Tutorial-5, Statistical Mechanics & Others (Paper-203), January 20,2016 Dr. R K Hazra Maximum Marks: 50

Q-1. Obtain E_{elec} , A_{elec} and S_{elec} of a monoatomic gas. Discuss nuclear partition function of monoatomic gas. Calculate the fraction of He atoms in the lowest ${}^{1}S_{0}$ state at $300^{0}K$ and $3000^{0}K$.

Q-2. Find E_{tot} and A_{tot} . Obtain Sackur-Tetrode equation of S_{tot} of monoatomic gas.

Q-3. Find equation of ideal monoatomic, diatomic and polyatomic gases ($\overline{p}V = Nk_BT$). Why $'\overline{p}V = Nk_BT'$ does not differ for monoatomic and diatomic gases?

Q-4. Discuss briefly how nuclear spin (I) of a homonulcear diatomic molecule modulates rotational partition function?

Q-5. How many spin microstates H_2 has? Write a short note on C_v of H_2 gas at $\sim 0^0 K$ and $300^0 K$? Why cannot nuclear spin of H_2 be inclusive as reciprocal of rotational symmetry factor σ at moderate temperature?

Q-6. Show that \hat{S}^2 is an eigen-operator of $o-H_2$ and $(p-H_2)$. Obtain their eigen-values.

Q-7. Find ' σ ' of NO₂, H₂O, SO₂, N₂O, CO₂, COS (diagrams).

Q-8. Find E_{rot} and C_v of polyatomic gas at moderately high temparatue.

Q-9. Find S_{rot} of polyatomic gas at moderately high temparatue.

Q-10. Find E_{tot} , C_v and S_{tot} of a polyatomic gas at moderately high temparatue.

Q-11. Prove that $\overline{p}V = k_B T \ln(Z(v, T, \mu))$ of a grand-canonical ensemble. What are thermodynamic characteristic functions of different ensembles?

Books: McQuarrie (Statistical Mechanics), Callen (Thermodynamics and Thermostatistics),

Nash (Elements of Statistical Thermodynamics), Atkins (Physical Chemistry), Landau & Lifshitz (Statistical Physics), MC Gupta (Statistical Mechanics).