions are not a dead world. Solvent molecules and polymer
chains are constantly and vigorously moving to change their positions and shapes.
Thermal energy causes these motions in a microscopic world.

Solution dynamics deals with the motion of molecules dissolved in a solvent. A
typical mode of motion is center-of-mass diffusion. A nonuniform concentration
distribution is leveled to a uniform distribution as the solution approaches the equi-
librium state. Viscosity of the solution is another form of dynamics. Slowly moving
solute molecules increase the viscosity more than fast moving molecules. 

Center-of-mass diffusion and viscosity are universally observed in all fluids in-
cluding pure solvents. What makes the polymer solution dynamics distinctly differ-
ent from the dynamics of other solutions is the numerous degrees of freedom for the
internal motion of each solute molecule. As we learned in Chapter 1, polymer chains
can take many different conformations. They are incessantly switching from one to
another, thereby changing the shape of the polymer chain. In small molecules, the
internal motions such as vibration (changes in the bond lengths, bond angles, and di-
hedral angles) and rotation are observed at frequencies typically between 1 GHz and
100 THz. The motions are resonant. In contrast, the change in the conformation of
the polymer chains occurs at much lower frequencies (radio, audio, and lower fre-
quencies) in addition to the resonant vibrational motions at the high frequencies.

Polymer Solutions: An Introduction to Physical Properties. Iwao Teraoka
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-38929-3 (Hardback); 0-471-22451-0 (Electronic)



Solvent viscosity makes the motion overdamped and therefore relaxational. Differ-
ent modes of motion are observed over an extended range at the low frequencies.

A small change in the thermodynamic properties of the solution, as represented
by A2, leads to a shift in the dynamics, typically the time scale of motion and de-
pendence on the concentration and the molecular weight. It often happens that the
shift in the dynamic properties is more pronounced compared with the shift in the
static properties. Thus, how the time scale depends on the polymer concentration,
the molecular weight, and the temperature gives us an important piece of informa-
tion on the state of the polymer molecules, especially their interactions with the sol-
vent molecules.

In Chapter 3, we will learn about the dynamics of an isolated polymer chain in
the dilute solution limit and the first-order change in the dynamics with polymer
concentration. We will also learn typical experimental methods to investigate the
dynamics—dynamic light scattering and viscosity. The dynamics of polymer solu-
tions above the overlap concentration will be discussed in Chapter 4, along with
their thermodynamics.

3.2 DYNAMIC LIGHT SCATTERING
AND DIFFUSION OF POLYMERS

3.2.1 Measurement System and Autocorrelation Function

3.2.1.1 Measurement System Motions of polymer molecules in solution can be
conveniently studied by using dynamic light scattering (DLS). It is also called
quasi-elastic light scattering (QELS) and photon correlation spectroscopy
(PCS). Measurement at a single scattering angle gives information on the dimen-
sion of the polymer molecule in the solution with reasonable accuracy. Unlike its
static version, DLS does not rely on the excess scattering. There is no need to cal-
culate a small difference in the scattering intensity between the pure solvent and a
dilute solution. The signal from the slowly moving polymer is unambiguously sepa-
rated from the signal that originates from the rest of the solution. The principle of
DLS has been utilized in some commercial particle-sizing systems for many years.
The measurement and data analysis are automated. Users need only to prepare
clean solutions by filtration. In recent years, DLS has been also used as an on-line
detector in size exclusion chromatography (SEC). In this section, we will learn how
the signal obtained in DLS is related to the dimension and motions of solute mole-
cules and other dynamic modes.

As shown in Figure 3.1, a DLS system requires an autocorrelator on top of a
regular SLS system. The light-scattering intensity from the polymer solution is not
a constant. Figure 3.2a illustrates how the intensity (I) varies with time (t). I(t) fluc-
tuates around its mean 〈I 〉. It may appear completely random (white noise) and
therefore meaningless, but it is not. Motions of the polymer molecules and the
solvent molecules contribute to a change of I(t) with time. The noisy signal then
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carries the information on the motions and other fluctuations. The autocorrelator
uncovers the embedded information.

3.2.1.2 Autocorrelation Function The autocorrelator calculates the average of
the product of two scattering intensities I(t) and I(t � �) measured at the two times
separated by �. Here � is called the delay time. The average 〈I(t)I(t � �)〉 is a func-
tion of � and is called the autocorrelation function of I(t) or the intensity-intensity
autocorrelation function. The autocorrelator converts I(t) into 〈I(t)I(t � �)〉.

What the autocorrelator calculates is the average of I(t)I(t � �) with respect to t
over a long period TA. We assume that the long-time average is equal to the ensemble
average—the average with respect to the configuration of the system or, simply put,
the average over all possible positions and shapes of the molecules in the solution:

(3.1)

This assumption, in general, is called ergodicity. It is one of the few hypotheses in
statistical mechanics. We cannot prove it but believe it is correct. Note that, if the
system is at equilibrium, the ensemble average does not change with time and
therefore 〈I(t)I(t � �)〉 � 〈I(0)I(�)〉.

The autocorrelation function of I(t) in panel a of Figure 3.2 is shown in panel b.
When � � 0, 〈I(t)I(t � �)〉 � 〈I 2〉. With an increasing �, I(t � �) becomes more ir-
relevant to I(t), and 〈I(t)I(t � �)〉 decays to an asymptotic level called a baseline.
The baseline level is 〈I 〉2; when I(t � �) and I(t) are irrelevant, 〈I(t)I(t � �)〉 � 〈I(t)〉
〈I(t � �)〉 � 〈I 〉2.

〈I(t)I(t � �)〉 � lim
TA:�

1

TA
�TA

0
I(t)I(t � �) dt

digital
autocorrelatorpulse amplifier-
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photodetector
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solution

I0

I(t)

〈I(t) I(t+  )〉τ
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Figure 3.1. Dynamic light scattering measurement system. The pulse-amplifier discrimina-
tor converts the analog signal of the photodetector, I(t), into a digital signal, which is further
converted by the autocorrelator into the autocorrelation function of the signal.



3.2.1.3 Photon Counting The scattering intensity I(t) can be measured as an
analog quantity I that varies continuously with time t. More often than not, I(t) is
measured as pulses. Each pulse corresponds to a photon that reaches the photode-
tector. For this purpose, a photomultiplier or an avalanche photodiode is used in a
photon-counting mode. A pulse amplifier–discriminator eliminates ghost pulses of
a low height and converts each proper pulse into a pulse of a fixed height and width
to be led to the autocorrelator (see Fig. 3.1). With the use of pinholes of different
openings, the number of photons reaching the detector can be adjusted so that there
are not too many photons entering the photodetector in each time window (�1�s).
The intensity is now expressed as the number of pulses in each time window. It is a
nonnegative integer.

3.2.2 Autocorrelation Function

3.2.2.1 Baseline Subtraction and Normalization Because the scattering inten-
sity I(t) fluctuates around its mean 〈I 〉, it is convenient to separate its fluctuating
component �I(t) as

(3.2)I(t) � 〈I 〉 � �I(t)
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Figure 3.2. a: Light scattering intensity I(t) fluctuates around its mean 〈I 〉. b: Autocor-
relation function 〈I(t)I(t � �)〉 is obtained as the long-time average of I(t)I(t � �) with respect
to t for various delay times �. The autocorrelation function decays from 〈I2〉 to 〈I 〉2 over time.
The amplitude of the decaying component is 〈�I 2〉.
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Figure 3.3. Baseline-subtracted, normalized intensity autocorrelation function g2(t) (a) and
the absolute value of the baseline-subtracted, normalized electric-field autocorrelation
function, �g1(t)� (b).

By definition, 〈�I(t)〉 � 0. Then, the autocorrelation function is rewritten to

(3.3)

The autocorrelation of �I(t) is lost to zero with an increasing �. When � : �, 〈�I(t)�I
(t � �)〉 � 〈�I(t)〉 〈�I(t � �)〉 � 0. The decaying component in 〈I(t)I(t � �)〉 is 〈�I(t)�I
(t � �)〉. The initial height of the decaying component is 〈�I 2〉 � 〈I2〉 � 〈I〉2 (see Fig. 3.2).

Division of 〈I(t)I(t � �)〉 by 〈I 〉2 leads to

intensity autocorrelation
function

(3.4)

where fc is called the coherence factor, defined as

(3.5)

and the second factor is the baseline-subtracted, normalized intensity autocorrela-
tion function:

(3.6)

The coherence factor depends, as the name suggests, on the coherence of the light
falling on the photodetector. The beam has a finite cross section, and different parts
of the beam may not have the same phase. If they have the same phase, the number
of photons will be distributed with a Poisson distribution. The variance of I is
then equal to the square of the mean, i.e., fc � 1. In general, 0 	 fc 	 1. Use of a
smaller pinhole increases fc at the expense of a weakening intensity. As shown in
Figure 3.3a, g2(�) is 1 at � � 0 and decays to zero as � : �.

g2(�) # 〈�I(t)�I(t � �)〉�〈�I2〉

fc # 〈�I2〉 � 〈I 〉2

  � 1 � fc 
g2(�)

〈I(t)I(t � �)〉�〈I〉2 � 1 � 〈�I(t)�I(t � �)〉�〈I 〉2

〈I(t) I(t � �)〉 � 〈I〉2 � 〈�I(t)�I(t � �)〉



3.2.2.2 Electric-Field Autocorrelation Function We consider the autocor-
relation function of the electric field Es(t) of the light scattered by solutes. As we
have seen in Section 2.4, Es(t) is a complex quantity. We introduce another normal-
ized autocorrelation function g1(�), which is defined as

(3.7)

It is known that g2(�) is related to g1(�) by21

(3.8)

Figure 3.3 compares g2(�) and �g1(�) �. It takes twice as long for �g1(�)� to decay to a
given level as it takes for g2(�).

Sometimes, g2(�) is defined as g2(�) # 〈I(t)I(t � �)〉�〈I 〉2. This g2 decays to 1 as
� : �. Then, �g1(�)�2 � [g2(�) � 1]�[g2(0) � 1].

3.2.3 Dynamic Structure Factor of Suspended Particles

3.2.3.1 Autocorrelation of Scattered Field We assume that the scattering vol-
ume contains nP identical small particles and consider the autocorrelation function
of Es(t) for the scattering by the volume. Examples include a suspension of col-
loidal particles. The autocorrelation of the scattering by a polymer solution will be
discussed in Section 3.2.6.

In Section 2.4, we considered light scattering by a chain of beads. Equation 2.53,
along with Eq. 2.52, was obtained without assuming that the beads were connected
to form a chain molecule. The same equation can therefore be used for a system of
nP particles, each consisting of a single bead. A photon detected at r and t was
scattered some time ago by one of the particles at r
m(m � 1, 2 , . . . , nP) at t0. The
electric field Es of the photon propagating in the direction of ks is given as

(3.9)

where the scattering event by particle 1 at r
1 and t0 was selected as a reference
point in space and time (Fig. 3.4). We take (r, t) to be the position and time of
detection.

Another photon detected at r and t � � is scattered by the particles at rn (n � 1,
2 , . . . , nP) at t0 � �. Motion of the particles makes r
m and rn in general different.
The reference point has moved to r1 as well, and the scattering occurs at t0 � �. The
incident light has changed its phase, since it hit particle 1 at r
1 and t0. We take into
account the phase shift due to the change in the scattering by the reference. We find

 � Esm 
exp[i( ks �r �  ki�r
1) � i�(t � t0)] �

nP

m�1
exp(�ik�r
m)

 Es(r, t) � Esm exp[i (ks �(r � r
1) � � (t � t0))] �
nP

m�1
exp [ik �(r
1 � r
m)]

g2(�) � �g1(�) � 2

g1(�) #
〈E*

s(t)�Es(t � �)〉
〈E*

s(t)�Es(t)〉
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the electric field of this second scattering is given as

(3.10)

Then, the autocorrelation function of Es(r, t) is

(3.11)

where r
m was rewritten to rm(t) and rn to rn(t � �). Strictly speaking, r
m � rm(t0)
and rn � rn(t0 � �), but we can replace t0 by t because the time difference between
the scattering and the detection, t � t0, is much smaller compared with �. The statis-
tical average of Eq. 3.11 is

(3.12)

The last transformation is allowed because the system is stationary. The autocor-
relation function for � � 0 is

(3.13)〈E*
s(r, t)�Es(r, t)〉 � �Esm �2  〈 �

nP

m,n�1
exp[ik�(rm(0) � rn(0))] 〉

 � �Esm �2   〈 �
nP

m,n�1
exp[ik�(rm(0) � rn(�))] 〉

 〈 E*
s(r, t)�Es(r, t � �)〉 � �Esm �2  〈 �

nP

m,n�1
exp[ik�(rm(t) � rn(t � �))] 〉

E*
s(r, t)�Es(r, t � �) � �Esm �2 �

nP

m,n�1
exp[ik�(rm(t) � rn(t � �))]

 � Esm 
exp[i( ks �r �  ki�r
1) � i�(t � t0)] �

nP

n�1
exp(� ik�rn)

� i�(t � t0 � �)] �
nP

n�1
exp(�ik�rn)

 Es(r, t � �) � Esm 
exp[i (ki�(r1 � r
1) � i ��)] exp[i (ks �r � ki�r1)

rn
ki

ks

incident
beam

scattered
beam

rḿ

Es(r,t+  )τ

Es(r,t)

detector

r1

r1́

Figure 3.4. Scattering by the mth particle at t and by the nth particle at t � � can be cor-
related. The two photons reach the detector at different times separated by �.



3.2.3.2 Dynamic Structure Factor From Eq. 3.7, division of Eq. 3.12 by 
Eq. 3.13 gives

(3.14)

It is convenient to introduce dynamic structure factor S(k, �), defined as

(3.15)

Then,

(3.16)

As we have separated the static structure factor S(k) into S1(k) and the rest (see
Eq. 2.60), we can separate S(k,�) into two parts:

(3.17)

with the single-particle dynamic structure factor defined as

(3.18)

It is apparent that the dynamic structure factor for � � 0 is identical to the static
structure factor:

(3.19)

for a system of particles suspended in a liquid.

3.2.3.3 Transition Probability The ensemble average in Eq. 3.15 is taken with
respect to the positions of the particles at t � 0 and t � �. Rewriting rm(0) to r
m and
rn(�) to rn, it is expressed as

(3.20)

where 
(r
1 , . . . , r 
np; 0) is the joint density distribution for the nP particles at time 0,
and is the joint probability for the particles todr1 . . . drnP

P(r1 , . . . , rnP
; r
1 , . . . , r
nP

; �)

�P(r1 , . . . , rnP
; r
1 , . . . , r
nP

;  �) 
(r
1 , . . . , r
nP
; 0)

 S(k, �) �
1

nP
2 �

nP

m�1
�

V
  dr
m �

nP

n�1
�

V
  drn �

nP

i, j�1
exp[ik�(r
i � rj)] 

S(k, 0) � S(k ),  S1(k, 0) � 1

S1(k, �) � 〈exp[ik�(r1(0) � r1(�))]〉 single - particle
dynamic structure factor

S(k, �) � S1(k, �) � 〈(nP � 1) exp[ik�(r1(0) � r2(�))]〉

� g1(�)� � S(k, �) � S(k, 0) normalized electric -field
autocorrelation function

S(k,�) � 〈 1

nP
�
nP

m,n�1
exp[ik�(rm(0) � rn(�))] 〉 dynamic structure factor

suspension of particles

� g1(�)� �
〈 �

nP

m,n�1
exp[ik �(rm(0) � rn(�))] 〉

〈 �
nP

m,n�1
exp[ik�(rm(0) � rn(0))] 〉

.
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move from into a (nP-dimensional) volume at in
time �. The transition probability satisfies the normal-
ization condition:

(3.21)

Integration of gives the number of particles in volume V:

(3.22)

In a homogeneous solution, the particles are uniformly distributed in V at t � 0, i.e.,
� . The transition probability depends only on the displace-

ment ( , etc) and is an even function of the displacement. Then,

(3.23)

where the sign in the exponential function has been changed. The even function
makes S(k,�) a real function.

If each particle moves independently, the second term in Eq. 3.17 disappears:

(3.24)

Independent motions are typically observed at low concentrations. The single-
particle (nP � 1) version of Eq. 3.20 is

(3.25)

where P(r, r�; �) is the single-particle transition probability. If the solution is homo-
geneous at time 0, i.e., 
(r�; 0) � 1�V, then

(3.26)

which is the single-particle version of Eq. 3.23. Equation 3.26 means that �g1(�)� �
S1(k, �)�S1(k, 0) � S1(k, �) is the Fourier-transform of the transition probability
P(r, r
; �).

Motion of the particles can be caused by an external flow and diffusion. In the
flow, solvent molecules move together with the particles. Diffusion occurs regardless

S1(k, �) � �
V

  dr exp[ik�(r � r
)] P(r, r
; �) single -particle
dynamic structure factor

S1(k, �) � �
V

  dr
 �
V

  dr exp [ik�(r � r
)] P(r, r
; �)
(r
; 0)

S(k, �) � S1(k, �)

P(r1 � r
1 , . . . , rnP
� r
nP

; �)

S(k, �) �
1

nP
 �

nP

n�1
�

V
  d(rn � r
n) �

nP

i, j�1
exp[ik�(rj � r
i 

)] P(r1 � r
1 , . . . , rnP
�r
nP

; �)

r1 � r
1

nP  
� VnP
 (r
1 , . . . , r
nP

; 0)

�
nP

m�1
�

V
  dr
m 
(r
1 , . . . , r
nP 

; 0) � nP


(r
1 , . . . , r
nP 
;  0)

�
nP

n�1
�

V
  drn P(r1 , . . . , rnP

;  r
1 , . . . , r
nP 
;  �) � 1

P(r1 , . . . , rnP
; r
1 , . . . , r
nP

; �)
r1 , . . . , rnP

dr1 . . . drnP
r
1 , . . . , r
nP



of the presence of the external flow. We look closely at the diffusion phenomena of
particles in a quiescent solution in the following subsection.

3.2.4 Diffusion of Particles

3.2.4.1 Brownian Motion When we place a blot of ink in still water, the colored
region expands with time but the color fades, eventually filling the entire water in
the container. The final state is a uniform concentration of the ink. Spreading of a
substance throughout accessible volume is called diffusion. The phenomena is
made possible by microscopic movement of water molecules.

Particles suspended in a liquid change their positions in the container by diffu-
sion. If a particle is much larger compared with the solvent molecules, we can re-
gard that particle to be suspended in a continuous medium of solvent. Figure 3.5
illustrates how the particle has traveled, starting at r
 at time t � 0, to reach r at
time t. The trajectory is random. The random motion of the particle is called a
Brownian motion. It was discovered by Scottish botanist R. Brown when he was
looking into an optical microscope to observe pollen on water. What he had thought
was a motionless, dead world turned out to be filled with vigorous and perpetual
movements. Later, it was found that a similar type of motion exists for suspensions
in a liquid. Solvent molecules collide randomly with particles all the time to change
the velocity of the particle, resulting in a random motion. The motions of the sol-
vent molecules are activated by thermal energy; kBT is sufficient to cause the
Brownian motion.

The Brownian motion is stochastic. There is no knowing in advance where the
particle will reach in a given time. What we can know is the transition probability
P(r, r
; t) for the particle to move from r
 at t � 0 to reach r at time t.

Polymer molecules in solution also display Brownian motion. Because the
polymer molecule is not a simple sphere, each polymer conformation has its own
diffusion characteristics. For rigid molecules, the shape of the molecule, spherical or
rodlike, for instance, makes a difference. For a linear flexible molecule, connectivity
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r´

r

∆r = r − r´

Figure 3.5. Trajectory of a Brownian particle. Starting at r
 at time zero, it moves to r in
time t. We cannot predict the displacement �r � r � r
.
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of monomers generates a specific pattern in its Brownian motion. Before we elabo-
rate on the motion of the polymer molecule (Section 3.4), we look at the Brownian
motion of a simple particle suspended in a continuous medium and obtain the transi-
tion probability.

3.2.4.2 Diffusion Coefficient We learned about random walks in Section 1.2 to
describe an ideal chain. The random walk on the cubic lattice (Fig. 3.6) shares
stochastic nature of the whereabouts with the Brownian motion of the particle in
solution. We can apply the results obtained for the ideal chains to the motion of the
random walker.

Let t1 be the time of each step and b the displacement. The mean square dis-
placement of N steps in time t � Nt1,

(3.27)

is proportional to the total time t. The ratio of the mean square displacement to the
time, divided by 6 for the three dimensions, gives, in general, the diffusion
coefficient D:

(3.28)

For the random walker on the cubic lattice,

(3.29)

The last equality proves that the ratio is the same for the whole motion of N steps
and for the single-step motion. To estimate D, we can use either an N-step motion
or a single-step motion. The results should be identical as long as the step motions
are mutually independent (Markoffian).

D �
Nb2

6Nt1
�

b2

6t1
 random walk, 3D

D �
〈[r(t) � r(0)]2〉

6t
 diffusion coefficient

〈[r(t) � r(0)]2〉 � Nb2  mean square displacement

b

r(0)

r(t)

Figure 3.6. Random walk on a cubic lattice (two-dimensional rendering). In each step, the
walker moves a distance of b randomly. Starting at r(0), the walker moves to r(t) in N steps.



3.2.4.3 Gaussian Transition Probability We learned in Section 1.2 that the
transition probability becomes Gaussian in the limit of small b and large N. The
Gaussian probability given by Eq. 1.18 gives the transition probability P(r, r
; t) for
the Brownian motion by replacing (2/3)Nb2 by 4Dt:

(3.30)

The motion of the particle whose transition probability is given by this equation is
called diffusion or a Wiener process.

The probability is independent for each of x, y, and z directions in the isotropic
solution. In the x direction, for instance,

(3.31)

and P(r, r
; t) � Px(x, x
; t)Py(y, y
; t)Pz(z, z
; t).
The transition probability Px(x, x
; t) is essentially a normal distribution of a ran-

dom variable x � x
 with a zero mean and a variance of 2Dt. Therefore,

(3.32)

These equations apply also to a particle that diffuses along a one-dimensional path.
The mean square displacement 〈(x � x
)2〉 is proportional to t. Figure 3.7 shows
how Px broadens with time. The plots are given as a function of (x � x
)�b for
4Dt�b2 � 0.1, 1, and 10, where b is a unit length. Initially (t : 0), the particle is at
x
, i.e., P(x, x
; 0) � �(x � x
).

〈x � x
〉 � 0, 〈(x � x
)2〉 � 2Dt 1D diffusion

Px(x, x
; t) � (4�Dt)�1�2 exp�� 
(x � x
)2

4Dt �

P(r, r
; t) � (4�Dt)�3�2  exp��
(r � r
)2

4Dt � Gaussian transition probability

178 DYNAMICS OF DILUTE POLYMER SOLUTIONS

1

2

-6 -4 -2 0 2 4 6
(x − x´) /b

4Dt/b2 = 1

4Dt/b2 = 0.1

4Dt/b2 = 10

Figure 3.7. Broadening of the distribution with time for the position of a one-dimensional
Brownian particle. Plots are for 4Dt�b2 � 0.1, 1, and 10.
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For the three-dimensional diffusion, the displacement r � r
 satisfies

(3.33)

because 〈(r � r
)2〉 � 〈(x � x
)2〉 � 〈(y � y
)2〉 � 〈(z � z
)2〉 � 3 � 2Dt.

3.2.4.4 Diffusion Equation It is easy to find that Px(x, x
; t) given by Eq. 3.31
satisfies the one-dimensional diffusion equation:

(3.34)

The initial condition is Px(x, x
; 0) � �(x � x
). Likewise, P(r, r
; t) given by
Eq. 3.30 satisfies the three-dimensional diffusion equation:

(3.35)

where is the Laplacian. It is also written as �2/�r2.
The initial condition is P(r, r
; 0) � �(r � r
).

3.2.4.5 Concentration The meaning of the transition probability P(r, r
; t)
will be clearer when we look at the local concentration profile of the particles,
c(r, t), at position r and time t. It is the mass of the particles in a small volume
around r, divided by the volume. The volume contains sufficiently many particles.
With P(r, r
; t), we can write

(3.36)

The particles we find at r and t have come from all different positions in the sys-
tem. At time zero, the particles were at r
 with concentration profile c(r
,0)
(Fig. 3.8). They have migrated to r with the probability of P(r, r
; t). Integration of

c(r, t) � �P(r, r
; t) c(r
, 0) dr


�2 � �2��x2 � �2��y2 � �2��z2

�P

�t
� D�2P 3D diffusion equation

�Px

�t
� D 

�2Px

�x2  1D diffusion equation

〈r � r
〉 � 0, 〈(r � r
)2〉 � 6Dt 3D diffusion

Figure 3.8. Transition probability P(r, r
; t) accounts for a change from the initial concen-
tration profile c(r
, 0) to the final concentration profile c(r, t). The concentration is indicated
by the gray level.

P(r,r´;t)
c(r´,0) c(r,t)



c(r
, 0)P(r, r
; t) with respect to r
 gives the concentration profile c(r, t) at time t. It
is easy to show that c(r, t) satisfies the same diffusion equation as Eq. 3.35:

(3.37)

The initial concentration profile is c(r, 0).

3.2.4.6 Long-Time Diffusion Coefficient In various experiments and com-
puter simulations, the mean square displacement 〈(r � r
)2〉 is often measured or
calculated as a function of time t. If the double logarithmic plot of 〈(r � r
)2〉
versus t has a slope of 1, we can say that the relevant motion is diffusional. It of-
ten happens that the proportionality is reached only after a sufficiently long
time. It is therefore customary to define the diffusion coefficient in the long-time
limit:

(3.38)

for dynamics in three dimensions. The denominator is 2 � (dimensions) � t. This
diffusion coefficient is called the long-time diffusion coefficient. The dynamics
may have different diffusion coefficients in other time scales, or it may not be diffu-
sional. The plot of 〈(r � r
)2〉 versus t will tell the nature of the dynamics. We will
see variations of dynamics in different time scales in Sections 3.4 and 4.3.

In Section 1.5, we learned that the mean square end-to-end distance 〈RF
2〉 of a

wormlike chain becomes proportional to the contour length as the chain becomes
longer. The tendency for 〈(r � r
)2〉 to become proportional to t in a long time is
parallel to the tendency for 〈RF

2〉 of the wormlike chain.

3.2.5 Diffusion and DLS

3.2.5.1 Dynamic Structure Factor and Mean Square Displacement Here we
learn how �g1(�)� obtained in DLS gives an estimate of the diffusion coefficient. We
are concerned with dilute solutions here. Hence, �g1(�)� � S1(k, �).

In Eq. 3.26, we use the Taylor expansion at low scattering angles: exp[ik ·(r � r
)] �
1 � ik ·(r � r
) � (1�2)[k · (r � r
)]2 �· · · . Then S1(k, �) is transformed to

(3.39)

where 〈r � r
〉 � 0, and 〈(x � x
)2〉 � 〈(y � y
)2〉 � 〈(z � z
)2〉 � 〈(r � r
)2〉�3,
〈(x � x
)(y � y
)〉 � 0, and so forth were used. This �g1(�)� � S1(k, �) is rewritten to

(3.40)

If plots of ln �g1(�) ��k2 vs. � measured at different angles overlap each other, then k is
already sufficiently small. Typically, k � (size of the particle) 	 1 qualifies as small k.

〈(r � r
)2〉 � �6 ln�g1(�) � � k2 small k

S1(k, �) � 1 � 1
6  k

2〈(r � r
)2〉 � · · · 	 exp
� 1
6 k

2〈(r � r
)2〉�

D � lim
t : �

〈(r � r
)2〉
6t

 long -time diffusion coefficient

�c

�t
� D�2c
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The mean square displacement in time � is evaluated by using Eq. 3.40. The
slope in the plot is equal to 6D. It is, however, more common to follow the ap-
proach described below.

3.2.5.2 Dynamic Structure Factor of a Diffusing Particle More often than not,
the particles move according to the diffusion equation. The transition probability is
given by Eq. 3.30. Then

(3.41)

Thus, � g1(�) � is an exponentially decaying function with a decay constant of Dk2. It
is customary to first introduce the decay rate � of � g1(�) � by

(3.42)

and then relate � to k2 as

(3.43)

for the diffusional motion. It is apparent that �g1(�)� decays faster at a higher scatter-
ing angle. 

The procedure to obtain the diffusion coefficient D is as follows. First, measure
the autocorrelation function at different angles. Second, obtain � as the negative of
the slope in the semi-logarithmic plot of �g1(�) � as shown in Figure 3.9. Third, plot

� � D k2 decay rate for diffusion

�g1(�) � � exp (���)

 ��(4�D�)�3�2 exp��
(r � r
 � i k�2D�)2

4D�
� D� k2� dr � exp(�D� k2)

 S1(k, �) ��exp[ik�(r � r
)](4�D�)�3�2 exp��
(r � r
)2

4D�
� dr

1

0
τ

|g1|

τ

ln|g1|
slope = −Γ

0

exp(−Γ   )τ

a

b

Figure 3.9. When �g1(�) � decays in a single exponential (a), the plot of ln �g1(�)� is a straight
line with a slope of �� (b).



� as a function of k2. The plot should be approximated by a straight line through
the origin (see Fig. 3.10). The slope of the line is D. We can show that conversely, if
the measured � versus k2 is on a straight line through the origin, then the dynamics
is diffusional (Problem 3.3).

When the suspension is not spherical or, in general, is a particle with an internal
structure such as a linear polymer chain, the decay rate deviates from the one given
by Eq. 3.43 at higher scattering angles. The diffusion coefficient defined in the low
k limit refers to the overall displacement of the molecule, i.e., the motion for the
center of mass.

3.2.6 Dynamic Structure Factor of a Polymer Solution

3.2.6.1 Dynamic Structure Factor The electric field of the light scattered by a
volume that contains nP chains (nP » 1), each consisting of N beads, can be written
in the same way as Eq. 3.15. The dynamic structure factor is now given as

(3.44)

which is decomposed into two parts:

(3.45)

where S1(k, �) is the single-chain dynamic structure factor:

(3.46)S1(k, �) �
1

N �
N

i, j�1
〈exp[ik �(r1i 

(0) � r1j(�))]〉 single-chain
dynamic structure factor

S(k, �) � S1(k, �) �
nP

N �
N

i,j�1
〈exp[ik�(r1i(0) � r2j(�))]〉

S1(k, �) �
1

NPN �
NP

m, n�1
 �

N

i, j�1
〈exp[ik�(rmi 

(0) � rnj(�))]〉 dynamic structure factor
polymer solution
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k2

Γ
slope = D

Figure 3.10. Decay rate � of �g1(�) �, plotted as a function of k2. If the particles move by dif-
fusion, the plot is on a straight line through the origin with a slope equal to the diffusion co-
efficient D.
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At � � 0, the dynamic structure factors are identical to the static structure factors
(Eqs. 2.59 and 2.60):

(3.47)

Thus, �g1(�)� � S1(k, �)�S1(k, 0) when each polymer chain moves independently of
other chains at low concentrations.

3.2.6.2 Long-Time Behavior In a short time scale, S1(k,�) exhibits a compli-
cated pattern, reflecting complex motions of different parts of the polymer chain.
Over a long time, however, the motion is simplified. It is dominated by the transla-
tion of the chain as a whole in the solution for any conformation. We can prove the
dominance of the center-of-mass motion as follows.

In Eq. 3.46, the displacement r1i(0) � r1j(�) between bead i at time 0 and bead j
at time � on chain 1 consists of three parts:

(3.48)

where r1G(0) and r1G(�) are the center of mass positions of the chain at time 0 and �,
respectively. The three parts are represented by three vectors in Figure 3.11. Ini-
tially, the three parts are correlated. As � increases, the chain conformation becomes
randomized, and the three vectors become more irrelevant to each other. For in-
stance, r1i(0) � r1G(0) becomes uncorrelated to r1G(�) � r1j(�) regardless of i � j
or not. Thus the statistical average of the square is

(3.49)

The first and third terms are equal to Rg
2 by definition. Only the second term grows

with time because of diffusion of the chain as a whole. After a long time, the

 � 〈[r1G(�) � r1j(�)]2〉

 〈[r1i(0) � r1j(�)]2〉 � 〈[r1i(0) � r1G(0)]2〉 � 〈[r1G(0) � r1G(�)]2〉

r1i(0) � r1j(�) � [r1i(0) � r1G(0)] � [r1G(0) � r1G(�)] � [r1G(�) � r1j(�)]

S(k, 0) � S(k),  S1(k, 0) � S1(k)

r1i(0)

r1j(  )

r1G(0)

r1G(  )τ

τ

Figure 3.11. The polymer chain moves its center of mass and changes its orientation and in-
ternal arrangement. The displacement between monomers i and j, r1i(0) � r1j(�), is decom-
posed into three parts indicated by the arrows. Only the center-of-mass distance keeps grow-
ing with time.



second term becomes dominant. Thus,

(3.50)

and therefore �g1(�)� gives the center-of-mass diffusion coefficient.
The above discussion applies only to a long time. In a short time, ln �g1(�)� may

exhibit non-k2 behavior. In Section 3.4, we will learn in more details how S1(k,�)
depends on k and � for a bead-spring model.

3.2.7 Hydrodynamic Radius

3.2.7.1 Stokes-Einstein Equation To drag a particle suspended in a viscous
medium at a constant velocity v, a constant force of F � �v must be applied to the
particle (Fig. 3.12). The coefficient � is called the friction coefficient. Einstein
showed that the diffusion coefficient D of the particle in a quiescent solution at
temperature T is related to � by

(3.51)

This equation is the simplest form of the so-called fluctuation-dissipation theorem.
The diffusion, which is a typical equilibrium phenomenon, is related to the friction,
a typical energy dissipation phenomenon.

Stokes showed that the friction coefficient for a sphere of radius RS is given by

(3.52)

in a solvent of viscosity �s. The viscosity of a fluid expresses how difficult it is to
flow the fluid. We will learn the exact definition of viscosity in Section 3.3.1. Com-
bining the above two equations gives the Stokes-Einstein equation:

(3.53)

The radius RS is called the Stokes radius. The diffusion is faster at a higher temper-
ature, in a less viscous solvent, and for a smaller particle.

D �
kBT

6��sRS

 diffusion coefficient of a sphere

� � 6��s RS

D �
kBT

�
 Nernst –Einstein equation

� 6 ln�g1(�) ��k2 � 〈[r1i(0) � r1j(�)]2〉 : 〈[r1G(0) � r1G(�)]2〉
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F =   v

v

ζ

Figure 3.12. A particle moving at a constant velocity v in a viscous liquid needs to be pulled
by force F � � v.
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We now extend the concept of the Stokes radius to nonspherical suspensions and
molecules (Fig. 3.13). Once the center-of-mass diffusion coefficient D is measured
for the suspension or the molecule, we can introduce the hydrodynamic radius
RH by

(3.54)

For the spherical suspension, RH � RS. We can regard RH as another quantity to
characterize the dimension of the molecule.

3.2.7.2 Hydrodynamic Radius of a Polymer Chain For a linear chain molecule,
RH is proportional to Rg and RF. Therefore, RH � N �, where � � 1�2 in the theta sol-
vent and � 	 0.59 or 3�5 in the good solvent. We can prove the proportionality, as
shown below.

When all of the N monomers in the polymer chain move, each monomer re-
ceives a friction from the solvent. The overall friction, however, is not proportional
to N but rather is proportional to N�. Because � 	 1, N � 	 N. The friction of the
chain molecule is smaller than the friction nonbonded, independently moving N
monomers receive. It is explained as follows. The motion of one of the monomers
accompanies motions of adjacent solvent molecules in the same direction, and their
effect propagates to another monomer to facilitate its motion in the same direction
in an otherwise stagnant solvent (Fig. 3.14). This interaction is called hydro-
dynamic interaction. It is different from the other interactions we have seen so far.
It exists only when the particles move. Static properties such as the osmotic pres-
sure are not affected by the hydrodynamic interactions. They only affect dynamic
properties, such as diffusion, but do so strongly.

Oseen found that the magnitude of the hydrodynamic interaction between two
particles at r and r
 is proportional to �r � r
��1. The interaction decays only alge-
braically with a small exponent of �1 and therefore is long ranged. In a chain mol-
ecule, all monomers affect all other monomers because they are close to each other.

RH �
kBT

6��sD
 hydrodynamic radius

RHRS = RH

RH

sphere ellipsoid linear chain

Figure 3.13. For the center-of-mass motion, an ellipsoid with a hydrodynamic radius RH re-
ceives the same friction as a sphere of radius RH does. Likewise, a linear chain with a hydro-
dynamic radius RH diffuses with the same diffusion coefficient as the sphere of radius RH.



In Section 3.4.6, we will learn that 1�RH of the chain molecule is given as the aver-
age of the reciprocal of the distance between two monomers on the chain:

(3.55)

The average is taken with respect to possible positions of the two monomers m and
n (m � n) and then with respect to m and n that run over all monomers of the chain.

Here we calculate RH of a chain with a Gaussian conformation. Using the Gaussian
distribution given by Eq. 1.34, 〈�rm � rn�–1〉mn for a given m and n is calculated as

(3.56)

The average of �n � m��1�2 with respect to m and n is calculated as

(3.57)

Thus, RH is given by

(3.58)

RH is quite small compared with RF: RH�RF � (3��2)1�2�8 	 0.271. RH is smaller
than Rg: RH�Rg � (3�8)�1�2 	 0.665. Thus, RH 	 Rg 	 RF for a chain with a
Gaussian conformation.

The real chain has RH 	 bN �, since 〈�rm � rn� –1〉mn 	 b –1�n � m �–�. More exact
results for polymer chains in a good solvent were obtained in the renormalization

1

RH
� � 6

� �
1�2 1

b
�

8

3
 N�1�2 � 8� 2

3� �
1�2 1

bN1�2

N�2�N

0
dn�N

0
dm�n � m ��1�2 � 2N�2�N

0
2n1� 2 dn � (8�3)N�1�2

� (2� �n � m �b2� 3)�3�24� � �n � m �b2� 3 � (6��)1�2b�1�n � m ��1�2

〈 1

�rm � rn � 〉
mn

 ���

0
(2� �n � m �b2� 3)�3�2  exp ��

3r2

2�n � m �b2 � 4�r2
 

1

r
  dr

1

RH
� 〈 1

�rm � rn � 〉 hydrodynamic radius
of a polymer chain
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solvent
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molecules

Figure 3.14. Movement of particle 1 generates the motion of solvent molecules, which
eases the motion of particle 2 in the same direction. Thus, the hydrodynamic interaction re-
duces friction.
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group theory and will be given in Section 3.4. The relationship, RH 	 Rg 	 RF, is
the same as for the Gaussian chain.

Table 3.1 compares various measures of the dimension for chains with an ideal-
chain conformation (or at the theta condition), excluded-volume chains, and rodlike
molecules. The latter will be considered in Section 3.5.

Figure 3.15 shows examples of RH measured by using DLS for different molecu-
lar weight fractions. Panel a was obtained for polystyrene in 2-fluorotoluene at

Table 3.1 Various Measures of the Chain Dimension

Polymer Chain RH�Rg RH�RF RF�Rg

Ideal/theta solvent* 0.665 (�(3�8)�1/2) 0.271 (�(3��2)1�2�8) 2.45 (�61�2)
Real (good solvent) 0.640 0.255 2.51
Rod-like 31�2�(ln(L�b)–� )** 1�[2(ln(L�b)–� )]** 3.46 (�121/2)

*Chains with an ideal-chain conformation.
**Depends on the rod length L and rod diameter b. � 	 0.3.
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Figure 3.15. Hydrodynamic radius RH of different molecular weights of a polymer. a: Poly-
styrene in 2-fluorotoluene at 42.6°C (good solvent). (From Ref. 30.) b: Poly(�-methyl
styrene) in cyclohexane at 30.5°C (theta solvent). (From Ref. 31.)



42.6°C (good solvent),30 and panel b was obtained for poly(�-methyl styrene) in
cyclohexane at 30.5°C (theta condition).31 In the two panels of the figure, the plots
are on a straight line, in agreement with the predicted power relationship, RH � N –�.
The exponents � obtained in the fitting are 0.567 and 0.484, slightly smaller than
the values predicted for the two environments.

3.2.8 Particle Sizing

3.2.8.1 Distribution of Particle Size It is all but impossible that every solute
molecule or particle has exactly the same hydrodynamic radius in a given solution.
There is always a distribution in RH, as illustrated in Figure 3.16. The peak position
and width of the distribution vary from sample to sample. The distribution in RH

leads to a distribution in the diffusion coefficient and therefore a distribution in the
decay rate � of �g1(�) �. Then, �g1(�) � is not a simple exponential decay.

A particle with � contributes to the measured �g1(�) � with exp(–��). Therefore,
the measured �g1(�)� is a superposition of exp(���) with different values of �:

(3.59)

where G(�) represents the contribution of each � and is normalized, i.e.,
�G(�)d� � 1. The magnitude of the electric-field autocorrelation function is pro-
portional to the scattering intensity (I � E 2). After normalization to g1(�), each con-
tribution from a different � is still weighted by the scattering intensity of particles
that exhibit the decay rate of �. Thus, G(�) is the scattering intensity-weighted
distribution.

3.2.8.2 Inverse-Laplace Transform The distribution makes �g1(�) � deviate from
a single exponential decay, as illustrated in Figure 3.17a. Conversely the analysis of
the deviation allows estimation of G(�). Mathematically, �g1(�) � is the Laplace
transform of G(�), as Eq. 3.59 shows. Then, the procedure to estimate G(�) from

�g1(�) � ��G(�) exp (���) d �
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Figure 3.16. Suspension of particles with different diameters.
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�g1(�) � is inverse-Laplace transform. There are computer program packages avail-
able for the procedure. Among others, CONTIN32 has been most frequently used
and implemented in commercial DLS measurement systems. The result of the
transformation is displayed in �G(�) on a logarithmic scale of � (Fig. 3.17b). The
following equation explains why �G(�) is plotted, not just G(�):

(3.60)

The autocorrelator computes �g1(�) � for a finite range of �, from �min to �max.
Therefore, G(�) can be estimated only in a finite range of �. Usually, the lower and
upper limits of the integral in Eq. 3.59 are 1��max and 1��min, respectively.

3.2.8.3 Cumulant Expansion The inverse-Laplace transform is a convenient
analysis method when the distribution is broad, especially bimodal or trimodal.
When the distribution is narrow and �g1(�) � is close to a single exponential decay, a
simpler analysis method, called a cumulant expansion, is more useful. In this
method, ln �g1(�) � is approximated by a polynomial of �, typically of the second or-
der. The first two coefficients represent the mean and the variance of �:

(3.61)ln �g1(�) � � �〈�〉� 	 1
2 
〈
�2〉 � 

2 � 1
6 
〈
�

 

3〉� 
3 	 · · · cumulant expansion

�g1(�) � � ��G(�) exp( � ��) d ln �

τ
ln

|g
1|

0

monodisperse

polydisperse

lnΓ
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Laplace
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Figure 3.17. a: In a suspension of monodisperse particles, the plot of ln �g1� is a straight
line (dashed line). Polydispersity of the particle size deviates ln �g1� (solid line) from the
straight line. b: The inverse Laplace transform of �g1(�)� gives the distribution of the decay
rate �.



where 
� � � � 〈� 〉 and the averages are weighted with G(�):

(3.62)

Problem 3.8 proves this expansion. In the absence of distribution, i.e., 
� � 0, the
second- and higher-order terms disappear, and ln �g1(�) � is a straight line. Curve-
fitting of the measured ln �g1(�) � by a polynomial gives an estimate of 〈�〉 and
〈
�2〉. As found in Problem 3.10, the diffusion coefficient estimated from 〈�〉 for a
solution of a polydisperse polymer is a z-average diffusion coefficient. Often, we
use a simple symbol of � for 〈�〉. 

3.2.8.4 Example Figure 3.18 shows an example of g2(�) (�g1(�) � on the right
axis) obtained by a commercial particle-sizing system (Beckman-Coulter, N4Plus)
for a 6.9 g/L solution of a polystyrene standard (Mw � 1.7 � 105 g/mol) in toluene
at 30°C (� � 632.8 nm). The scattering angles were 14.0, 20.5, 26.7, and 65.6°. On
a logarithmic scale of the ordinate, g2(�) [and �g1(�) �] is mostly straight at the four
scattering angles, indicating a narrow distribution in G(�). In the particle-sizing
system, the distribution of � is converted to a distribution Gd of the apparent parti-
cle diameter dapp by dapp � kBT�[3
�s(��k2)]. In the small k limit and the low con-
centration limit, dapp � 2RH. Figure 3.19 displays Gd(dapp) on the logarithmic scale
of dapp, obtained from the �g1(�) � data in Figure 3.18. As expected, the CONTIN
analysis returns a single peak. The peak position and width are the same within ex-
perimental errors for the measurements at the four angles, indicating that the decay

〈�〉 � ��G(�)  d�, 〈
�2〉 � �
�2G(�)  d� , . . .
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Figure 3.18. Example of autocorrelation functions g2(�) and �g1(�)� obtained in DLS meas-
urements at four scattering angles for a dilute solution of polystyrene in toluene. The two
autocorrelation functions differ in the ordinate scale only.
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of g2(�) is due to the center-of-mass diffusion of the polystyrene molecules and that
the measurement was carried out in the range of a sufficiently small k. In fact,
kRH � 0.056 at � � 26.7°, for instance. Displaying Gd(dapp) in place of G(�) or the
distribution of the diffusion coefficient is handy when results from measurements in
different solvents and/or at different temperatures need to be compared. 

3.2.9 Diffusion From Equation of Motion

Here we look at the diffusion from another perspective. We will obtain the diffu-
sional behavior, i.e., 〈[r(t) � r(0)]2〉 � t, from the equation of motion.

A particle suspended in a liquid receives a random force f(t) when solvent mole-
cules collide with the particle. We assume that the random force has the following
statistical properties:

(3.63)

(3.64)

where A is a constant yet to be determined. The random force is, on average, zero. It
loses its memory instantaneously [�(t � t�)]. The force at a given time has nothing to
do with the force at the next moment. Figure 3.20 shows an example of such a force
(white noise).

In a viscous solvent, the motion of the particle is overdamped. Then, the equa-
tion of motion of the particle has the friction term and the force term only:

(3.65)� 

dr
dt

� f(t)

〈f(t)�f(t�)〉 � A�(t � t�)

〈f(t)〉 � 0

14.0°

20.5°

26.7°

65.6°

dapp / nm

100 101 102 103

Figure 3.19. CONTIN analysis results for the autocorrelation functions shown in Fig. 3.18. The
distribution of the apparent diameter dapp is plotted as a function of dapp in a logarithmic scale.



The mean square displacement in time t is calculated from

(3.66)

We exchange the order of the integration and the averaging:

(3.67)

With Eq. 3.64,

(3.68)

The mean square displacement is proportional to t. The particle makes a diffusional
motion on all time scales. We also find that the average displacement is zero:

(3.69)

For the mean and variance of the displacement to be identical to those of the dif-
fusion with diffusion coefficient D, 6D � A/� 2. Thus,

(3.70)

Thus, the random force satisfies

(3.71)〈f(t)�f(t�)〉 � 6kBT� �(t � t�)

A � 6D� 
2 � 6  
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�
 � 

2 � 6kBT�
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�
�t

0
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Figure 3.20. Example of a random force f(t) (its x component) with zero mean and no memory.
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The magnitude of the random force is greater for a particle with a larger friction
coefficient, typically a larger particle. This random force satisfies the require-
ment of the equipartition law: thermal energy per degree of freedom is kBT�2
(Problem 3.13).

3.2.10 Diffusion as Kinetics

3.2.10.1 Fick’s Law Here, we look at the diffusion from a phenomenological
point of view. The treatment in Sections 3.2.4 and 3.2.9 needs tracing each particle
and therefore is microscopic.

We consider a container consisting of two parts that hold the solutions of the
same solute at different concentrations (see Figure 3.21). The concentration is uni-
form in each part. As soon as the partition is quietly removed, the solute starts to
move from the right compartment where the concentration is higher to the left com-
partment where it is lower. The distinct boundary becomes fuzzy. After a long time,
the concentration becomes uniform throughout the container. The figure shows also
a snapshot of the concentration profile during the equilibration process. There is a
natural tendency for the system to become uniform as it maximizes its entropy
toward the equilibrium. A spatial variation in the concentration c(r) promotes a
transfer of the solute from the more concentrated region to the less concentrated
region.

The rate of transfer is called a flux (also called a flow; but it is necessary to
avoid confusion from the macroscopic flow of the fluid). The transfer occurs in the
absence of the solvent flow as well as in the presence of the solvent flow. The flux
is defined as the mass of the solute that moves across a unit area in a unit time. The
direction of the flux is the same as that of the velocity v(r) of the solute molecules.
By definition, the flux j(r) is related to v(r) by

(3.72)j(r) � c(r)v(r)

c

c

c

time x

x

x

x

Figure 3.21. When the partition is removed, solute molecules move from the higher-concen-
tration zone to the lower-concentration zone. The concentration profiles before the partition
removal, during equilibration, and at equilibrium are shown on the right.



Figure 3.22 will help us understand this relationship. The solute molecules in a
cylinder that has a base of a unit area and a height of �v� pass the base in the next
unit time. The mass of solute molecules in the cylinder, c �v�, is by definition equal
to � j �. In the following, we consider a quiescent solution.

The local concentration variation is represented by the concentration gradient
�c(r). In one dimension, it is �c/�x (Fig. 3.23). When �c is sufficiently small, the
flux j(r) is proportional to �c(r) (Fick’s law). In the absence of the concentration
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|v|
Figure 3.22. Flux j is defined as the number of solute molecules that pass the cross section
of a unit area in a unit time. The solute molecules in the cylinder of height �v� pass the cross
section in the next unit time.
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Figure 3.23. Concentration gradient causes a flux. The illustration is for one dimension. a:
Profile of concentration c. b: Concentration gradient �c��x. c: Flux j.
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gradient, there is no flux. On reversal of the sign of �c, j also changes its sign. We
introduce the diffusion coefficient D as the proportionality constant in

(3.73)

The minus sign is necessary to account for the transfer from the high-c region to the
low-c region. In one dimension, the flux is negative when �c/�x � 0 as indicated in
the figure. We will soon find that the diffusion coefficient defined in this way is
equivalent to the one we defined microscopically in Section 3.2.4. The diffusion
that follows this equation is called a Fickian diffusion. 

3.2.10.2 Diffusion Equation The other equation that relates j and c is from the
conservation of mass. We consider a small fixed volume V (Fig. 3.24). The rate of
change in the total mass of the solute in the volume, V(�c/�t), is equal to the nega-
tive of the integral of the surface-normal component of j over the surface of the
volume:

(3.74)

Note that j · dS accounts for the mass of the solute molecules that leave the volume
through a small area dS. The minus sign is needed because a positive j · dS means
an outflow. By Green’s theorem, the surface integral is converted to the volume in-
tegral. In the limit of small V,

(3.75)

Combining the two equations, we obtain the law of mass conservation:

(3.76)
�c

�t
	  ��j � 0 mass conservation

�
surface

j�dS � �
V
��j dr � V ��j

V 

�c

�t
� ��

surface
j�dS

j � �D�c Fick’s law

V

dS j

Figure 3.24. Flux j and the surface normal dS on a sphere of a small volume V.



With Fick’s law, we can obtain the diffusion equation:

(3.77)

which is identical to Eq. 3.37. The phenomenological definition of the diffusion
coefficient is equivalent to the microscopic definition of the diffusion coefficient.

3.2.10.3 Chemical Potential Gradient With Eq. 3.72, Fick’s law can be rewrit-
ten to 

(3.78)

where c° is a reference concentration. We recall that D � kBT�� (Eq. 3.51). In a so-
lution of a uniform temperature, Eq. 3.78 is converted to

(3.79)

In the right-hand side, kBT ln(c�c°) is the chemical potential in an ideal solution.
This equation dictates a balance in the forces acting on the solute molecule at r.
The friction �v(r) is balanced by the chemical potential gradient, resulting in the
velocity v(r) of the solute molecule. The chemical potential gradient causes a trans-
fer of matter from a higher potential to a lower potential, just as a force on the
particle moves it.

3.2.11 Concentration Effect on Diffusion

3.2.11.1 Self-Diffusion and Mutual Diffusion When each suspension or solute
molecule is moving independently, the diffusion is a single-particle phenomenon.
The latter is observed in the dilute solution limit where there are no other solute mol-
ecules in the neighborhood. When other solute molecules are nearby, the diffusion is
strongly affected by the other solute molecules. The second terms in Eqs. 3.17 and
3.45 are not negligible any more. What DLS measures is S(k, �), not S1(k, �). Only
when c « c*, S(k, �) is equal to S1(k, �). Otherwise, the apparent diffusion coefficient
D estimated from the slope of �g1(�)� depends on c. We will learn how the apparent
D depends on c.

To have an intuitive understanding of the concentration effect, we consider a sus-
pension of hard spheres. Suppose that a portion of the suspension acquires tem-
porarily a higher concentration than the surrounding, as shown in Figure 3.25a. The
particles in the locally concentrated region tend to move away from each other, re-
sulting in the collision of black particles with white particles (Fig. 3.25b). Upon
collision, the particles bounce back, although the motion is overdamped in a vis-
cous environment (Fig. 3.25c). When we trace the motion of each black particle,
the collision makes the square displacement smaller compared with the one in the
absence of collisions. The effect of the local concentration fluctuation is, however,

� v(r) � ��[kBT  ln (c(r)�c�)]

v(r) � �D� ln (c�c�)

�c

�t
� � ��j � D���c � D�2c
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transmitted farther by the white particles because of the collisions. When we trace
the distance between the black particle and the white particle, the collision in-
creases the distance more quickly compared with the counterpart in the absence of
collisions.

The first concept, tracing each particle, is for the self-diffusion, and the second
for the mutual diffusion. The self-diffusion coefficient Ds is defined for the mo-
tion of a given particle as

(3.80)

and the mutual diffusion coefficient Dm is defined for the motion of two particles as

(3.81)

At sufficiently low concentrations, both Ds and Dm are equal to D0, the diffusion
coefficient of an isolated solute (Problem 3.14). With an increasing concentration,
Ds tends to decrease but Dm tends to increase (Fig. 3.26). There are exceptions.

3.2.11.2 Measurement of Self-Diffusion Coefficient What is measured in DLS
is Dm. DLS cannot measure Ds because it does not distinguish one solute from an-
other. It is necessary to use other more specialized techniques such as forced
Rayleigh scattering (FRS), fluorescence recovery after photo-bleaching
(FRAP), and pulsed-field gradient nuclear magnetic resonance (PFG-NMR).

The details of the instruments for the first two optical methods are explained, for
instance, in Ref. 33. In short, FRS creates a temporary diffraction grating by inter-
secting two beams (write-beam) split from a strong, short-wavelength laser at a low
angle. The polymer molecules must be labeled with a fluorescent dye. The grating
is an alternate pattern of ground-state molecules and excited-state molecules. After
the write-beam is turned off, a weak read beam is fired onto the grating to monitor

Dm � lim
t : �

〈[r1(t) � r2(0)]2〉
6t

  mutual diffusion coefficient

Ds � lim
t : �

〈[r1(t) � r1(0)]2〉
6t

  self-diffusion coefficient

Figure 3.25. A temporary local congestion of spherical particles is dispersed by diffusion
and collisions. Black spheres (in a) move to collide with white spheres (b) and bounce back
(c). Propagation of the local concentration fluctuation (in a) is carried faster and farther by
the white spheres (c).

a b c



the decay in the intensity of the diffracted beam as the polymer chains diffuse to
diminish the contrast. The decay rate gives an estimate of the self-diffusion coeffi-
cient. In FRAP, typically a circular spot beam bleaches the dyes attached to polymer
chains. After the laser is turned off, the unbleached polymers sitting outside the spot
diffuses into the circular domain to recover a uniform dye distribution. The build-up
transient of the dye concentration in the circle gives an estimate of the self-diffusion
coefficient. However, instruments that use these techniques are not commercially
available.

In PFG-NMR, a pulsed gradient magnetic field is applied across a sample in
phase to a spin-echo RF pulse sequence. The amplitude of the free induction decay
is given by S1(q, �) with q � ��g, where � is the magnetogyric ratio of the nucleus
measured, � is the duration of the gradient field, g is the field gradient, and � is
the separation between successive field pulses. By changing the field gradient, the
scattering function is measured at different wave vectors, allowing the user to
estimate Ds.

Although Ds cannot be measured in DLS, a closely related tracer diffusion
coefficient Dt can be measured. In the tracer diffusion, the motion of a labeled
solute called a probe or a tracer is traced selectively. A second solute called a
matrix is added to the solution and its concentration is varied, whereas the concen-
tration of the probe molecules is held low. The matrix must be invisible, and the
probe must be visible. We can give a large contrast between the matrix and probe
by choosing a pair of solvent and matrix that are nearly isorefractive, i.e., having
the same refractive index. Then, the light scattering will look at the probe mole-
cules only. For instance, we can follow the tracer diffusion of polystyrene in a
matrix solution of poly(dimethyl siloxane) in tetrahydrofuran.

3.2.11.3 Concentration Dependence of the Diffusion Coefficients Now we
consider the effect of the concentration on the diffusion coefficients quantitatively.
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Figure 3.26. As the solute concentration c increases, the mutual diffusion coefficient Dm

usually increases and the self-diffusion coefficient Ds decreases. In the low concentration
limit, Dm and Ds are equal to D0.
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First, we consider the concentration effect on the self-diffusion coefficient. Other
molecules tend to interrupt the otherwise free diffusion of a given solute molecule.
In effect, the presence of other molecules increases the friction coefficient:

(3.82)

where �0 is the friction coefficient in the dilute solution limit, and �0�1 (�0) is the
first-order concentration coefficient. Then,

(3.83)

The self-diffusion coefficient decreases linearly with c at low concentrations.
For the mutual diffusion coefficient, we start with generalizing Eq. 3.79 to an

equation that applies to nonideal solutions:

(3.84)

In terms of flux,

(3.85)

Now we use the virial expansion for � (Problem 2.9):

(3.86)

Its gradient is given as

(3.87)

Then,

(3.88)

where Eq. 3. 82 was used for �. Thus, Dm changes with c as

(3.89)

with a linear coefficient kD given by

(3.90)kD � 2A2 
M � �1 � vsp  linear coefficient

Dm � D0(1 	 kDc 	 · · ·)  low concentrations

j�� 

kBT

�
 (1	 (2 A2 

M� vsp)c 	 …) �c � �
kBT

� 0

 [1	(2A2 
M ��1� vsp)c 	 …]�c

�� � kBT [c�1 	 (2A2 
M � vsp) 	 …]�c

� � kBT [ln(c�c�) 	 (2A2M � vsp)c 	 …]

j(r) � �
c(r)

�
�� (r)

�v(r) � ���(r)

Ds �
kBT

�
�

kBT

�0

 (1 � �1c 	 · · ·)

� � �0(1 	 �1c 	 · · ·)



In a sufficiently good solvent, 2A2M � �1 	 vsp and therefore Dm increases with c.
As the solvent quality becomes poorer, A2 decreases and therefore kD becomes
eventually negative.

Figure 3.27 shows an example of the concentration dependence of Dm in a
theta solvent condition.31 The light-scattering autocorrelation functions were
measured for solutions of poly(�-methyl styrene) fractions of different molecular
weights in the theta solvent of cyclohexane at 30.5°C. The first-order concentra-
tion coefficient is negative because A2 � 0 at this temperature and therefore 
kD � �(�1 	 vsp) � 0.

So far, we have assumed that the solvent remains quiescent while the solute mol-
ecules move. There is, however, always a backflow of solvent molecules into the
space originally occupied by the solute. This effect is to decrease Dm�D0 by vspc,
where vspc is the fraction of the volume occupied by the polymer in solution. Then,

(3.91)

3.2.12 Diffusion in a Nonuniform System

In some systems, the chemical potential depends explicitly on r, not only through
c(r). An example is charged colloidal particles in an electric field. Here, we con-
sider diffusion of particles in an external field such as an electric field. We limit the
discussion to the low concentration limit. 

kD � 2A2M � �1 � 2vsp with backflow correction
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Figure 3.27. Mutual diffusion coefficient Dm of poly(�-methyl styrene) in a theta solvent at
different concentrations in the dilute regime. The molecular weight of the polymer is indi-
cated adjacent to each plot. (From Ref. 31.)
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When a stationary external field is applied, the chemical potential has an extra
term UE(r) due to the field:

(3.92)

Charged particles will experience UE(r) � (charge) � (electrostatic potential at r),
for instance. The diffusion equation is rewritten to

(3.93)

We can immediately obtain the equilibrium distribution ceq(r) from �ceq 	
ceq�UE�kBT � 0 as

(3.94)

which is the Boltzmann distribution for particles with space-dependent energy of
UE(r).

3.2.13 PROBLEM

Problem 3.1: We consider a walk on a cubic lattice. Its ith step motion 
ri in
step time t1 satisfies

where p � 1 is a constant. What is the mean square displacement in N steps?
Can we define the long-time diffusion coefficient? If yes, what is it?

Solution 3.1: The mean square displacement of N steps is

For N » 1, 〈
r2〉 � b2(2p 	 1)N. Therefore, the long-time diffusion coeffi-
cient D can be defined. It is

Problem 3.2: Use the definition of S1(k, �) (Eq. 3.26) and the diffusion equa-
tion for P(r, r�; �) (Eq. 3.35) to show that S1(k, �) � S1(k, 0) exp(�Dk2�).

D �
〈
r2〉
6Nt1

�
b2(2p 	 1)

6t1

 � Nb2 	 2(N � 1)pb2 � b2[(2p 	 1)N � 2p]

 〈
r2〉 � �
N

i, j�1
〈
ri�
rj〉 � �

N

i�1
〈
ri

2〉 	 �
N�1

i�1
〈
ri	1 �
ri〉 	 �

N

i�2
〈
ri�1 �
ri〉

 〈
ri�
rj〉 � �b2

pb2

0

(i � j)

( �i � j � � 1)

(otherwise)

 〈
ri〉 � 0

ceq(r) � const. � exp(�UE(r)�kBT )

�c

�t
� D��(�c 	 c�UE  

� kBT)

� � kBT � ln(c �c�) 	 UE(r) � kBT



Solution 3.2: From Eqs. 3.26 and 3.35,

Integral by parts yields

The solution of this differential equation is given as

Problem 3.3: Use Eq. 3.26 to show that

without relying on the Taylor expansion.

Solution 3.3: By definition,

Because

we obtain

 � �
�2

�k2  S1(k, �)�
k�0

 � �
�2

�k2 �dr exp[ik �(r � r�)] P(r, r�; �)�
k�0

 〈(r � r�)2〉 � ��dr  

�2

�k2   exp[ik�(r � r�)]�
k�0

P(r, r�; �)

(r � r�)2 � �
�2

�k2   exp[ik �(r � r�)]�
k�0

〈(r � r�)2〉 � �dr(r � r�)2
 P(r, r�; �)

〈(r � r�)2〉 � �
�2

�k2 S1(k, �)�
k�0

S1(k, �) � S1(k, 0) exp(�Dk2�)

 � �Dk2�drP(r, r�; �) exp[ik�(r � r�)] � �Dk2S1

 � D�drP(r, r�; �) (�k2 exp[ik�(r � r�)])

 
�

��
 S1(k, �) � D�drP(r, r�; �)�2

 

 exp[ik�(r � r�)]

 � �dr exp[ik�(r � r�)]D�2P(r, r�; �)

�

��
 S1(k, �) � �dr exp[ik�(r � r�)] 

�

��
 P(r, r�; �)
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Problem 3.4: The viscosity of water is 0.893 cP at 25°C and 0.355 cP at 80°C.
How much faster is the diffusion at 80°C compared with 25°C for a particle
suspended in water?

Solution 3.4:

Problem 3.5: For the same number of monomers, which conformation has
stronger hydrodynamic interactions, flexible or semirigid?

Solution 3.5: Flexible chain; For the same pair of monomers separated by a
given distance along the chain contour, the spatial distance between them is
shorter in the flexible chain than it is in the semirigid chain.

Problem 3.6: Use Eq. 3.55 to calculate RH,star of a star polymer consisting
of nA arms that have a conformation of a Gaussian chain with N1 segments of
length b. What is gH # (RH,star�RH,lin)2, where RH,lin is for a linear chain of nAN1

segments? Compare gH with gg defined as the ratio of the mean square radii of
gyration for the same pair of polymers (Eq. 1.85).

Solution 3.6: We define rim and rjn in the same way as we did in Section 1.6.
RH,star

–1 � 〈�rim � rjn�–1〉 is calculated separately for rim and rjn on the same
arm and the pairs on different arms. For the pair on the same arm,

For pairs on different arms,

The two types of pairing occur with probabilities of 1�nA and 1 � 1�nA,
respectively. Then, RH,star is given by

The RH of a linear polymer with nAN1 segments is

1

RH,lin
� 8� 2

3
 �
1�2 1

b(nAN1)1�2

 � 8� 2

3
 �
1�2 1

bN1
1�2

 
(21�2 � 1)(21�2 	 nA)

nA

 
1

RH,star
� � 6


 �
1�2 1

b
�

8

3
 

1

N1
1�2

 
(21�2 � 1)(21�2 	 nA)

nA

� 


6 �
1�2

b 〈 1

�rim � rin � 〉 �
1

N1
2 �N1

0
dn�N1

0
dm(n 	 m)�1�2 �

8

3
 (21�2 � 1) 

1

N1
1�2

� 


6 �
1�2

b 〈 1

�rim � rin � 〉 �
1

N1
2 �N1

0
dn�N1

0
dm�n � m ��1� 2 �

8

3
 

1

N1
1�2

D80�C

D25�C
�

273.15 	 80

273.15 	 25
�

0.893 cP

0.355 cP
� 2.98



The ratio gH is

The following figure compares gH with gg:

gH # � RH,star

RH,lin
�

2

�
nA

[(21�2 � 1)(21�2 	 nA)]2
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Problem 3.7: What is the addition rule for Rg and RH when an a block with Rga

and RHa and a b block with Rgb and RHb are joined to form an a–b diblock
copolymer? Assume that the two blocks follow the same chain statistics.

Solution 3.7: The addition rule is

Problem 3.8: Derive Eq. 3.61 from Eq. 3.59.

Solution 3.8: From Eq. 3.59,

 �2��g1(�) ��1��G( � ) exp (���) d� �
3

	 3�g1(�) ��2��2G(� ) exp(���) d ���G( � ) exp(���) d�

� ��g1(�) ��1�� 3G( � )exp(���) d �
�3

�� 
3

  ln�g1(�) �

���g1(�) ��1��G( � ) exp (���) d ��
2

� �g1(�) ��1�� 2G( � ) exp(���) d�
�2

�� 2
  ln�g1(�) �

�

��
  ln�g1(�) � � ��g1(�) ��1��G( � ) exp(���) d �

Rg
1�� � Rga

1�� 	 Rgb
1��, RH

1�� � RHa
1�� 	 RHb

1��
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The derivatives at � � 0 are

Thus, the Taylor expansion of ln �g1(�) � at � � 0 is expressed as

Problem 3.9: Explain why �g1(�) � deviates upward from the straight line for a
polydisperse system?

Solution 3.9: In the final answer of Problem 3.8, the second-order term is al-
ways positive.

Problem 3.10: When the DLS measurement is carried out for a solution of a
polymer with a molecular weight distribution, how is G(�) weighted? What
average of diffusion coefficient does the initial slope of �g1(�)� give? Compo-
nent i of the polymer with molecular weight Mi is dissolved in the solution at
concentration ci. 

Solution 3.10: The excess scattering intensity Ii by component i is proportional
to ciMi (Eq. 2.118 with k � 0). Thus, the weight for the component in G(�)
is ciMi, and

where Di is the diffusion coefficient of component i. The initial decay rate is

The average of D is weighted by ciMi:

〈D〉 �

�
i

Di 
ci 

Mi

�
i

ci 
Mi

�
�

� t
 ln�g1(�) ��

��0
�

�ci 
Mi 

Di

�ci 
Mi

 k2

�g1(�) � � �
i

ci 
Mi  exp(�Di 

k2�)

ln�g1(�) � � �〈� 〉� 	 1
2 
〈
�2〉� 

2 � 1
6 
〈
�

 

3〉� 
3 	 · · ·

�3

�� 
3

 ln�g1(�) ��
��0

� �〈�
  

3〉 	 3〈� 
2〉 〈�〉 � 2〈�〉3 � �〈
� 3〉

�2

�� 
2

 ln�g1(�) ��
��0

� 〈�2〉 � 〈�〉2 � 〈
�2〉

�

��
 ln�g1(�) ��

��0
� ���G(�) d� � �〈�〉



Because ciMi is proportional to the product of the weight fraction and Mi, the
above average is a z-average.

Problem 3.11: DLS measurement is conducted for a dilute ternary solution of
two different polymers a and b in a non-selective solvent. The two polymers
are dissolved at concentrations ca and cb. The differential refractive index of
polymer a in the solvent is dn�dca and that of polymer b is dn�dcb. We
assume that the two polymers are monodisperse with molecular weights Ma

and Mb, and the decay rates in �g1(�)� measured for a binary solution of poly-
mer a (i.e., polymer a 	 the same solvent) and another binary solution of
polymer b are �a and �b, respectively. Find the apparent distribution G(�) for
the ternary solution. What is �g1(�)� for the solution? Assume that the two
polymers are molecularly dispersed in the ternary solution.

Solution 3.11: G(�) � Ga� (� � �a) 	 Gb� (� � �b), where

Then,

and we obtain

Solution 3.12: In principle, the particle-sizing system should be able to find the
distribution of molecular weight M of a polymer in solution. Assume a
narrow distribution of M around given by

which is obtained from Eq. 1.102 with M � 	 
M ( « 1). The
diffusion coefficient D is related to M by D � where is theDD(M � M)��

�
M�M �M

M 2f (M) d ln M � (2
M2� 2)�1�2  exp��

M2

2M2�2 � d
M

M

�g1(�) � �
� dn

dca
�

2

ca 
Ma  exp(��a�) 	 � dn

dcb 
�

2

cb 
Mb 

exp(��b�)

� dn

dca
�

2

ca 
Ma 	 � dn

dcb
�

2

cb 
Mb

 

G(�) �
� dn

dca
�

2

ca 
Ma�(� � �a) 	 � dn

dcb
�

2

cb Mb�(� � �b)

� dn

dca
�

2

caMa 	 � dn

dcb
�

2

cb Mb

Ga � � dn

dca
�

2

ca 
Ma, Gb � � dn

dcb
�

2

cbMb
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value of D for M � . Let 
D � D � 〈D 〉, where

What is 〈
D 2〉�〈D 〉2? 

Solution 3.12: With ,
. Then,

Because 

Thus,

Because � 2 � lnPDI from Eq. 1.106,

Note 〈
D2〉�〈D〉2 � 〈
�2〉�〈 �〉2.

Problem 3.13: Show that, when a particle of mass m receives a random force
f(t) with 〈f(t)〉 � 0 and 〈f(t) ·f(t�)〉 � 6kBT�� (t � t�), its average kinetic energy
satisfies the equipartition law: m〈v2〉�2 � (3�2)kBT [kBT�2 per degree of
freedom, (3�2)kBT for 3D].

Solution 3.13: The equation of motion of the particle (Langevin equation) is

Its solution is given as

v(t) � m�1�t

��

f (t1) exp [(� � m)(t1 � t)]dt1

f � m 

dv
dt

	 �v

〈
D2〉�〈D〉2 � �2  ln PDI � �
1
4 ln PDI
9
25 ln PDI

(theta solvent)

(good solvent)

〈
D2〉�〈D〉2 � � 2�2

〈
D2〉 � D2 � 2�(
M � M)2(2
M2�2)�1�2  exp ��

M2

2M2�2 � d
M � D2 � 2�2


D � �D�
M � M,

〈D〉 � �D(1 � �
M � M)(2
M2� 2)�1�2  exp ��

M2

2M2�2 � d
M � D

�
M �M)
	D(1 �D � D(1 	 
M �M)��M � M(1 	 
M � M )

〈…〉 # �… (2
M 2�2)�1�2 exp��

M 2

2M 2�2 � d
M

M



Then,

which leads to m〈v2 〉�2 � (3�2)kBT.

Problem 3.14: Show that Dm defined by Eq. 3.81 becomes equal to D0 in the
dilute solution limit.

Solution 3.14: In the dilute solution limit, displacement of particle 1 has
nothing to do with particle 2. Thus,

When t : �, the first term is dominant. 

Problem 3.15: What is the diffusion equation for a suspension of particles
when there is a macroscopic flow in the fluid?

Solution 3.15: The flow adds a term to the flux j:

With Eq. 3.76,

Problem 3.16: A linear flexible chain is tethered to the surface of a spherical
molecule. The sphere-chain molecules are suspended in a solvent that is
isorefractive with the chain portion but not with the sphere portion. The sol-
vent is good to both the sphere and the chain. Answer the following questions
regarding the static and dynamic light scattering of the solution.

�c

�t
� D�2c � ��(cv)

j � �D�c 	 cv

 v(r)

 � 〈[r1(t) � r1(0)]2〉 	 0 	 〈[r1(0) � r2(0)]2〉

 � 〈[r1(t) � r1(0)]2〉 	 〈[r1(t) � r1(0)][r1(0) � r2(0)]〉 	 〈[r1(0) � r2(0)]2〉

〈[r1(t) � r2(0)]2〉 � 〈[r1(t) � r1(0) 	 r1(0) � r2(0)]2〉

 � 6kBT�m�2�t

��

dt1  exp [(2� � m)(t1 � t)] �
3kBT

m

 � 6kBT�m�2�t

��

d t1�t

��

d t2�(t1 � t2) exp[(� � m)(t1 � t 	 t2 � t)]

 〈v(t)2〉 � m�2�t

��

dt1�t

��

dt2 
〈f (t1)�  f(t2)〉 exp [(� � m)(t1 � t 	 t2 � t)]

208 DYNAMICS OF DILUTE POLYMER SOLUTIONS



VISCOSITY 209

(1) Are the apparent Rg and A2 estimated in the Zimm plot different from
those obtained for solutions of spherical molecules without a tethered
chain? If yes, what is the difference?

(2) How about D0 and kD in the expression of the mutual diffusion coefficient
Dm � D0(1 + kDc)?

Solution 3.16 (1): Because the scattering comes only from the spheres, Rg is the
same. Because A2,sphere « A2,linear , A2 is greater when a chain is tethered.

Solution 3.16 (2): D0 is smaller. There is now extra friction. kD is greater be-
cause of the greater A2.

Problem 3.17: In the preceding problem, another solvent that gives
(dn/dc)sphere 	 (dn/dc)chain � 0 (the refractive index of the solvent is exactly the
average of the refractive indices of the sphere and the chain) was used. The sol-
vent is good to both the sphere and the chain. Answer the following questions.

(1) Are the apparent Rg and A2 estimated in the Zimm plot different from
those obtained for solutions of linear chains without a sphere tag? If yes,
what is the difference?

(2) How about D0 and kD?

Solution 3.17 (1): Rg is slightly larger because of the sphere tag. A2 is smaller.

Solution 3.17 (2): D0 is smaller. kD is smaller.

3.3 VISCOSITY

3.3.1 Viscosity of Solutions

3.3.1.1 Viscosity of a Fluid Solutions of a high-molecular-weight polymer, even
at low concentrations, can flow only slowly. Addition of a small amount of the
polymer to the fluid can make it viscous, thereby preventing unwanted turbulence
in the flow.

Let us consider a fluid filling a space between two parallel plates, as illustrated
in Figure 3.28. The bottom plate does not move, but the top plate slides in the y
direction without changing the distance to the stationary plate. When the fluid
adjacent to the plate sticks to the plate (nonslip boundary condition), the fluid
moves in the same direction. Near the bottom plate, the fluid barely moves. How-
ever, with an increasing distance from the bottom plate, the fluid moves faster. As
long as the flow is sufficiently slow, the fluid flows parallel to the plates. In other
words, the velocity of the fluid has only an x component (vx). This flow mode is
called a laminar flow. We can regard the fluid as a stack of sheets, each sliding
against the sheet beneath it. The velocity of the sheet, vx, changes linearly with y,



the distance from the stationary plate. The gradient of vx with respect to y, �vx��y,
is called the velocity gradient.

To move the top plate at a constant velocity, a constant force must be applied in
the x direction. The same applies to any small volume of the fluid. We consider a
small disk parallel to the plates at distance y from the bottom plate (see Fig. 3.29).
The disk has a height of dy. The fluid on the lower base flows at vx, and the fluid on
the upper base flows at vx 	 (�vx��y)dy. To make this velocity difference possible,
a constant force needs to be exerted on the disk in the x direction. The force per
area is called shear stress and has a dimension of the pressure. The shear stress �yx

denotes the force per area in the x direction exerted across the plane normal to y. To
be precise, � is a tensor of the second rank. It is symmetric, that is, �yx � �xy, and
so forth. The regular pressure is expressed as �xx, �yy, and �zz. In the isotropic fluid,
�xx � �yy � �zz, and it is called hydrostatic pressure.

We next examine the relationship between �yx and �vx��y. When �vx��y � 0,
�yx � 0. If there is no velocity gradient, then no force exists. When flow direction
changes, both �yx and �vx��y change their signs. Therefore, �yx is proportional to
�vx��y when �vx��y is sufficiently small (Newtonian fluid):

(3.95)�  

�vx

�y
� �yx
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vx

y

x

stationary plate

moving plate

Figure 3.28. Fluid between a stationary bottom plate and a moving top plate. The velocity
of the fluid is parallel to the plates and is proportional to the distance from the bottom plate,
thereby generating a uniform velocity gradient.

vx

vx + (∂vx/∂y)dyσ yx

flowshear stress
a b

dy

Figure 3.29. A small, thin disk parallel to the plates in Fig. 3.28. a: A shear stress �yx must
be applied to the disk to have a different velocity between the upper base and the lower base.
b: Side view.
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The proportionality coefficient � is called the viscosity. Because �vx��y has a di-
mension of s�1 and �yx has a dimension of N/m2, the unit of � is N�s�m2 �
kg/(m�s) in the SI unit. In the cgs system, the unit is g/(cm �s), which defines
poise. Because most low-molecular-weight liquids have a viscosity of around 0.01
poise at room temperature, centipoise [cP; equal to 0.01 poise] is commonly used
for the unit of viscosity. Note that 1 cP � 10�3 kg/(m�s).

Equation 3.95 illustrates that, to realize the same velocity gradient, a fluid with a
greater � needs a larger shear stress. A greater force is needed to move the top plate
at the same velocity. The viscosity is a measure for the resistance of the fluid to
flow. The viscosity of the fluid sensitively depends on the temperature. Figure 3.30
shows the dependence for water, acetone, and cyclohexanone. The temperature
dependence of viscosity is listed in reference books34 for most organic solvents.

3.3.1.2 Viscosity of a Solution Now we learn how to express the concentration
dependence of the viscosity in solutions. When the concentration c, expressed in
g�L, is sufficiently low, the viscosity � of the solution is not much different from
the viscosity �s of the pure solvent. The ratio of � to �s is called the relative visco-
sity. Although the ratio is dimensionless, it is customary to use the symbol �r for
the relative viscosity. When c is low,

(3.96)

Figure 3.31 illustrates how �r changes with c. The linear coefficient [�] is called
the intrinsic viscosity. It can be obtained as the slope in the plot of �r as a function
of c in the low concentration limit:

(3.97)[�] # lim
c : 0

�r � 1

c
� lim

c : 0

� � �s

c�s
 intrinsic viscosity

�r #
�

�s
� 1 � [�]c � Kv 

c2 � · · · relative viscosity
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η
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Figure 3.30. Viscosity � of water, acetone, and cyclohexanone at different temperatures.



The dimension of [�] is (concentration)�1. As we will learn in Section 3.3.3, how
[�] of the polymer solution depends on the molecular weight of the polymer gives a
hint on the conformation of the polymer. The second-order coefficient Kv can be
positive or negative.

Sometimes, the specific viscosity �sp, defined as �sp # �r � 1, is used:

(3.98)

The reduced viscosity �red refers to the ratio of �sp to c:

(3.99)

It has a dimension of (concentration)�1. Figure 3.32 illustrates how �red changes
with c.

�red # �sp  
�c �

� � �s

�sc
� [�] � Kv 

c � · · · reduced viscosity

�sp # �r � 1 �
� � �s

�s
� [�]c � Kv 

c2 � · · · specific viscosity

212 DYNAMICS OF DILUTE POLYMER SOLUTIONS

ηr

1

c

Kv  > 0

slope = [  ]η

Kv  < 0

Figure 3.31. Relative viscosity �r plotted as a function of c. The slope in the low c limit
gives [�]. The plot deviates upward or downward, depending on the sign of Kv.

ηred

c

Kv  > 0

Kv  < 0

[  ]η

Figure 3.32. Reduced viscosity �red plotted as a function of c. The intercept is [�]. The
slope of the tangent at c � 0 gives Kv.
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The reciprocal of the intrinsic viscosity is often used to represent the overlap
concentration of a given polymer: c* � 1�[�] (Eq. 1.110). It means that we can ex-
pect the polymer solution at c* to be about twice as viscous as the pure solvent.

3.3.2 Measurement of Viscosity

Automated viscometers are commercially available. To measure the viscosity of liq-
uids in the centipoise range, it is, however, more common to use a capillary flow
viscometer, unless the measurement is routinely conducted. This classical method is
inexpensive, yet can measure the viscosity with a sufficient accuracy.

Figure 3.33 illustrates an Ubbelohde viscometer, an improved version of an
Ostwald viscometer. The main part on the left has a straight section of capillary and
a large cavity above the section. It is imperative that the capillary be straight and its
cross section be uniform. Markers are inscribed above and below the cavity.
A reservoir is on the bottom of the right side. A fluid is poured into the reservoir
and drawn into the cavity by suction. The upper level of the fluid must be raised
above the top marker, and the lower level of the fluid must be below the lower end
of the capillary. The capillary must be filled with the fluid. The viscometer is held
vertically. The suction is then released. As the fluid flows down, the upper level of
the fluid passes the top mark and eventually the lower mark as well. The time be-
tween these two events, called an efflux time, is recorded. Measurement is carried
out in a temperature-controlled bath.

capillary

markers

reservoir

cavity

Figure 3.33. Ubbelohde viscometer. The efflux time between the time when the liquid level
crosses the upper marker and the time when it crosses the lower marker is measured.



The measurement is based on the capillary flow. If the flow is slow and therefore
laminar, the velocity profile in the capillary is of a parabolic cone. The velocity
maximizes at the center line and declines to zero toward the wall (Fig. 3.34). The
Poiseuille law holds for the viscosity of the fluid and the pressure drop 	P along
the length l of the capillary (Fig. 3.35):

(3.100)

where r is the radius of the capillary and V is the volume of the fluid that flows in
time t. In the viscometer in Figure 3.33, V is the volume of the cavity between the
two markers.

The pressure difference can be generated by a liquid pump, but, in the capillary
viscometer in the vertical position, it is the gravity that causes 	P, which is given by

(3.101)

where 
liq is the density of the liquid, and g is the acceleration by the gravity. Equa-
tions 3.100 and 3.101 give the kinematic viscosity vkin defined as vkin # ��
 liq:

(3.102)

Note that �r 4g�(8V) is a constant for a given viscometer. The constant can be
determined by using a fluid of a known kinematic viscosity. Once calibrated, the

�kin #
�


liq

�
�r4g

8V
 t

	P � 
liq 
gl

� �
�r4t	P

8Vl
 Poiseuille flow
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Figure 3.34. Cross section of the flow in the capillary. The flow velocity is parallel to the
center line of the capillary. Velocity field is parabolic.
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kinematic viscosity can be measured for any fluid from the measurement of the
flow time. Together with the density, the viscosity of the fluid can be determined.
Alternatively, we can use the formula of

(3.103)

to obtain the viscosity �1 of a solution (density 
1) from the measurement of the ef-
flux time t1, if the efflux time t2 of a liquid with a known viscosity �2 and density 
2

is measured for the same viscometer. The density of the solution at a given concen-
tration can be estimated from the densities of the solvent and the polymer by
assuming additiveness of the volume.

If the fluid is too viscous, the elution takes too long. If it is too fluid, the flow
will be too fast, causing a nonlaminar flow. A given viscometer can be used for a
finite range of viscosity. To allow for the viscosity measurement of fluids in a wide
range of viscosity, Ubbelohde viscometers are available in different radii of the
capillary.

3.3.3 Intrinsic Viscosity

The intrinsic viscosity [�] is a quantity characteristic of a polymer. It represents an
increase in the solution viscosity when the concentration is raised to a certain level.
As expected, a polymer molecule with a greater dimension has a larger [�].

�1

�2
�


1t1


2t2

Figure 3.35. Flow in a vertical capillary. The pressure drop 	P over the length l of the capil-
lary by the gravity causes the flow.

2r

l

flow

∆P



Experimentally, it is expressed by Mark-Houwink-Sakurada equation:

(3.104)

where KM is a constant of the unit of L/g, and 
 is called a Mark-Houwink-
Sakurada exponent. Note that KM and 
 are different from polymer to polymer
and can depend on the solvent as well.

The classical method to determine KM and 
 of a given polymer is as follows.
First, prepare fractions of different molecular weights either by synthesis or by frac-
tionation. Next, make dilute solutions of different concentrations for each fraction.
Measure the viscosity of each solution, plot the reduced viscosity as a function of
polymer concentration, and estimate [�] for each fraction. Plot [�] as a function of
the molecular weight in a double logarithmic scale. This method has been exten-
sively used to characterize polymer samples because the exponent 
 provides a
measure of the chain rigidity. Values of 
 are listed in Table 3.2 for some typical
shapes and conformations of the polymer. The value of 
 is around 0.7–0.8 for
flexible chains in the good solvent and exceeds 1 for rigid chains. In the theta sol-
vent, the flexible chain has 
 � 0.5.

Apparently, 
 is greater for a more extended conformation. It is reasonable because
a polymer molecule with a greater dimension for a given contour length will experi-
ence a greater friction to move in the solvent. We will obtain the formulas of [�] for
linear flexible chains in the theta solvent and the good solvent in the next section.

SEC equipped with a viscosity detector and a light-scattering detector in tandem
with a concentration detector (triple detector SEC) has been recently and increas-
ingly used to obtain the Mark-Houwink-Sakurada plot. Figure 3.36 illustrates the
scheme. The advantage is obvious. What is needed for the plot is only one polydis-
perse fraction of the polymer. As the polymer is separated by the SEC columns ac-
cording to its dimension, the eluent containing the polymer is immediately led to
the detectors in nearly simultaneous measurement of the solution viscosity, the con-
centration, the molecular weight, and the radius of gyration. Because the concentra-
tion is sufficiently low, the second- and higher-order terms are negligible in
Eq. 3.96. Then, the ratio of the viscosity of the eluent to that of the pure solvent
gives [�] with the information of the concentration to be obtained in the concentra-
tion detector. Figure 3.37 shows an example of such a measurement.35 The samples
were fractions of poly(vinyl neo-decanoate) prepared in radical polymerization and

[�] � KM 
(M�(g/mol))
 Mark -Houwink -Sakurada equation
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Table 3.2 Mark-Houwink-Sakurada Exponents

Conformation 


Linear flexible (theta solvent) 0.5
Linear flexible (good solvent) 0.7–0.8
Rigid �1
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pulsed laser polymerization. The mobile phase was tetrahydrofuran. The slope 
 is
0.70 for most of the data, indicating a flexible chain conformation.

3.3.4 Flow Field

In Section 3.3.1, an example of flow fields was shown. We consider a flow v at r
given as

(3.105)

where � is the velocity gradient tensor defined as

(3.106)

Here, rx � x, for instance. In the example in Section 3.3.1, the flow field was a
shear flow in the x direction (Fig. 3.38a). Then, �xy � � is the only nonzero ele-
ment in �:

(3.107)� � �0 � 0

0 0 0

0 0 0
� shear flow

�
� �
�v


�r�

  (
, � � x, y, z)

v � � r

Iex(  )θ

c

light
scattering
detector

refractive
index
detector

viscosity
detector

–   sηη

[  ]η
M

M

[  ]η

columns

Figure 3.36. Size exclusion chromatography system with an on-line viscometer and a light-
scattering detector allows to create the Mark-Houwink-Sakurada plot without fractionating
the polymer somewhere else. The concentration is detected by a refractive index detector or
an ultraviolet absorption detector.



where the velocity gradient � is also called a shear rate. The flow field generated
by this � is

(3.108)

It is convenient to express [�] in terms of the shear stress. In the shear flow, the
shear stress changes from �yx � �s� for the pure solvent to �yx � 	�yx � �� for
the solution of concentration c (c « c*). Then, from Eq. 3.97,

(3.109)

When 	�yx is calculated up to the linear term of �, this equation gives �-independ-
ent intrinsic viscosity. The latter is called a zero-shear viscosity.

Another flow field often used in theories and experiments is an elongational
flow (Fig. 3.38b). Its � is given by

(3.110)� � ���̇�2 0 0

0 ��̇�2 0

0 0 �̇
� elongational flow

[�] �
	�yx

�c�s

�
	�xy

�c�s

v � ��y

0

0
� shear flow
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Figure 3.37. Example of the Mark-Houwink-Sakurada plot obtained in size exclusion chro-
matography. The sample is poly(vinyl neo-decanoate) in tetrahydrofuran. The data are along
the slope of 0.70, indicating that the polymer is a flexible chain. (From Ref. 35.)
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where is called the strain rate. The flow field generated by this � is

(3.111)

The two velocity fields satisfy the incompressibility requirement:

(3.112)

3.3.5 PROBLEMS

Problem 3.18: It is not easy to place the viscometer in the perfectly vertical po-
sition. Evaluate the error in the estimate of � when the viscometer is at angle
� « 1 from the vertical.

Solution 3.18: The pressure difference 	P is smaller. It is now 
 liqglcos�. Then,
Eq. 3.102 changes to

When � « 1, cos� � 1 � �2�2. The relative error in �kin is �� 2�2.

Problem 3.19: Measurement of the solution viscosity � at several different con-
centrations gives information on the state of the polymer chains in solution.

�kin �
�r4g cos �

8V
 t

div v � 0

v � ��(�̇�2)x

�(�̇�2)y

�̇z
� elongational flow

�̇

v

x

y
z

a b

x y

z

Figure 3.38. Typical flow fields. a: Shear flow. b: Elongational flow.



Answer the following questions for linear flexible polymer chains that show
[�] � M 0.8 when they are molecularly dispersed.

(1) Suppose two polymer chains form an aggregate at low concentrations in a
given solvent and behave as if they were a single chain of twice the mo-
lecular weight. How does this aggregate change [�]?

(2) Suppose the polymer chains are molecularly dispersed in the low con-
centration limit, but tend to form an aggregate of several chains with
an increasing concentration. We assume that each aggregate behaves as
if it were a single chain that has a molecular weight equal to the total
molecular weight of the aggregate. Sketch a plot of �red as a function
of c.

Solution 3.19:

(1) When molecularly dispersed, the intrinsic viscosity is [�]true � KMM1
0.8

,
where M1 is the molecular weight of the polymer chain. When dimers
(aggregates of two chains) are formed, the apparent intrinsic viscosity
changes to [�]app � KM(2M1)0.8 � 20.8 KMM1

0.8 � 1.74 � [�]true.

(2) When n-mers are formed, the apparent intrinsic viscosity changes to
[�]app � KM(nM1)0.8 � n0.8[�]true. The reduced viscosity is therefore,
�red � n0.8[�]true. With an increasing c, n increases. Then, �red increases.
The plot is similar to the curve for Kv � 0 in Fig. 3.32.
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η red

c

[   ]η

Problem 3.20: A solution of a polydisperse polymer has component i dis-
solved at concentration ci. The intrinsic viscosity of component i is given
by [�]i.

(1) What is [�] of the polydisperse polymer?

(2) Each component follows the Mark-Houwink-Sakurada equation: [�]i �
KMMi


. What is the molecular weight Mv estimated by assuming that the
same equation applies to the polydisperse polymer, i.e., [�] � KMMv

�.
What is the relationship of this Mv to Mn and Mw?
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Solution 3.20 (1): For the solution of the polydisperse polymer,

which we equate to Then,

Thus,

Solution 3.20 (2): Then,

This Mv is another average molecular weight. For polymers with 0 � 
 � 1,
Mn � Mv � Mw.

3.4 NORMAL MODES

3.4.1 Rouse Model

3.4.1.1 Model for Chain Dynamics In Sections 1.2 and 1.3, we learned about
the conformation of the ideal chain and obtained the probability distribution of the
conformation. The distribution tells how many chains in the system have a certain
conformation at a given time. Each chain is moving and changing its conformation
all the time. The probability distribution also gives the distribution of the period in
which a given chain takes each conformation (ergodicity).

In this section, we learn how fast the conformation changes. To simplify the
seemingly complicated motions of the monomers, we employ the bead-spring
model of N beads with a spring force constant of ksp � 3kBT�b2. Figure 3.39 illus-
trates how the beads move to change the lengths and the orientations of the springs,
thereby reshaping the whole chain.

The Rouse model36 is the simplest version of the bead-spring model that can
treat the chain dynamics. The model assumes that the beads have no excluded vol-
ume (they are essentially a point) and that there are no hydrodynamic interactions

Mv � ��
i

ciMi

��

i

ci	
1�


KMMv

 �

�
i

ciKMMi



�
i

ci

[�] � �
i

ci[�]i � �
i

ci

�
i

ci[�]i � c[�] � [�]�
i

ci� � �s(1 � c[�] � · · ·).

� � �s�1 � �
i

ci[�]i � · · ·	

rN

r1

ksp

r2

rN−1

Figure 3.39. A polymer chain of a bead-spring model changes its conformation with time.



between the beads. The model was subsequently refined to account for these
effects. Unlike the later models, the Rouse model does not provide correct expres-
sions for the center-of-mass diffusion coefficient or the relaxation time for the con-
formation change. We will learn the Rouse model here in detail, because the way a
complicated motion of connected beads is simplified into different modes is note-
worthy and used in the later models with modifications. Furthermore, the Rouse-
like modes can be observed in solutions at high concentrations and in melts where
the hydrodynamic interactions are shielded.

3.4.1.2 Equation of Motion The elastic forces on the nth bead (n � 2, 3 , . . . ,
N � 1) are exerted by the two springs that connect the adjacent beads, as illustrated
in Figure 3.40. The spring between the (n � 1)th and the nth beads pulls the bead
with the force of k(rn�1 � rn). Likewise, the other spring pulls the bead with 
k(rn�1 � rn). In addition, the nth bead receives a random force fn that changes with
time t from nearby solvent molecules just as a single particle receives the random
force (Fig. 3.20). Thus, the equation of motion for the nth bead is given as

(3.113)

where � is the friction coefficient of each bead in the solvent. The mass term 
(mass � acceleration) is missing in this equation because the term is negligible on
the time scales of our concern (�s to s; the acceleration term is important at high
frequencies such as vibrational motion). The motion of the bead is overdamped. A
special care is necessary for the terminal beads (n � 1 and N ). Their equations of
motion are

, (3.114)

respectively. By introducing r0 � r1 and rN�1 � rN, the above two equations be-
come a part of the general equation:

(3.115)

� 

drn

d t
� ksp(rn�1 � rn�1 � 2rn) � fn(t) (n � 1, 2 , . . . , N) bead �spring model

� 

drN

d t
� ksp(rN�1 � rN) � fN (t)� 

dr1

d t
� ksp(r2 � r1) � f1(t)

�
drn

d t
� ksp(rn�1 � rn) � ksp(rn�1 � rn) � fn(t) (n � 2, 3 , . . . , N�1)
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Figure 3.40. Spring force on the nth bead. It is pulled by the two springs.
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The nature of the random force is the same as in Eqs. 3.63 and 3.71:

(3.116)

(3.117)

There is no relationship between the forces on difference beads (�nm � 1 only when
n � m). The random forces are needed to keep the chain in shape. Without the
random forces, the beads would move until all of them collapse onto a single point
and the elastic forces disappear.

3.4.2 Normal Coordinates

3.4.2.1 Definition We now need to solve the N equations in Eq. 3.115 simulta-
neously. The change in rn depends on rn �1 and rn�1, and the change in rn – 1 depends
on rn �2 and rn, and so forth. Motions of different beads are related to each other.
Solving these equations appears difficult, but use of the normal coordinates facili-
tates it. The ith normal coordinate qi(t) (i � 0, 1 , . . . ) is defined as a linear combi-
nation of rn(t):

(3.118)

The 0th normal mode is essentially the center-of-mass position, rG(t), of the N
beads:

(3.119)

Thus q0(t) represents the global motion of the bead-spring chain. All the other
normal modes represent internal motions. The first and second modes are

(3.120)

(3.121)

The superposition coefficient cos(in��N) is plotted in Figure 3.41 as a function
of n for N � 100 and i � 1, 2 , . . . , 8. To be precise, cos(in��N) is given for integral
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values of n only (small dots on the curves). Figure 3.42 illustrates the sign of
cos(in��N) along the contour of the Rouse chain for i � 0 to 6. The zeroth mode is
the mean of all rn. In the first mode, the superposition coefficient changes its sign at
the midpoint along the chain contour. In the second mode, the coefficient is positive
in the first and last quadrants, and negative in the two middle quadrants. As i in-
creases, the sign alteration becomes more frequent. It is possible to give meanings
to these normal modes.

The meaning of the first mode, for instance, may become clearer by considering
another superposition coefficient: �2 for positive cos(in��N) and –2 for negative
cos(in��N). Then, q1 is the vector that connects the centroid of the beads in the first
half of the chain and the centroid of the beads in the second half of the chain (see
Fig. 3.43a). As the chain makes an overall tumbling motion, q1 changes its
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Figure 3.41. Coefficient cos(in��N) plotted as a function of n for N � 100. Curves for 
i � 1 to 8 are shown.

Figure 3.42. Sign of the coefficient cos(in��N) for i � 0 to 6.
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orientation. Therefore, we can associate the change in q1 with rotation of the chain
as a whole, although q1 changes its length by rearrangement of the beads and thus
q1 can change its sign without overall rotation. With the actual coefficient,
cos(in��N), which changes gradually from 1 to �1, q1 still carries the characteris-
tics that it represents the overall chain orientation.

The next mode q2 can be viewed as the sum of the two vectors, one drawn from
the second quadrant to the first quadrant and the other one drawn from the third
quadrant to the fourth quadrant (Fig. 3.43b). Thus q2 is more sensitive to the local
details of the conformation compared with q1. As we move to q3, q4 , . . . , the mode
becomes increasingly sensitive to the local details and less sensitive to the overall
conformation. The last mode qN, defined as

(3.122)

represents the displacement of even-numbered beads relative to the odd-numbered
beads divided by N.

An example of q1, q2, . . . is shown in Figure 3.44 for a realistic conformation in
two dimensions (N � 32). We can see that the magnitude of the normal mode tends

qN  
(t) �

1

N
 �

N

n�1
cos(n�)rn(t) �

1

N
[�r1(t) � r2(t) � · · ·� (�1)NrN  

(t)]

Figure 3.43. Schematic of the first normal mode q1 (a) and the second normal mode q2

(b) for a chain conformation given.

Figure 3.44. Example of a bead-spring model in two dimensions. N � 32. The first six nor-
mal modes q1 through q6 are shown in the inset by vectors (zoomed by a factor of two for
easy observation). 
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to decrease with an increasing mode number i. We expect that qi(t) of a higher
mode number to change more quickly with time because the mode picks up more
localized motions, which do not have to wait for the whole chain to rearrange.

3.4.2.2 Inverse Transformation The normal coordinate is given as a linear com-
bination of the bead positions. Conversely, we can express rn as a linear combi-
nation of qi (i � 1, 2 , . . . ,N). From Eq. 3.118, we find

(3.123)

Use of the identity

(3.124)

leads Eq. 3.123 to

(3.125)

Note that the superposition coefficient for i � 0 and N is a half of the others. For n
� N, rN(t) is a half of the one given by this equation. We need to treat rN separately,
because the superposition coefficient, cos(in��N) in Eq. 3.118 is not symmetric.
Fortunately, the effect of the separate treatment is negligible when N » 1. In the fol-
lowing, we neglect this effect.

3.4.3 Equation of Motion for the Normal Coordinates in the Rouse Model

3.4.3.1 Equation of Motion The equation of motion for qi is obtained from
Eqs. 3.115 and 3.118 as

(3.126)

� ksp
1

N
 �

N

n�1
cos 

in�

N
  (rn�1 � rn�1 � 2rn)

� 
dqi

dt
�

1

N �
N

n�1
cos 

in�

N
 � 

drn

dt
�

1

N �
N

n�1
cos 

in�

N
 fn

rn(t) � 2 �
N�1

i�1
cos 

i n�

N
 qi(t) � q0(t) � (�1)nqN (t) (n � 1, 2 , . . . , N � 1)

�
N�1

i�1
cos 

i k�

N
� 1

2 � 1
2 (�1)k � 
N

0

(k � 0, �2N, �4N, . . .)

(otherwise)

� � �
N�1

i�1
cos 

i (m � n)�

N
� 1

2 � 1
2 
(�1)m�n	�

�
1

N �
N

m�1
rm�� �

N�1

i�1
cos 

i (m � n)�

N
� 1

2 � 1
2 (�1)m�n	

� �
N�1

i�1
2 cos 

i m�

N
 cos 

i n�

N
� 1 � (�1)m�n	 �

1

N �
N

m�1
rm

2 �
N�1

i�1
cos 

i n�

N
 qi � q0 � (�1)nqN

226 DYNAMICS OF DILUTE POLYMER SOLUTIONS



NORMAL MODES 227

In the second term,

(3.127)

Since

(3.128)

Eq. 3.126 is rewritten to

(3.129)

For later convenience, we introduce the friction coefficient �i for the ith mode by

(3.130)

and rewrite Eq. 3.129 to

(3.131)

Because ksp � 3kBT�b2, the force constant ki of the ith mode is given as

(3.132)

The random force gi for the ith mode is defined as
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It is now apparent that the equation of motion for qi does not depend on other qj

( j � i). Each mode is independent (decoupled). With the relaxation time �i defined as

(3.134)

Eq. 3.131 is further rewritten to

(3.135)

For the 0th mode, 1��0 � 0. Other �i are finite:

(3.136)

The relaxation time of the normal mode decreases with i as �i � �1�i2 in the Rouse
model. The higher-order mode relaxes more quickly.

3.4.3.2 Correlation of Random Force Statistical properties of the random force
gi are similar to the counterparts of fn:

(3.137)

(3.138)

The first part is obvious. The second part can be proved as follows:

(3.139)

Because

(3.140)

we obtain Eq. 3.138.
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3.4.3.3 Formal Solution Equation 3.135 is solved as

(3.141)

This equation includes i � 0:

(3.142)

Because 〈gi(t)〉 � 0, we find the statistical average of gi(t) is zero for all modes:

(3.143)

The average of qi(t) ·qi(0) is not zero, as we will see in the next subsection.
Before we look at the correlation of the end-to-end vector and the center-of-mass

diffusion for the Rouse model, we derive general formulas for them by using Eqs.
3.135 and 3.138 only. These equations are also valid in the modified versions of the
Rouse model. The assumptions specific to the Rouse model, such as ksp � 3kBT�b2

and the neglect of the hydrodynamic interactions, show up only in the expressions
for the parameters �i, ki, and �i. 

3.4.4 Results of the Normal Coordinates

3.4.4.1 Correlation of qi(t) Although the average is always zero (Eq. 3.143),
each qi(t) is in general nonzero and changes with time (Fig. 3.45). Here, we con-
sider how qi(t) is related to qj(0) (i, j � 0). When i � j, 〈qi(t) ·qi(0)〉 is the autocor-
relation. When i � j, 〈qi(t) ·qj(0)〉 is the cross-correlation. Because different modes
are irrelevant to each other, the cross-correlation is zero. We use Eq. 3.141 to

〈qi 
(t)〉 � 0 (i � 0, 1, . . .)

q0(t) � �0
�1�t

��

g0(t1) dt1

qi(t) � �i
�1�t

��

gi 
(t1) exp[(t1 � t)��i]dt1  (i � 0, 1, . . .)

Figure 3.45. Correlation between qi(t) and qj(0). qi(t) changes with time.

qi(t)

qj(0)qi(0)



calculate the correlation:

(3.144)

for i, j � 1, 2, . . .Thus

(3.145)

In the second case (i � j), either i or j can be zero; The internal motion is decoupled
from the center-of-mass motion. Equation 3.145 indicates that the autocorrelation
of qi(t) is lost exponentially with a relaxation time of �i.

We can obtain the mean square amplitude of qi(t) by setting t to 0 in the above
equation:

(3.146)

The higher-order mode has a smaller amplitude, as we will see in the Rouse and
other models.

3.4.4.2 End-to-End Vector In place of rN(t) � r1(t), we calculate rN�1(t) � r1(t)
as the end-to-end vector R(t) of the Rouse chain; the difference is negligible when
N » 1. From Eq. 3.125, R(t) is expressed by qi as

(3.147)

where cos(i��N) � 1 and cos[i(N � 1)��N] � (�1)i for N » 1 were used. Note
that R(t) is dominated by qi with a small i. As the chain conformation changes, R(t)
changes as well (Fig. 3.46). Its autocorrelation is calculated as

(3.148)
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The autocorrelation function of R(t) is dominated by the first normal mode, as we
will see in the Rouse and other models. Thus, R(t) loses its memory approximately
with a relaxation time of �1:

(3.149)

Experimentally, 〈R(t)�R(0)〉 can be measured in dielectric relaxation spectroscopy
for a polymer molecule that has a nonzero permanent dipole moment along the
chain backbone. Other normal modes can also be observed.

3.4.4.3 Center-of-Mass Motion From Eqs. 3.119 and 3.142, the center-of-mass
displacement in time t is calculated as

(3.150)

The mean-square displacement is then calculated as

(3.151)

It is proportional to t. The center of mass of the bead-spring chain makes a diffu-
sional motion on all time scales. From this equation, we obtain the center-of-mass
diffusion coefficient DG:

(3.152)

The centroid motion of the bead-spring chain is identical to the motion of a particle
that receives a friction of �0. The latter is also evident in Eq. 3.131 with i � 0.

3.4.4.4 Evolution of qi(t) In Section 3.4.4.1, we found that the autocorrelation
of qi(t) with qi(0) is lost over time. We find here the transition probability for qi(t)
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1
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〈R(t)�R(0)〉 � 〈R2〉 exp (�t��1) end - to -end vector

rN(t)

R(t)

r1(t)

rN(0)

r1(0) R(0)

Figure 3.46. End-to-end vector R(t) changes as the chain conformation changes.



from qi(0). From Eq. 3.141,

(3.153)

Because 〈gi(t)〉 � 0, the average of qi(t) for a given qi(0) decays with a time con-
stant �i:

(3.154)

where subscript “0” denotes the average for a given qi(0).
Now we find the variance. It is calculated as follows.

(3.155)

At t � 0, 〈qi(t)〉0 � qi(0) and the variance is zero. At t : � , 〈qi(t)〉0 � 0 and the
variance becomes equal to the square magnitude of qi(t) (see Eq. 3.146).

We have calculated the average and variance of qi(t) for a given qi(0). It can
be shown that qi(t) follows a normal distribution. Then, the transition probability
P[qi, qi(0); t] for qi is given as

(3.156)

The probability distribution is shown for a few values of t��i in Figure 3.47. The
initial sharp peak at qi � qi(0) gives way to a broader peak at qi � 0.

3.4.5 Results for the Rouse Model

3.4.5.1 Correlation of the Normal Modes Now we apply the general formulas
obtained in the preceding subsection to the Rouse model. First, we study the corre-
lation of qi(t). It decays exponentially with a relaxation time �i, given by Eq. 3.136.
Figure 3.48 compares 〈qi(t) �qi(0)〉 for i � 1 through 6. Each 〈qi(t) �qi(0)〉 is normal-
ized by 〈q1

2〉, the square magnitude of the first mode. The decay of 〈q1(t) �q1(0)〉 is
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the slowest. The second normal mode loses its memory four times as fast (�2 �
�1�4) and the third mode nine times as fast (�3 � �1�9).

From Eqs. 3.132 and 3.146, the fluctuations of the normal coordinates are ob-
tained as

(3.157)

The decrease in the fluctuation for a higher-order mode is manifested in the declin-
ing intercept of the curves in the figure.

〈qi
2〉 �

Nb2

2
 2
 

1

i2   Rouse model

Figure 3.48. Autocorrelation function of qi(t) for i � 1 to 6, normalized by 〈q1
2〉. The

dashed line represents the autocorrelation of R(t), normalized by 〈R2〉.
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Figure 3.47. Transition probability qi (one of the x, y, and z components of qi) for a given
qi(0), plotted at t��i � 0.01, 0.05, 0.2, 1 and �. This example has qi(0) � 〈qi

2〉1�2.



3.4.5.2 Correlation of the End-to-End Vector With Eqs. 3.148 and 3.157, the
autocorrelation of the end-to-end vector is given as

(3.158)

In the summation, the second term (i � 3) has already only 1�9 of the intensity
compared with the first term (i � 1). The other terms are even smaller. The first
term dominates in the summation. We can then replace exp(– t��i) with exp(– t��1).
Because �i : oddi�2 � 
 2�8,

(3.159)

In Figure 3.48, the exact decay in 〈R(t) �R(0)〉�〈R2〉 is plotted as a dashed line.
Except for short times, 〈R(t) �R(0)〉 and 〈q1(t) �q1(0)〉 have the same decay rate.

3.4.5.3 Diffusion Coefficient From Eqs. 3.130 and 3.152, the center-of-mass
diffusion coefficient DG of the Rouse model is given as

(3.160)

which is equal to the diffusion coefficient of N connected beads, each of which
move with a friction coefficient � independently of the other beads.

3.4.5.4 Molecular Weight Dependence Because the Rouse model describes the
static conformation of a polymer chain in the theta condition, we expect that the
model can also describe the dynamics. However, this expectation is wrong.

In the Rouse model, the relaxation time �1 of the first mode is proportional to N2

(Eq. 3.136). The experimentally observed exponent for a polymer chain in a theta
solvent is 3�2. The discrepancy also exists in the molecular weight dependence of
DG. Experimentally, we observe DG � M�1�2 (Section 3.2.7) in the theta solvent.
In the Rouse model (Eq. 3.160), DG � N�1. The model fails to give the correct ex-
ponent. The shortcoming of the model is ascribed to the neglect of hydrodynamic
interactions. In the following subsection, we take into account the hydrodynamic
interactions. In Section 4.3, we will see an example in which the Rouse model can
describe the motion of polymer chains correctly.

3.4.6 Zimm Model

3.4.6.1 Hydrodynamic Interactions B. Zimm37 improved the Rouse model by
taking into account hydrodynamic interactions between beads. He successfully ob-
tained the expressions for the diffusion coefficient and the relaxation times that
agree with experimental results.

DG �
kBT

N�
  Rouse model

〈R(t)�R(0)〉 � Nb2exp (�t��1)

〈R(t)�R(0)〉 �
8Nb2



�

i :odd
 

1

i2  exp (�t��i)
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In the absence of the hydrodynamic interactions, the motion of the mth bead
does not affect other beads except through the spring force. With the hydrodynamic
interactions present, the velocity of one of the beads affects all the other beads
through the flow of solvent (Fig. 3.49). Alternatively, the equation of motion for rn

is written as

(3.161)

where Hnm is a second-rank tensor that represents how the velocity of the mth bead
affects the velocity of the nth bead through the solvent between them. In the ab-
sence of the hydrodynamic interactions, Hnm � (I��)�nm, where I is a unit tensor
(I
� � �
� with 
, � � x, y, z). Then, Eq. 3.161 reduces to Eq. 3. 115.

Usually, an Oseen tensor is used for Hnm. Its magnitude is reciprocally propor-
tional to 	rn � rm	 and is therefore a function of the chain conformation that changes
with time according to Eq. 3.161. Zimm decoupled Hnm from the rest of the equa-
tion and replaced it with its average at equilibrium (preaveraging approximation):

(3.162)

With the Oseen tensor,

(3.163)

where the statistical average is taken with respect to given n and m.

〈Hnm〉 �
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6
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 Hnm[ksp(rm�1 � rm�1 � 2rm) � fm] (n � 1, 2 , . . . , N)

Figure 3.49. Motion of the nth bead is affected by the motion of all the other beads through
the hydrodynamic interaction.
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The right-hand side depends on the chain conformation. We separately consider
a polymer chain in the theta solvent and a polymer chain in the good solvent. 

3.4.6.2 Zimm Model in the Theta Solvent For a polymer chain in the theta sol-
vent, the Gaussian chain model conveniently gives us an analytical expression of
Eq. 3.163. With Eq. 3.56,

(3.164)

Because of 	n � m	1�2 in the denominator, Hnm decays only slowly with an
increasing 	n � m	, that is, a distance between the two beads along the chain
contour. 

Equation 3.164 is not correct for n � m. It diverges as n and m approach each
other. Upon integration with respect to n and m, however, the singularity is
removed. We do not treat Hnn separately here. There is no need for that. The sum
of the hydrodynamic interactions from other beads far exceeds the friction a
given bead would receive in the absence of the hydrodynamic interactions. We
will discuss this problem later when we derive the center-of-mass diffusion
coefficient.

To convert Eq. 3.162 into equations of motion for the normal coordinate qi, we
first express rm �1 � rm�1 � 2rm and fm by the normal coordinates qi and gi. From
Eq. 3.125,

(3.165)

For gi, we use the same definition as Eq. 3.133 with �i�� given by Eq. 3.130. It does
not mean that �i is the same in the Rouse model and the Zimm model. We just use
the same formula in the Zimm model to express the random force in the normal co-
ordinates. As Eq. 3.125 is an inverse transform of Eq. 3.118, the following gives an
inverse transform of Eq. 3.133 (Problem 3.21):

(3.166)

With Eqs. 3.118, 3.165, and 3.166, Eq. 3.162 is transformed into

(3.167)
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where

(3.168)

In Eq. 3.167, all of the equations appear to be coupled with each other. Fortunately,
they can be decoupled. It can be shown (Problem 3.22) that, when N » 1, hij is
approximated by

(3.169)

Then, we obtain

(3.170)

Formally, the normal modes of the Zimm model follow the same differential equa-
tions as those of the Rouse model (Eq. 3.131).

The spring force constant for the ith mode

(3.171)

is identical to the counterpart in the Rouse model (Eq. 3.132) because the hydrody-
namic interaction does not alter the equilibrium chain conformation. In the normal
coordinate, the two modes are different only in the friction coefficient. Now it is

(3.172)

A special care is needed for �0 (Problem 3.23)

(3.173)

Because Eq. 3.170 is identical to Eq. 3.131, we can use the general formulas in
Section 3.4.4 to obtain DG and �i for the Zimm model in the theta solvent. The
center-of-mass diffusion coefficient is obtained from Eqs. 3.152 and 3.173 as

(3.174)

Its molecular weight dependence is DG � N �1�2. Thus, the hydrodynamic interac-
tions increase the diffusivity of the chain, especially for a long chain, compared
with a group of N independently moving beads (Rouse model). The friction on a
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bead from the surrounding fluid is therefore much smaller than the sum of the hy-
drodynamic interactions the bead receives from the other beads. This result justifies
our neglect of Hnn in deriving Eq. 3.164.

The relaxation time �i of the ith mode is calculated from Eqs. 3.171 and 3.172 as

(3.175)

The Zimm model successfully describes the experimentally observed dependence:
DG � M�1�2, �1 � M3�2, and �i��1 � i�3�2.

3.4.6.3 Hydrodynamic Radius By definition of h00 (Eq. 3.168), we can express
DG as

(3.176)

where Eq. 3.163 was used. In the last line, 〈···〉 implies a twofold statistical average:
The first average is with respect to the positions of given beads n and m, and the
second averaging scans n and m. Thus, from the definition of RH (Eq. 3.54), it is
given in the preaveraging approximation by

(3.177)

Equation 3.55 was obtained in this way.

3.4.6.4 Zimm Model in the Good Solvent The Zimm model we used for the
theta chains needs a small modification when we apply it to the chains in the good
solvent. We must give up the numerical coefficients but can still obtain the expo-
nents that agree with experimental results. 

First, we work on hij. In place of 	n � m	 �1�2 in the preaveraged hydrodynamic
interaction between the nth and mth beads, we now have 	n � m	 �� with � � 3�5 or
0.59. We can show that hij is still diagonal, that is, hij � 0 for i � j, and the friction
coefficient �i � hii

�1 of the ith mode changes to (Problem 3.24)

(3.178)

(3.179)

Second, the force constant ki needs some change because the Gaussian chain
does not describe the conformation of the real chain. It can be obtained from

�0 � �sbN�

�i � �sbN�i1��  (i � 1, 2 , . . .)
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Eq. 3.146. Appendix 3.A.1 shows how to evaluate 〈qi
2〉 for the real chain. With

Eq. 3.A.5,

(3.180)

With these modified �i and ki, qi follows the same equation as in the Zimm model in
the theta solvent.

The center-of-mass diffusion coefficient is obtained from Eqs. 3.152 and 3.179 as

(3.181)

The relaxation time �i is calculated as

(3.182)

The Zimm model for the good solvent successfully describes the experimentally
observed dependence: DG � M�� , �1 � M3�, and �i��1 � i–3�.

According to a more elaborate calculation based on the renormalization group
theory,38

(3.183)

Results for DG, �1, �i��1 are summarized in Table 3.3. The table also shows
the results for the rodlike molecule (Section 3.5) and the M dependence of [�]
(Section 3.4.7).

3.4.7 Intrinsic Viscosity

3.4.7.1 Extra Stress by Polymers Adding a polymer to a solvent increases its
viscosity. Figure 3.50 illustrates a polymer chain in a shear flow. For the portion of

DG � 0.0829 

kBT

�sRg

  Zimm, good solvent

�i �
�i

ki

�
�sb3N3�

kBT
 i�3� �

�sRF
3

kBT
i�3�

DG �
kBT

�sbN�
�

kBT

�s RF

ki �
kBT

b2N2�
 i2��1

Table 3.3 Models for Dynamics

Chain Hydrodynamic
Model Statistics Interactions DG �i [�]

Rouse ideal absent M�1 M 2�i2 M1

Zimm ideal present M�1�2 M 3�2�i3�2 M 1�2

Zimm real present M�� M 3��i3� M3��1

Kirkwood* rod present (lnM – a)�M M 3�[(lnM�a) M2�(lnM�a)
i(i � 1)]

*a represents a constant.



the chain closer to the moving plate to move faster compared with the other portion
of the chain closer to the stationary plate, extra stress needs to be applied. In an-
other word, flow becomes more difficult because of the polymer chain.

To estimate the intrinsic viscosity in the bead-spring model, we need to find how
much the stress tensor in the flowing fluid changes when a unit amount of the poly-
mer is added. At low concentrations, the increase in the stress tensor �
� (
, � � x,
y, z) due to the presence of bead-spring chains is given as

(3.184)

where cNA�M represents the number of the polymer chains in unit volume and
U is the internal energy of the bead-spring model. As illustrated in Figure 3.51,
an extra stress needs to be applied across the plane separating the nth bead
from the n � 1th bead in order to move the two beads with v(rn) and v(rn � 1),
respectively.

In the Rouse model, there is no excluded volume effect. In the Zimm model for
the theta solvent, the chain conformation is the same as that of the Rouse model.
For these two models, U is given by a sum of the elastic energy of the springs 
(Eq. 1.51), and therefore

(3.185)

which is equal to the negative of the spring force in Eq. 3.115. Then, Eq. 3.184
leads to

(3.186)��
� �
cNA

M
 ksp �

N

n�1
〈�(rn�1 � rn�1 � 2rn)
 rn�〉

�U

�rn
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� �
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M �
N
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�rn


rn� 〉
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Figure 3.50. Portions of a polymer chain in shear flow experience different velocities de-
pending on the distance from the stationary plate.
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where r
 is the 
 component of r (rx � rx � x, for instance). We now use
Eqs. 3.125 and 3.165 to express the right-hand side in normal coordinates. Because
qi and qj are irrelevant if i � j,

(3.187)

Then, Eq. 3.186 is rewritten to

(3.188)

With Eq. 3.132 and 3.171, this equation is further rewritten to

(3.189)

It is now apparent that ��
� � ���
, as required. Although the last equation was
derived for the ideal chain conformations, it is also valid for real chains with an ex-
cluded volume.

3.4.7.2 Intrinsic Viscosity of Polymers In the absence of flow, the solution
is isotropic. Each component (x, y, z) of qi is independent. Then, 〈qi
 qi�〉 � 〈qi
〉
〈qi�〉 � 0. Polymers do not add a stress. Our next job is to find how the flow
changes 〈qi
 qi�〉.

In the presence of flow, the bead at rn has an additional velocity �rn, as we
learned in Section 3.3.4 The equation of motion for the nth bead, given by
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Figure 3.51. The xz plane separating the n � 1th bead from the nth bead receives a stress in
y direction when the bead-spring chain is in a shear flow.
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Eq. 3.161, changes to

(3.190)

Note that �rn is a linear function of rn. With the preaveraging approximation for
Hnm and conversion to the normal coordinates, it is straightforward to see the equa-
tion of motion for the ith normal mode acquire an additional term:

(3.191)

Although we have used the Zimm model here, this equation is apparently valid for
the Rouse model as well. The off-diagonal elements of the tensor � couple different
components (x, y, and z) of qi, as we will see below, but qi of different i are still in-
dependent of each other.

Now we consider a steady shear flow: ��x��y � �xy � �, other elements are
zero, as given by Eq. 3. 107. This tensor couples qix and qiy:

(3.192)

where 〈qix giy � qiy gix〉 � 〈qix〉〈giy〉 � 〈qiy〉〈gix〉 � 0 and (�qi)y � 0, (�qi)x � �qiy

were used. The stationary solution (d〈qix qiy〉�dt � 0) of Eq. 3.192 is

(3.193)

When the flow is sufficiently slow, the solution is nearly isotropic. Then, 〈qiy
2〉 �

〈qi
2〉�3 � kBT�ki from Eq. 3.146, and we have

(3.194)

Then, from Eq. 3.189,

(3.195)

Finally, we obtain a general expression for the intrinsic viscosity. With Eq. 3.109,
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The explicit expressions for [�] for the three cases of the bead-spring model are:

1. Rouse model. With Eq. 3.136,

(3.197)

where the upper limit in the summation was replaced by � and �ii�2 � 
 2�6
was used.

2. Zimm model, theta solvent. With Eq. 3.175,

(3.198)

where �i i�3�2 � 2.612 was used.

3. Zimm model, good solvent. With Eq. 3.182,

(3.199)

The exponent is 0.8 for � � 3�5 and 0.77 for � � 0.59 (see Table 3.3). These
values agree with experimental results (Fig. 3.37).

3.4.7.3 Universal Calibration Curve in SEC In the Zimm model (theta and
good solvents), the intrinsic viscosity is essentially the ratio of the “volume” of the
polymer chain, RF

3, to the mass of each polymer chain, M�NA. The solvent viscos-
ity and the temperature do not show up explicitly in the final expression. Thus we
can define hydrodynamic volume Vhd by

(3.200)

There is a consensus that the retention time tR in SEC is determined by Vhd for a
given polymer fraction. The plot of [�]M�NA vs. tR obtained for different polymers
but with the same column fall on a single master curve. In fact, the data for the theta
condition and the data for rigid-chain polymers are also on the master curve obtained
for flexible chains in good solvents. The curve is called a universal calibration
curve. An example is shown in Figure 3.52.39 The existence of the curve proves that
the hydrodynamic volume governs the partitioning in the SEC column.

3.4.8 Dynamic Structure Factor

3.4.8.1 General Formula We consider in this subsection the dynamic structure
factor of a bead-spring model. For now we do not distinguish the three cases of the
model.
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We define rmn(t) # rn(t) � rm(0), the displacement of the nth bead at time t with
respect to the mth bead at time 0 (Fig. 3.53). Using Eq. 3.125, we find that rmn(t) is
given as

(3.201)

Because different modes are uncorrelated, the average of exp[ik �rmn(t)] for a
given m and n is

(3.202)

The last factor for i � N was incorporated into the product. The first factor repre-
sents the center-of-mass diffusion:

(3.203)

Using Eq. 3.B.7 in Appendix 3.B [� 2 � (3kBT�ki)�3 � kBT�ki; note Eq. 3.B.3;
� � �i; A � 2cos(in
�N ); B � 2cos(im
�N )], the ith factor in the N-fold product
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Figure 3.52. Universal calibration curve of SEC. The plots of M[�] obtained for
poly(methyl methacrylate), poly(ethylene oxide), and polystyrene are on a master curve. The
mobile phase was dimethylacetamide. (From Ref. 39.)
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is transformed to

(3.204)

Thus,

(3.205)

At t � 0,

(3.206)

Combined,
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Figure 3.53. rmn(t) is the distance of the nth bead at time t from the mth bead at time 0.
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The dynamic structure factor of the chain is the average of the above equation with
respect of m and n:

(3.208)

The long-time behavior is simple. At t » �1, 1 � exp(– t��1) � 1, and therefore
the time-dependent factor is exp(–DGk2t) only. Then, S1(k, t) decays with a decay
rate of DGk2, indicating center-of-mass diffusion of the whole chain. This feature is
common to all of the three models.

The short-time behavior for t « �N is different:

(3.209)

The slope of ln S1(k, t) at t � 0 is

(3.210)

The initial slope may not follow �k2 dependence and is different from model to
model.

�

�t
 ln S1(k, t)	

t�0
� �DGk2�

4k2 �
N

m,n�1
〈exp[ik �rmn(0)]〉mn �

N

i�1

kBT

�i

 cos 
i n


N
 cos 

i m


N

�
N

m,n�1
〈exp[ik�rmn(0)]〉mn

	 �
N

m,n�1
〈exp[ik �rmn(0)]〉mn exp��4k2t�

N

i�1

kBT

�i

 cos 
i n


N
 cos 

i m


N �
S1(k, t) � exp(�DGtk2)N�1

	cos 
in


N
 cos im


N
 [1� exp(�t��i)]� dynamic structure factor

bead-spring model

exp��4k2 �
N

i�1

kBT

ki

 S1(k, t) � exp(�DGt k2)N�1  �
N

m, n�1
 〈exp[ik�rmn(0)]〉mn

246 DYNAMICS OF DILUTE POLYMER SOLUTIONS

0 5 10 15 20
t/  1τ

kRg =

3
2

1.4

1

0.7

100

10−1

10−2

10−3

10−4

S
1(

k,
t)

Figure 3.54. Dynamic structure factor S1(k, t) is plotted as a function of t��1 for various val-
ues of kRg. Calculation was done by using the Zimm model for the theta solvent.
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Figure 3.54 shows how S1(k, t) changes with time t in the Zimm model for the
theta condition. For kRg � 0.7, ln S1(k, t) is almost straight over the entire range of
time; S1(k, t) decays with a constant rate of DGk2. With an increasing kRg, the plot
deviates from the straight line. The tangential to the curve is steep at near t � 0. At
long times, S1(k, t) decays with DGk2. Note that a small change in kRg results in a
large difference in the decay characteristics of S1(k, t).

The plots are similar in the Rouse model except that it takes a longer time (in
terms of t��1) for S1(k, t) to decay to a given level.

In the following, we examine the initial slope of ln S1(k, t) in the three models
for the bead-spring chain.

3.4.8.2 Initial Slope in the Rouse Model In the Rouse model, 〈exp[ik�rmn(0)]〉mn

� exp(�b2k2 	n � m 	�6) (Eq. 2.77). The denominator of Eq. 3.210 is equal to
N2fD(kRg), where the Debye function fD(x) is defined by Eq. 2.79. The numerator is
calculated as shown in Appendix 3.C. From Eq. 3.C.3,

(3.211)

The sum is calculated as follows:

(3.212)

where Eq. A4.1 was used. Thus,

(3.213)

Because coth x � x�1 � x�3 and fD(x) � 1 when x « 1, the initial slope of ln S1(k, t)
is �DGk2 at small k, the same as the long-time behavior. At large k, the slope is
�(1�2)DGk2(kRg)2, since coth x � x�1 � 1 and fD(x) � 2�x2 when x » 1. The initial
slope shows a crossover from ��k2 to ��k4 with an increasing kRg.

3.4.8.3 Initial Slope in the Zimm Model, Theta Solvent Equation 3.211 is valid
also in the Zimm model for the theta solvent because the equation depends on the
chain conformation only. However, Eqs. 3.212 and 3.213 are different. We evaluate
the sum in Eq. 3.211 for small k and large k separately. For small k,

(3.214)
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where Eqs. 3.172, 3.174 and A4.1 were used. Then, the second term in Eq. 3.210 is
negligible, just as in the Rouse model. The initial slope of ln S1(k, t) is –DGk2 at
small k.

For large k, the sum is evaluated as follows:

(3.215)

where Eq. A4.2 was used. Thus,

(3.216)

The initial slope of ln S1(k, t) is – (3
 1�2�8)DGk2kRg at large k.

3.4.8.4 Initial Slope in the Zimm Model, Good Solvent We cannot use Eq. 3.211
because the conformation is not Gaussian. We need to start with Eq. 3.210. For small
k, 〈exp[ik �rmn(0)]〉mn � 1. Therefore, the second term of Eq. 3.210 is

(3.217)

because of Eq. 3.124. Thus, the initial slope of ln S1(k, t) is –DGk2 at small k.
For large k, the denominator of the second term of Eq. 3.210 is estimated as

(3.218)

where the variable of integration was changed to x � bkm�. For the numerator, we
first evaluate the sum with respect to i:
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(3.219)

where Eq. A3.2 was used. Then, the numerator is dominated by the sum of 
	n � m	–� and therefore estimated as

(3.220)

Thus, the slope is approximated as

(3.221)

The initial slope of ln S1(k, t) is ��DGk2kRg at large k.
The initial decay rate of S1(k, t), the negative of the initial slope of ln S1(k, t),

is summarized in Table 3.4. The table includes the result for rodlike molecules
(Section 3.5).

3.4.8.5 Initial Slope: Experiments The initial slope of ln S1(k, t) is usually
measured in DLS. At low concentrations, 	g1(t)	 � S1(k, t). Therefore, the initial
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Table 3.4 Initial Decay Rate of 	g1(t) 	

Short Time

Model Long Time Small k Large k

Rouse DGk2 DGk2 (1/2)DGk2(kRg)2

Zimm, theta solvent DGk2 DGk2 (3
 1/2/8)DGk2(kRg)
Zimm, good solvent DGk2 DGk2 �DGk2(kRg)
Kirkwood (rod) DGk2 DGk2 (3/2)DGk2



decay rate �init of 	g1(t)	 defined as

(3.222)

is equal to the negative of the initial slope of ln S1(k, t).
Figure 3.55 shows �init obtained in DLS for dilute solutions of polystyrene in

various solvents that range from a good solvent to a near-theta solvent.40 In the or-
dinate, �init is reduced by D0k2, the rate at low angles. The abscissa is the dimen-
sionless kRH. The solid line in the figure was calculated by using Eq. 3.210 for the
Zimm model in the theta solvent. The data obtained in good solvents and theta sol-
vents lie on the theoretical curve. At kRH « 1, �init � D0k2. At kRH » 1, the master
curve has a slope of 1, in agreement with Eqs. 3.216 and 3.221.

3.4.9 Motion of Monomers

3.4.9.1 General Formula In the preceding subsections, we considered the
center-of-mass motion and also obtained a general formula for the statistical aver-
age of the Fourier transform of rmn(t) � rn(t) � rm(0). In this subsection, we look at
the motion of the beads (monomers) in different time scales. We first obtain expres-
sions for �[rmn(t)]2
mn, the statistical average of the [rmn(t)]2 for given m and n, and
consider how the average changes with time in the short time. We will then exam-
ine how the mean square displacement of the beads �[rnn(t)]2
 changes with time for
each model. The displacement of the beads is different from that of the center of
mass. In the long time scale (t » �1), they should be identical, but, in the short time
scale, the beads can move more quickly than the center of mass. In this subsection,
we consider primarily the Rouse chain and the Zimm model in the theta solvent.

�init � � lim
t : 0

 
ln	g1(t)	

t
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1010.10.01

1

0.1
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Figure 3.55. Initial decay rate �init of 	g1(t)	, reduced by its low-k asymptote D0k2, is plotted
as a function of kRH. The data obtained for polystyrene in various solvents are on a theoreti-
cal curve (solid line) obtained for the Zimm model in the theta solvent. (From Ref. 40.)
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For that purpose, we apply the formula

(3.223)

to Eq. 3.207 and obtain

(3.224)

where the mean square distance between the two beads is

(3.225)

for the ideal-chain conformation. We can use Eq. 3.125 to derive Eq. 3.224 directly
(Problem 3.26).

In the short time scale (t « �N), 1 � exp(�t��i) � t��i and therefore Eq. 3.224
reduces to

(3.226)

In the long time scale (t » �1), 1 � exp(�t��i) � 1 and therefore Eq. 3.224 reduces to

(3.227)

In the long time scale, the first term dominates, and 〈[rmn(t)]2〉mn becomes
indistinguishable from the center-of-mass diffusion, as expected. The mean
square displacement increases linearly with t in the two asymptotes. The motion
of the monomers is diffusional in the two asymptotes but with different diffusion
coefficients. Then, the motion cannot be diffusional in the intermediate time
range. 

3.4.9.2 Mean Square Displacement: Short-Time Behavior Between a Pair of
Monomers Before considering the mean square displacement of the same beads
(monomers) in Section 3.4.9.3, we look at the evolution of 〈[rmn(t)]2〉mn for a pair of
beads in the short time scale. Because �i is different between the Rouse model and
the Zimm model for the theta solvent, we treat them separately.

〈[rmn(t)]2〉mn � 〈[rmn(0)]2〉mn � 6DGt � 24 �
N

i�1

kBT

ki

  cos 

 in�

N
  cos 

i m�

N
 long time

〈[rmn(t)]2〉mn � 〈[rmn(0)]2〉mn � 6t�DG � 4�
N

i�1

kBT

�i

  cos 

i n�

N
  cos 

i m�

N � short time

〈[rmn(0)]2〉mn � b2�m � n �

�cos 
i n�

N
 cos 

i m�

N
[1 � exp (�t��i)]

〈[rmn(t)]2〉mn � 〈[rmn(0)]2〉mn � 6DGt � 24�
N

i�1

kBT

ki

〈[rmn(t)]2〉mn � �
	2

	k2  〈exp[ik
rmn(t)]〉mn�
k�0



In the Rouse model, kBT ��i � DG�2, and the second term in Eq. 3.226 is calcu-
lated as

(3.228)

where Eq. 3.124 was used. Thus, the overall short-time behavior is given as

(3.229)

There is a distinct difference between a different pair (m � n) and the same pair (m
� n; self-diffusion of each bead). For the same pair, 〈[rnn(t)]2〉nn � 6DG(N � 1)t
� 6(kBT��)t. It means that each bead moves freely with its own friction coefficient
as if the other beads were absent or not connected. For a pair of different beads, the
short-time mean square displacement increases as 6DGt, the same as the center of
mass diffusion. Different beads are uncorrelated.

In the Zimm model (theta solvent), kBT��i � (3·21�2�16)DG�i1�2 from Eqs. 3.172
and 3.174. Therefore, the second term in Eq. 3.226 is calculated as

(3.230)

When n � m, cos(2in��N) is a rapidly changing function of i. The sum will be
much smaller compared with the first term, �i – 1�2 � 2N1�2. Thus,

(3.231)

When n � m, the sum is dominated with the first term because cos[i(n � m)��N]
changes between positive and negative more rapidly compared with
cos[i(n – m)��N ]. From Eq. A3.3 in Appendix A3, we have

(3.232)

The hydrodynamic interactions allow the distance between a nearby pair of beads
to grow more rapidly compared with a distant pair. For the latter, the short-time
mean square displacement increases as in the Rouse model.

3.4.9.3 Mean Square Displacement of Monomers Now we trace the motion of
the same bead (m � n) in all time scales. From Eq. 3.224, the displacement of each

〈[rmn(t)]2〉mn � b2�n � m � � 6DGt�1 �
3

8
 (N��n � m �)1�2	  Zimm, theta

short time

〈[rnn(t)]2〉nn � 6DGt �1 �
3

23�2
 N1�2	

4�
N

i�1

kBT

�i

 cos
i n�

N
 cos

i m�

N
�

3

4 
21�2
DG �

N

i�1

1

i1�2 �cos
i (n � m)�

N
� cos

i (n � m)�

N �

〈[rmn(t)]2〉mn � b2�n � m � � 6DGt(1 � N
mn)  Rouse model
short time

4�
N

i�1

kBT

�i

 cos
i n�

N
 cos

i m�

N
� DG �
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i�1
�cos 

i (n � m)�

N
� cos 

i (n � m)�
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monomer, 〈[rnn(t)]2〉nn, is given as

(3.233)

where rnn(t) � rn(t) � rn(0) is the displacement of the nth bead. We denote the av-
erage of 〈[rnn(t)]2〉nn with respect to n by 〈[rnn(t)]2〉 without subscript and calculate it
for the short, long, and intermediate time ranges. The average of cos2 (in��N) with
respect to n is 1�2. Thus,

(3.234)

In the short time (t « �N),

(3.235)

In the long time (t » �1),

(3.236)

In the intermediate time range, we need to deal with 1 � exp(�t��i) as it is.
In the following, we consider 〈[rnn(t)]2〉 for the Rouse model and the Zimm

model in the theta solvent separately. We will also briefly consider 〈[rnn(t)]2〉 for the
Zimm model in the good solvent.

1. In the Rouse model, �i � 2N� for i � 0. Then, the second term in the bracket
of Eq. 3.235 is

(3.237)

which is much greater compared with DG � kBT�N�. Thus, in the short time,
monomers move with a diffusion coefficient of kBT�� as if there were not con-
nected by springs:

(3.238)

as we have seen in Eq. 3.229.
For the long-time behavior, use of ki � 6� 2kBTi2�Nb2 (Eq. 3.132) yields

(3.239)12�
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ki

�
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� 2  �
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� 2  
� 2

6
�

1

3
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〈[rnn(t)]2〉 � 6
kBT

�
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i�1
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�
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�

〈[rnn(t)]2〉 � 6DGt � 12�
N
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kBT

ki

 long time

〈[rnn(t)]2〉 � 6t�DG � 2�
N

i�1

kBT

�i
� short time

〈[rnn(t)]2〉 � 6DGt � 12�
N

i�1

kBT

ki

 [1 � exp (�t��i)]

〈[rnn(t)]2〉nn � 6DGt � 24 �
N

i�1

kBT

ki

 cos2
i n�

N
[1 � exp(�t��i)]



Then, Eq. 3.236 is

(3.240)

For the intermediate time range, we use �i � �1�i2 to calculate Eq. 3.234 as fol-
lows:

(3.241)

We approximate the sum by an integral. Integral by parts yields

(3.242)

Thus,

(3.243)

Figure 3.56 illustrates how 〈[rnn(t)]2〉 changes with time t. The boundaries of the
three time regimes can also be obtained as an interaction between two lines that
correspond to the relevant sections and their extrapolates (Problem 3.27). The diffu-
sion characteristics show a crossover from the single-bead diffusion to the N-bead

〈[rnn(t)]2〉 � 6DGt � (2Nb2�� 2)(�t��1)1�2  Rouse model
intermediate time

�
N

i�1
 

1

i2 [1 � exp (�i2t��1)] � ��

0
 

1

i2 [1 � exp (�i2t��1)] di � (�t��1)1�2

〈[rnn(t)]2〉 � 6DGt �
2Nb2

� 2
 �

N

i�1
 

1

i2  [1 � exp (�i 2t��1)]

〈[rnn(t)]2〉 � 6DGt �
1

3
 Nb2  Rouse model

long time
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Figure 3.56. Mean square displacement of the beads on the Rouse chain, 〈[rnn(t)]2〉, is plot-
ted as a function of time t. The plot has three distinct regions. In t « �N and t » �1, the dynam-
ics is diffusional with diffusion coefficients NDG and DG, respectively. In the time range
between them, 〈[rnn(t)]2〉 � t1�2.
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diffusion. The latter is slower by a factor of N. Between the two diffusional asymp-
totes, the mean square displacement of the monomers on the Rouse chain increases
in a power of t1�2. The range of time that exhibits the power is roughly between �N

and �1. The mean square displacement is b2 and Nb2 at the two boundaries of the
range.

2. In the Zimm model for the theta solvent, kBT��i � (3·21�2�16)DG�i1�2. The
second term of Eq. 3.235 is calculated as

(3.244)

where the sum was approximated by the integral. This term is much greater com-
pared with the first term, DG. Thus, in the short time, monomers move with a diffu-
sion coefficient of (3�4)(2N)1�2DG. From Eq. 3.174, we find this diffusion coeffi-
cient is equal to 4(3��)1�2kBT�(6��sb) � 3.9 � kBT�(6��sb). Thus, the monomers
move as if there were not connected by springs and with a diffusion coefficient
about four times as large as that of a sphere of radius b:

(3.245)

The expression for 〈[rnn(t)]2〉 in the long time is the same as that of the Rouse
model, because ki is common between the two models. Thus, Eq. 3.240 holds as it
does for the Zimm model in the theta solvent. Note, however, that DG is different
between the two models.

For the intermediate time range, we use �i � �1�i3�2 to evaluate Eq. 3.234 as
follows:

(3.246)

We approximate the sum by an integral. Integral by parts yields

(3.247)

where �1�3 � �(1�3) � 2.679 (see Eq. A3.6). Thus,

(3.248)

Figure 3.57 illustrates how 〈[rnn(t)]2〉 changes with time t in the Zimm model.
The monomer motion is diffusional in the two asymptotes. Between them,
〈[rnn(t)]2〉 � t2�3.
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�
N

i�1

1

i2 [1 � exp (�i3�2t��1)] � 
�

0

1

i2  [1 � exp (�i3�2t��1)] di � �1�3 (t��1)2�3

〈[rnn(t)]2〉 � 6DGt �
2Nb2

� 2
 �

N

i�1
 

1

i2  [1 � exp (�i3�2t��1)]

〈[rnn(t)]2〉 � 9(N�2)1�2DGt � 6 
4(3��)1�2
kBT

6��sb
t  Zimm, theta

short time

2�
N

i�1

kBT

�i

�
3 
21�2

8
DG �

N

i�1
i�1�2 �

3 
21�2

4
 DGN1�2



3. In the Zimm model for the good solvent, our discussion is limited to power
relationships. For the short-time behavior, we note kBT��i � i� �1DG. Then, in
Eq. 3.235,

(3.249)

which is much greater than DG. Therefore, the short-time behavior is given as

(3.250)

The bead moves as if it were not connected with other beads.
The expression for the long-time behavior is almost the same as that for the

other two models, namely,

(3.251)

For the intermediate time range, we evaluate the following:

(3.252)

By replacing the sum with an integral and using integral by parts, we obtain

(3.253)

The exponent 2�3 is the same as the one we obtained for the theta solvent condition.
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Figure 3.57. Mean square displacement of the beads on the chain for the Zimm model in the
theta solvent, 〈[rnn(t)]2〉
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3.4.10 PROBLEMS

Problem 3.21: Show the inverse transform of Eq. 3.133:

Solution 3.21: We rewrite Eq. 3.133 to

This conversion has the same structure as Eq. 3.118 with (���i)gi replacing qi.
Then, we can apply the inverse transform, Eq. 3.125, as it is:

Because �0 � N� and �i � 2N� (i � 1)

Problem 3.22: Show that, in the Zimm model for the theta solvent,

Solution 3.22: From Eqs. 3.164 and 3.168,

The integral with respect to m is calculated as

� 
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where the lower and upper limits of the integral are set to �� and �, because
frequent alterations of the sign in cos[ j(n � m)��N] and sin[ j(n � m)��N] at
large values of �n � m� make its contribution much smaller compared with the
contribution from small values of �n � m�. Equation A3.3 was used in the last
equality. Then,

Problem 3.23: Show that, in the Zimm model for the theta solvent,

Solution 3.23: From Eqs. 3.164 and 3.168,

The integral is calculated as

Problem 3.24: Show that, in the Zimm model for the good solvent,
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Solution 3.24:

The integral with respect to m is calculated as

where the lower and upper limits of the integral are set to �� and � , because
frequent alterations of the sign in cos[ j(n � m)��N] and sin[ j(n � m)��N]
at large values of �n � m� make its contribution much smaller compared with
the contribution from small values of �n � m�. Equation A3.2 was used in the
last equality. Then,

For h00,

The integral is calculated as
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Problem 3.25: Estimate DG and �1 for a polymer chain with RF � 100 nm in a
solvent of �s � 1.0 cP at 25°C using the Zimm model for the theta solvent.

Solution 3.25:

Problem 3.26: Use Eq. 3.125 to derive Eq. 3.224 directly.

Solution 3.26: From Eq. 3.125,

where term of qN was incorporated into the sum. The first term is the center-
of-mass diffusion. Here, we use Eqs. 3.145, 3.146, and 3.151. Then, the
above equation is rewritten to

At t � 0,

Thus, the evolution of 〈[rmn(t)]2〉mn from its value at t � 0 is given as
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Problem 3.27: Where are the intersections between two adjacent time ranges in
Figure 3.56?

Solution 3.27: Around �N: the time t at the intersection between Eqs. 3.238 and
3.243 is obtained from

Because N » 1, it is rewritten to 3DGt � (b2��2)(�t��1)1�2, which leads to

Thus we find that the first section extends to ��N.
Around �1: the time t at the intersection between Eqs. 3.240 and 3.243 is

obtained from

which is converted to

The boundary between the second and third sections is around �1.

Problem 3.28: Where are the intersections between two adjacent time ranges in
Figure 3.57?

Solution 3.28: Around �N: the time t at the intersection between Eqs. 3.245 and
3.248 is obtained from

Because N » 1, the first term on the right-hand side is negligible. Then,

Thus we find that the first section extends to ��N.
Around �1: the time t at the intersection between Eqs. 3.240 and 3.248 is

obtained from

6DGt � (2�1�3 
�� 2) Nb2(t��1)2�3 � 6DGt �

1

3
Nb2

t � � 23�2�1�3

9� 2 	
3 b6N3�2
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2
�

�sb3

kBT
 

(�1�3)3

8(3�)1�2
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(�1�3)3

8
 �N � 2.4�N

9(N�2)1�2DGt � 6DGt � (2�1�3�� 2)Nb2(t��1)2�3

t �
�3

36
 �1 � 0.86�1

6DGt � (2Nb2�� 2)(�t��1)1�2 � 6DGt �
1

3
 Nb2
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b4

9�3DG
2�1

�
b4

9� 3
 

(N�)2

(kBT)2  
3� 2kBT

�N2b2
�

1

3�
 

b2�

kBT
� ��N

6NDGt � 6DGt � (2Nb2�� 2) (�t��1)1�2



which is converted to

The boundary between the second and third sections is around �1.

3.5 DYNAMICS OF RODLIKE MOLECULES

3.5.1 Diffusion Coefficients

Dynamics of rodlike molecules is quite different from that of linear flexible chains.
The rodlike molecule exhibits a well-defined rotational motion in addition to the
center-of-mass motion (Fig. 3.58). The latter has two components: parallel to the
rod axis and perpendicular to the rod axis. The expressions for the translational
diffusion coefficients D� and D� in the directions parallel and perpendicular to the
rod axis and the rotational diffusion coefficient Dr were obtained by Kirkwood41

for a model that consists of N beads in a straight line.
The diffusion along the rod axis is one-dimensional, and the diffusion in the di-

rection perpendicular to the axis is two-dimensional, because the degree of freedom
is 1 and 2 in the two directions, respectively. The three-dimensional diffusion coef-
ficient DG of the center of mass is the isotropic mean of D� and D�, that is, DG �
(D� � 2D�)�3. It is expressed as

(3.254)DG �
kBT[ln(L�b) � �]

3��sL
  rodlike molecule

t � � � 2

6�1�3
	

3�2

�1 � 0.48�1
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D||

D⊥

Dr

L

b

Figure 3.58. Rodlike molecule of length L and diameter b. The center-of-mass translation
has two components, parallel and perpendicular to the rod axis, with the diffusion coef-
ficients D�� and D�. The rod can also rotate around the center with diffusion coefficient Dr.
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where L is the rod length, b is the rod diameter (b « L), and � is a constant. In the
numerator, ln(L�b) is the result of hydrodynamic interactions between different
parts of the rod; without its correction, DG � 1�L and thus DG would be equal to
the diffusion coefficient of N connected, independent beads (Problem 3.29). The
constant �, a result of the end effect, is around 0.3. The diffusion coefficients D�
and D� are

(3.255)

The diffusion is faster in the parallel direction than it is in the perpendicular direc-
tion. The difference is rather small; D� is only twice as large as D�.

From Eq. 3.254, we find that the hydrodynamic radius RH of the rodlike mole-
cule is given as

(3.256)

Because the denominator depends only weakly on L, RH increases nearly linearly
with molecular weight. The dependence is much stronger compared with a linear
flexible chain.

The rotational diffusion coefficient Dr was obtained as

(3.257)

and is related to DG by Dr � 9DG�L2. Note that Dr has a dimension of s – 1. The rota-
tional diffusion coefficient has an extremely steep dependence on the molecular
weight. A rod twice as long can rotate only at the rate of 1�8 of the shorter rod.

3.5.2 Rotational Diffusion

3.5.2.1 Pure Rotational Diffusion Here we consider the rotational motion of the
rodlike molecule in details. We do not pay attention to the center-of-mass position.
Let us define by u(t) the unit vector along the rod axis at time t and place the rodlike
molecule in the spherical polar coordinate system (Fig. 3.59). The orientation vector
u(t) is represented by the polar angle � and the azimuthal angle �. We define the
probability density �(�,�; t) for the distribution of u(t) in the same way as the con-
centration represents the population of solute molecules per volume. The probability
to find u(t) between � and � � d� and between � and � � d� is �(�,�; t)sin�d�d�.

The rotational part of the motion is described by the rotational diffusion equa-
tion for �(�,�; t):

(3.258)
	�

	t
� Dr � 1

sin�
 

	

	�
 sin� 

	

	�
�

1

sin2�
 

	2

	�2 	�

Dr �
3kBT [ln(L�b) � �]

� �sL3
  rodlike molecule

RH �
L�2

ln(L�b) � �

D' � 3
2 DG,  D� � 3

4 DG



where the operator in the parenthesis is the orientational part of the Laplacian �2 in
the polar coordinate system. The solution of the diffusion equation is, in general,
given as

(3.259)

where is the spherical harmonic function (l � 0, 1, 2 , . . . ;m � – l, – l �
1 , . . . , l ) and alm(t) is the expansion coefficient. The same diffusion equation applies
to the transition probability P(�,�; ��,��; t) from (��, ��) to (�, �).

In some systems, �(�,�; t) does not depend on �. For instance, when we con-
sider how the probability density �(u; t) evolves for a rod with u(0) parallel to the
polar axis, the distribution is a function of � and t only. Another example is a rod-
like molecule that has a permanent dipole moment along the axis in an electric
field. The natural choice of the polar axis is the direction of the electric field. When
� depends on � and t only, the rotational diffusion equation is simplified to

(3.260)

Then, �(�,�; t) is expanded in only:

(3.261)

where Pl(x) is the lth Legendre polynomial (l � 0,1,2, . . . ). The first few functions
are P0(x) � 1, P1(x) � x, P2(x) � (3x2 – 1)�2.

� (�; t) � �
	

l�0
al(t)Pl(cos�)

Yl
0(�, �) 
 Pl(cos�)

��

�t
� Dr 
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sin�
 

�

��
 sin� 

��

��
  rotational diffusion, uniaxial

Ym
l (�, �)
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264 DYNAMICS OF DILUTE POLYMER SOLUTIONS

θ

u(t)
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Figure 3.59. Rodlike molecule in the spherical polar coordinate system. The orientation of
the rod, u, is expressed by � and �.
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We apply Eq. 3.260 to consider how fast the correlation of the rod orientation is
lost. We place the polar axis in the direction of u(0) and consider how 〈u(t) ·u(0)〉 �
〈cos�〉 = 〈P1(cos�)〉 changes with time. The statistical average is calculated with a
weight of sin�. From Eq. 3.260,

(3.262)

where integration by parts was used twice. Likewise, we can show that (Prob-
lem 3.20)

(3.263)

Note that, at t � 0, 〈Pl(cos�)〉 � 〈Pl(1)〉 � 1. Then, 〈Pl(cos�)〉 relaxes with time ac-
cording to

(3.264)

with a relaxation time �l � [l(l � 1)Dr]–1. The lth orientational correlation is lost
with �l. 

Rotational motion of the rodlike molecule can be viewed as the motion of its end
point on the surface of a sphere with the rod as its diameter (Fig. 3.60). Over a short
period of time (Drt « 1), � « 1 and therefore 〈Pl(cos�)〉 � 〈cos�〉 � 〈1 � �2�2〉 � 1
� 〈�2�2〉. The right-hand side of Eq. 3.264 is � 1 � t��1 � 1 � 2Drt. Thus, 〈�2〉 �
4Drt. The end point makes a two-dimensional diffusion. Over a longer period of

〈Pl 
(cos�)〉 � exp(�t��l)

d〈Pl 
(cos�)〉
dt

� �l (l � 1)Dr〈Pl (cos�)〉

 � �2Dr
�

0
cos�� sin�d� � �2Dr〈cos�〉

d〈cos�〉
dt

�
d

dt

�

0
cos�� sin� d� � Dr
�

0
sin� cos� 

1

sin�
 

	

	�
 sin� 

	�

	�
 d�

θ

Figure 3.60. Rotational motion a rodlike molecule can be regarded as the motion of its end
point on the sphere surface.



time, however, the mean square displacement loses a meaning in the rotational
diffusion.

3.5.2.2 Translation-Rotational Diffusion We consider both the center-of-mass
translation and the rotation now. The transition probability from

at time 0 to at time t follows the diffusion equation:

(3.265)

where �u
2 represents the differential operator in Eq. 3.258. The diffusivity is now

anisotropic. The centroid diffusion constant D � D� uu � D�(I � uu) is not a sim-
ple scaler but a tensor of the second rank. Note that, in the polar spherical coordi-
nate system,

(3.266)

Therefore, D � D� in the direction of u, and D � D� in the direction perpendicular
to u. Upon integrating with respect to rG, Eq. 3.265 reduces to Eq. 3.258.

3.5.3 Dynamic Structure Factor

We consider the dynamic structure factor of a rodlike molecule. The long-time be-
havior is rather trivial. The orientational distribution will be averaged, and the cen-
ter-of-mass diffusion alone will survive. Then,

(3.267)

The short-time behavior in the small k limit is also given by this equation. To
consider the short-time behavior for large k, we first rewrite Eq. 3.46 into

(3.268)

where monomers m and n are distributed uniformly along the rod. For the short-
time behavior, we can write

(3.269)

where u is the rod orientation at time zero, xmn(0) is the distance between the two
monomers at time zero. The center-of-mass displacement in time t is �x along the

rm(t) � rn(0) � xmn(0)u � u�x � �v � rm�u

S1(k,t) �
1

N �
N

m,n�1
〈exp[ik�(rm(t) � rn(0))]〉

S1(k,t)�S1(k,0) � exp(�DGk2t)  long time

uu � �1 0 0

0 0 0

0 0 0
�, I � uu �� 0 0 0

0 1 0

0 0 1
�

�P

� t
� Dr�u

2P �
�

� rG
�[D'uu � D�(I � uu)]�

�P

� rG

(rG,u)(r	G,u	)
P(rG,u;r	G,u	; t)

266 DYNAMICS OF DILUTE POLYMER SOLUTIONS



DYNAMICS OF RODLIKE MOLECULES 267

rod axis and �v in the perpendicular direction. Rotation in time t is �u, and rm is
the distance of the mth bead from the center (see Fig. 3.61).

The center-of-mass motions in the two directions and the rotational motion are
mutually independent. For a given u,

(3.270)

We calculate each term separately. When k is large, exp(ik �u�x) is a rapidly vary-
ing function. Its average is contributed mostly from small �x. Then, we can regard
that the random variable �x is distributed with a normal distribution that has a zero
mean and a variance of 2D�t. Thus

(3.271)

where k� � k �u is the parallel component of k. Likewise, the random variable �v is
distributed with a two-dimensional normal distribution that has a zero mean and a
variance of 4D�t. Thus

(3.272)

〈exp(ik ��v)〉u � �


�


exp(ik��v)(4�D�t)�1 exp	�
�v2

4D�t 
 d�v � exp(�D�k�
2t)

 � exp(�D'k'
2t)

〈exp(ik�u�x)〉u � �


�


exp(ik'�x) (4�D't)�1�2 exp	�
�x2

4D't 
 d�x

�〈exp(ik��v)〉u〈exp(ik��u rm)〉u

〈exp(ik�[rm(t) � rn(0)])〉u � 〈exp[ik�uxmn(0)]〉u〈exp(ik�u�x)〉u

∆v

∆x

∆uu

rm(t)

rn(0)

Figure 3.61. Short time motion of the rodlike molecule consists of the center-of-mass
translation (�x and �v in the directions parallel and perpendicular to the rod axis) and
rotation �u.



where k�
2 � k2 � (k �u)2 is the square of the perpendicular component of k. Like-

wise, �u is distributed with a two-dimensional normal distribution that has a zero
mean and a variance of 4Drt. Thus

(3.273)

All combined,

(3.274)

Averaging with respect to rm cannot be done analytically. We evaluate the initial
slope of ln S1(k, t). It is equal to the initial slope of :

(3.275)

for given u and rm. Now we take the average with respect to u and rm. First, rm is
uniformly distributed in [–L�2, L�2]. Therefore, the average of rm

2 is L2�12. The
average of k�

2 with respect to u is calculated as

(3.276)

Then, 〈k�
2〉 � (2�3)k2. Thus the average of Eq. 3.275 is

(3.277)

With Dr � 9DG�L2,

(3.278)

Rotational motion makes the initial decay slightly faster at large k.
Unlike the linear flexible chains, the initial decay rate at large k is proportional

to k2 (Table 3.4). The difference is ascribed to the comparable diffusion coefficients
(including L2Dr � 9DG) in the five modes of motion in the rodlike molecule. In the
normal modes of a linear flexible chain, in contrast, higher-order modes have a
significantly shorter relaxation time compared with the first mode.
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3.5.4 Intrinsic Viscosity

In Section 3.3.3, we learned that the Mark-Houwink-Sakurada exponent greater than
1 indicates a stiffness in the chain conformation. Here, we consider the intrinsic vis-
cosity of the rodlike molecule. However, calculation of the excess stress is tedious.
We look at the result only. To the linear order of �, the excess stress ���� is given as

(3.279)

In the shear flow given by Eq. 3.107,

(3.280)

Then with Eq. 3.109, the intrinsic viscosity calculated from the zero-shear viscosity
is given as

(3.281)

The molecular weight dependent factor in [�] is (L3�M)(ln(L�b) � �) – 1. The
dependence is weaker than M2 because of the ln M term in the denominator
(Table 3.3).

3.5.5 Dynamics of Wormlike Chains

A wormlike chain is specified by the persistence length Lc and the contour length
Lp. However, it does not have a thickness. We need to give it a diameter b for the
chain to have a finite diffusion coefficient. The model is called a wormlike cylinder
(Fig. 3.62). The expressions for the center-of-mass diffusion coefficient and the in-
trinsic viscosity were derived by Yamakawa et al.42 in the rigid-rod asymptote and
the flexible-chain asymptote in a series of b�Lc and Lc�Lp. 
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Figure 3.62. Wormlike cylinder has a finite thickness b in addition to the nature of the
wormlike chain.



Figure 3.63 shows the intrinsic viscosity of poly(n-hexyl isocyanate) in toluene
at 25°C.43 The polymer is semirigid with Lp � 37 nm and b � 1.6 nm. The slope of
the tangent decreases from 1.4 to 0.8 with an increasing M. The locally rigid chain
follows the viscosity law of the flexible chain when the molecular weight is suffi-
ciently high.

3.5.6 PROBLEMS

Problem 3.29: Use the general formula, Eq. 3.55, to calculate the hydrody-
namic radius of a rodlike molecule with length L and diameter b. The average
between two beads at x and y on the rod measured from one of the ends is
calculated only for �x – y� � b.

Solution 3.29:
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Figure 3.63. Intrinsic viscosity [�] of a semirigid polymer, plotted as a function of the
molecular weight M. The sample is poly(n-hexyl isocyanate) in toluene at 25°C. The
molecular weight dependence of [�] shows a cross-over from �M1.42 to �M 0.8 with an
increasing M. (From Ref. 43.)
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This rough method gives the same result as Eq. 3.256 to the leading order.

Problem 3.30: The Legendre polynomial Pl(z) satisfies the following differen-
tial equation:

Prove Eq. 3.263.

Solution 3.30: Using the integral by parts leads to

where and denote the first- and second-order derivatives of Pl(z). Use
of the above differential equation converts this equation into

APPENDIX 3.A: EVALUATION OF 〈qi
2〉eq

The amplitude of qi at equilibrium can be directly evaluated from its definition by
Eq. 3.118. Because it is an equilibrium property, it has nothing to do with the hy-
drodynamic interactions. It depends only on the chain statistics as shown below.
Here, we use the integral form of Eq. 3.118, that is,
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to calculate 〈qi
2〉:

(3.A.2)

where integration by parts was used, and the last equality is due to the identity:
(�2��n�m)〈rn �rm〉 � �(1�2)(�2��n�m)〈(rn � rm)2〉. Now we use 〈(rn � rm)2〉 �
b2�n � m�2�. Then,

(3.A.3)

Here, we change the variables of integration from n and m to u � n � m and v � n
� m. Then,

(3.A.4)

When N » 1, the upper limit of the integral can be replaced by 
. Then, with Eqs.
A3.2 and A3.4,

(3.A.5)

Because of the approximations we used, 〈qi
2〉 vanishes when � � 1�2. The expo-

nents are correct, however, in the final result.
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APPENDIX 3.B: EVALUATION OF 〈exp[ik ·(Aq � Bp)]〉

We obtain a formula for the statistical average of exp[ik�(Aq � Bp)], where A and
B are constants, and three-dimensional Gaussian random variables p and q are dis-
tributed with fP(p) and fQ(q; p), respectively:

(3.B.1)

(3.B.2)

with

(3.B.3)

and

(3.B.4)

At t � 0, fQ(q; p) � �(q � p). At t : 
, q becomes independent of p.
The average is expressed as

(3.B.5)

First, the integration with respect to q is calculated as 

(3.B.6)

Then, the overall average is given as
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We evaluate A # numerator in Eq. 3.210 for the ideal-chain conformation,
〈exp[ik� rmn(0)]〉mn � exp(�b2k2 �n � m ��6).

(3.C.1)

After integration with respect to m,
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The second term in the square bracket is negligible compared with N in both the
small k and large k limits. Therefore,
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4
Thermodynamics and Dynamics 
of Semidilute Solutions

4.1 SEMIDILUTE POLYMER SOLUTIONS

So far we have paid attention mostly to dilute solutions, c � c*, in which polymer
chains are more or less separated from each other. Chapter 2 focused on thermo-
dynamics, and Chapter 3 focused on dynamics. These solutions were mostly ideal.
We also learned how the concentration c might change the thermodynamics and dy-
namics, as represented by the osmotic pressure and the diffusion coefficient, from
those in the ideally dilute solutions.

This chapter is about semidilute solutions, c � c*. We learn both thermody-
namics and dynamics. The properties of semidilute solutions are drastically
different from those of dilute solutions. With a mere tenfold increase in the concen-
tration, the osmotic pressure can easily increase by a factor of several hundred. In
the ideal solution, in contrast, the osmotic pressure is proportional to c. Further-
more, the overall chain motion is slow in semidilute solutions because the chains
are entangled: semidilute solutions of a high-molecular-weight polymer can barely
flow. The solutions are highly viscous and may even behave like elastic rubber.

The osmotic pressure and the time scale of motion depend heavily on concentra-
tion and molecular weight. The dependence is universal for a certain class of solu-
tions; each class, however, exhibits a characteristic dependence. For many years, we
had not had a good understanding of those characteristics until the blob concept, the
scaling theory, and the reptation model were introduced in 1970s.44,45 With simple
ideas and simple mathematics, these concepts elegantly explained the observed
complicated dependence.

Semidilute solution, c � c*, is unique to polymer solutions. Because c* is low,
the semidilute regime extends to a low concentration (in terms of g/L). As we have
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seen in Section 1.8, polystyrene of M � 3 � 105 g/mol has c* � 13 g/L. The upper
limit of the semidilute range is sometimes denoted by c**. Above c**, the monomers
are congested and the solution is sometimes called concentrated (it is not a well-
defined term). In semidilute solutions, monomers are not congested, but polymer
chains have many other chains overlapping them. The chains as a whole are
congested, and the interactions between the chains are therefore strong. With a fur-
ther increase in c, the overlaps become more serious. In contrast, in solutions of a
low-molecular-weight nonionic compound, the low concentration (in g/L) promises
weak interactions between the solute molecules.

The semidilute regime is often specified by c* « c � c**. With c* at around
10 g/L for polystyrene of Mw � 6 � 105 g/mol, for instance, and c** at around
300 g/L, the double inequality may appear to impose a severe restriction on the
accessibility by an ordinary polymer. In practice, however, solutions several times
as concentrated as c* already qualify as semidilute solutions. With ambiguity in the
definition of c* (Eqs. 1.108–1.110), it does not make sense to ask how high the
concentration should be for the solution to be semidilute. As we will see in many
experimental results, there is an easy way to find whether or not the concentration
is sufficiently high.

In Section 4.2, we will learn about the thermodynamics of semidilute solutions.
We will consider linear flexible chains only. The mean-field theory explained in
Section 2.2 is assumed to be effective in a whole range of concentrations. The the-
ory, however, fails to explain various experimental results. The failure can be as-
cribed to the stronger interactions between chain molecules consisting of covalently
bonded monomers compared with the mean-field interactions that do not distin-
guish bonded monomers from nonbonded monomers. Fortunately, the blob model
and the scaling theory explain the thermodynamics that characterize semidilute
solutions.

Section 4.3 focuses on dynamics. We will first examine the overall concentration
fluctuations of highly entangled chains. We will then look at the motions of each
chain through the maze of other chains.

In this chapter, we attach the subscript “0” to denote the value of the relevant
quantity in the dilute solution limit. For instance, Rg0 is the root-mean-square ra-
dius of gyration, Rg, in solutions at sufficiently low concentrations. It may
appear strange that the chain size changes with concentration, but, as we will
learn in Section 4.2.2, the chain size diminishes because the excluded volume
that swells the chains at low concentrations becomes negligible at higher con-
centrations.

4.2 THERMODYNAMICS OF SEMIDILUTE POLYMER SOLUTIONS

4.2.1 Blob Model

4.2.1.1 Blobs in Semidilute Solutions In the semidilute solutions, the chains are
congested and highly overlapping with other chains, as shown in Figure 4.1a.
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Different gray levels are used to distinguish the chains. When zoomed in, the
solution would look like Figure 4.1b. The intersections between different chains,
indicated by small filled circles, are called entanglement points. Between two
neighboring entanglement points on the same chain, the chain claims its own terri-
tory; there is only a small chance for monomers of other chains to sneak in. We can
superimpose a sphere called a blob onto this sovereign. The same monopolized ter-
ritory applies to the other parts of the chain and to other chains as well. In this way,
we can fill up the entire solution with blobs.

The blob concept, which was introduced in the 1970s, solved then mysterious
problems elegantly.44 The blob model is extremely useful and robust in predicting
various static and dynamic properties of the semidilute solutions of polymers. Al-
though limited to power relationships, the blob model allows us to find how these
properties depend on the concentration and the molecular weight. In this section,
we will first find the blob size in the semidilute solution of polymer chains of a
given length at a given concentration. We will then use the blob model to obtain
various thermodynamic quantities of the semidilute solution.

4.2.1.2 Size of the Blob Let us first estimate the size of the blob � (Fig. 4.2).
Each polymer chain consists of N monomers of size b. The polymer is monodis-
perse. For convenience, we use the monomer density � defined in Section 2.4.5.2.
It is the number of monomers in a unit volume and related to the mass concentra-
tion c by

(4.1)

where M is the molecular weight of the polymer. The two sides express the number
of polymer chains in a unit volume.

�

N
�

cNA

M

Figure 4.1. a: Highly entangled polymer chains in a semidilute polymer solution. b: When
zoomed in, the entangled chains can be regarded as consisting of blobs.

a b

entanglement point



At the overlap concentration (defined in Section 1.8), the N monomers in a
volume of Rg0

3 give the overall monomer density �*:

or (4.2)

where Rg0 � bN� was used. The second equality is for � � 3�5 in the good solvent.
In what follows, we often display the power relationships for a general � and 
� � 3�5 side by side. If necessary, we can also derive a relevant power relation-
ship for semidilute solutions in the theta condition by setting � � 1�2 (see 
Section 4.2.2.6).

The blob size � is equal to Rg0 at �*. As the solution becomes more concentrated,
the chains become more heavily overlapped with each other. When there are more
entanglement points, the blob must decrease its size (Fig. 4.3).

We make two assumptions to estimate the blob size in the semidilute solution at
monomer density �:

(1) Within each blob, the partial chain takes a conformation of the isolated par-
ent chain. Let gN monomers be in each blob. Then,

(4.3)

(2) The blobs occupy the whole volume of the solution without voids. There-
fore, the density of monomers in the blob mirrors the density in the whole
solution:

(4.4)

Combining the two equations, we obtain

or (4.5)� � b�5�4��3�4� � b�1�(3��1)����(3��1)

� � gN�� 3

bgN
� � �  or  bgN

3�5 � �

�* � b�3N�4�5�* � Nc*
 NA�M � NRg0

�3 � b�3N1�3�
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Figure 4.2. A blob of size � has gN monomers of size b from the same chain.
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The negative exponent on � tells that the blobs become smaller with an increasing
�. Note also that � does not depend on N explicitly. It is determined by the
monomer density or the mass concentration only, once the polymer is given.

The blob size relative to Rg0 is calculated from � 1 – 3� � b�� � (���*)� b(NRg0
– 3)�

� (���*)�Rg0
1 – 3� as

(4.6)

Apparently Eq. 4.6 holds only for � � �*. Below the overlap concentration, the
chains are isolated. The blob contains the whole chain and therefore � � Rg0.
Figure 4.4 illustrates how the blob size decreases with an increasing concentration
for three different chain lengths specified by their radii of gyration in the dilute
solution limit, Rg0(1), Rg0(2), and Rg0(3). In a solution of polymer chains with
Rg0(2), � � Rg0(2) at low concentrations. As � exceeds its overlap concentration
�*(2), � approaches a straight line with a slope of 	3�4. In a solution of the longer
chains [Rg0(1)], the crossover from a constant at Rg0 to a slope of 	3�4 occurs at a
lower concentration because its �* is smaller [�*(1)]. The straight line they approach
at � � �* is identical to the straight line that the chains with Rg0(2) approach. The
curve for the shorter chains [Rg0(3)] merges with the same straight line at a higher
concentration �*(3). Note that � is independent of N in Eq. 4.5.

Once � is obtained, gN is evaluated as follows:

or
(4.7)

where Eqs. 4.2, 4.4, and 4.5 were used. At the overlap concentration, gN � N as re-
quired. In the blob model, the polymer chain of N monomers is replaced by a chain
of N�gN � (���*)1�(3�	1) � (���*)5�4 blobs, each consisting of gN monomers. The
number of blobs constituting the polymer chain increases as their size decreases.
Note that both � and gN decrease with an increasing �, but in different exponents.

gN � (b3�)	5�4 � N(���*)	5�4gN � �� 3 � (b3�)	1�(3�	1) � N(���*)	1�(3�	1)

� � Rg0 
(���*)	��(3�	1) or � � Rg0 

(���*)	3�4  blob size

Figure 4.3. As the concentration increases, the blob size decreases from the one shown in
panel a to the one in panel b.

a b

higher concentration

a b



The blob is a conceptual object. Unlike Rg0, we cannot measure the size of the
blob. Later, we will derive the identity, blob size � correlation length. The latter
can be conveniently measured in static and dynamic light scattering.

It is now apparent that there is an upper limit for the concentration range in
which the blob model is effective. With an increasing �, � decreases, but it cannot
be smaller than b, the monomer size. The upper limit of �, which we denote by �**,
is determined from the condition of � � b. Using Eq. 4.5, �** is evaluated as

(4.8)

Unlike �*, the upper limit is independent of N. It is considered that, in real polymer
solutions, the volume fraction of the polymer at �** is around 0.2–0.3.

With Eq. 4.2, we find

(4.9)

Thus, the lower limit and the upper limit of the semidilute regime are widely sepa-
rated, especially when N » 1. As expected, gN � 1 at the upper limit.

4.2.1.3 Osmotic Pressure The osmotic pressure counts the number of independ-
ently moving units per volume of the solution. It is one of the colligative properties
of the solution. At low concentrations, the whole chain moves as a unit. The center-
of-mass displacement is synonymous to a change in the position of the whole chain
(in the small wave vector limit). The dilute polymer solution is an ideal solution of
��N � cNA�M solute molecules in a unit volume. The osmotic pressure �ideal of the
solution is therefore

(4.10)�ideal �
cNA

M
 kBT �

�

N
 kBT

�**��* � N 3��1 or �**��* � N4�5

�** � b�3
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Figure 4.4. Blob size � plotted as a function of monomer density � in a double logarithmic
scale for three different chain lengths. Their radii of gyration in the dilute solution limit are
Rg0(1), Rg0(2), and Rg0(3). Their overlap concentrations are �*(1), �*(2), and �*(3). In the
semidilute solutions, � � ��3�4.
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In the semidilute solution, monomers in a given blob are moving independently
of the monomers in the other blobs, at least in a short time scale. Entanglement
makes rearrangement of monomers within a blob by far easier and faster compared
with the rearrangement of the blobs. The monomers in the blob move more or less
together (correlated motion), just as the whole chain moves together at low concen-
trations. Now in the semidilute solution, the blob is a moving unit. Therefore, the
osmotic pressure of the semidilute solution is given as kBT � (the number of blobs
in a unit volume):

(4.11)

With Eq. 4.5, we obtain

(4.12)

In the semidilute solution, 
 does not depend explicitly on N. It is determined
by � only. Compared at the same mass concentration, solutions of a polymer have
the same 
 regardless of the molecular weight of the polymer. It means that a small
volume that contains 1,000 chains of 1,000 monomers is thermodynamically equiv-
alent to the volume that contains 100 chains of 10,000 monomers or 10 chains of
100,000 monomers, as long as the concentration is in the semidilute range. The
dependence of 
�(�kBT) on � is depicted in Figure 4.5 for three different chain
lengths. At low concentrations, the solution of the shorter chain claims a higher
osmotic pressure because the unit volume of the solution has more moving units.
When � « �*, 
�(�kBT ) is constant at 1�N. A departure from this ideal-solution be-
havior occurs at around �*. Thus the departure occurs at a lower concentration for
the longer chains. In the semidilute solution, the plots of 
�(�kBT ) for different
values of N should overlap with each other and follow a common straight line with


�kBT � (b��)3�(3�	1) or 
�kBT � b15�4�9�4  osmotic pressure


 � � 	3kBT

Figure 4.5. Osmotic pressure 
 reduced by �kBT is plotted as a function of monomer den-
sity � in a double logarithmic scale for three different chain lengths. At low concentrations,

�(�kBT) � N	1. In the semidilute solutions, 
�(�kBT) � �5�4. The cross over occurs at
around �*.
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a slope of 5�4. The shorter chains need a higher concentration for its osmotic
pressure to approach the straight line.

Experimental results support the presence of the asymptotic straight line. Fig-
ure 4.6 shows the osmotic pressure, reduced by cNAkBT, for different molecular
weights of poly(�-methyl styrene) in toluene, measured at 25°C.46 The vapor pressure
osmometry, explained in Appendix 2.A, was used for the measurements. The nearly
flat line at low concentrations is seen only for the lowest-molecular-weight fraction.
At high concentrations, data obtained for fractions of different molecular weights
approach a single straight line with a slope of 1.5, slightly greater than 5�4, the pre-
dicted exponent in the blob model. We will discuss this difference in Section 4.2.2.1.

The ratio of 
 of the semidilute solution to 
ideal of the ideal solution compared
at the same concentration is

(4.13)

where Eq. 4.2 was used. In the semidilute solution, ���* can be large. Then the
osmotic pressure is much greater than the one we would expect for the ideal solu-
tion of the same concentration. When equilibrated with a pure solvent through
a semipermeable membrane that passes solvent molecules only, the semidilute
solution will suck in a large amount of solvent. 


�
ideal � (���*)1�(3�	1) or 
�
ideal � (���*)5�4
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Figure 4.6. Osmotic pressure 
 of poly(�-methyl styrene) in toluene at 25°C, reduced by
cNAkBT, plotted as a function of mass concentration c of the polymer. Data were obtained,
from top to bottom, for various molecular weights from 7 � 104 to 7.47 � 106 g/mol. The
solid line has a slope of 5�4. (From Ref. 46.)
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4.2.1.4 Chemical Potential We find here how the excess chemical potential �

depends on �, where �
 is the difference of the chemical potential 
 from the
chemical potential in the ideal solution of the same concentration. We note that �

is calculated from the nonideal part of the free energy. In the semidilute solution, it
is approximately given by 
V, where 
 is given by Eq. 4.12. Because �V�N is the
number of polymer chains in volume V, �
 is obtained as

(4.14)

We can rewrite �
 into a dimensionless quantity:

(4.15)

The right-hand side is identical to that of Eq. 4.13, as expected.
The following equation can be used for the overall chemical potential 
. It is an

approximate formula valid from dilute to semidilute solutions:

(4.16)

with 
° is the chemical potential at an appropriate reference state, and a
 is a con-
stant independent of N. Equation 4.16 uses the volume fraction � and the overlap
volume fraction �*, but we can use � and �* or c and c* as well.

Figure 4.7 depicts 
�kBT for three different chain lengths. At low concentra-
tions, the solution is ideal. As � exceeds �*, 
 deviates upward. The deviation oc-
curs at a lower concentration for the longer chain, and the deviation is more serious,
compared with the shorter chain at the same �.

As we have seen in this subsection, the blob model does not give an estimate of
the missing numerical coefficient. Often, our interest is to find the power relation-
ship only, however. Then, the blob model is a powerful tool. 

(
 	 
�)�kBT � ln � � a
(���*)1�(3�	1) or ln � � a
(���*)5�4

�
�kBT � (���*)1 �(3�	1) or �
�kBT � (���*)5�4  excess chemical
potential

�
 � � �(
V)

�(�V�N ) �V

� N � �


�� �
V

� NkBTb3�(3�	1)�1�(3�	1)

Figure 4.7. Chemical potential 
, plotted as a function of monomer density � for three
different chain lengths.
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4.2.2 Scaling Theory and Semidilute Solutions

4.2.2.1 Scaling Theory In the preceding subsection, we employed a blob model
to derive power relationships for various thermodynamic quantities that character-
ize the semidilute solutions. The simple assumption produced useful results that
agree with those obtained in experiments. We can derive the same results without
assuming a blob. We will use the scaling theory here for that purpose.

The scaling theory has been successfully used to explain critical phenomena.
The latter are about an often drastic change in physical quantities as the system
approaches the order-disorder transition point. Well-known examples include
ferromagnet–paramagnet phase transition in magnets and nematic–isotropic phase
transition in liquid crystals. The demixing transition near the UCST and LCST in a
blend of two liquids also belongs to the order-disorder transition. The system
changes from the disordered phase to the ordered phase as the temperature T ap-
proaches the critical temperature Tc. Deep in the disordered phase, the system is
uniform and structureless. As T approaches Tc, fluctuations grow in the local mag-
netization, the local alignment of the liquid crystalline molecules, or the local com-
position of the two-component liquid. Increasingly larger domains develop with a
partially ordered structure. At T � Tc, the domain size becomes infinite, and the
whole system separates into macroscopically ordered phase. In the demixing of two
liquids, the system separates into two macroscopic domains. It is known that at near
Tc the domain size grows in a power of the temperature difference �T 	 Tc �. 

The scaling theory has been successfully applied to polymer systems by drawing
analogy between T 	 Tc : 0 and N 	1 : 0. Increasing the chain length is
equivalent to approaching Tc. Together with the blob model, the theory has been
particularly instrumental in elucidating the thermodynamics and dynamics of the
semidilute polymer solutions. Since its initiation by de Gennes in the 1970s, appli-
cations of this theory have proliferated.44 The scaling theory has become a common
language in polymer science. To apply the scaling theory to our own polymer sys-
tems, we do not need to know the details of the mathematics behind the theory;
however, we can still obtain illuminating results from the application, as we will see
below.

Let us first consider the osmotic pressure 
. The virial expansion of 
 reduced
by 
ideal needs to be a power series of the dimensionless concentration of the poly-
mer chains, �Rg0

3�N:

(4.17)

Note that �Rg0
3�N is equal to the reduced concentration ���* � ���* � c�c*.

In general, the factor in the square bracket of Eq. 4.17 is a universal function of
�Rg0

3�N defined for �Rg0
3�N � 0. By “universal,” we mean that the functional

form is independent of N or b except through �Rg0
3�N. Therefore, different

polymer–solvent combinations share a common function, as along as the solvent is
good to the polymer or the polymer chain follows the same statistics. The universal




kBT
�

�

N
[1 � const. � (�Rg0

3�N) � const. � (�Rg0
3�N )2 � � � �]
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function is called a scaling function. We express it by f
:

(4.18)

Note that a dimensionless quantity N
�(�kBT) is equated to another dimensionless
quantity f
(x) with x � �Rg0

3�N. 
As x : 0, f
(x) approaches unity, that is, the solution is ideal in the dilute-

solution limit. The scaling theory assumes that f
(x) for large x asymptotically
approaches a power of x with a scaling exponent m yet to be determined. Thus,

(4.19)

In the semidilute solution (x » 1),

(4.20)

In a solution of highly overlapped chains, the thermodynamic properties do not
explicitly depend on N but on � only, as the result of the blob model indicates. From
the condition that 
�kBT be independent of N, we determine m as m � 1�(3�	1) or
m � 5�4, and Eq. 4.20 becomes identical to Eq. 4.12. Without assuming the blobs,
we derived an expression for 
 that is identical to the one we obtained earlier in the
blob model. This identity is already a proof for the blob model.

It is apparent in Eq. 4.20 that only a power of x for f
(x) can make 
 independ-
ent of N. Although we assumed the power dependence, it is rather a prerequisite for
the independence of N.

As in the blob model, the scaling theory does not provide an estimate of the
numerical coefficient missing in Eq. 4.19. The theory tells only that f
(x) � x5�4

when x » 1. If needed, we can find the exact relationship in experiments or com-
puter simulations with the help of the scaling prediction. Often, the renormalization
group theory can provide the missing coefficient.

It is natural to expect that f
(x) shows a smooth crossover from 1 at x « 1 to x5�4

at x » 1. The scaling function can be displayed by plotting 
�
ideal � 
M�(cRT) as
a function of ���* � c�c*. This type of plot is called a scaling plot. The three
curves in Figure 4.5 can be superimposed on top of the other by rescaling the ab-
scissa and the ordinate and therefore by translating the three curves vertically and
horizontally, as shown in Figure 4.8. The overlapped curve is called a master
curve. 

The scaling function obtained in the renormalization group theory by Ohta and
Oono47 has the same power relationship at � » �* as that of Eq. 4.19. They proposed
an interpolation formula:

(4.21)
�
ideal � 1 � 1
2X exp � 

1
4 [X	1 � (1 	 X	2) ln (1 � X)]	




kBT
�

�

N
 (�Rg0

3�N)m � b3m�1�mNm(3�	1)	1

f
(x)� � 1

� xm

(x : 0)

(x » 1)




kBT
�

�

N
 f
(�Rg0

3�N)



where X � (16�9)A2Mc. The latter is another way to scale the concentration into a
reduced quantity. We can use X � 3.49 � c�c* as well.

A master curve was obtained for the data shown in Figure 4.6 by rescaling both
the abscissa and the ordinate for each set of the data. The definition of c* by
Eq. 1.108 was employed. In Figure 4.9, data obtained for different molecular
weights of the polymer lie on a master curve.46 At sufficiently high concentrations,
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Figure 4.8. Scaling plot for the osmotic pressure. The reduced osmotic pressure 
�
ideal is
plotted as a function of the reduced concentration ���* in a double logarithmic scale. The
scaling function changes smoothly from unity at ���* « 1 to a slope of 5�4 at ���* » 1.

Figure 4.9. Scaling plot for the osmotic pressure for the data shown in Figure 4.6. The re-
duced osmotic pressure 
M�(cNAkBT) is plotted as a function of the reduced concentration
c�c*. The solid line has a slope of 5�4. (From Ref. 46.)
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the curve runs along a straight line with a slope of 5�4. Compared with Figure 4.6,
the agreement with the scaling prediction is better because in the scaling plot
the data obtained for the higher-molecular-weight fractions dominate the range of
c�c* » 1. In Figure 4.6, in contrast, the asymptotic curve is drawn for the data at
large values of c obtained for low-molecular-weight fractions. Whether the master
curve is obtained from the experimental results and whether the same exponent as
the theoretical prediction is obtained gives a final word to the soundness of the
blob model and the assumption that 
 is independent of N in the semidilute
solution.

4.2.2.2 Osmotic Compressibility In Section 2.4, we learned that the molecular
weight and concentration-dependent factor in the excess scattering intensity Iex of
the polymer solution is c�(�
��c). The denominator is the osmotic compressibility.
See Eqs. 2.104–2.107. At low concentrations, �
��c � NAkBT�M, and therefore 
Iex � c. In the semidilute solution, �
��c � c5�4, and therefore Iex � c– 1�4. 
Figure 4.10 shows a sketch for Iex. The intensity peaks at around c*. There is a
crossover from c to c– 1�4 as c exceeds c*.

Conversely, Iex should provide an estimate of �
��c. Another master curve
should be obtained when (M�NAkBT)(�
��c), estimated in light-scattering experi-
ments, is plotted as a function of c�c* (Problem 4.2). Furthermore, the master curve
in the double logarithmic plot should asymptotically run along a straight line with a
slope of 5�4 at c�c* » 1. These properties were verified in experiments. Figure 4.11
compiles data obtained for different molecular weights of polystyrene in toluene
and methyl ethyl ketone.48 The reduced osmotic compressibility (M�NAkBT)
(�
��c) is plotted as a function of (16�9)A2Mc. It is easy to draw a master curve
that runs in the middle of the scattered experimental data. The master curve ap-
proaches unity in the low concentration limit and adopts a slope of 5�4 in the semi-
dilute regime, in agreement with the scaling prediction.

4.2.2.3 Correlation Length and Monomer Density Correlation Function We
now apply the scaling theory to the correlation length � of local monomer density

Figure 4.10. Excess scattering intensity Iex of a polymer solution peaks at around c*. In the
dilute solution, Iex � c. In the semidilute solution, Iex � c–1�4.
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fluctuations in solution. The symbol is the same as the one we used for the blob
size. In fact, we will find here that correlation length � blob size.

A homogeneous solution of polymer is not exactly uniform to the length scale
of the monomer size. Connectivity of monomers gives rise to a nonuniform distri-
bution of monomer density in the neighborhood of a given monomer. At low
concentrations, the chains are well separated. The local density is higher in the
neighborhood of a given monomer than it is away from the polymer chain, as we
learned in Section 2.4.6. The nonuniform local density distribution persists in the
semidilute solution as well. Figure 4.12a depicts polymer chains in the semidilute
polymer solution. Figure 4.12b shows the monomer density profile along the solid
line in panel a. The density fluctuates but not completely randomly. When � is
above the average at one spot, the tendency persists for some distance �. This dis-
tance is called a correlation length.

We learned in Section 2.4.6 that � � Rg0 at low concentrations. As the chains
overlap in the semidilute solution, the correlation in the density fluctuations over
the distance of Rg0 is quickly lost, and the correlation length becomes shorter. We
introduce another scaling function f�(x) and write

(4.22)

where x � ���*. We expect the scaling exponent u to be negative. In terms of b, N,
and �, � is expressed as

(4.23)� � b1�3u N��u(3�	1)� u

� � Rg0  f� 
(x) with f� 

(x) �� 1

� xu

(x : 0)

(x » 1)
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Figure 4.11. Reduced osmotic compressibility, (M�NAkBT)(�
��c)T, plotted as a function
of (16�9)A2Mc in a double logarithmic scale, obtained in the static light-scattering experi-
ments for solutions of polystyrene of various molecular weights in toluene and methyl ethyl
ketone. (From Ref. 48.)
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Again, we impose that � be independent of N when ���* » 1. The condition is given
as � � u(3� 	 1) � 0, i.e., u � 	��(3� 	 1) or u � –3�4. Thus, we find the corre-
lation length decreases with an increasing concentration in a power law with an
exponent of 	3�4. The dependence is exactly the same as the one given by Eq. 4.6
for the blob size. Thus, the blob is essentially a sphere with a diameter equal to the
correlation length. It indicates that the monomers within a blob move cooperatively
and motions of monomers in different blobs are not correlated with each other.

The scaling plot for ��Rg0 is shown schematically in Figure 4.13. It was prepared
by translating the three curves in Figure 4.4 vertically and horizontally.

The correlation length of the polymer solution can be estimated in the static light
scattering. Here, we use the Ornstein-Zernike correlation function gOZ(r) to find
� experimentally. This correlation function is often used for the correlation
〈��(r)��(0)〉�� of the density fluctuation ��(r) � �(r) 	 〈�〉 in the semidilute
polymer solution. The function is expressed as

(4.24)gOZ(r) �
A

4�� 2r
 exp(	r�� )  Ornstein -Zernike 

correlation function

Figure 4.12. a: Polymer chains in semidilute solution. b: The density profile along the
straight line in panel a.

Figure 4.13. Scaling plot for the correlation length �. The reduced correlation length ��Rg0

is plotted as a function of the reduced concentration ���* in a double logarithmic scale.
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where r � |r|, and A is a constant to be determined later. It has a singularity at 
r � 0, but it disappears on integration. Figure 4.14 shows a plot of 4�r2gOZ(r). The
excess probability of finding other monomers at the distance between r and r � dr
from a given monomer is given by 4�r2gOZ(r) dr. The plot peaks at r � �. The other
monomers are most likely found at r � �.

The static structure factor S(k) for this correlation function is simple:

(4.25)

The reciprocal of S(k) is plotted as a function of k2 in Figure 4.15. The plot is a
straight line with a slope of � 2. Because S(k) is proportional to the excess scattering
intensity at k, we can use this plot to find � in the scattering experiments.

S(k) � 
exp (ik�r)gOZ(r) dr �
A

1 � � 2k2
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Figure 4.14. Ornstein-Zernike monomer density autocorrelation function gOZ(r). The other
monomers are most likely found at r � �.
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Figure 4.15. The reciprocal of the static structure factor S(k) plotted as a function of k2. The
slope of the plot is equal to the square of the correlation length �.
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The constant A in gOZ(r) is determined as follows. V– 1�cc(k) is the Fourier trans-
form of 〈�c(r)�c(0)〉 (see Eq. 2.105), as �S(k) is the Fourier transform of
〈��(r)��(0)〉 (see Eq. 2.64; a constant term that results in the forward scattering is
eliminated here). Together with c(r) � �(r), we find

(4.26)

Then,

(4.27)

where Eqs. 2.106 and 2.107 were used.
The correlation length � estimated in static light-scattering experiments is plot-

ted in Figure 4.16 in the scaling plot.48 The reduced concentration is (16�9)A2Mc.
Data obtained for polystyrene fractions of different molecular weights in toluene
and methyl ethyl ketone fall on a single master curve. At (16�9)A2Mc » 1, the data
lie along a straight line with a slope of 	3�4, in agreement with the scaling predic-
tion. Note that the low concentration limit of ��Rg0 is not unity but 3	1�2 because
the single-chain structure factor is S1(k) � N�(1 � k2Rg0

2�3), that is, � � Rg0�31�2

at low concentrations (Eq. 2.75).

A � S(0) �
�kBT

c
 

�c

�

� N 

NAkBT

M
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�
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�cc(0)
�
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c 2V

Figure 4.16. Scaling plot for the correlation length � evaluated in static light-scattering
measurements for solutions of polystyrene in toluene and methyl ethyl ketone. The reduced
correlation length ��Rg0 is plotted as a function of (16�9)A2Mc in a double logarithmic scale.
The dashed line has a slope of 	3�4. (From Ref. 48.)
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4.2.2.4 Chemical Potential The excess chemical potential �
(c) at concen-
tration c can be obtained from the reduced osmotic pressure 
(c)�
ideal(c) as
(Problem 4.4)

(4.28)

Another expression of the concentration such as � or � can be used in place of c.
It can be shown that �
 is a function of c�c* (Problem 4.5). At c « c*, the virial

expansion of 
(c), 
(c)�
ideal(c) � 1 � A2Mc ��� � , gives �
 � c. At c » c*,

(c)�
ideal(c) � c5�4; therefore, �
 � c5�4 as well. Data for �
�kBT obtained for
different chain lengths should be on a master curve when plotted as a function of
c�c*. Figure 4.17 shows �
�kBT evaluated in the Monte Carlo simulation on a cubic
lattice for self-avoiding walks of N � 25, 100, 200, and 300.5 As we see, the data
are on a master curve. At � « �*, the master curve runs along a straight line with a
slope of 1. At � » �*, the master curve runs along a straight line, but the slope is
slightly greater than 5�4, the value predicted in the scaling theory. The dashed line
was calculated by using Eq. 4.21 with a slight modification50 (0.3089 in place of
1�4) and Eq. 4.28.

�
 (c)

kBT
�


(c)


ideal(c)
	 1 � 
c

0
x	1[
(x)�
ideal(x) 	 1] dx
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Figure 4.17. Scaling plot for the excess chemical potential �
 plotted as function of the re-
duced concentration, 3.49 � ���*. Data were obtained in lattice Monte Carlo simulation for
self-avoiding walks of N � 25, 100, 200, and 300 on a cubic lattice. The dashed line is by
the Ohta-Oono formula. (From Ref. 5.)
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4.2.2.5 Chain Contraction Over a length greater than �, monomer concen-
tration is nearly uncorrelated. A monomer on a given polymer chain will not inter-
act with other monomers on the same chain but in different blobs. In other words, a
blob will not feel the presence of other blobs that belong to the same chain. The ex-
cluded volume is predominantly between blobs belonging to different chains. Thus,
the excluded volume effect that swells the polymer chain at low concentrations is
absent over the length beyond �. This shielding of the excluded volume changes
the chain statistics drastically.

In the semidilute solution, blobs do not feel the excluded volume by the other
blobs. Therefore, a chain of blobs takes a conformation of an ideal chain consisting
of N�gN blobs of size �. Its radius of gyration Rg in the semidilute solution at
monomer density � is estimated as

(4.29)

where Eqs. 4.6 and 4.7 were used. The polymer chain is swollen in the dilute solu-
tion because of the excluded volume, but shrinks in the semidilute solution. The
contraction factor for Rg is 

(4.30)

The same contraction factor applies to RF. Figure 4.18 illustrates the contraction in
the scaling plot.

In terms of b, N, and �, Rg
2 is expressed as

(4.31)

In the semidilute solution, Rg � N1�2, the same as the ideal chain. The chain keeps
contracting with an increasing � by effectively decreasing the monomer size of the

Rg
2 � (b�1	2�)1�(3�	1)N or (b�	1�5)5�4N

Rg�Rg0 � (���*)	(�	1�2)�(3�	1) or (���*)	1�8

Rg
2 � (N�gN)� 2 � Rg0

2(���*)	(2�	1)�(3�	1) or (���*)	1�4

Figure 4.18. The polymer chain contracts with an increasing concentration because of
shielding of excluded volume. The radius of gyration Rg decreases in a power of monomer
density � with an exponent of 	1�8.



ideal chain while holding the relationship of Rg � N1�2. At � � �**, � � b– 3, and 
Rg � bN1�2, the same as Rg of the ideal chain of monomer size b.

The chain contraction was verified in small-angle neutron-scattering experi-
ments.49 A mixture of hydrogenated polystyrene (h-PS) and deuterated polystyrene
(d-PS) with an equal degree of polymerization (at around 1,100) was dissolved in
carbon disulfide. The concentration of d-PS was changed in a wide range, whereas
the concentration of h-PS was held low. Thus, the radius of gyration of each h-PS in
a matrix of d-PS in the semidilute solution could be measured. Figure 4.19 shows
Rg

2 as a function of polymer concentration c. The data are on a straight line with a
slope of 	1�4, in agreement with the scaling theory. The same power dependence
is observed in the range of concentrations that exceeds c**.

Lattice computer simulation also verified the scaling relationship.5 Figure 4.20
shows the scaling plot for four different chain lengths of self-avoiding walks on the
cubic lattice. The data plotted as a function of reduced concentration ���* are on a
single master plot given by

(4.32)

This equation has an asymptote identical to Eq. 4.30, but the scaling exponent of
	1�8 is not reached in the range shown. Apparently, longer chains are needed to
observe the exponent.

4.2.2.6 Theta Condition We can apply all of the relationships that we obtained
in the preceding section and the present section to semidilute solutions of a polymer
in the theta condition by setting � � 1�2. We list the relationships in Table 4.1
together with the results for the good solvent.

At the upper limit of the semidilute regime, there will be little distinction
between the good solvent and the theta solvent, as the excluded volume is shielded

Rg�Rg0 � [1 � 0.96403 (���*) � 0.34890 (���*)2]	1�16
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Figure 4.19. Reduced mean square radius of gyration, Rg
2, of polystyrene in carbon

disulfide, plotted as a function of the polymer concentration c. Data were obtained in small-
angle neutron scattering. The straight line has a slope of 	1�4. (From Ref. 49.)
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to the length of the monomer size. All thermodynamic quantities will be the same
between the two solvent conditions. Note that the semidilute range is narrower in
the theta solvent compared with the good solvent. The solution in the theta solvent
becomes nearly identical to the solution in the good solvent by changing its thermo-
dynamics more quickly with an increasing concentration. For instance, the depend-
ence of � on the concentration is steeper compared with the good solvent condition.
Figure 4.21 compares ��b in the good solvent and in the theta solvent. We can draw
a similar sketch for other thermodynamic quantities. In the theta solvent, the chain
dimension is unchanged from that in the dilute solution limit, as required.

Figure 4.20. Scaling plot for Rg�Rg0 plotted as a function of the reduced concentration
���*. The data were obtained in the lattice Monte Carlo simulation for self-avoiding walks.
The dashed line represents the best fit by a curve that is identical to the scaling prediction at
���*» 1. (From Ref. 5.)

TABLE 4.1 Properties of Semidilute Solutions†

General With v � 3�5 With v � 1�2


/kBT (b�v)3�(3v	1) b15�4�9�4 b6�3


�
ideal (���*)1�(3v	1) (���*)5�4 (���*)2

�
�kBT (���*)1�(3v	1) (���*)5�4 (���*)2

��Rg0 (���*)	v�(3v	1) (���*)	3�4 (���*)	1

Rg�Rg0 (���*)	(v	1�2)�(3v	1) (���*)	1�8 (���*)0

Dcoop�D0 (���*)v/(3v	1) (���*)3�4 (���*)1

†���* can be replaced with c�c* or ���*.
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4.2.3 Partitioning with a Pore

4.2.3.1 General Formula Another phenomenon that exhibits a marked depar-
ture from the dilute solution is partitioning of polymer solutions with a small pore.
The partitioning rule (size-exclusion principle), which was discussed in Section 2.5,
applies to dilute solutions only, in which each polymer chain interacts with the pore
independently of other chains. As soon as the chain feels the presence of nearby
chains, the rule changes. Here, we apply the results of the scaling theory to consider
the change. For simplicity, we adopt � � 3�5 here.

A solution that contains a polymer at a volume fraction �E is in contact with a
pore of diameter d. The pore walls are neutral to the polymer, that is, the pore does
not have an attractive or repulsive interaction other than the excluded volume (poly-
mers cannot intersect the pore wall). At equilibrium, the polymer volume fraction is
�I in the pore. We allow �I and �E to be anywhere from dilute to semidilute regimes.
Except near the pore–exterior boundary, �I is uniform along the pore (Fig. 4.22).

We adopt Eq. 4.16 for the chemical potential �E of the chain exterior to the pore:

(4.33)

Within the pore, the polymer chain has an extra term due to confinement (see
Eq. 2.142):

(4.34)

where ac is another numerical coefficient.

�I�kBT � ���kBT � ln �I � a�(�I��*)5�4 � ac(Rg0�d )5�3

�E�kBT � ���kBT � ln �E � a�(�E��*)5�4
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Figure 4.21. Comparison of the correlation length � in the good solvent (dashed line) and in
the theta solvent (solid line). As the monomer density reaches 	** (b3	** � 1), the distinction
between the two solvent conditions nearly disappears.
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We neglect the effect of chain contraction at high concentrations. Although the
chain contraction decreases the confinement entropy, its effect is usually small
(Problem 4.9). Therefore, we also use the confinement entropy of a single chain in
the low concentration limit, kBac(Rg0�d)5�3, for the semidilute solution.

Equating the above two chemical potentials for equilibrium, we obtain

(4.35)

We evaluate the partition coefficient K � � I��E in the two concentration regimes.

4.2.3.2 Partitioning at Low Concentrations In the low concentration limit
(� I��* 
 �E��* « 1), the interaction terms can be dropped. We obtain the partition
coefficient K0 as ln K0 � �(Rg0�d)5�3 (Eq. 2.142).

With an increasing �E, the interaction term becomes nonnegligible, which oc-
curs first for �E because � I 
 �E. Then, Eq. 4.35 is simplified to

(4.36)

The right-hand side should be rather expressed by the virial expansion of �:

(4.37)

with a2��* being the second virial coefficient when the excess chemical potential is
expanded with respect to �. The partition coefficient is then evaluated as

(4.38)

The increase in �E results in an increase in K because a2 � 0 in the good solvent.
The concentration increases more rapidly in the pore than it does in the surrounding
solution. The positive second virial coefficient is the driving force to increase K.

ln K � ln K0 � a2 (�E��*) (�E 
 
« �*)

ln �I � ac(Rg0�d )5�3 � ln �E � a2(�E��*)

ln �I � ac(Rg0�d)5�3 � ln �E � a�(�E��*)5�4

ln �I � a�(�I��*)5�4 � ac(Rg0�d)5�3 � ln�E � a�(�E��*)5�4

Figure 4.22. Partitioning of a semidilute polymer solution with a pore. The concentration
profile is shown in the bottom panel.

Eφ

φ Iφ

d



The plot of K versus � has a positive slope at � � 0, as depicted in Figure 4.23.
From Eq. 4.38, we find dK�d�E � a2K��* at �E � 0. Size exclusion chromatogra-
phy (SEC) is based on the partitioning of a polymer chain with a small pore.
Our naive expectation is that each polymer chain is partitioned between the
pore and the surrounding solution independently of interactions of other chains.
Equation 4.38 demonstrates, however, that the partition coefficient increases
strongly with concentration. In terms of mass concentration cE in the exterior
solution, Eq. 4.38 is written as

(4.39)

where a2�E��* was replaced with 2A2McE (Problem 2.9), and (16�9)A2Mc �
3.49 
 c�c* was used. For instance, if K0 � 0.1 and c* � 5 g/L, then K � 0.22 at
c�c* � 1 g/L. This is why an extremely low concentration is mandated for polymer
solutions to be injected into the column in SEC. An overloading (injection of a so-
lution more concentrated than c*�10) significantly alters the chromatogram.

We can generalize the partitioning to solutions in solvents other than good sol-
vents. With a decreasing A2 (or a2), the driving force weakens, and, when A2 � 0,
dK�d�E � 0 at �E � 0. The partition coefficient will remain unchanged over a
wide range of concentrations before it starts to increase, helped by A3 � 0. When 
A2 
 0, K will initially decrease, followed by an upturn at higher concentrations, as
illustrated in Figure 4.24. Note that, in the low concentration limit, the chain with
A2 � 0 has the smallest K0 because its dimension is the greatest.

4.2.3.3 Partitioning at High Concentrations Now we consider the partitioning
of the semidilute solution, �E��* � �I��* » 1. The entropy-of-mixing terms are
now negligible compared with the other terms. Equation 4.35 is then simplified to

(4.40)(�I��*)5�4 � (ac�a�) (Rg0�d)5�3 � (�E��*)5�4

ln K � ln K0 � 2A2 McE � ln K0 � 4cE�c*   (cE «  c)
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Figure 4.23. The tangential to the curve of K at � � 0 has a positive slope in the good
solvent.
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which leads to

(4.41)

Recall that the correlation length � is given by ��Rg0 � (�E��*)�3�4 (Eq. 4.6). Then,

(4.42)

With an increasing �E, � decreases, and K approaches unity.
Comparison of Eqs. 2.142 and 4.42 demonstrates that the partitioning of the

semidilute solution is determined by the ratio of the correlation length � (blob size)
to the pore size in the same way as the partitioning of the dilute solution is gov-
erned by the ratio of the chain dimension Rg0 to the pore size. Figure 4.25 illustrates
the partitioning in two concentration regimes. We expect a smooth change from Rg0

to � as the concentration increases.
Because � becomes progressively smaller with an increasing concentration,

even long polymer chains, strongly excluded at low concentrations, can fill up
the pore space at high concentrations. The limiting scenario is polymer melt. It will
fill the pore space unless the pore surface is strongly repulsive, although it may take
a long time. Eventually K will approach unity. The crossover behavior is called a
weak-to-strong penetration transition.44 The transition occurs at around �*, but
a longer chain that has a smaller K0 requires a higher concentration (Fig. 4.26).

4.2.4 PROBLEMS

Problem 4.1: The sequence of blobs that enclose monomers of a given polymer
chain has a contour length Lb � �N�gN. How does Lb depend on 	�	*? Also

ln  K � �(��d)5�3  (�E 
 » �*)

K � [1 � (ac�a�) (Rg0�d)5�3 (�E��*)�5�4]4�5

K

φ0

A2 > 0

A2 = 0

A2 < 0

E

Figure 4.24. The concentration dependence of the partition coefficient K is sensitive to the
sign of the second virial coefficient A2.



show that Lb 
 Nb, where Nb is the contour length of the polymer chain. Use
� = 3�5.

Solution 4.1:

because the concentration is still low, that is, b3	 « 1.

Problem 4.2: Show that

where x = c�c*.

M

NAkBT
 
��

�c
� f�(x) � x  f��(x)

Lb

Nb
�

(bN3�5)	1�2 (b3�2N2�5)

Nb
� (b3	)1�2 
 1

Lb � � (N�gN) � Rg0(	�	*)�3�4(	�	*)5�4 � Rg0(	�	*)1�2
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Figure 4.25. a: Partitioning of a dilute polymer solution is governed by the ratio of Rg0 to
the pore diameter d. b: Partitioning of a semidilute polymer solution is governed by ��d.

d

a               c < c*

b               c > c*

Rg0

ξ
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Solution 4.2:

Problem 4.3: Verify that Eq. 4.27 gives A � N in the dilute solution limit as
required.

Solution 4.3: At low concentrations, ����c � NAkBT�M. Then, A � N(NAkBT�
M)�c��� � N.

Problem 4.4: In the lattice chain model, the osmotic pressure is given as
(Problem 2.4)

Use Eq. 2.26 to show that

where P(�) # �(�)��ideal(�).

��rep(�)

kBT
� ln(�) � P(�) � 1 � ��

0
x�1[P(x) � 1] dx

� �
�2

vsite
 

�

��
 

1

�
 
�Amix

nsite

� f�(x) � x 

d

dx
 f�(x)

� c 

�

�c
 

M�

cNAkBT
 

M

NAkBT
 
��

�c
�

�

�c
 �c 

M�

cNAkBT � �
M�

cNAkBT

φ E in log scale

K

1

0

Rg0 » d

Rg0 « d

Figure 4.26. Weak-to-strong penetration transition. The partition coefficient K is plotted as a
function of the volume fraction of the polymer in the exterior solution. The transition re-
quires a higher concentration with an increasing chain length.



Solution 4.4: From the given expression for ��kBT,

Then, with Eq. 2.26,

We add a constant �1 to make the nonideal part of ��rep disappear at � � 0:

Problem 4.5: Show that ��(c)�kBT given by Eq. 4.28 is a function of c�c*.

Solution 4.5: Let �(c)��ideal(c) # P(c�c*). Then, the integral I in Eq. 4.28 is
expressed as

We change the variable of integration to y # x�c*. Then,

Thus,

Problem 4.6: Draw a sketch for the excess light scattering intensity Iex of a
polymer solution in the theta solvent as a function of concentration c of the
polymer in a double logarithmic plot. Indicate the slope of the plot at each of
c�c* « 1 and c�c* » 1.

�� (c)

kBT
� P(c�c*)�1��c�c*

0
[P(y)�1] 

dy

y

I � �c�c*

0
[P(y)�1] 

dy

y

I # �c

0
x�1[�(x)��ideal(x)�1] dx � �c

0
x�1[P (x�x*)�1] dx

��rep(�)

kBT
� ln � � P(�)�1 � � P(�) � 1

�
  d�

 �
�

��
 �� 1

�
P(�)  d� � ln � � P(�) � � P(�) � 1

�
  d�

��rep(�)

kBT
�

N

nsite
 

�

��
 

�nsitevsite

kBT
� �
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��
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� vsite�� �
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Solution 4.6: At low concentrations, Iex � c. At c�c* » 1, ����c � c2 in the
theta solvent. Then, Iex � c�1. The sketch is given below.

slope
= 1

slope 
= −1

c*

c in log scale

I e
x 

in
 lo

g 
sc

al
e

Problem 4.7: We can apply Flory’s method to evaluate the chain contraction in the
semidilute solution. In Flory’s expression for the free energy of a polymer chain
Ach in Eq. 1.63, the binary monomer–monomer interaction was limited to a pair
on the same polymer chain. In the semidilute solution of monomer density 	, the
partner of the interaction is mostly the monomers on the other chains. We can
approximate this change by introducing the probability (N�R3)�(N�R3 � 	). A
monomer on a given polymer chain interacts with other monomers on the same
chain with this probability. Then, Eq. 1.63 is changed to 

In the semidilute solution, this equation is simplified to

Show that minimization of Ach leads to the same contraction factor as the one
predicted in the scaling theory.

Solution 4.7: From (���R)(Ach�kBT) � 0,

which is rewritten to

R � b5�8N1�2	�1�8

2R

Nb2 � 6b3
 

N3

R7  
1
	 � 0

Ach

kBT
�

R2

Nb2 � b3
 

N3

R6  
1

	

Ach

kBT
�

R2

Nb2 � b3
 

N2

R3  
N�R3

N�R3 � 	



Problem 4.8: Compare the osmotic compressibility of a given polymer in the
good solvent and in the theta solvent by drawing a sketch of ���ideal as a
function of b3	 in a double logarithmic scale.

Solution 4.8:
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Problem 4.9: Estimate the effect of the chain contraction on the partition coeffi-
cient of the semidilute solution with a pore of diameter d.

Solution 4.9: When we allow Rg to change with concentration,

With Rg�d given by

we have

The exponent is �35�24 � �1.46, as opposed to �5�4 � �1.25 in Eq. 4.41.

Problem 4.10: Discuss the partitioning of polymer chains in semidilute solution
in the theta condition with a pore of diameter d. Can the partitioning of the
semidilute solution be treated as the partitioning of independent blobs?

 � �(Rg0�d)5�3 (�E��*)�35�24

ln K � �[(Rg0 �d)(�E��*)�1�8]5�3 (�E��*)�5�4

Rg�d � (Rg�Rg0)(Rg0�d) � (�E��*)�1�8 (Rg0�d)

ln K � �(ac�a�) (Rg�d)5�3 (�E��*)�5�4
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Solution 4.10: In the theta condition, Eq. 4.40 is rewritten to

which leads to

Because ��Rg0 � (�E��*)– 1,

This equation demonstrates that the partitioning of the semidilute solution is
equivalent to the partitioning of independent blobs in the theta condition.
Compare the last equation with Eq. 2.136.

4.3 DYNAMICS OF SEMIDILUTE SOLUTIONS

4.3.1 Cooperative Diffusion

In Section 3.2, we learned that dynamic light scattering (DLS) measures the mutual
diffusion coefficient Dm and that it increases with an increasing polymer concentra-
tion in the good solvent. We extend it here to the semidilute solution. Figure 4.27

ln K � �(��d)2

ln K � �(ac�a�)(Rg0�d)2 (�E��*)�2

(�I��*)2 � (ac�a�)(Rg0�d)2 � (�E��*)2

D
 in

 lo
g 

sc
al

e

slope
= 3/4

c in log scale

D0

c*

Dm

Dcoop

Figure 4.27. Diffusion coefficient measured in DLS for various concentrations of a polymer
in a good solvent is schematically shown as a function of polymer concentration c. In the low
concentration limit, it is D0, the diffusion coefficient of an isolated chain. With an increasing
concentration, the mutual diffusion coefficient Dm increases linearly, followed by a sharp up-
turn to a crossover to the cooperative diffusion coefficient Dcoop in the semidilute solution.
The latter increases in a power law with an exponent close to 3�4.



shows schematically how the diffusion coefficient measured in DLS changes with
the polymer concentration c in a wide range of concentrations.

The diffusion coefficient D0 in the dilute solution limit gives the hydrodynamic
radius RH of the isolated polymer chain in solution. The mutual diffusion coefficient
Dm increases linearly with concentration in the dilute regime, c « c*, as we have
seen in Section 3.2.11. The increase is mostly ascribed to repulsive interactions be-
tween polymer chains that are manifested in the positive second virial coefficient.
With a further increase in c, Dm deviates upward from the linear relationship. As c
exceeds c* and the solution enters the semidilute regime, the diffusion coefficient
starts to follow a straight line in a double logarithmic scale. The mutual diffusion
observed by DLS in the semidilute solution is called the cooperative diffusion,
since it represents cooperative motion of monomers within a blob. As Figure 4.28
illustrates, the partial chain within a blob is constantly rearranging itself without a
need to move the two anchoring points. The dynamics follows a diffusion equation.
As we will find below, the cooperative diffusion coefficient (Dcoop) is related to the
blob size � (�correlation length) by

(4.43)

As � decreases with an increasing concentration, the cooperative diffusion becomes
faster. Because � � c– ��(3� – 1), Dcoop increases as Dcoop � � – 1 � c��(3� – 1). In the
good solvent, Dcoop � c3�4. In the theta solvent, Dcoop � c. These dependences are
included in Table 4.1. Note that Dcoop is independent of the molecular weight of the
polymer.

We can use Eq. 4.43 to estimate the correlation length � of a given semidilute
solution from the measurement of Dcoop in DLS. The correlation length estimated
in this way is often called the dynamic correlation length. Figure 4.29 shows 
an example for semidilute solutions of polystyrene with different molecular
weights in various good solvents.51 The data are on a straight line with a slope close
to �3�4.

The difference in the expression of the diffusion coefficient between the single-
chain diffusion (Eq. 3.54) and the cooperative diffusion is only RH and �. The
motional unit of size RH gives way to the blob size � as the concentration exceeds c*.

Dcoop �
kBT

6��s�
  cooperative diffusion coefficient
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Figure 4.28. Monomer density fluctuation within a blob. The monomers can rearrange inter-
nally without changing the connection to the outside world.

blob
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The reason why Dcoop is given by Eq. 4.43 is as follows. In Section 3.2.7, we
learned that the hydrodynamic radius RH of a linear chain polymer is given as the
reciprocal of the average of r�1, where r is the distance between two monomers on
the chain. We used the definition to estimate RH for a chain with a Gaussian chain
conformation. We can use the same formula to calculate Dcoop for the cooperative
dynamic mode of the blob. It is given by

(4.44)

where r is the distance between two monomers that move cooperatively. The
distance r is distributed with the Ornstein–Zernike correlation function. From
Eq. 4.24,

(4.45)

Thus we obtain Eq. 4.43.
The decay rate � in the autocorrelation function �g1(�)� for this cooperative mode

is proportional to k2. It means that the monomer density fluctuation within the blob
is diffusional. There is a good reason for this dynamic mode to be called the co-
operative diffusion.

〈 1
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(r) dr
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Figure 4.29. Correlation length � estimated from the cooperative diffusion coefficient. Data
were obtained for polystyrene of different molecular weights in various good solvents. (From
Ref. 51.)
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4.3.2 Tube Model and Reptation Theory

4.3.2.1 Tube and Primitive Chain In the preceding subsection, we paid atten-
tion to the short-time motion of monomers within a blob. The motion does not in-
volve translation of the polymer chain as a whole. Here we look at the overall mo-
tion of the chain over a distance longer than the blob size.

Polymer melts and semidilute and concentrated solutions of polymer are highly
viscous. Even at a concentration of 1 wt %, solutions of polymer with a molecular
weight greater than several million g/mol can flow only slowly. Their behaviors
are even elastic like rubber at accessible time and frequency ranges. These exquisite
properties had eluded researchers for decades until the tube model and the repta-
tion theory elegantly solved the mystery. The tube model and the reptation theory
were introduced by de Gennes.44 They were refined and applied to the viscoelastic-
ity of semidilute solutions of polymers and polymer melts in the late 1970s by Doi
and Edwards.45 Until then, there had been no molecular theory to explain these phe-
nomena. We will learn the tube model and the reptation theory here.

We pick up a single chain, called a test chain, out of many chains in the solu-
tion. The test chain is highly entangled with neighboring chains. We can imagine a
tube-like region surrounded by these neighboring chains around the test chain, as
illustrated in Figure 4.30. These neighboring chains prohibit the test chain from
moving beyond them, effectively confining the test chain into a tubelike region.
Although the contour of the test chain is winding in three dimensions, we draw a
two-dimensional illustration in which the test chain is constrained to the tube, as
shown in the figure. We can regard the illustration as being drawn on the surface,
curved along the test chain’s contour and then pulled flat. The crosses in the figure
represent intersections of the neighboring chains with the surface. Within the tube,
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tube

test chain

Figure 4.30. The test chain is trapped in a tube (indicated by the gray area) created by
neighboring chains. The crossings represent the intersection of the neighboring chains with
the curved surface on which the test chain lies.
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the test chain is winding. The tube diameter varies along the test tube’s contour and
also in time.

The tube model assumes the followings:

(1) Over a short period of time, the test chain wiggles within the tube just as the
monomers in the blob move cooperatively without moving out of the blob
(Section 4.3.1).

(2) Beyond that time scale, the test chain can move only along the tube. The test
chain cannot move beyond the constraints imposed by the tube.

(3) The head portion of the test chain can explore the next direction freely. As
the head moves out of the existing tube, a new section is added to the tube.
At the same time, the tail vacates a portion of the existing tube. Overall,
there is little change in the length of the tube with time.

Later we will find that the test chain that follows the above assumptions makes a
diffusional motion in the solution at sufficiently long times, although it is slow. The
freedom allowed for the ends of the test chain makes the diffusion possible.

We learned in Section 4.2.2 that the polymer chain in the semidilute solution
takes a conformation of an ideal chain. We therefore can use a random-walk model
to construct the test chain. Let the random walk consist of N independent steps of
step length b. Then, the contour length of the test chain is Nb, and the mean square
end-to-end distance is Nb2.

It is convenient to define a primitive chain. It is the centerline of the tube. The
test chain wiggles around the primitive chain (Fig. 4.31). The motion of the primi-
tive chain is nothing more than a coarse-grained view for the motion of the test
chain it represents. Wiggling motion in the short time scale is averaged to form the
primitive chain.

Figure 4.31. The primitive chain lies along the centerline of the tube. The test chain winds
around the primitive chain.

tube

test chain

primitive chain



According to the three assumptions of the tube model given earlier, the primitive
chain moves only along its contour. Its motion is like a snake slithering on earth.
This motion is called reptation. The end of the primitive chain can explore its next
direction, but the rest follows its own existing path.

The primitive chain shares some of the statistical properties with the parent test
chain. Both are ideal. Their end-to-end distance is the same. The conformation of
the primitive chain is a coarse-grained version of the conformation of the test chain.
When we apply the random-walk model to the primitive chain, its step length is
equal to the tube diameter bt (Fig. 4.32). Because the tube encases the test chain,
bt � b. We can appreciate the coarse-grained nature of the primitive chain in this in-
equality. The contour length L of the primitive chain is shorter than that of the test
chain. We can estimate L as follows. For the primitive chain to have a contour
length of L, the random walk must have L�bt steps. We equate the mean square end-
to-end distance of the test chain and that of the primitive chain: bt

2(L�bt) � b2N.
Then,

(4.46)

For now, we proceed without knowing how to assess bt. Just as the blob size, bt

will depend on the monomer density but not on the chain length; the density of
crosses in Figure 4.30 is determined by the monomer density not by the chain
length. Later, we will find the dependence. 

4.3.2.2 Tube Renewal We illustrate in Figure 4.33 how the primitive chain
changes its shape by continuously renewing its head or tail. The tube moves to-
gether with the primitive chain. 

The primitive chain in panel a slides along its own contour. The advancing
end emerges from the existing tube and finds a new path, just as a random
walker moves another step forward, as shown in panel b. A new section is added

L � b2N�bt
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bt

L

primitive
chain

Figure 4.32. The primitive chain is regarded as an ideal chain of a step length of bt and a
contour length of L. The primitive chain and the test chain share the end-to-end distance.
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immediately to the growing end of the tube. At the same time, the receding end of
the primitive chain vacates a portion of the existing tube, effectively annihilating
the end of the tube. When the primitive chain reverses its course and goes back
along its contour, as shown in panel c, the advancing end, formerly the receding
end, does not need to move back into the old tube. The new advancing end can
freely choose another path. Thus, a new section is always added to the tube while
the other end is destroyed. The motion of the primitive chain is made possible by
the motion of the test chain. As the test chain moves out of the existing tube while
wiggling around, the new section of the tube is created. Along with the creation and
annihilation of the tube sections, the primitive chain itself grows at one end and de-
clines at the other end.

As the primitive chain moves back and forth along its own contour, the chain
constantly renews the end portions of the tube. In each reversal of the course,
the primitive chain adds a new section and loses a part of the memory regarding the
constraint it had earlier. In Figure 4.34, panel a depicts the tube and the primitive
chain when they have still some memory of the old tube. Eventually, none of
the trace will be left of the old tube, as shown in panel b. The complete renewal can
occur even when the centroid of the primitive chain is at the same position as the
one when we started tracking the motion of the primitive chain. More likely,
though, the primitive chain moves over a distance of its end-to-end distance. So
does the test chain. In other words, the tube renewal occurs each time the centroid
of the primitive chain moves the distance of bN1�2.

4.3.2.3 Disengagement The tube renewal is made possible by reptation of the
primitive chain along its own contour. To estimate the time necessary for the tube
renewal, we need to know the nature of the reptation motion. The motion is a 
one-dimensional diffusion along a curve in three dimensions. Whether the primitive

a b c

Figure 4.33. The tube changes its shape and position when the primitive chain slides along
its contour. When the primitive chain moves from the one shown in panel a to the one shown
in panel b, the advancing end adds a new portion to the existing tube (shown as a solid circle)
and the receding end discards the other end of the old tube (shown as a dashed circle). When
the primitive chain reverses its direction (panel c), the advancing end does not need to go
back into the old tube. A new section is added at the advancing end, and an old section is
depleted from the other end.



chain moves back or forth is stochastic, reflecting the random motion of the test
chain.

In the semidilute solution, the hydrodynamic interactions are shielded over the
distance beyond the correlation length, just as the excluded volume is shielded. We
can therefore approximate the dynamics of the test chain by a Rouse model, al-
though the motion is constrained to the space within the tube. In the Rouse model,
the chain as a whole receives the friction of N�, where � is the friction coefficient
per bead. When the motion is limited to the curvilinear path of the primitive chain,
the friction is the same. Because the test chain makes a Rouse motion within the
tube, only the motion along the tube survives over time, leading to the translation of
the primitive chain along its own contour. The one-dimensional diffusion coef-
ficient Dc for the motion of the primitive chain is called the curvilinear diffusion
coefficient. It is therefore equal to DG of the Rouse chain (Eq. 3.160) and given by 

(4.47)

When the primitive chain slides along the tube with Dc, the disengagement time
td, the time needed for the primitive chain to renew its encasing tube, is given as

(4.48)

In td, the primitive chain escapes the existing tube. With Eqs. 4.46 and 4.47, td is
rewritten to

(4.49)td �
b4N 3�

bt
2kBT

  disengagement time

td �
L2

Dc

Dc �
kBT

N�
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Figure 4.34. Tube renewal. a: The tube at a certain time (light gray) shares a part with the
old tube that enclosed the test chain at t � 0 (dark gray). b: The tube renewal continues, and
finally the tube (light gray) shares no part with the old tube. The time needed to reach the lat-
ter state is called the disengagement time (td).

a b
t = tdt < td

tube at t = 0
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The disengagement time is proportional to N3. A slight increase in N leads to a large
increase in td. The overall dynamics of the chains becomes a lot slower.

Let us compare td and �1, the relaxation time of the first normal mode of
the Rouse chain in the absence of entanglement. With �1 � �N 2b2�kBT (Eq. 3.136),
we obtain

(4.50)

which is equal to the number of steps for the primitive chain in the random walk
model. The chain is sufficiently long, and therefore L�bt » 1. Thus, td » �1.

4.3.2.4 Center-of-Mass Motion of the Primitive Chain First, we consider the
motion of a point on the primitive chain when it makes one-dimensional diffusion.
In Figure 4.35, we represent the contour of the primitive chain at a given time by
r(s), where s is the distance along the chain measured from one of the chain ends,
as we did for the wormlike chain in Section 1.5. Because r(s) is described by the
ideal chain model, the mean square distance measured in the three-dimensional
space between two points s and s� on the primitive chain is given by (step length)2

� (number of steps). The step length is bt. The contour between s and s� that regis-
ters the curvilinear length of �s � s�� has �s � s���bt steps. Thus,

(4.51)

Now we move the primitive chain. The chain reptates along the tube with a
diffusion coefficient Dc. The point at s � s(0) moves with the same diffusion
coefficient Dc. We record the slithering motion of the point by the curvilinear dis-
tance measured from the end of the primitive chain at t � 0 (gray line), as shown in
Figure 4.36. Let the point on the primitive chain slide to s(t) in time t. Then, the
one-dimensional displacement s(t) � s(0) along the contour of the primitive chain

〈[r (s) � r (s�)]2〉 � bt�s � s� �

td��1 � Nb2�bt
2 � L�bt

Figure 4.35. Two points, s and s�, on the primitive chain. Their mean square distance in the
three-dimensional space is bt�s � s��.

s
s´

s = 0

r(s)



is given as

(4.52)

When t 	 td, most of the points on the primitive chain stay on its contour at 
t � 0. The two points s and s� in Eq. 4.51 can be s(0) and s(t), respectively. Thus,

(4.53)

The mean square displacement in the three-dimensional space for a point on the
primitive chain is proportional to t1�2. Figure 4.37 illustrates the difference between
the two distances. Recall that the mean square displacement is proportional to t in
regular, unrestricted diffusion in solution. The exponent 1�2 in Eq. 4.53 is due to
the one-dimensional random walk on a path created by another random walker in
the three-dimensional space.

The t1�2 dependence is limited to t 	 td. As the primitive chain escapes the
presently trapping tube in td, it may change the dependence in the time scale of 
t � td. Now we pay attention to the overall movement of the primitive chain in that
time scale. The overall movement consists of step motions. In each step time, the
end of the primitive chain moves a distance of bt to find a new direction. The rest of
the chain follows the existing contour. The step time t1 is the time needed for the
one-dimensional diffusion to move a distance of bt with the diffusion coefficient Dc,
that is, Dct1 � bt

2. Thus,

(4.54)

The step displacement for the centroid of the primitive chain in time t1 is evalu-
ated as follows. The contour of the primitive chain at t � 0 is given as {r(s); 0 ≤ s ≤
L}. The contour at t � t1 is built on the contour at t � 0. We can use the contour

t1 � bt
2�Dc

〈[r (s(t)) � r (s(0))]2〉 � bt�s(t)�s(0) � � bt 
(Dct)1�2

[s(t)�s(0)]2 � Dct
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s(0)

s(t)

s = 0

Figure 4.36. The primitive chain slides along its own contour. The point s(0) moves to s(t),
but it is still on the contour of the chain at t � 0, drawn in light gray. The distance s is meas-
ured from the end of the primitive chain at t � 0.
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r(s) at t � 0 to describe the contour at t � t1 as {r(s); bt 
 s 
 L � bt}. In the latter,
{r(s); L 
 s 
 L � bt} represents the newly created portion and {r(s); 0 
 s 
 bt}
is the discarded portion. The rest is the same as the contour at t � 0 (Fig. 4.38). The
center-of-mass positions rG(0) and rG(t1) of the primitive chain at t � 0 and t � t1

are respectively given as

(4.55)

Then,

(4.56)

Its mean square is

(4.57)

Because bt « L, r(L � s) � r(s) � r(L) � r(0) for 0 	 s 	 bt. Thus, the mean
square displacement in one step is

(4.58)

The primitive chain repeats this step motion to move its center of mass. Each step
is independent because the chain end is free to choose its next direction. The dis-
placement in the second step, rG(2t1) � rG(t1), is uncorrelated with the displacement

 � L�2�bt

0
 �bt

0
Nb2 ds ds� � Nb2bt

2�L2

〈[rG(t1)�rG(0)]2〉 � L�2�bt

0
 �bt

0
〈[r(L)�r(0)]2〉 ds ds�

〈[rG(t1)�rG(0)]2〉 � L�2�bt

0
�bt

0
〈[r(L � s)�r(s)]�[r(L � s�)�r(s�)]〉 ds ds�

rG(t1)�rG(0) � L�1�bt

0
[r (L � s)�r (s)]ds

rG(0) � L�1�L

0
r(s) ds,  rG(t1) � L�1�L�bt

bt

r(s)ds

Figure 4.37. The mean square distance between r(s(t)) and r(s(0)) in the three-dimensional
space is around (Dct)1�2. The mean square distance between the two points measured along
the contour of the primitive chain is around Dct.

r(s(t))

r(s(0))



in the first step, rG(t1) � rG(0). Thus, the ratio of the mean square displacement to
the step time gives the center-of-mass diffusion coefficient DG of the primitive chain
in solution:

(4.59)

With Eqs. 4.46 and 4.47,

(4.60)

Note that this DG is also the center-of-mass diffusion coefficient for the test
chain. DG decreases as � N�2 with an increasing chain length. The absolute value
of the exponent is much greater compared with the center-of-mass diffusion coef-
ficient of linear chain polymer in dilute solutions in which DG � N�1 for the Rouse
chain and � N�1�2 for the Zimm model in the theta condition.

How much does the primitive chain move its center of mass in td with this dif-
fusion coefficient? From Eqs. 4.49 and 4.60, it is easy to find that

(4.61)

As the primitive chain renews the existing tube, its center of mass moves a distance
equal to its end-to-end distance, a reasonable result.

4.3.2.5 Estimation of the Tube Diameter So far, we have been using the tube
diameter bt as a given quantity. We expect that the tube will become thinner as the
concentration increases and therefore the other chains impose crossings nearer to

DGtd � Nb2

DG �
kBTbt

2

N 2�b2
  diffusion coefficient

reptation theory

DG �
〈[rG(t1) � rG(0)]2〉

t1
�

Nb2bt
2

L2

Dc

bt
2 � Dc

Nb2

L2
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Figure 4.38. The primitive chain at t � t1 is on the contour of the chain at t � 0 and its ex-
tension. The chain at t1 occupies the portion from s � bt to s � L � bt measured from one
end of the primitive chain at t � 0.

s = bt

s = 0

s = L + bt

s = L

t = 0

t = t1

r(s)
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the test chain. As DG � bt
2, we expect DG to decrease with an increasing concentra-

tion. To find the dependence, we simply apply the scaling theory to DG and assume

(4.62)

where the scaling function fG(x) satisfies

(4.63)

with a scaling exponent m. Because DG0 � kBT�(
sRg0), DG at �Rg0
3�N » 1 is

(4.64)

where Rg0 � bN� was used. The requirement that this DG have the same N depend-
ence as Eq. 4.60 leads to �(3m � 1) � m � �2; that is, m � (� � 2)�(3� � 1). The
exponent m is �7�4 for � � 3�5. Thus, DG decreases with c in the good solvent as

(4.65)

If we use � � 0.59, m � �1.83. In the theta solvent, m � �3. The decrease is
steeper:

(4.66)

The comparison of Eqs. 4.60 and 4.64 with m � –7�4 allows us to estimate bt

for the good solvent condition. It is obtained as

(4.67)

With an increasing �, bt decreases in a power with an exponent of �7�8. As
required, bt is independent of N.

4.3.2.6 Measurement of the Center-of-Mass Diffusion Coefficient The center-
of-mass diffusion coefficient DG we obtained here is the self-diffusion coefficient
Ds. DLS cannot measure the self-diffusion coefficient. It is necessary to use
more specialized techniques such as FRS, FRAP, and PFG-NMR, described in
Section 3.2.11. Figures 4.39 and 4.40 show examples of FRS studies of Ds for 
dye-labeled polystyrene in benzene.52

Figures 4.39 shows a plot of Ds as a function of the molecular weight M of the
polymer at two concentrations, 0.1 and 0.2 g/g (mass fraction of the polymer in
solution), in the semidilute regime. The data at each concentration are apparently
on a straight line with a slope of �2, in agreement with the prediction given by

bt � (��
s)1�2 b�17�8 ��7�8

DG�DG0 � (c�c*)�3  theta solvent

DG�DG0 � (c�c*)�7�4  good solvent

DG �
kBT


sRg0

 (�Rg0
3�N)m �

kBT


s

 �mb3m�1N� (3m�1)�m

fG(x) � � 1

� xm

(x : 0)

(x » 1)

DG � DG0 fG 
(�Rg0

3�N)



Eq. 4.60. The concentration dependence of Ds is shown in Figures 4.40. There is a
gradual decrease in Ds with an increasing concentration. The data obtained for the
semidilute solutions are on straight lines with a slope of �7�4, in agreement with
Eq. 4.65.

We can use DLS to measure the tracer diffusion coefficient Dt in a ternary solu-
tion of two polymers and a solvent. The concentration of the matrix polymer is
changed widely from dilute to semidilute, whereas the concentration of the probe
polymer is held low. It is necessary to choose a solvent that is isorefractive with the
matrix polymer and at the same time is nonselective to the two polymers. Then,
DLS will selectively detect the light scattering from the probe polymer. For Dt to
simulate DG, the interaction between the matrix polymer and probe polymer must
be identical to the interaction between the matrix polymers. We hope that a pair of
miscible polymers such as polystyrene probe and poly(vinyl methyl ether) matrix
will satisfy this requirement. Figure 4.41 shows an example for the pair.53 The
common solvent is o-fluorotoluene. The figure shows a plot of Dt as a function
of MPS, the molecular weight of polystyrene, for different concentrations of the
matrix polymer (molecular weight � 1.3 � 106 g/mol). In the absence of the
matrix, Dt � MPS

– 0.56, indicating self-diffusion of isolated polystyrene chains in a
good solvent. With an increasing matrix concentration, the slope becomes steeper.
In the semidilute solutions, the slope is around �2, in agreement with Eq. 4.60
assuming Dt � DG.

4.3.2.7 Constraint Release The reptation theory assumes that the environment
is frozen while the test chain moves. This assumption is questionable. The other

320 THERMODYNAMICS AND DYNAMICS OF SEMIDILUTE SOLUTIONS

104
10−14

10−13

10−12

10−11

10−10

D
s 

(m
2 /s

)

105 106

M / (mol/g)

0.1 g/g

0.2 g/g

slope –2

Figure 4.39. Self-diffusion coefficient Ds of dye-labeled polystyrene in benzene at different
concentrations, plotted as a function of the molecular weight M of the polymer. The lines
have a slope of �2. (From Ref. 52.)
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chains surrounding the test chain are moving in the same way in the same time
scale as the test chain moves. Some entanglement points will come loose. New en-
tanglement points will be created, as shown in Figure 4.30, while the test chain tries
to get out of the existing tube. Annihilation and creation of the entanglement points
will allow the tube to be renewed by another mechanism—constraint release. In
the latter, the motion of the test chain is not limited to the one along the tube. The
test chain can also move laterally.

4.3.2.8 Diffusion of Polymer Chains in a Fixed Network Although the tube
model and the reptation model were originally developed to explain the diffusion of
polymer chains in concentrated solutions and melts, we can use it more naturally
for the motion of polymer chains in a fixed network, for instance, a cross-linked
network of polymer swollen in a good solvent. In the fixed network, the constraint
release is absent. Therefore, we should be able to observe the reptation without be-
ing compromised.

The cross-linked network of polymer is called a gel. In the absence of the cross-
linking, the swollen gel would form a solution. A probe polymer is added to the gel
matrix, and the motion of the probe chains is traced by using DLS. The solvent
needs to be isorefractive with the gel matrix to allow one to selectively detect the

Figure 4.40. Self-diffusion coefficient Ds of dye-labeled polystyrene of different molecular
weights Mw in benzene, plotted as a function of the polymer mass fraction. The lines have a
slope of �7�4. (From Ref. 52.)
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scattering by the probe chains. Figure 4.42 shows an example for the tracer diffu-
sion coefficient Dt of the probe chains.54 The matrix is cross-linked poly(vinyl
methyl ether) swollen is toluene. The probe is linear polystyrene of different mole-
cular weights. For sufficiently high molecular weights MPS of polystyrene, Dt

decreases in a power law of MPS
�2.8, steeper than the theoretically predicted MPS

�2.
Other experimental techniques can also be used, for instance, FRS, FRAP, and
PFG-NMR.

4.3.2.9 Motion of the Monomers Here, we consider the mean square displace-
ment of monomers on the entangled chains. Over a long time, t � td, the mean
square displacement of the monomer, 〈[rn(t) � rn(0)]2〉, becomes identical to the
mean square displacement of the centroid of the primitive chain. Our interest is the
short-time behavior in t 	 td. We expect that the monomers have a greater mobility
in short time scales as in the bead-spring chain, which was discussed in Section 3.4.

We focus our attention primarily on the time range of t � te, where te is the
time for the mean square displacement of a monomer on the test chain to reach bt

2.
At t 	 te, the test chain wiggles within the tube without feeling the presence of the
geometrical constraint imposed by neighboring chains. At t � te, the motion of the
test chain is the same as that of the primitive chain.

In Sections 4.3.2.3 and 4.3.2.4, we assumed that the primitive chain follows a
simple one-dimensional diffusion along its contour. This view is correct only for
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Figure 4.41. Tracer diffusion coefficient Dt of polystyrene in solutions of matrix polymer,
poly(vinyl methyl ether), in o-fluorotoluene at various concentrations of the matrix polymer,
plotted as a function of molecular weight MPS of polystyrene. The solvent is isorefractive with
the matrix polymer. The concentration of the matrix polymer and the slope obtained in the
best fitting by a power law (straight line) are indicated adjacent to each plot. (From Ref. 53.)
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sufficiently long time scales, t � �1, the relaxation time of the first normal mode
(but t 	 td). In short time scales, t 	 �1, the motion of the primitive chain is not a
simple diffusion along its contour.

The test chain would follow the dynamics of the unrestricted Rouse chain if the
entanglements were absent, as would the primitive chain at t � te. In Section 3.4.9,
we considered the mean square displacement of monomers on the Rouse chain. We
found that the dynamics is diffusional at t 	 �N and �1 	 t, where �N is the relax-
ation time of the Nth normal mode but not in between. When the motion of the
Rouse chain is restricted to the tube, the mean square displacement of monomers
along the tube, 〈[s(t) � s(0)]2〉, will follow the same time dependence as the mean
square displacement of the unrestricted Rouse chain in three dimensions. Thus,
from Eqs. 3.240 and 3.243,

(4.68)

where Dc � kB�N� gives the center-of-mass diffusion coefficient of the Rouse chain
in the absence of the entanglements.

We can map Eq. 4.68 onto the one-dimensional reptation dynamics, as
we mapped a simple one-dimensional diffusion in Section 4.3.2.4. With Eq. 4.51
and s � s(0) and s� � s(t), we have

(4.69)〈[rn(t) � rn(0)]2〉 � �N1�2bbt(t��1)1�4

bt(Dct)1�2

(te 	 t 	 �1)

(�1 	 t 	 td) 

〈[s (t) � s (0)]2〉 � �Nb2 (t��1)1�2

Dct

(te 	 t 	 �1)

(�1 	 t)

Figure 4.42. Tracer diffusion coefficient Dt of polystyrene in a cross-linked matrix of
poly(vinyl methyl ether) in toluene, plotted as a function of molecular weight MPS of poly-
styrene. The concentration of the matrix gel was 0.235 g/mL. The monomer to cross-linker
ratio, r, was 100 and 50. The dashed line has a slope of �2.8. (From Ref. 54.)
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In the time scale of t � td, the effect of finding the new direction by the chain ends
becomes dominant, and the mean square displacement of monomers will become
equal to that of the center of mass. In the time scale of t 	 te, the motion of the
monomers is complicated. At sufficiently short times (t 	 �N), the monomers will
make a diffusional motion without feeling the presence of other monomers, as we
have seen for both the Rouse chain and the Zimm model. We can at least say that
the dependence of 〈[rn(t) � rn(0)]2〉 on t is sharper at t 	 te.

Thus, we have the mean square displacement of monomers on the test chain for
t � te as

(4.70)

Figure 4.43 illustrates the different regimes in the plot of 〈[rn(t) � rn(0)]2〉.
The boundary of each section is shown both for the time and the mean square dis-
placement.

Presence of a section in which 〈[rn(t) � rn(0)]2〉 � t1�2 is due to the reptation
dynamics. Presence of a section in which 〈[rn(t) � rn(0)]2〉 � t1�4 is due to the
Rouse dynamics added on top of the reptation.

4.3.3 Problems

Problem 4.11: Estimate the tube diameter bt for solutions in the theta condition.

Solution 4.11: Comparison of Eqs. 4.60 and 4.64 with m � –3 leads to

bt � (��
s)1�2 b�4��3�2

〈[rn(t) � rn(0)]2〉 � �
N1�2bbt(t��1)1�4

bt(Dct)1�2

DGt

(te 	 t 	 �1)

(�1 	 t 	 td)

(td 	 t)

 
 monomer diffusion

by reptation
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Figure 4.43. Mean square displacement of monomers on entangled chains, 〈[rn(t) � rn(0)]2〉
plotted as a function of time t. The plot has four sections with distinct slopes. They are indi-
cated adjacent to the plot. The boundaries of the four sections are specified by their values of
t and 〈[rn(t) � rn(0)]2〉.
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FURTHER READINGS

There are several textbooks and research monographs on polymer solutions. Some
of the contents partly overlap with the scope of this textbook. The following books
are recommended to readers interested in further studies:

1. P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell Univ. Press:
Ithaca (1979).

This is a good introduction to the scaling theory by the pioneer of the
theory. The scaling concept is used for polymer solutions, polymer blends,
melts, and gels.
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2. M. Doi, S. F. Edwards, The Theory of Polymer Dynamics, Oxford Univ.
Press: Clarendon (1986).

Detailed explanations on theoretical tools are given. Emphasis is on visco-
elastic properties. The book contains a few chapters on dilute, semidilute, and
concentrated solutions of rodlike molecules. The following is a simplified ver-
sion: M. Doi, Introduction to Polymer Physics, Oxfor Univ. Press: Clarendon,
1996.

3. G. Strobl, The Physics of Polymers (2nd ed), Springer: Berlin (1997).

This book deals with polymer physics in general, including solid states of
polymers. It offers a succinct account of solution properties.

4. H. Yamakawa, Helical Wormlike Chains in Polymer Solutions, Springer:
Berlin (1997).

This book offers a detailed explanation on conformation and dynamics of
wormlike chains and helical wormlike chains by an expert of the model.

5. H. Morawetz, Macromolecules in Solution (2nd ed), Wiley: New York (1975).

This book is a historical standard of polymer solution textbook. It is now
available from Krieger.

6. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press: Ithaca,
1953.

This book is another historical standard of polymer in general.

7. A. Y. Grosberg, A. R. Khokhlov, Statistical Physics of Macromolecules, AIP
Press: Woodbury, 1994.

This book offers a detailed account of the scaling theory. It contains many
applications.

8. J. des Cloizeaux, G. Jannink, Polymers in Solution: Their Modelling and
Structure, Oxford Univ. Press: Clarendon (1990).

This book offers a detailed account of the renormalization group theory.
The book contains an excellent review of many experimental data on the
thermodynamic properties of polymer solutions.

9. H. Fujita, Polymer Solutions, Elsevier: Amsterdam (1990).

This book offers a formal introduction to polymer solution theory. It con-
tains many experimental data.

There are several books on light scattering:

1. K. S. Schmitz, An Introduction to Dynamic Light Scattering by Macromole-
cules, Academic Press: San Diego, 1990.

2. B. Chu, Laser Light Scattering: Basic Principles and Practice (2nd ed.), Aca-
demic Press: San Diego, 1991.

3. W. Brown ed. Dynamic Light Scattering: The Method and Some Applications,
Oxford Univ. Press: Clarendon, 1993.



APPENDIX

Some of the mathematics used in this textbook are detailed here.

A1 DELTA FUNCTION

A delta function [�(x)] has an infinite value at x � 0 and is zero everywhere else. It
is impossible to draw a plot of �(x), but it may be convenient to regard it as a positive
spike at x � 0. The integral of �(x) over a finite interval that contains x � 0 is 1:

(A1.1)

where 0� is infinitesimally smaler than 0, and 0� is infinitesimally greater than 0.
On integration of the product of �(x) and an arbitrary function f(x), we obtain

(A1.2)

The following formula is useful:

(A1.3)

In three dimensions, we write

(A1.4)

It is easy to find

(A1.5)

where dr � dx dy dz and the range of integration can be any volume that contains 
r � 0. We can evaluate an arbitrary function f(r) at r � a:

(A1.6)��

��

 �(r�a) f (r) dx � f (a)

��

��

 �(r) dr � 1

�(r) # �(x)�(y)�(z)

��

��

 �(x�a) f (x) dx � f (a)

��

��

 �(x) f (x) dx � f (0)

��

��

 �(x) dx � 1�0�

0�

 �(x) dx �
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There are several ways to define �(x) by an equation. One of them is

(A1.7)

In three dimensions,

(A1.8)

A2 FOURIER TRANSFORM

For an arbitrary function f(x) of a space variable x, its Fourier transform f̂ (k) is de-
fined by

(A2.1)

The variable k is called a wave vector also for one dimension. To see what informa-
tion of f(x) is carried into f̂ (k), let us consider a sinusoidal wave with wave vector
k1 and amplitude A1:

(A2.2)

Then, from the definition,

(A2.3)

which means that f̂(k) is nonzero only at k � �k1. The integral of f̂ (k) in a range
including k � k1 or k � � k1 but not both of them gives �A1 that is proportional to
the amplitude of the wave. f̂(k) indicates which wave-vector components are con-
tained in f(x).

 � �A1[�(k � k1) � �(k � k1)]

 �
A1

2
��

��

[exp(i(k � k1)x) � exp(i(k � k1)x)]dx

f̂ (k) #
A1

2
��

��

[exp(ik1x) � exp(�ik1x)]exp(ikx)dx 

f (k) � A1 cosk1x � (A1�2)[exp(ik1x) � exp(�ik1x)]

f̂ (k) #��

��

 f (x) exp(ikx)dx

�(r) #
1

(2�)3 ��

��

 exp(ik	r) dk

�(x) #
1

2�
��

��

 exp(ikx) dk



Let us integrate f̂(k) exp(�ikx) with respect to k:

(A2.4)

Thus, we can recover f(x) from f̂(k) by

(A2.5)

This operation is called the inverse Fourier transform.
In three dimensions, the Fourier transform of a spatial function f(r) is defined by

(A2.6)

The inverse transform is given by

(A2.7)

We often need to calculate a three-dimensional Fourier transform of f(r) that de-
pends only on the radial distance r. For this purpose, we use a spherical polar coor-
dinate for r with the polar axis running along k. Then, the transform proceeds as
follows.

(A2.8)

�
4�

k
��

0
rf(r)sin kr dr �

4�

k
 Im��

0
rf (r) exp (ikr) dr

�f(r) exp(ik	r) dr � 2���

0
 r 2f (r) dr��

0
 sin
 exp(ikrcos
) d


f (r) #
1

(2�)3
��

��

 f̂ (k) exp(�ik	r) dk

f̂ (k) #��

��

 f (r) exp(ik 	r) dr

f (x) �
1

2�
��

��

 f̂ (k) exp(�ikx) dk

 ���

��

f(x�)dx�2��(x� � x) � 2�f(x)

 ���

��

f(x�)dx���

��

exp[ik(x� � x)]dk

��

��

 f̂ (k) exp(�ikx)dk � ��

��

exp(�ikx)dk��

��

f(x�)exp(ikx�)dx�
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A3 INTEGRALS

Gaussian integral:

(A3.1)

Fourier cosine integral:

(A3.2)

When � � 1�2, 
(1�2) � �1�2. Thus,

(A3.3)

Fourier sine integral:

(A3.4)

For � � 1�2,

(A3.5)

Gamma function:

(A3.6)

For integral values of �, 
(�) � (� � 1)!.

��

0
x��1exp(�x) dx � 
 (�)     (� � 0)

��

0
x�1�2sin bx dx � � �

2b �
1�2

��

0
x�� lsinbx dx �


(�)

b�
sin

��

2
      (0 � � � 1,   b � 0)

��

0
x�1�2cosbx dx � � �

2b �
1�2

��

0
x��1cosbx dx �


(�)

b�
cos

��

2
     (0 � � � 1,   b � 0)

��

0
x2n exp(��x2) dx �

(2n � 1)!!

2n�1 � �

�2n�1 �
1�2



Miscellaneous integral:

(A3.7)

A4 SERIES

(A4.1)

(A4.2)

�2a��

0

dy

y4 � a2 �
1

a
�1�2

0

dx

x1�2
�

�

(2a)1�2
�

21�2

a
�

�

(2a)1�2

(a » 1)

�
�

n�1

a

n1�2(n2 � a2 )
 � ��

0

a

x1�2(x2 � a2)
 dx ��1/2

0

a

x1�2(x2 � a2)
dx

�
�

n�1
 

a

n2 � a2 � �
1

2a
�

�

2
cotha�

��

0
 

dx

x 4 � b4 �
21�2�

4b3
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