Tutorial-6, Statistical Mechanics & Others (Paper-203), January 20,2016 Dr. R K Hazra Maximum Marks: 50

Q-1. Rewrite $Z(V,T,\mu) = \sum_{N=0}^{\infty} \lambda^N Z(N,V,T)$ in terms of population (n_k) of individual quantum states (ε_k) where $\lambda = e^{\mu/k_B T}$. Work out- $S = \sum_{N=0}^{\infty} \sum_{\{n_k\}}^* x_1^{n_1} x_2^{n_2} \dots \sim S = \prod_{K=1}^2 (1 + x_K + x_K^2 \dots)$.

Q-2. Prove that $\overline{p}V = k_B T \ln(Z(V, T, \mu))$ of a grand-canonical ensemble. What are thermodynamic characteristic functions of different ensembles?

Q-3. Obtain quantum statistics of *Fermi-Dirac* ('+') gas $(Z_{FD}(V,T,\mu))$ using Pauli's *Exclusion Principle* (Restricted occupancy). Give examples of some fermions.

Q-4. Obtain quantum statistics of *Bose-Einstein* (-) gas $(Z_{BE}(V, T, \mu))$ (Unrestricted occupancy). Give some examples of bosons.

Q-5. Find internal energy (\overline{E}) of *Fermi*- and *Bose*- gases.

Q-6. How is chemical potential (μ) of quantum gases modified at classical limits- $N/V \rightarrow 0$ and $T \rightarrow \infty$?

Q-7. Find \overline{N} , average occupancy of individual quantum states (\overline{n}_k) and p - V relations for *Fermi-Dirac* and *Bose-Einstein* gases.

Q-8. Obtain classical limits of \overline{E} and p - V for F - D and B - E gases.

Q-9. Discuss similarities and dissimilarities of photons and phonons.

Q-10. Find quantum statistics of a gas with maximum occupancy 'm'. (Gentile's theory)

Q-11. Why in rotational spectra, the ground state (J=0) is not mostly populated? Find J_{max} in terms of temperature (T) and rotational temperature constant (θ_r) .

Q-12. What are the basic postulates of Einstein's theory of specific heat of monoatomic crystal? Compare C_v (Dulong and Petit's) in light of Einstein's theory of C_v for monoatomic crystal at high temperature (T).

Q-13. Predict C_v at $T \to 0$ by Einstein's theory on monoatomic crystal.

Q-14. Find equilibrium constant K_c in terms of partition functions of reactants and products. Obtain relation between K_p and K_c .

Q-15. What is the ratio of J_{max} of H_2 , HD and D_2 in rotational spectra?

Books: McQuarrie (Statistical Mechanics), Callen (Thermodynamics and Thermostatistics), Nash (Elements of Statistical Thermodynamics), Atkins (Physical Chemistry), Landau & Lifshitz (Statistical Physics), MC Gupta (Statistical Mechanics).