

Chapter 11: Lipids

Voet & Voet: Pages 380-394

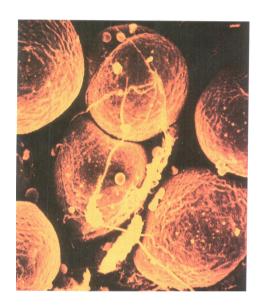
Lipids

Lipids are distinguished by their high solubility in non polar solvents and low solubility in H₂O

Diverse group of compounds including Fats, Oils, Waxes, some vitamins and hormones and most non-protein components of membranes

Lipids are (another) amphipathic molecules that can be:

(A) Major components of biological membranes


- membranes define the basic unit of life (cell) and subcellular compartments (eucaryotes)
- includes cholesterol

(B) Major form of stored energy in biological systems

 lipids are largely reduced compounds; complete oxidation of lipids generates lots of energy (ie. more than from sugars)

(C) Hormones

signal transduction (communication) between cells

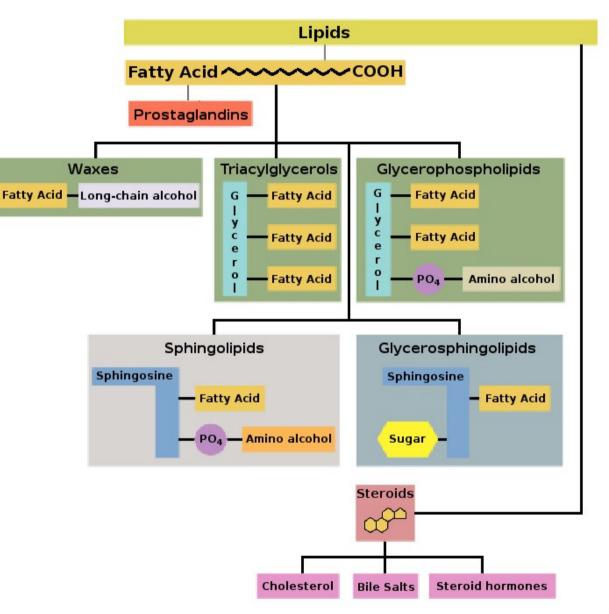
Adipocytes:

Fat storage cells

Overview of Biological Lipids

Fatty acids: principal building blocks of complex lipids

Waxes: esters of fatty acids (heat sensitive)


Triacylglycerols: membrane precursors, energy storage

Glycerophospholipids: membrane components

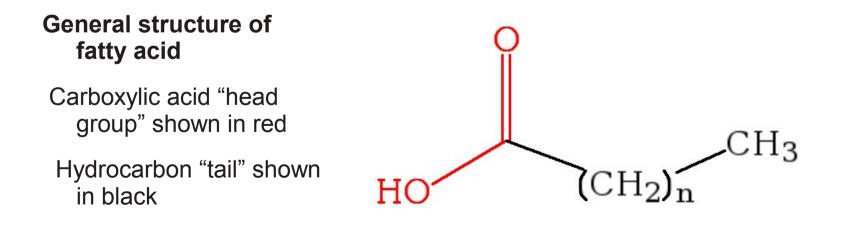
Sphingolipids: brain lipids, membrane components

Steroids: cholesterol, bile salts, steroid hormones

Terpenes: like turpentine

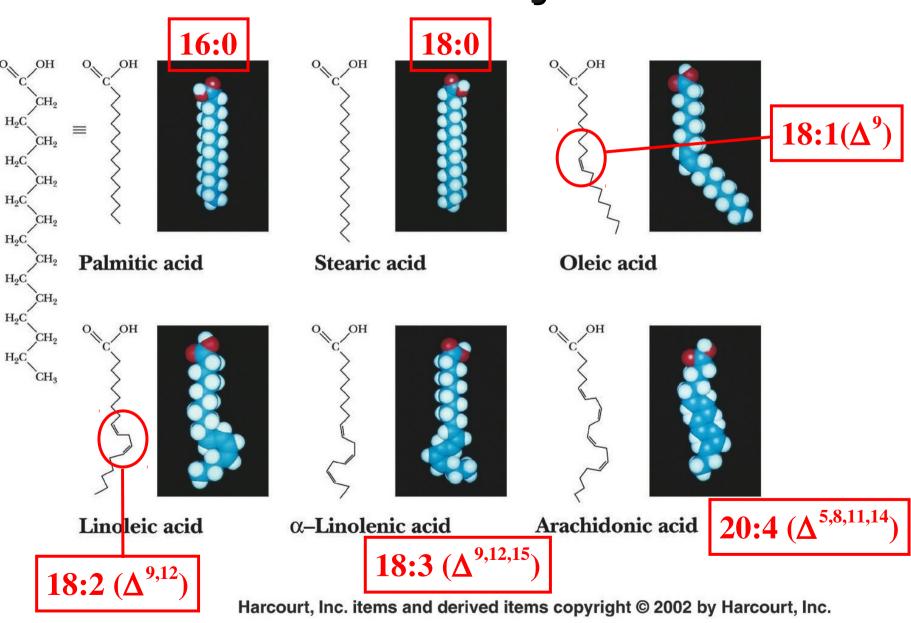
Fatty Acids Building blocks of lipids

Composed of a carboxylic acid "head group" and a long hydrocarbon "tail"


- tail generally contains an even number of carbon atoms

Hydrocarbon tail can be saturated or unsaturated

- unsaturated hydrocarbon tails contain one or more double bonds


Both common and systematic nomenclatures are widely used

- eg. stearic acid or octadecanoic acid $(1CH_3, 16 CH_2 + 1 CO_2H)$

Typical Saturated and Unsaturated Fatty Acids

Biochemistry 2000

(Some) Important Fatty Acids

SUMULINUY ACOULD

Carbon skeleton	Structure*	Systematic name ⁺	Common name (derivation)	Melting point (°C)		solvent)
					Water	Benzene
12:0	CH ₃ (CH ₂) ₁₀ COOH	n-Dodecanoic acid	Lauric acid (Latin <i>laurus,</i> "laurel plant")	44.2	0.063	2,600
14:0	CH ₃ (CH ₂) ₁₂ COOH	n-Tetradecanoic acid	Myristic acid (Latin <i>Myristica,</i> nutmeg genus)	53.9	0.024	874
16:0	CH ₃ (CH ₂) ₁₄ COOH	n-Hexadecanoic acid	Palmitic acid (Latin <i>palma,</i> "palm tree")	63.1	0.0083	348
18:0	CH ₃ (CH ₂) ₁₆ COOH	n-Octadecanoic acid	Stearic acid (Greek s <i>tear,</i> "hard fat")	69.6	0.0034	124
20:0	CH ₃ (CH ₂) ₁₈ COOH	n-Eicosanoic acid	Arachidic acid (Latin <i>Arachis,</i> legume genus)	76.5		
24:0	CH ₃ (CH ₂) ₂₂ COOH	n-Tetracosanoic acid	Lignoceric acid (Latin <i>lignum,</i> "wood" + cera, "wax")	86.0		
$16:1(\Delta^9)$	CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₂ COOH	cis-9-Hexadecenoic acid	Palmitoleic acid	1-0.5		
$18:1(\Delta^9)$	CH ₃ (CH ₂) ₇ CH—CH(CH ₂) ₇ COOH	cis-9-Octadecenoic acid	Oleic acid (Latin <i>oleum</i> , "oil")	13.4		
18:2(Δ ^{9,12})	CH ₃ (CH ₂) ₄ CH—CHCH ₂ CH— CH(CH ₂) ₇ COOH	ciscis-9,12-Octadecadienoic acid	Linoleic acid (Greek <i>linon,</i> "flax")	1-5		
$18:3(\Delta^{9,12,15})$	CH ₃ CH ₂ CH—CHCH ₂ CH— CHCH ₂ CH—CH(CH ₂) ₇ COOH	cis-,cis-,cis-9,12,15- Octadecatrienoic acid	α -Linolenic acid	-11	Ì	Essential: can not
20:4(A ^{5,8,11,14})	CH ₃ (CH ₂) ₄ CH=CHCH ₂ CH= CHCH ₂ CH-CHCH ₂ CH- CH(CH ₂) ₃ COOH	cis-,cis-,cis-,cis-5,8,11,14- Icosatetraenoic acid	Arachidonic acid	-49.5		be synthesized by humans

Nutrition and Fatty Acids

Essential fatty acids: linoleic and α -linolenic fatty acids; must get these from plants

"Good fats": high in polyunsaturated fats.

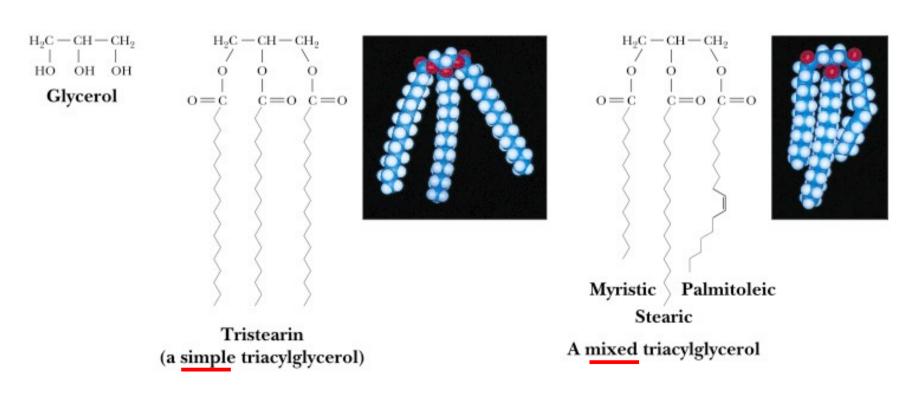
Typical foods include vegetable oils, like olive, canola, sunflower, etc.

"Bad fats": high in saturated fats.

Classic offenders stearic (beef); palm & coconut oils (found in candy)

"Really bad fats": *trans* fatty acids; result from partial hydrogenation of vegetable oils.

Margarine has trans fatty acids.


 difficult to metabolize; lead to increased cholesterol levels in the blood

Triacylglycerols (triglycerides) Energy Storage Lipids

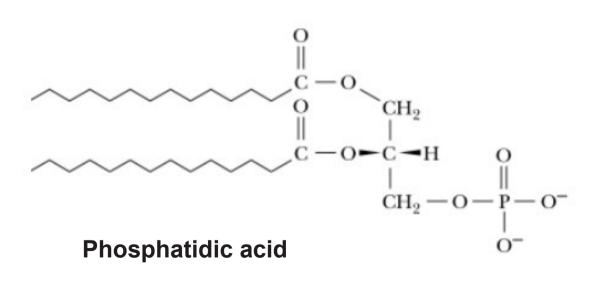
- 1 Fatty Acid + Glycerol = monoacylglycerol
- 2 Fatty Acids + Glycerol = diacylglycerol
- 3 Fatty Acids + Glycerol = triacylglycerol

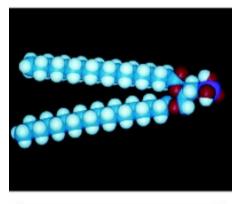
Triacylglycerols Energy Storage Lipids

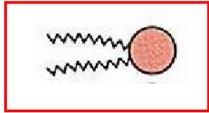
- Most abundant form of fatty acids
- <u>Not</u> a part of biological membranes Major energy reserve in animal

• Energy yield from burning: ~37 kJ/gram, as compared to ~16 kJ/gram for carbohydrates (*eg. sugars*).

Energy Constituent	~kJ/gram	Mass (g)	Energy (kJ)
Fat (adipose tissue)	37	15,000	555,000
Protein (muscle)	17	6,000	102,000
Glycogen (muscle)	16	120	1,920
Glycogen (liver)	16	70	1,120
Glucose (extracellular fluid)	16	20	320
Total			660,360

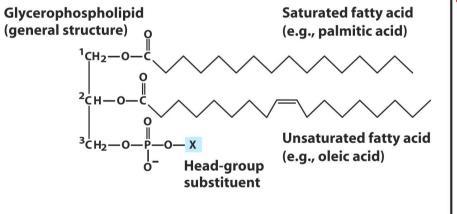

Stored Metabolic 'fuel' in a 70 kg male




Glycerophospholipids Membrane Lipids

1,2-diacylglycerol (the fatty acids) with a phosphate group at position 3

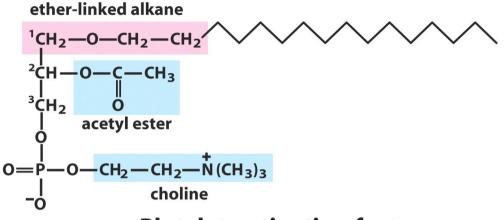
- Essential components of cell membranes and other cellular structures
- The parent molecule is <u>phosphatidic</u> acid
- You can have additional compounds esterified to the phosphate group



Glycerophospholipids (examples)

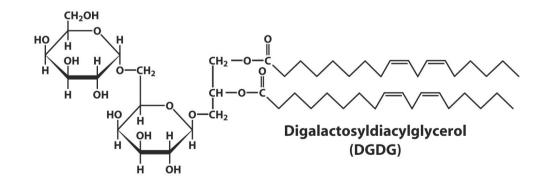
• Phosphatidylcholine (lecithin) and phosphatidylethanolamine: common membrane constituents

•Cardiolipan= diphosphatidylglycerol (note two phosphatidyl and extra glycerol)



Name of glycerophospholipid	Name of X	Formula of X	Net charge (at pH 7)
Phosphatidic acid	_	— Н	- 1
Phosphatidylethanolamine	Ethanolamine	-CH2-CH2-NH3	0
Phosphatidylcholine	Choline	-CH2-CH2-N(CH3)3	0
Phosphatidylserine	Serine		- 1
Phosphatidylglycerol	Glycerol	— СН ₂ —СН —СН ₂ —ОН ОН	- 1
Phosphatidylinositol 4,5-bisphosphate	<i>myo-</i> Inositol 4,5- bisphosphate	H O 6 5 OH H H H OH HO O 2 3 H H	- 4
Cardiolipin	Phosphatidyl- glycerol	— СH ₂ СНОН О СH ₂ —О—Р—О—СН ₂	- 2
		о́- о Сн—о—С— _R ¹ о Сн₂—о—С— <mark>R²</mark>	

Other Glycerophospholipids

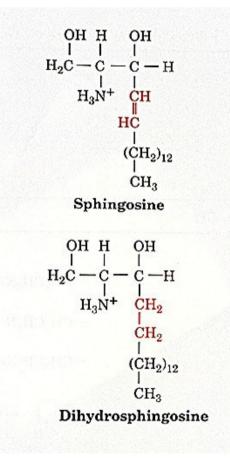

•Ether glycerophospholipids (e.g. platelet activating factor, an important lipid signaling molecule)

Platelet-activating factor

Galactolipids found in thylakoid membranes of chlorolasts.

70-80% of the total chloroplast membrane lipids.

Sphingolipids Membrane Lipids (brain)


Sphingolipids are typically found in brain tissues (*eg.* brain lipids)

Based upon sphingosine (or dihydrosphingosine), an amino alcohol

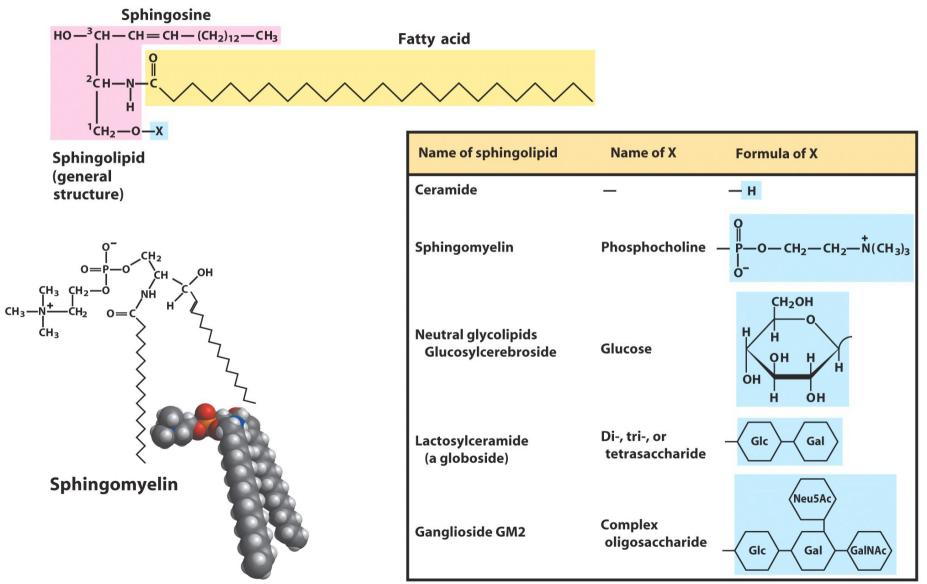
 Sphingosine is rare in plants and animals while sphingolipids are common

Simplest sphingolipids are ceramides

• Sphingosine + N-linked fatty acid = ceramide

¹CH₂-O-X

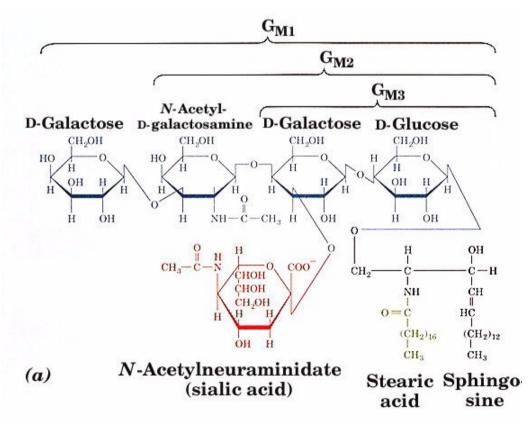
Sphingolipid


(general structure)

Sphingosine HO $-^{3}$ CH-CH=CH-(CH₂)₁₂-CH₃

Fatty acid

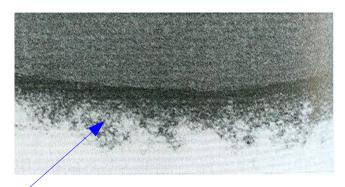
Sphingolipids (types)


Gangliosides Membrane Lipids (signalling)

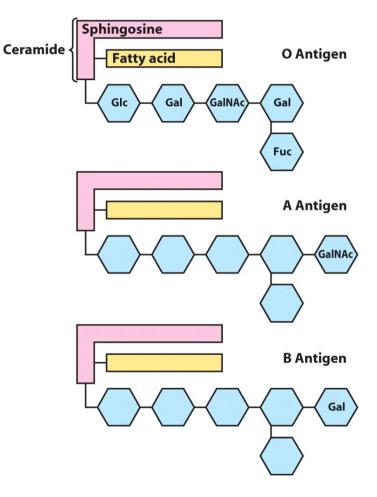
Gangliosides are complex <u>sphingolipids</u>

• Ceramide + 3 (or more) sugars including one sialic acid

Limited abundance; key tissue specific signaling molecule


Gangliosides (example)

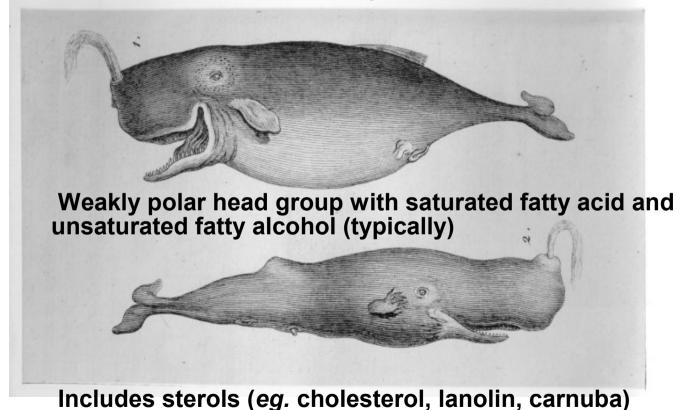
Gangliosides determine blood type

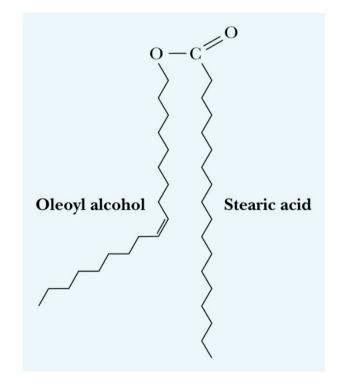

 O, A and B antigens that give rise to blood types are gangliosides

Polar "head groups" of these gangliosides differ

Electron Micrograph of Erythrocyte Outer Membrane

Gangliosides



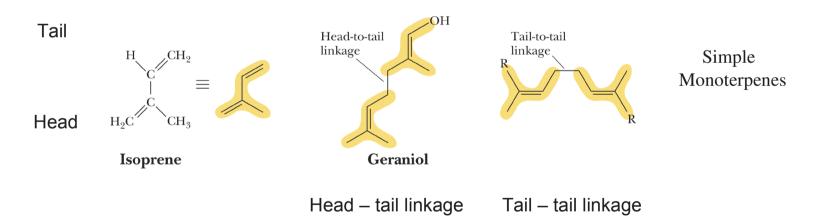

Waxes Other Lipids

Waxes are esters of a fatty acid and a fatty alcohol

insoluble and water repellent

Garrett/Grisham, Biochemistry with a Human Focus Figure 6.14

Harcourt, Inc. items and derived items copyright © 2002 by Harcourt, Inc.


Terpenes Other Lipids

Terpenes are abundant in plants

- Built from 5 carbon isoprene units and do not contain fatty acids
- Monoterpenes contain 2 isoprene units, Diterpenes contain 4, etc.

Generally assembled by a 'head to tail' linkage of isoprene units

• Diterpenes and larger terpenes arise from cyclization reactions

Common terpenes have varied functions:

potent signalling molecules, pigments, chemical sensors, *etc* intermediates in cholesterol and steroid biosynthesis

Biochemistry 2000